JP2017130587A - Ultraviolet light emitting device and device having the same - Google Patents

Ultraviolet light emitting device and device having the same Download PDF

Info

Publication number
JP2017130587A
JP2017130587A JP2016010081A JP2016010081A JP2017130587A JP 2017130587 A JP2017130587 A JP 2017130587A JP 2016010081 A JP2016010081 A JP 2016010081A JP 2016010081 A JP2016010081 A JP 2016010081A JP 2017130587 A JP2017130587 A JP 2017130587A
Authority
JP
Japan
Prior art keywords
light emitting
ultraviolet light
resin layer
substrate
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016010081A
Other languages
Japanese (ja)
Inventor
宏典 石井
Hironori Ishii
宏典 石井
玉亭 王
Yuting Wan
玉亭 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016010081A priority Critical patent/JP2017130587A/en
Publication of JP2017130587A publication Critical patent/JP2017130587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet light emitting device that is excellent in durability and has a high light extraction efficiency.SOLUTION: The ultraviolet light emitting device includes an ultraviolet light emitting element 3 having a substrate 3a and a nitride semiconductor layer 3b, a joint substrate 2 which has an upper surface disposed to face a surface of the substrate 3a on which the nitride semiconductor layer 3b is provided, and is electrically connected to the ultraviolet light emitting element 3, a housing 4 having a connection wiring 4a, a wire 5 for electrically connecting the joint substrate 2 and the connection wiring 4a, a first resin layer 6 for sealing at least a part of the wire 5, and a second resin layer 7 which is provided on an upper layer of the first resin layer 6 and has a characteristic different from that of the first resin layer 6. For example, the first resin layer 6 having a lower ultraviolet transmittance is denatured by ultraviolet rays, thereby avoiding occurrence of disconnection or the like in the wire 5. Ultraviolet rays radiated from the upper portion of the side surface of the nitride semiconductor layer 3b is taken out by the second resin layer 7 having a higher ultraviolet transmittance, thereby enhancing the light extraction efficiency.SELECTED DRAWING: Figure 1

Description

本発明は紫外線発光装置及びそれを備えた装置に関する。   The present invention relates to an ultraviolet light emitting device and a device including the same.

窒化物基板をベースとする半導体装置は、その広いバンドギャップを有する特徴を活かし、光を発光する発光装置や光を受光する受光装置、パワーデバイスへの適用が期待されている。特に、窒化アルミニウム(AlN)基板を有する半導体発光装置は、波長が280nm以下の深紫外線を発光することができ、殺菌用途に利用可能な高出力、且つ長寿命の深紫外LED(UVC−LED:UltraViolet C−Light Emitting Diode)につながるものとして、その開発が期待されている。
深紫外線を発光することのできる半導体発光装置である紫外線発光装置のパッケージ方法は種々知られており、従来の技術として例えば特許文献1に開示された技術がある。
A semiconductor device based on a nitride substrate is expected to be applied to a light emitting device that emits light, a light receiving device that receives light, and a power device by taking advantage of its wide band gap. In particular, a semiconductor light emitting device having an aluminum nitride (AlN) substrate can emit deep ultraviolet light having a wavelength of 280 nm or less, and has a high output and long life deep ultraviolet LED (UVC-LED: usable for sterilization applications). The development is expected to lead to UltraViolet C-Light Emitting Diode).
Various packaging methods for ultraviolet light emitting devices, which are semiconductor light emitting devices capable of emitting deep ultraviolet light, are known, and there is a technology disclosed in Patent Document 1, for example, as a conventional technology.

特開2005−277441号公報JP 2005-277441 A

特許文献1には、半導体発光デバイスをフリップチップ実装したパッケージに関する技術が開示されている。特許文献1では、実装基板にフリップチップ実装したLEDを基板上に設け、ワイヤーボンディングによって実装基板と基板との間の電気的接続を確保している。その後全体を樹脂で封止している。
このパッケージ技術を紫外線LEDに適用した場合、LEDが発する紫外線によって樹脂が硬化し、ワイヤーが断線するといった問題が生じる可能性がある。また樹脂封止を行わない場合には、光取り出しが低下するといった課題がある。
Patent Document 1 discloses a technique related to a package in which a semiconductor light emitting device is flip-chip mounted. In Patent Document 1, an LED flip-chip mounted on a mounting substrate is provided on the substrate, and electrical connection between the mounting substrate and the substrate is ensured by wire bonding. Thereafter, the whole is sealed with resin.
When this package technology is applied to the ultraviolet LED, there is a possibility that the resin is cured by the ultraviolet ray emitted from the LED and the wire is disconnected. Further, when resin sealing is not performed, there is a problem that light extraction is reduced.

