JP2017131772A - エレクトロポレーター用電源 - Google Patents

エレクトロポレーター用電源 Download PDF

Info

Publication number
JP2017131772A
JP2017131772A JP2017095686A JP2017095686A JP2017131772A JP 2017131772 A JP2017131772 A JP 2017131772A JP 2017095686 A JP2017095686 A JP 2017095686A JP 2017095686 A JP2017095686 A JP 2017095686A JP 2017131772 A JP2017131772 A JP 2017131772A
Authority
JP
Japan
Prior art keywords
power supply
pulse
outputting
output
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017095686A
Other languages
English (en)
Other versions
JP6518971B2 (ja
Inventor
俊幸 森泉
Toshiyuki Moriizumi
俊幸 森泉
辰也 岡藤
Tatsuya Okafuji
辰也 岡藤
康裕 森泉
Yasuhiro Moriizumi
康裕 森泉
廣道 渡部
Hiromichi Watabe
廣道 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017095686A priority Critical patent/JP6518971B2/ja
Publication of JP2017131772A publication Critical patent/JP2017131772A/ja
Application granted granted Critical
Publication of JP6518971B2 publication Critical patent/JP6518971B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Electrotherapy Devices (AREA)

Abstract

【課題】2種類以上のパルスを組み合わせて実施するエレクトロポレーション用電源であって、より高い導入率を達成することのできるエレクトロポレーション用電源を提供する。
【解決手段】前記エレクトロポレーター用電源は、連動して使用可能な2以上の独立した直流電源部を備え、前記直流電源部の少なくとも1つが、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源を含む。本発明の好適態様は、前記直流電源部として、ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)とドライビングパルス(Pd)を出力するための直流電源部(Pd/P)を含み、更に好ましくは、前記直流電源部(Pd/P)として、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)と負極性ドライビングパルス(Pd-)出力用直流電源部(Pd-/P)を含む。
【選択図】なし