本発明は、このような事情に鑑みてなされたものであって、耐久性に優れ、且つ、光取り出し効率の高い紫外線発光装置を提供することを目的としている。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the ultraviolet-ray light-emitting device excellent in durability and high light extraction efficiency.

本発明の一態様に係る紫外線発光装置は、一方の面に窒化物半導体層を有する基板を備えた紫外線発光素子と、上面が、前記基板の前記窒化物半導体層を有する側の面と対向して配置され、前記紫外線発光素子と電気的に接続される接合基板と、外部接続用の接続配線を有する筐体と、前記接合基板と前記接続配線とを電気的に接続するワイヤーと、少なくとも前記ワイヤーの一部を封止する第1樹脂層と、前記第1樹脂層の上層に設けられ前記第1樹脂層とは特性の異なる第2樹脂層と、を備えることを特徴としている。
また、本発明の一態様に係る装置は、上記態様の紫外線発光装置を備えることを特徴としている。
An ultraviolet light-emitting device according to an embodiment of the present invention includes an ultraviolet light-emitting element including a substrate having a nitride semiconductor layer on one surface, and an upper surface facing a surface of the substrate having the nitride semiconductor layer. A bonding substrate electrically connected to the ultraviolet light emitting element, a housing having a connection wiring for external connection, a wire for electrically connecting the bonding substrate and the connection wiring, and at least the A first resin layer that seals a part of the wire, and a second resin layer that is provided in an upper layer of the first resin layer and has different characteristics from the first resin layer are provided.
An apparatus according to one embodiment of the present invention includes the ultraviolet light-emitting device according to the above aspect.

本発明の一態様によれば、耐久性に優れ、光取り出し効率の高い紫外線発光装置を実現することができる。   According to one embodiment of the present invention, an ultraviolet light-emitting device that has excellent durability and high light extraction efficiency can be realized.

本発明の一実施形態に係る紫外線発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the ultraviolet-ray light-emitting device concerning one Embodiment of this invention. 本発明の他の実施形態に係る紫外線発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the ultraviolet-ray light-emitting device concerning other embodiment of this invention.

以下、本発明を実施するための一実施形態について説明する。本実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、各部の材質、形状、構造、配置、寸法等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。   Hereinafter, an embodiment for carrying out the present invention will be described. This embodiment exemplifies a configuration for embodying the technical idea of the present invention, and does not specify the material, shape, structure, arrangement, dimensions, and the like of each part as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.

<紫外線発光装置>
本発明の一実施形態に係る紫外線発光装置は、一方の面に窒化物半導体層を有する基板を備えた紫外線発光素子と、上面が、基板の窒化物半導体層を有する側の面と対向して配置され、紫外線発光素子と電気的に接続される接合基板と、外部接続用の接続配線を有する筐体と、接合基板と接続配線とを電気的に接続するワイヤーと、少なくともワイヤーの一部を封止する第1樹脂層と、第1樹脂層の上層に設けられ第1樹脂層とは特性の異なる第2樹脂層と、を備える。
<Ultraviolet light emitting device>
An ultraviolet light emitting device according to an embodiment of the present invention includes an ultraviolet light emitting element including a substrate having a nitride semiconductor layer on one surface, and an upper surface facing the surface of the substrate having the nitride semiconductor layer. A bonding substrate that is disposed and electrically connected to the ultraviolet light emitting element, a housing having connection wiring for external connection, a wire that electrically connects the bonding substrate and the connection wiring, and at least a part of the wire; A first resin layer to be sealed; and a second resin layer provided on an upper layer of the first resin layer and having different characteristics from the first resin layer.