Description

本発明は、エレクトロポレーター用電源およびそれを含むエレクトロポレーター、並びにそれを用いるエレクトロポレーション方法に関する。
電気刺激により細胞膜に微細孔を開け、DNA等の高分子を細胞内へ導入するエレクトロポレーションを行うための装置として、種々のエレクトロポレーターが公知である。このようなエレクトロポレーターとしては、例えば、適当な緩衝液に懸濁した培養細胞や培養容器に付着した状態の培養細胞などを対象としたイン・ビトロ(in vitro)でのエレクトロポレーションを行うためのもの、あるいは、生体組織などを対象としたイン・ビボ(in vivo)でのエレクトロポレーションを行うためのものなどが市販されており、DNAワクチンの投与装置もエレクトロポレーターの1つである。
初期のエレクトロポレーターは、一定電圧の高電圧の矩形波パルスを所望のパルス長、パルス間隔、パルス数で複数回負荷するものであったが、エレクトロポレーション効率を高めるために、高電圧のパルスを比較的短時間(10マイクロ秒オーダー)負荷した後、続いて、それより長い時間(10ミリ秒オーダー)の低電圧パルスを負荷するデュアルパルス方式のエレクトロポレーションが開発された(非特許文献1)。この方式では、最初の高電圧パルスが細胞膜に微細孔を開けるために寄与し(ポレーションパルス。以下、略称としてPpを使用する)、続く低電圧パルスがDNA等の細部内部への移動に寄与している(ドライビングパルス。以下、Pd)と考えられている。前記非特許文献1に記載のエレクトロポレーションは、ポレーションパルス及びドライビングパルスのいずれも1回のパルスを負荷するものであるが、1回のポレーションパルス(Pp)を負荷した後、続いてドライビングパルス(Pd)として、一定電圧の矩形波パルスを複数回(図1)、あるいは、指数関数的減衰波を複数回(図3)、負荷することのできる装置(CUY21EX、(株)ベックス)も市販されている。
このようなデュアルパルス方式のエレクトロポレーション装置が開発される前のエレクトロポレーターは、一定電圧の矩形波パルスを出力するための単一電源を備えただけのものであったが、デュアルパルス方式のエレクロポレーターでは大幅に電圧の異なる2種類のパルスを短時間のインターバルを挟んで出力する必要があるため、2つの定電圧源を備えることによりこの課題を解決している。
Biophys. J., 1992, Vol. 63, p. 1320-1327
本発明の課題は、2種類以上のパルスを組み合わせて実施するエレクトロポレーション用電源であって、より高い導入率を達成することのできるエレクトロポレーション用電源を提供することにある。
本発明は、
[1]連動して使用可能な2以上の独立した直流電源部を備え、
前記直流電源部の少なくとも1つが、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源を含む、エレクトロポレーター用電源;
[2]前記直流電源部として、
(A)ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)と、
(B)ドライビングパルス(Pd)を出力するための直流電源部(Pd/P)と
を含む、[1]のエレクトロポレーター用電源;
[3]前記直流電源部(Pd/P)が、
(B2)ドライビングパルス(Pd)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd/a)
を含む、[2]のエレクトロポレーター用電源;
[4]前記直流電源部(Pd/P)が、更に、
(B1)ドライビングパルス(Pd)として、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd/p)
を含む、[3]のエレクトロポレーター用電源;
[5]前記直流電源部(Pd/P)として、
(B)正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)と、
(B)負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)と
を含む、[2]のエレクトロポレーター用電源;
[6]前記定電流源(Pd/a)として、
(B2)正極性ドライビングパルス(Pd+)として、正極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd+/a)と
(B2)負極性ドライビングパルス(Pd−)として、負極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd−/a)と
を含む、[3]のエレクトロポレーター用電源;
[7]前記定電圧源(Pd/p)として、
(B1)正極性ドライビングパルス(Pd+)として、正極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd+/p)と
(B1)負極性ドライビングパルス(Pd−)として、負極性の1又は複数のパルスからなる指数関数的減衰波を所定の電圧値で出力することのできる定電圧源(Pd−/p)と
を含む、[4]のエレクトロポレーター用電源;
[8]前記直流電源部(Pp/P)が、
(A1)ポレーションパルス(Pp)として、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pp/p)、及び
(A2)ポレーションパルス(Pp)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pp/a)
からなる群から選んだ少なくとも1つを含む、[2]〜[7]のいずれかのエレクトロポレーター用電源;
[9][1]〜[8]のいずれかのエレクトロポレーター用電源と、エレクトロポレーション用電極とを含む、エレクトロポレーター;
[10][9]のエレクトロポレーターを用いることを特徴とする、エレクトロポレーション方法;
に関する。
本明細書において「定電圧源」とは、一定の電圧で複数パルスを出力できる電源を意味するだけでなく、例えば、初期設定電圧および減少率等により予め設定した所定の電圧で複数パルスを出力できる電源も意味する。
また、本明細書において「定電流源」とは、一定の電流値で複数パルスを出力できる電源を意味するだけでなく、予め設定した所定の電流値で複数パルスを出力できる電源も意味する。
本発明のエレクトロポレーター用電源によれば、複数パルスを予め設定した所定の電流値で出力可能であるため、負荷中に抵抗値が変動することが予想される条件で実施するエレクトロポレーションであっても、高い導入効率を達成することができる。
また、本発明の好適態様である、正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)と、負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)とを備えたエレクトロポレーター用電源によれば、これまでのエレクトロポレーターでは実施できなかったパターン(例えば、図4〜図9)のドライビングパルスを出力することができる。