本発明の一実施形態に係る紫外線発光装置は、ワイヤーを封止する第1樹脂層と窒化物半導体層の側面の上部を封止する第2樹脂層とに別々の機能を有する樹脂を採用することができる。第1樹脂層として、紫外線に対する耐久性に優れた樹脂を採用することで、紫外線により樹脂が硬化することによって第1樹脂層内のワイヤーが応力等によって断線する事を防ぎ、耐久性を向上させることが可能となる。また第2樹脂層として、紫外線透過性に優れた樹脂を採用することで、窒化物半導体層の側面の上部から放射される紫外線を取り出すことが可能となり、その分、光取り出し効率を向上させることができる。
次に、本発明の一実施形態に係る紫外線発光装置の各構成要件について説明する。以下に記載される紫外線発光装置の各構成要件の特徴は、本発明の技術思想を逸脱しない範囲でそれぞれ単独または組み合わせて適用可能である。
The ultraviolet light emitting device according to an embodiment of the present invention employs resins having different functions for the first resin layer for sealing the wire and the second resin layer for sealing the upper part of the side surface of the nitride semiconductor layer. be able to. By adopting a resin having excellent durability against ultraviolet rays as the first resin layer, it is possible to prevent the wires in the first resin layer from being disconnected due to stress or the like as the resin is cured by ultraviolet rays, thereby improving durability. It becomes possible. In addition, by adopting a resin with excellent ultraviolet transparency as the second resin layer, it becomes possible to take out ultraviolet rays emitted from the upper part of the side surface of the nitride semiconductor layer, thereby improving the light extraction efficiency. Can do.
Next, each component of the ultraviolet light emitting device according to the embodiment of the present invention will be described. The characteristics of each constituent element of the ultraviolet light emitting device described below can be applied individually or in combination without departing from the technical idea of the present invention.

<接合基板>
本発明の一実施形態に係る紫外線発光装置において、接合基板は、後述の紫外線発光素子と電気的に接続可能なものであれば特に限定されない。接合基板は、絶縁性基板を母材とし、主にセラミック材料からなる基板を用いることができる。接合基板として、例えばアルミナ基板や窒化アルミ基板等があげられ、熱伝導率の高い材料が好ましい。また接合基板は電気回路を形成するための電極を表面又は内部、或いは表面及び内部に有しており、電極材料としては導電性を持つものであれば何ら構わず、例えば、銀やタングステンを主成分とするペーストや、めっき、蒸着、スパッタリング法により形成された金や銅、ニッケル、チタン、コバルト等が一例として挙げられる。接合基板が有する電極と後述の紫外線発光素子との接合方法は特に限定されないが、半田材料や、金・金接合が好ましい。一例としては、接合基板の表面及び内部に形成された導電性の配線と、後述の紫外線発光素子のn型窒化物半導体層の一部、及び、p型窒化物半導体層の一部とを電気的に接続する形態が挙げられる。両者の接続には、例えばAuボール等を用いたフリップチップ接続を行うことが可能であるが、特にこれには限定されない。
<Joint substrate>
In the ultraviolet light emitting device according to an embodiment of the present invention, the bonding substrate is not particularly limited as long as it can be electrically connected to an ultraviolet light emitting element described later. As the bonding substrate, an insulating substrate as a base material and a substrate mainly made of a ceramic material can be used. Examples of the bonding substrate include an alumina substrate and an aluminum nitride substrate, and a material having high thermal conductivity is preferable. The bonding substrate has electrodes for forming an electric circuit on the surface or inside, or on the surface and inside, and any electrode material may be used as long as it has conductivity. For example, silver or tungsten is mainly used. Examples include paste as a component, gold, copper, nickel, titanium, cobalt and the like formed by plating, vapor deposition, and sputtering. The bonding method between the electrode of the bonding substrate and the ultraviolet light emitting element described later is not particularly limited, but solder material or gold / gold bonding is preferable. As an example, the conductive wiring formed on the surface and inside of the bonding substrate, and a part of an n-type nitride semiconductor layer and a part of a p-type nitride semiconductor layer of an ultraviolet light emitting element described later are electrically connected. Connection form. For the connection between the two, for example, flip chip connection using an Au ball or the like can be performed, but the present invention is not particularly limited to this.