ポレーションパルス(Pp)に続いてドライビングパルス(Pd)を負荷するデュアルパルス方式のエレクトロポレーション(以下、図2〜図9において同じ)において、ドライビングパルス(Pd)として、正極性の矩形波パルスを複数回出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、複数の正極性パルス(各パルスそれ自体はスクエア(square))からなる指数関数的減衰波を出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、複数の正極性パルスからなる指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、正極性の矩形波パルスを複数回出力した後、更に負極性の矩形波パルスを複数回出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、正極性の矩形波パルスと負極性の矩形波パルスを1回ずつ交互に出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))を複数回出力した後、更に負極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))を複数回出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))と負極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))を1回ずつ交互に出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を複数回出力した後、更に負極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を複数回出力する場合の模式的波形図である。 同エレクトロポレーションにおいて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))と負極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を1回ずつ交互に出力する場合の模式的波形図である。 本発明のエレクトロポレーター用電源の一態様の構成を模式的に示すブロック図である。 図10に示すブロック図において、ポレーションパルス(Pp)出力用直流電源部(Pp/P)として機能する定電圧源(Pp/p)を太線で示す、ブロック図である。 図10に示すブロック図において、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)を構成する定電圧源(Pd+/p)を太線で示す、ブロック図である。 図10に示すブロック図において、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)を構成する定電流源(Pd+/a)を太線で示す、ブロック図である。
本発明のエレクトロポレーター用電源は、単独でも、あるいは、連動しても使用可能な独立した直流電源部を少なくとも2以上(好ましくは3以上)備える。このような直流電源部の組合せとしては、エレクトロポレーションに使用可能な組合せであれば、特に限定されるものではないが、例えば、高電圧出力用電源と低電圧出力用電源との組合せを挙げることができ、特には、ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)とドライビングパルス(Pd)を出力するための直流電源部(Pd/P)との組合せを挙げることができる。
本発明のエレクトロポレーター用電源は、直流電源部以外に、交流電源部を備えることもできる。
従来のエレクトロポレーター用電源で用いられていた直流電源部としては、例えば、一定電圧の矩形波パルスを複数回出力することのできる定電圧源や、単極性の1又は複数のパルスからなる指数関数的減衰波を所定の電圧値で出力することのできる定電圧源が挙げられるが、本発明のエレクトロポレーター用電源は、直流電源部の少なくとも1つが、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源を含む。
例えば、本発明のエレクトロポレーター用電源が、ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)とドライビングパルス(Pd)を出力するための直流電源部(Pd/P)とを含む場合、直流電源部(Pp/P)又は直流電源部(Pd/P)のいずれか一方が前記定電流源を含むこともできるし、直流電源部(Pp/P)及び直流電源部(Pd/P)の両方が前記定電流源を含むこともできる。
本発明で用いることのできるポレーションパルス(Pp)を出力するための直流電源部(Pp/P)は、例えば、ポレーションパルス(Pp)として、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pp/p)、あるいは、ポレーションパルス(Pp)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pp/a)を含むことができ、前記の定電圧源(Pp/p)又は定電流源(Pp/a)のいずれか一方を、あるいは、両方を備えることができる。
同様に、本発明で用いることのできるドライビングパルス(Pd)を出力するための直流電源部(Pd/P)は、例えば、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd/p)、あるいは、ドライビングパルス(Pd)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd/a)を含むことができ、前記の定電圧源(Pd/p)又は定電流源(Pd/a)のいずれか一方を、あるいは、両方を備えることができる。
通常のデュアルパルス方式のエレクトロポレーションでは、ドライビングパルスの負荷回数は1回であることが多いため、このような用途では、構成の容易さとコストを考慮すると、前記定電圧源(Pp/p)のみからなるポレーションパルス(Pp)出力用直流電源部(Pp/P)と、前記定電圧源(Pd/p)及び定電流源(Pd/a)からなるドライビングパルス(Pd)出力用直流電源部(Pd/P)との組合せが好ましい。
本発明のエレクトロポレーター用電源は、ドライビングパルス(Pd)を出力するための直流電源部(Pd/P)として、極性の異なるドライビングパルス(Pd+)を種々の組合せで出力するために、2種類の直流電源部、すなわち、正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)と、負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)とを含むことができる。
本発明で用いることのできるドライビングパルス(Pd)を出力するための直流電源部(Pd/P)が、正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)と、負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)とを含む場合、各直流電源部(Pd+/P)及び(Pd−/P)は、それぞれ、先述したとおり、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd/p)、及び/又は、ドライビングパルス(Pd)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd/a)を含むことができる。
具体的には、正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)は、正極性ドライビングパルス(Pd+)として、正極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd+/p)、及び/又は、正極性ドライビングパルス(Pd+)として、正極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd+/a)を含むことができる。
また、負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)は、負極性ドライビングパルス(Pd−)として、負極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd−/p)、及び/又は、負極性ドライビングパルス(Pd−)として、負極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd−/a)とを含むことができる。