<紫外線発光素子>
本発明の一実施形態に係る紫外線発光装置において、紫外線発光素子は、第1主面及び第2主面を有する基板と、第1主面上に形成された窒化物半導体層と、を有し、接合基板上に、接合基板と第1主面とが対向して、接合基板と電気的に接続されるよう配置される。ここで、「接合基板と第1主面とが対向」するとは、接合基板の表面をなす面と、紫外線発光素子の基板の第1主面をなす面とが略平行となることを意味する。
紫外線発光素子に含まれる基板は第1主面と第2主面とを有し、第1主面上に窒化物半導体層を形成可能なものであれば特に制限されず、サファイア(Al)、スピネル(MgAl)、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)等の酸化物単結晶基板や、Si、SiC、GaAs、GaP、AlN、GaN等の基板を使用することができる。紫外線発光素子に含まれる基板は、上記に列挙した基板材料に加えて、さらに同一組成または別組成のバッファ層を有していてもよい。例えばサファイア上に窒化アルミニウムのバッファ層を有するものも全体として基板となる。また、後の工程で元の基板を除去するような場合は、残ったバッファ層が基板となる。
<Ultraviolet light emitting device>
In the ultraviolet light emitting device according to an embodiment of the present invention, the ultraviolet light emitting element includes a substrate having a first main surface and a second main surface, and a nitride semiconductor layer formed on the first main surface. The bonding substrate and the first main surface are arranged on the bonding substrate so as to be electrically connected to the bonding substrate. Here, “the bonding substrate and the first main surface face each other” means that the surface forming the surface of the bonding substrate and the surface forming the first main surface of the substrate of the ultraviolet light emitting element are substantially parallel. .
The substrate included in the ultraviolet light emitting element is not particularly limited as long as it has a first main surface and a second main surface and a nitride semiconductor layer can be formed on the first main surface, and sapphire (Al 2 O 3 ), oxide single crystal substrates such as spinel (MgAl 2 O 4 ), zinc oxide (ZnO), magnesium oxide (MgO), and substrates such as Si, SiC, GaAs, GaP, AlN, and GaN may be used. it can. The substrate included in the ultraviolet light emitting element may further have a buffer layer having the same composition or a different composition in addition to the substrate materials listed above. For example, a substrate having an aluminum nitride buffer layer on sapphire also becomes a substrate as a whole. Further, when the original substrate is removed in a later process, the remaining buffer layer becomes the substrate.

基板の面方位は特に限定されず、ジャスト基板であっても、オフ角を付与した基板であっても良い。また、基板の厚みについても特に限定されることはなく、ハンドリングが可能な厚み以上で適正なものを用いることができる。
窒化物半導体層は、基板の第1主面上に形成される。窒化物半導体層は、n型窒化物半導体層、発光層及びp型窒化物半導体層を含む層であってもよい。またこれらn型窒化物半導体層、発光層及びp型窒化物半導体層以外にも、電極との良好なオーミック接触を実現するためのコンタクト層や、発光効率を向上させるためのバリア層(ブロック層)等の他の層をさらに備えていてもよい。発光層は、発光効率を向上させるために、単一又は多重量子井戸構造であることが好ましい。窒化物半導体層に用いる材料としては、LEDの発光波長に応じて種々の材料を採用できる。一例としては、InAlGaNやAlGaInPで表されるIII−V族化合物半導体材料を用いることができる。
The plane orientation of the substrate is not particularly limited, and may be a just substrate or a substrate provided with an off angle. Further, the thickness of the substrate is not particularly limited, and an appropriate thickness that is not less than the thickness that can be handled can be used.
The nitride semiconductor layer is formed on the first main surface of the substrate. The nitride semiconductor layer may be a layer including an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer. In addition to the n-type nitride semiconductor layer, the light-emitting layer, and the p-type nitride semiconductor layer, a contact layer for realizing good ohmic contact with the electrode, and a barrier layer (block layer for improving luminous efficiency) And other layers may be further provided. The light emitting layer preferably has a single or multiple quantum well structure in order to improve the light emission efficiency. As a material used for the nitride semiconductor layer, various materials can be adopted according to the emission wavelength of the LED. As an example, a III-V group compound semiconductor material represented by InAlGaN or AlGaInP can be used.