以下、図10に示す本発明のエレクトロポレーター用電源の一態様を例にとり、図10〜図13に基づいて、本発明を更に説明する。図10に示す本発明の一態様は、
ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)と、
正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)と、
負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)とを含み;
前記のポレーションパルス(Pp)出力用直流電源部(Pp/P)として、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pp/p)を含み;
前記の正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)として、正極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd+/p)と、正極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd+/a)とを含み;
前記の負極性ドライビングパルス(Pd−)出力用直流電源部(Pd−/P)として、負極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd−/p)と、負極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd−/a)とを含む。
図11〜図13は、図10に示す一態様に関して、各直流電源部のいずれか1つを太線で示すものである。図11は、ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)として機能する定電圧源(Pp/p)のみを太線で示し、図12は、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)を構成する定電圧源(Pd+/p)のみを太線で示し、図13は、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)を構成する定電流源(Pd+/a)のみを太線で示す。
図11に示すポレーションパルス(Pp)出力用直流電源部(Pp/P)では、スイッチ(Pp出力)を切り替えることにより、Pp電源からキャパシタ(Pp容量)に蓄電し、Pp出力スイッチに入力されるPpドライブ信号に従って、所定の電圧値で、単極性の1又は複数のパルスを出力端子から出力することができる。
図10における前記の正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)では、スイッチ操作により、図12に示す、正極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd+/p)と、図13に示す、正極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd+/a)とを切り替えることができる。具体的には、スイッチをキャパシタモードに切り替えることにより、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)を定電圧源(Pd+/p)として機能させることができる。また、スイッチをアンプモードに切り替えることにより、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)を定電流源(Pd+/a)として機能させることができる。
図12に示す定電圧源(Pd+/p)では、スイッチを切り替えることにより、Pd+電源からキャパシタ(Pd容量)に蓄電し、Pd+出力スイッチに入力されるPd+ドライブ信号に従って、所定の電圧値で、単極性の1又は複数のパルスを出力端子から出力することができる。
一方、図13に示す定電流源(Pd+/a)では、Pd+出力スイッチに入力されるPd+ドライブ信号に従って、Pd+電源の印加電圧が直接、出力端子から出力される。その際、電流値および電圧値を検出し、それらのフィードバックにより、所定の電流値を出力端子から出力することができる。
本発明のエレクトロポレーター用電源では、このフィードバックを、例えば、半導体±スイッチアンプを用いて実施することができる。
図10における前記の負極性ドライビングパルス(Pd−)出力用直流電源部(Pd−/P)は、極性が反対であること以外は、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)と同じ構成であり、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)と同じように作動する。
すなわち、スイッチをキャパシタモードに切り替えることにより、負極性ドライビングパルス(Pd−)出力用直流電源部(Pd−/P)を定電圧源(Pd−/p)として機能させることができる。また、スイッチをアンプモードに切り替えることにより、負極性ドライビングパルス(Pd−)出力用直流電源部(Pd−/P)を定電流源(Pd−/a)として機能させることができる。
また、定電圧源(Pd−/p)及び定電流源(Pd−/a)も、それぞれ、極性が反対であること以外は、定電圧源(Pd+/p)及び定電流源(Pd+/a)と同様に作動する。
ポレーションパルス(Pp)に続いてドライビングパルス(Pd)を負荷するデュアルパルス方式のエレクトロポレーションにおいて、本発明のエレクトロポレーター用電源により出力可能な波形パターンを図1〜図9に示す。
図1は、定電圧源(Pp/p)により出力したポレーションパルス(Pp)に続いて(以下、図2〜図7において同じ)、ドライビングパルス(Pd)として、正極性の矩形波パルスを複数回出力するものである。前記の正極性矩形波パルスを定電流源(Pd+/a)により出力した場合、一定の電流値で矩形波パルスを負荷することができる。また、定電圧源(Pd+/p)により出力した場合、一定電圧の矩形波パルスを負荷することができる。
図2は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、複数の正極性パルスからなる指数関数的減衰波(各パルスそれ自体はスクエア(square))を複数回出力するものである。前記の正極性指数関数的減衰波を定電流源(Pd+/a)により出力することにより、初期設定電流および減少率等により予め設定した所定の電流値で指数関数的減衰波を負荷することができる。
図3は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、複数の正極性パルスからなる指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を複数回出力するものである。前記の正極性指数関数的減衰波を定電圧源(Pd+/p)により出力することにより、初期設定電圧および減少率等により予め設定した所定の電圧で指数関数的減衰波を負荷することができる。
なお、図1〜図3は、正極性の矩形波パルス又は指数関数的減衰波を出力するものであるが、定電圧源(Pd+/p)又は定電流源(Pd+/a)に代えて、定電圧源(Pd−/p)又は定電流源(Pd−/a)を用いることにより、負極性(すなわち、ポレーションパルス(Pp)と反対極性)の矩形波パルス又は指数関数的減衰波を出力することができる。
図4は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、正極性の矩形波パルスを複数回出力した後、更に負極性の矩形波パルスを複数回出力するものである。正極性矩形波パルスを定電流源(Pd+/a)により、続いて負極性矩形波パルスを定電流源(Pd−/a)により出力することにより、一定の電流値で矩形波パルスを負荷することができる。また、定電圧源(Pd+/p)、続いて定電圧源(Pd−/p)により出力した場合、一定電圧の矩形波パルスを負荷することができる。
図5は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、正極性の矩形波パルスと負極性の矩形波パルスを1回ずつ交互に出力するものである。正極性矩形波パルスを定電流源(Pd+/a)により、負極性矩形波パルスを定電流源(Pd−/a)により出力することにより、一定の電流値で矩形波パルスを負荷することができる。また、定電圧源(Pd+/p)、定電圧源(Pd−/p)により出力した場合、一定電圧の矩形波パルスを負荷することができる。図5は、正極性パルスと負極性パルスを1回ずつ交互に出力するものであるが、複数回の正極性パルスと、それと同数の負極性パルスを交互に出力することもできる。
図6は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))を複数回出力した後、更に負極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))を複数回出力するものである。正極性指数関数的減衰波を定電流源(Pd+/a)により、続いて負極性指数関数的減衰波を定電流源(Pd−/a)により出力することにより、初期設定電流および減少率等により予め設定した所定の電流値で指数関数的減衰波を負荷することができる。
図7は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))と負極性の指数関数的減衰波(各パルスそれ自体はスクエア(square))を1回ずつ交互に出力するものである。正極性指数関数的減衰波を定電流源(Pd+/a)により、負極性指数関数的減衰波を定電流源(Pd−/a)により出力することにより、初期設定電流および減少率等により予め設定した所定の電流値で指数関数的減衰波を負荷することができる。図7は、正極性パルスと負極性パルスを1回ずつ交互に出力するものであるが、複数回の正極性パルスと、それと同数の負極性パルスを交互に出力することもできる。
図8は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を複数回出力した後、更に負極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を複数回出力するものである。正極性指数関数的減衰波を定電圧源(Pd+/p)により、続いて負極性指数関数的減衰波を定電圧源(Pd−/p)により出力することにより、初期設定電圧および減少率等により予め設定した所定の電圧で指数関数的減衰波を負荷することができる。
図9は、同ポレーションパルス(Pp)に続いて、ドライビングパルス(Pd)として、正極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))と負極性の指数関数的減衰波(各パルスそれ自体も指数関数的減衰(exponential))を1回ずつ交互に出力するものである。正極性指数関数的減衰波を定電圧源(Pd+/p)により、負極性指数関数的減衰波を定電圧源(Pd−/p)により出力することにより、初期設定電圧および減少率等により予め設定した所定の電圧で指数関数的減衰波を負荷することができる。図9は、正極性パルスと負極性パルスを1回ずつ交互に出力するものであるが、複数回の正極性パルスと、それと同数の負極性パルスを交互に出力することもできる。
本発明のエレクトロポレーター用電源の仕様は、適宜決定することができるが、以下にその一例を記載する。なお、正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)と負極性ドライビングパルス(Pd−)出力用直流電源部(Pd−/P)については、極性が反対であること以外は同一仕様であるので、後者の記載は省略する。
ポレーションパルス(Pp)出力用直流電源部(Pp/P)〔定電圧源(Pp/p)〕
・出力電圧:0〜400V、設定単位:1V刻み
・キャパシタ:1410μF
・取扱出力電流:0.01〜10A
・パルス数:1
・パルス幅:10マイクロ秒〜99.9ミリ秒
・ポレーションパルスとドライビングパルスとの間隔:50マイクロ秒〜99.9ミリ秒
正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)における定電圧源(Pd+/p)
・出力電圧:0〜300V、設定単位:1V
・キャパシタ:22μF、55μF、139μF、349μF、876μF、2200μF
・取扱出力電流:0〜10A
・パルス数:1〜1000
・パルス幅:50マイクロ秒〜1000ミリ秒
・パルス間隔:50マイクロ秒〜1000ミリ秒
正極性ドライビングパルス(Pd+)出力用直流電源部(Pd+/P)における定電流源(Pd+/a)
・出力電圧:1〜200V、設定単位:1V
・出力電流:1〜1000mA、設定単位:1mA
・パルス数:1〜1000
・パルス幅:50マイクロ秒〜1000ミリ秒
・パルス間隔:50マイクロ秒〜1000ミリ秒
本発明のエレクトロポレーター用電源は、所望により、本来目的とするパルス出力(例えば、ポレーションパルス(Pp)及びドライビングパルス(Pd)の出力)の前に、交流電源から細胞にダメージを与えない程度の微弱な定電流を流すことによりエレクトロポレーション電極間の抵抗を測定する手段を備えることができる。本発明のエレクトロポレーター用電源においては、このような抵抗測定手段と、これまで説明した各直流電源部とを連続する一連の操作として実施する構造とすることもできる。
また、本発明のエレクトロポレーター用電源は、安全のために、突発的な過出力を防止する手段を備えることができる。このような防止手段は、ハードウェア的に出力停止するものであっても、ソフトウェア的に出力制限するものであってもよい。ソフトウェア的な過出力防止手段としては、例えば、予め負荷の抵抗を測定し、設定した出力電流に対しては出力制限電圧を設定することにより、あるいは、設定した出力電圧に対しては出力制限電流を設定することにより、突発的な過出力を防止することができる。
また、本発明のエレクトロポレーター用電源では、定電流源(例えば、Pd+/a、Pd−/a)において指数関数的減衰波を出力する場合には、所望により、その減衰率にあわせて、電源(例えば、Pd+電源、Pd−電源)の電源電圧を事前低下させることができる。これにより、アンプのエネルギー損失(発熱)を軽減することができる。
また、本発明のエレクトロポレーター用電源では、所望により、設定電圧に対して電源電圧をやや高め(10〜20%程度)に設定することにより、大出力が必要となる場合であっても、設定電圧への到達時間を短縮することができる。
本発明のエレクトロポレーター用電源は、適当なエレクトロポレーション用電極と組み合わせて使用することにより、各種エレクトロポレーションを実施することができる。
本発明のエレクトロポレーター用電源を用いて実施することのできるエレクトロポレーションとしては、例えば、イン・ビボ(in vivo)エレクトロポレーション(例えば、in uteroエレクトロポレーション、ex uteroエレクトロポレーション、in ovoエレクトロポレーション)、ex ovoエレクトロポレーション、ex vivoエレクトロポレーション、イン・ビトロ(in vitro)エレクトロポレーション(例えば、懸濁した状態でのエレクトロポレーション、培養容器に付着した状態でのエレクトロポレーション)を挙げることができる。
本発明のエレクトロポレーター用電源は、エレクトロポレーション用電極と組み合わせて使用することにより、電気刺激により細胞膜に微細孔を開け、DNA等の高分子を細胞内へ導入するエレクトロポレーションに利用することができる。