窒化物半導体層は、予め設定した電圧が印加されると、中心発光波長が230nm以上320nm以下の紫外線を発光するものを適用することができる。波長が230nm以上320nm以下の紫外線を発光する紫外線LEDは、殺菌やタンパク質成分の分離等、様々なアプリケーションに適用することができる。
n型窒化物半導体層は、例えば、InAlGaNやAlGaInPから構成される複数の層を有していてもよい。これら複数の層の少なくとも一部は発光層の格子パラメータに近づくように擬似格子整合的に歪まされていることが好ましい。または、n型窒化物半導体層は、一層又は複数層のInAlGaNやAlGaInPを有していてもよい。これらのInAlGaNやAlGaInPの組成がn型窒化物半導体層の厚みと共に変化する組成、すなわち、厚み方向に沿って線形的又は段階的に変化する組成であってもよい。
A nitride semiconductor layer that emits ultraviolet light having a central emission wavelength of 230 nm to 320 nm when a preset voltage is applied can be applied. Ultraviolet LEDs that emit ultraviolet light having a wavelength of 230 nm or more and 320 nm or less can be applied to various applications such as sterilization and separation of protein components.
The n-type nitride semiconductor layer may have a plurality of layers composed of, for example, InAlGaN or AlGaInP. At least a part of the plurality of layers is preferably distorted in a pseudo-lattice matching so as to approach the lattice parameter of the light emitting layer. Alternatively, the n-type nitride semiconductor layer may include one layer or a plurality of layers of InAlGaN or AlGaInP. A composition in which the composition of InAlGaN or AlGaInP changes with the thickness of the n-type nitride semiconductor layer, that is, a composition that changes linearly or stepwise along the thickness direction may be used.

ドーピングに用いられる不純物としては、p型不純物としてマグネシウム(Mg)が例示され、n型不純物としてシリコン(Si)が例示される。
n型窒化物半導体層のうち、基板との界面を含む部位は、基板又は基板が有するバッファ層とほぼ同一の組成を有していることが好ましい。これにより、n型窒化物半導体層の2次元の成長が促進され、不都合なアイランド形成が行われることを回避することができる。また、そのようなアイランド形成が行われることを回避することにより、n型窒化物半導体層及び後続の成長層での不都合な弾性の歪み緩和が起こることを回避することができる。
As an impurity used for doping, magnesium (Mg) is exemplified as a p-type impurity, and silicon (Si) is exemplified as an n-type impurity.
Of the n-type nitride semiconductor layer, the portion including the interface with the substrate preferably has substantially the same composition as the substrate or the buffer layer of the substrate. As a result, two-dimensional growth of the n-type nitride semiconductor layer is promoted, and undesirable island formation can be avoided. Further, by avoiding such island formation, it is possible to avoid an undesirable elastic strain relaxation in the n-type nitride semiconductor layer and the subsequent growth layer.

発光層は、例えば多重量子井戸(MQW:Multi Quantum Well)層を含む。MQW層は複数の量子井戸を含み、その量子井戸のそれぞれは、例えばInAlGaN、又は、AlGaNから構成されている。一例を挙げると、MQW層は、AlGa1−xN量子井戸及びAlGa1−yN量子井戸を含み、その一方が他方の上に積層された構造を有する。ここで、AlGa1−xN量子井戸の組成xと、AlGa1−yN量子井戸の組成yとは、互いに異なる値である。組成xと組成yとの差は、活性領域での電子及び正孔の良好な閉じ込めが得られるように十分に大きくなっていることが好ましい。これにより、放射性の再結合の、非放射性の再結合に対する比を高くすることができる。
p型窒化物半導体層は発光層上に形成され、例えば、不純物でドープされたInAlGaN、又は、不純物でドープされたAlGaNから構成される。不純物としては、p型不純物としてマグネシウム(Mg)が例示され、n型不純物としてシリコン(Si)が例示される。
The light emitting layer includes, for example, a multiple quantum well (MQW) layer. The MQW layer includes a plurality of quantum wells, and each quantum well is made of, for example, InAlGaN or AlGaN. For example, the MQW layer includes an Al x Ga 1-x N quantum well and an Al y Ga 1-y N quantum well, one of which is stacked on the other. Here, the composition x of the Al x Ga 1-x N quantum well is different from the composition y of the Al y Ga 1-y N quantum well. The difference between the composition x and the composition y is preferably large enough to obtain good confinement of electrons and holes in the active region. This can increase the ratio of radioactive recombination to non-radioactive recombination.
The p-type nitride semiconductor layer is formed on the light emitting layer and is made of, for example, InAlGaN doped with impurities or AlGaN doped with impurities. Examples of the impurity include magnesium (Mg) as a p-type impurity and silicon (Si) as an n-type impurity.