Claims (10)

  1. 連動して使用可能な2以上の独立した直流電源部を備え、
    前記直流電源部の少なくとも1つが、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源を含む、エレクトロポレーター用電源。
  2. 前記直流電源部として、
    (A)ポレーションパルス(Pp)を出力するための直流電源部(Pp/P)と、
    (B)ドライビングパルス(Pd)を出力するための直流電源部(Pd/P)と
    を含む、請求項1に記載のエレクトロポレーター用電源。
  3. 前記直流電源部(Pd/P)が、
    (B2)ドライビングパルス(Pd)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd/a)
    を含む、請求項2に記載のエレクトロポレーター用電源。
  4. 前記直流電源部(Pd/P)が、更に、
    (B1)ドライビングパルス(Pd)として、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd/p)
    を含む、請求項3に記載のエレクトロポレーター用電源。
  5. 前記直流電源部(Pd/P)として、
    (B)正極性のドライビングパルス(Pd+)を出力するための直流電源部(Pd+/P)と、
    (B)負極性のドライビングパルス(Pd−)を出力するための直流電源部(Pd−/P)と
    を含む、請求項2に記載のエレクトロポレーター用電源。
  6. 前記定電流源(Pd/a)として、
    (B2)正極性ドライビングパルス(Pd+)として、正極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd+/a)と
    (B2)負極性ドライビングパルス(Pd−)として、負極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pd−/a)と
    を含む、請求項3に記載のエレクトロポレーター用電源。
  7. 前記定電圧源(Pd/p)として、
    (B1)正極性ドライビングパルス(Pd+)として、正極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pd+/p)と
    (B1)負極性ドライビングパルス(Pd−)として、負極性の1又は複数のパルスからなる指数関数的減衰波を所定の電圧値で出力することのできる定電圧源(Pd−/p)と
    を含む、請求項4に記載のエレクトロポレーター用電源。
  8. 前記直流電源部(Pp/P)が、
    (A1)ポレーションパルス(Pp)として、単極性の1又は複数のパルスを所定の電圧値で出力することのできる定電圧源(Pp/p)、及び
    (A2)ポレーションパルス(Pp)として、単極性の1又は複数のパルスを所定の電流値で出力することのできる定電流源(Pp/a)
    からなる群から選んだ少なくとも1つを含む、請求項2〜7のいずれか一項に記載のエレクトロポレーター用電源。
  9. 請求項1〜8のいずれか一項に記載のエレクトロポレーター用電源と、エレクトロポレーション用電極とを含む、エレクトロポレーター。
  10. 請求項9に記載のエレクトロポレーターを用いることを特徴とする、エレクトロポレーション方法。
JP2017095686A 2017-05-12 2017-05-12 エレクトロポレーター用電源 Active JP6518971B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017095686A JP6518971B2 (ja) 2017-05-12 2017-05-12 エレクトロポレーター用電源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095686A JP6518971B2 (ja) 2017-05-12 2017-05-12 エレクトロポレーター用電源