紫外線発光素子が有する窒化物半導体層の数は1つでもよいし、複数であってもよい。単位面積当たりの発光量を向上させる観点から、紫外線発光素子は並列接続された複数の窒化物半導体層を備えることが好ましい場合もある。また、窒化物半導体層の形状も特に制限されず、例えば平面視で矩形状、円形状又は楕円形状、多角形状、或いはそれらを組み合わせた形状等でもよい。
紫外線発光素子に電極を形成する場合には、電極は導電性の材料からなる。電極は、例えば金(Au)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)又はそれらの組み合わせ等で構成することができる。一例を挙げると、p型窒化物半導体層に接続する電極はNi/Au合金で構成することができる。またn型窒化物半導体層に接続する電極はTi/Al/Ti/Auスタックで構成することができる。これらの電極は、例えばスパッタリング法又は蒸着によって形成することができる。
The number of nitride semiconductor layers included in the ultraviolet light emitting element may be one or plural. From the viewpoint of improving the light emission amount per unit area, the ultraviolet light emitting element may preferably include a plurality of nitride semiconductor layers connected in parallel. Further, the shape of the nitride semiconductor layer is not particularly limited, and may be, for example, a rectangular shape, a circular shape, an elliptical shape, a polygonal shape, or a combination thereof in a plan view.
When an electrode is formed on the ultraviolet light emitting element, the electrode is made of a conductive material. The electrode can be made of, for example, gold (Au), nickel (Ni), aluminum (Al), titanium (Ti), or a combination thereof. For example, the electrode connected to the p-type nitride semiconductor layer can be made of a Ni / Au alloy. The electrode connected to the n-type nitride semiconductor layer can be composed of a Ti / Al / Ti / Au stack. These electrodes can be formed, for example, by sputtering or evaporation.

<筐体>
本発明の一実施形態に係る紫外線発光装置において、筐体は、その表面又は内部、或いは表面及び内部に接続配線を有する。この接続配線により外部に電気信号を出力することができる。接続配線は導電性の材料であれば特に限定されないが、銅やニッケル等に金やニッケル、パラジウムや銀等の表面処理を施したリード構造のものや、銀やタングステンを主成分とするペーストや、めっき、蒸着、スパッタリング法により形成された金や銅、ニッケル、チタン、コバルト膜等が一例として挙げられる。
<Case>
In the ultraviolet light emitting device according to the embodiment of the present invention, the housing has a connection wiring on the surface or inside thereof, or on the surface and inside thereof. An electrical signal can be output to the outside through this connection wiring. The connection wiring is not particularly limited as long as it is a conductive material, but it has a lead structure in which copper, nickel or the like is subjected to surface treatment such as gold, nickel, palladium or silver, a paste mainly composed of silver or tungsten, Examples thereof include gold, copper, nickel, titanium, and cobalt films formed by plating, vapor deposition, and sputtering.

筐体はその内部に接合基板及び紫外線発光素子を収納出来る断面が凹字形状の空間(キャビティ構造)を有していることが好ましい。接合基板は、筐体の凹部の底部に接着剤を用いて接合すればよい。接着剤は導電性でも絶縁性でも何ら構わないが、熱伝導性を向上させるため、銀等の導電性材料を高含有率で有する接着剤が特に好ましい。筐体の材料としては、樹脂パッケージやセラミックパッケージや金属材料が一例として挙げられるが、特にこれらには限定されない。その他、樹脂パッケージと金属部材の組み合わせや、セラミック材料と金属材料の組み合わせ等も適用可能である。   It is preferable that the casing has a space (cavity structure) having a concave section in which the bonding substrate and the ultraviolet light emitting element can be accommodated. The bonding substrate may be bonded to the bottom of the recess of the housing using an adhesive. The adhesive may be either conductive or insulating, but in order to improve thermal conductivity, an adhesive having a high content of conductive material such as silver is particularly preferable. Examples of the material of the housing include a resin package, a ceramic package, and a metal material, but are not particularly limited thereto. In addition, a combination of a resin package and a metal member, a combination of a ceramic material and a metal material, or the like is also applicable.