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012069077A Division JP2013198637A (ja) 2012-03-26 2012-03-26 エレクロトポレーター用電源

Publications (2)

Publication Number Publication Date
JP2017131772A true JP2017131772A (ja) 2017-08-03
JP6518971B2 JP6518971B2 (ja) 2019-05-29

Family

ID=59501981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095686A Active JP6518971B2 (ja) 2017-05-12 2017-05-12 エレクトロポレーター用電源

Country Status (1)

Country Link
JP (1) JP6518971B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097499A (ja) * 2017-12-05 2019-06-24 株式会社ベックス 哺乳動物の受精卵に物質を導入する方法
KR20220121010A (ko) * 2021-02-24 2022-08-31 (주)이지템 양극성 아크 플라즈마와 듀얼 펄스 일렉트로포레이션에 의한 피부 경피투여 약물 전달의 고효율 장치
KR102548999B1 (ko) * 2023-02-23 2023-06-28 (주) 위드닉스 자동 센싱 기능을 가진 피부 미용기

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141584A (ja) * 1987-11-27 1989-06-02 Shimadzu Corp 遺伝子導入装置
JP2001503208A (ja) * 1996-09-09 2001-03-06 ジェネトロニクス・インコーポレイテッド ユーザが設定したパルスを用いる電気穿孔法
US6542778B1 (en) * 1998-05-22 2003-04-01 Evotec Oai Ag. Process and device for permeation of biological objects
JP2004536584A (ja) * 2001-04-23 2004-12-09 アマクサ ゲゼルシャフト ミット ベシュレンクテル ハフツング 核酸および他の生体活性分子を高等真核細胞の核に電流を用いて導入する回路装置
US20050170510A1 (en) * 2003-12-08 2005-08-04 Yong Huang Device and method for controlled electroporation and molecular delivery into cells and tissue
US20060142688A1 (en) * 2004-12-28 2006-06-29 Nanyang Polytechnic Programmable apparatus and method for optimizing and real time monitoring of gene transfection based on user configured arbitrary waveform pulsing train
JP2010506660A (ja) * 2006-10-17 2010-03-04 ヴィージーエックス ファーマシューティカルズ,インコーポレイテッド 哺乳動物の細胞の電気穿孔のための電気穿孔装置および該電気穿孔装置を使用する方法
JP2011509659A (ja) * 2008-01-11 2011-03-31 ブイジーエックス ファーマシューティカルズ, インコーポレイテッド デングウイルスの複数のサブタイプに対する新規ワクチン
WO2011097640A1 (en) * 2010-02-08 2011-08-11 The Trustees Of The University Of Pennsylvania Nucleic acid molecules encoding rantes, and compositions comprising and methods of using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141584A (ja) * 1987-11-27 1989-06-02 Shimadzu Corp 遺伝子導入装置
JP2001503208A (ja) * 1996-09-09 2001-03-06 ジェネトロニクス・インコーポレイテッド ユーザが設定したパルスを用いる電気穿孔法
US6542778B1 (en) * 1998-05-22 2003-04-01 Evotec Oai Ag. Process and device for permeation of biological objects
JP2004536584A (ja) * 2001-04-23 2004-12-09 アマクサ ゲゼルシャフト ミット ベシュレンクテル ハフツング 核酸および他の生体活性分子を高等真核細胞の核に電流を用いて導入する回路装置
US20050170510A1 (en) * 2003-12-08 2005-08-04 Yong Huang Device and method for controlled electroporation and molecular delivery into cells and tissue
US20060142688A1 (en) * 2004-12-28 2006-06-29 Nanyang Polytechnic Programmable apparatus and method for optimizing and real time monitoring of gene transfection based on user configured arbitrary waveform pulsing train
JP2010506660A (ja) * 2006-10-17 2010-03-04 ヴィージーエックス ファーマシューティカルズ,インコーポレイテッド 哺乳動物の細胞の電気穿孔のための電気穿孔装置および該電気穿孔装置を使用する方法
JP2011509659A (ja) * 2008-01-11 2011-03-31 ブイジーエックス ファーマシューティカルズ, インコーポレイテッド デングウイルスの複数のサブタイプに対する新規ワクチン
WO2011097640A1 (en) * 2010-02-08 2011-08-11 The Trustees Of The University Of Pennsylvania Nucleic acid molecules encoding rantes, and compositions comprising and methods of using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
久保貴博外4名: ""パルスパワーを用いたメダカ受精卵への物質導入実験におけるパラメータの検討"", 電気学会研究会資料, JPN6016030831, 8 March 2012 (2012-03-08), JP, pages 5 - 8, ISSN: 0003770294 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097499A (ja) * 2017-12-05 2019-06-24 株式会社ベックス 哺乳動物の受精卵に物質を導入する方法
KR20220121010A (ko) * 2021-02-24 2022-08-31 (주)이지템 양극성 아크 플라즈마와 듀얼 펄스 일렉트로포레이션에 의한 피부 경피투여 약물 전달의 고효율 장치
KR102484457B1 (ko) 2021-02-24 2023-01-04 (주)이지템 양극성 아크 플라즈마와 듀얼 펄스 일렉트로포레이션에 의한 피부 경피투여 약물 전달을 위한 장치
KR102548999B1 (ko) * 2023-02-23 2023-06-28 (주) 위드닉스 자동 센싱 기능을 가진 피부 미용기
WO2024177266A1 (ko) * 2023-02-23 2024-08-29 동국제약 주식회사 자동 센싱 기능을 가진 피부 미용기