<ワイヤー>
本発明の一実施形態に係る紫外線発光装置において、ワイヤーは、接合基板と接続配線とを電気的に接続するものである。ワイヤーは金や銅等の半導体の組立工程で一般的に用いられるものが使用可能である。またワイヤーが後述の第1樹脂層と第2樹脂層とによってそれぞれ封止され、例えばワイヤーの下部が第1樹脂層、上部が第2樹脂層によって封止されている場合には、第1樹脂層及び第2樹脂層によってワイヤーの各部分にそれぞれ異なる応力が付加されるため、断線等が発生しやすくなる。よってワイヤーは第1樹脂層によって完全に覆われることがより好ましい。
第1樹脂層及び第2樹脂層は、機械的強度向上のためにパッケージとしての筐体の凹部に充填される。そのため、紫外線発光素子が収容される筐体の凹部の縁側の端部は、紫外線発光素子に含まれる基板の第2主面、すなわち、窒化物半導体層が形成された面とは逆側の面よりも上方にあることが望ましい。
<Wire>
In the ultraviolet light emitting device according to one embodiment of the present invention, the wire electrically connects the bonding substrate and the connection wiring. A wire generally used in the assembly process of semiconductors such as gold and copper can be used. Further, when the wire is sealed by a first resin layer and a second resin layer, which will be described later, for example, when the lower part of the wire is sealed by the first resin layer and the upper part is sealed by the second resin layer, the first resin Since different stress is applied to each part of the wire by the layer and the second resin layer, disconnection or the like is likely to occur. Therefore, it is more preferable that the wire is completely covered with the first resin layer.
The first resin layer and the second resin layer are filled in the recesses of the housing as a package in order to improve the mechanical strength. Therefore, the edge part of the edge side of the recessed part of the housing | casing in which an ultraviolet light emitting element is accommodated is the 2nd main surface of the board | substrate contained in an ultraviolet light emitting element, ie, a surface on the opposite side to the surface in which the nitride semiconductor layer was formed. It is desirable that it is above.

<第1樹脂層>
本発明の一実施形態に係る紫外線発光装置において、第1樹脂層は、接合基板、紫外線発光素子の側面の少なくとも一部及び少なくともワイヤーの一部を封止するものである。第1樹脂層の上面は平坦であってもよく、また、平坦でない面形状を有してもよい。第1樹脂層の一例としては、エポキシ樹脂を用いることが可能であるが、特にこれには限定されない。第1樹脂層は、特に、紫外線を透過しないことが望ましく、好ましくは第1樹脂層の紫外線透過率は20%以下である事が好ましい。ここで紫外線とは波長が260nm以上320nm以下の光を意味するものとする。また紫外線透過率が20%以下とは、上述の波長域において、何れか一つの波長の透過率が20%以下であることを意味する。
<First resin layer>
In the ultraviolet light emitting device according to an embodiment of the present invention, the first resin layer seals at least a part of the side surface of the bonding substrate, the ultraviolet light emitting element, and at least a part of the wire. The upper surface of the first resin layer may be flat or may have a non-flat surface shape. As an example of the first resin layer, an epoxy resin can be used, but is not particularly limited thereto. In particular, it is desirable that the first resin layer does not transmit ultraviolet rays, and the ultraviolet transmittance of the first resin layer is preferably 20% or less. Here, the ultraviolet ray means light having a wavelength of 260 nm or more and 320 nm or less. Further, the ultraviolet transmittance of 20% or less means that the transmittance of any one wavelength is 20% or less in the above-mentioned wavelength range.