Also Published As

Publication number Publication date
JP6518971B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2013198637A (ja) エレクロトポレーター用電源
JP6518971B2 (ja) エレクトロポレーター用電源
US9238808B2 (en) Modular adjustable pulse generator
US20110065161A1 (en) Bipolar solid state marx generator
Valdez et al. The interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellation
US10004899B2 (en) Electric pulse generator for electroporator and electroporator apparatus provided with electric pulse generator
CN104434302B (zh) 一种射频输出装置
WO2019105242A1 (zh) 一种脉冲电压发生装置、方法及控制器
KR102030528B1 (ko) 피부관리장치 및 그 장치의 구동방법
Lan et al. A novel generator for high-voltage bipolar square pulses with applications in sterilization of microorganism
BR112012028312B8 (pt) Pulsador de bateria de sobretensão bipolar e método para o tratamento de uma pluralidade de baterias de um conjunto de baterias
US20240189014A1 (en) Pulse Control Method And Apparatus, Ablation Device And System, and Storage Medium
Elserougi et al. Conceptual study of a bipolar modular high voltage pulse generator with sequential charging
TW200938090A (en) Multi-channel uniform-current stunner
Jordan et al. Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells
Gowrishankar et al. Nanopore occlusion: A biophysical mechanism for bipolar cancellation in cell membranes
KR20190043944A (ko) 신경 보철용 다채널 전류 자극기
EP3211434A1 (en) Dynamic output clamping for a probe or accessory
Adon et al. Study of effect of microsecond pulsed electric fields on threshold area of hela cells
CN211791318U (zh) 一种用于电转仪的充放电电路
EP4366166A1 (en) Synergistic pulse generation circuit, generation apparatus, and generation method therefor
JP2017085974A (ja) エレクトロポレーションのための回路
Dermol et al. Cell sensitization is induced by a wide range of permeabilizing electric fields
EP3342455B1 (en) Apparatus for terminating or unpinning rotating electric activity in a cardiac tissue
JP5822247B1 (ja) エレクトロポレーター用電気パルス発生器及び前記電気パルス発生器を備えたエレクトロポレーター装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180529

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6518971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250