また第1樹脂層の紫外線透過率は10%以下であることがより好ましい。紫外線が第1樹脂層を透過すると、第1樹脂層を形成する樹脂が変質或いは収縮し、ワイヤーに応力等の外力がかかり断線等が生じる可能性があるためである。
また、窒化物半導体層の基板とは逆側の端部を基準として、基板に垂直な方向を、紫外線発光素子の高さとしたとき、第1樹脂層と後述の第2樹脂層との界面は紫外線発光素子の高さの1/2となる位置以下となる位置にあることが好ましい。第1樹脂層が紫外線発光素子の高さの1/2となる位置より高いと第1樹脂層が紫外線発光素子に含まれる基板の第2主面に回り込みやすくなる。そのため、第1樹脂層と第2樹脂層との界面の位置は、紫外線発光素子の高さの1/2となる位置以下が好ましい。これにより、少なくとも窒化物半導体層の基板側の端部の側面は、第2樹脂層によって覆われることになり、紫外線発光素子の側面から放射される光の取り出し効率をさらに向上させることが可能となる。
Further, the ultraviolet transmittance of the first resin layer is more preferably 10% or less. This is because when the ultraviolet rays are transmitted through the first resin layer, the resin forming the first resin layer may be altered or contracted, and an external force such as stress may be applied to the wire to cause disconnection or the like.
Further, when the edge of the nitride semiconductor layer opposite to the substrate is taken as a reference and the direction perpendicular to the substrate is the height of the ultraviolet light emitting element, the interface between the first resin layer and the second resin layer described later is It is preferable to be in a position that is equal to or less than a position that is ½ the height of the ultraviolet light emitting element. If the first resin layer is higher than the position at which the height of the ultraviolet light emitting element is ½, the first resin layer easily goes around the second main surface of the substrate included in the ultraviolet light emitting element. Therefore, the position of the interface between the first resin layer and the second resin layer is preferably equal to or less than a position that is ½ of the height of the ultraviolet light emitting element. Thereby, at least the side surface of the end portion of the nitride semiconductor layer on the substrate side is covered with the second resin layer, and it is possible to further improve the extraction efficiency of light emitted from the side surface of the ultraviolet light emitting element. Become.

<第2樹脂層>
本発明の一実施形態に係る紫外線発光装置において、第2樹脂層は、筐体の凹部において、第1樹脂層の上部を封止するものである。ここで、「第1樹脂層の上部」とは、第1樹脂層側面の上部の少なくとも一部に第2樹脂層が形成されている事を意味する。紫外線発光素子の側面から放射された紫外線の取り出し効率をさらに向上させる観点から、第2樹脂層の紫外線透過率は80%以上である事が好ましい。ここで紫外線とは波長が260nm以上320nm以下の光を意味するものとする。また紫外線透過率が80%以上とは、上述の波長域において、何れか一つの波長の透過率が80%以上であることを意味する。またより好ましくは、第2樹脂層の紫外線透過率は90%以上である。第2樹脂層の厚みは特に限定されない。第2樹脂層は、キュア後にゲル状である場合には、最上層に用いることが好ましい。つまり、第2樹脂層の上に他の層が形成されないように用いることが好ましい
<Second resin layer>
In the ultraviolet light emitting device according to an embodiment of the present invention, the second resin layer seals the upper part of the first resin layer in the recess of the housing. Here, the “upper part of the first resin layer” means that the second resin layer is formed on at least a part of the upper part of the side surface of the first resin layer. From the viewpoint of further improving the extraction efficiency of ultraviolet rays radiated from the side surface of the ultraviolet light emitting element, the ultraviolet transmittance of the second resin layer is preferably 80% or more. Here, the ultraviolet ray means light having a wavelength of 260 nm or more and 320 nm or less. Further, the UV transmittance of 80% or more means that the transmittance of any one wavelength is 80% or more in the above-mentioned wavelength region. More preferably, the ultraviolet transmittance of the second resin layer is 90% or more. The thickness of the second resin layer is not particularly limited. The second resin layer is preferably used as the uppermost layer when it is gel after curing. That is, it is preferable to use so that no other layer is formed on the second resin layer.

<レンズ>
本発明の一実施形態に係る紫外線発光装置は、紫外線発光素子の含まれる基板の第2主面上にレンズをさらに備えてもよい。レンズの形成材料は、一例としては石英やサファイア等が挙げられる。またゾル−ゲル法を用いてレンズを作製する場合には、レンズの形成材料は樹脂材料でも構わない。レンズの形状は特に限定されないが、半球型、砲弾型、平板型等何ら構わない。またレンズ上に光学的な屈折率制御や波長フィルター機能を有する部材をさらに形成してもよい。レンズと基板との間に接着層を設け、両者を結合させることも好ましい。この場合、接着層の紫外線透過率は260nm以上320nm以下の波長領域で80%以上である事が好ましい。またより好ましくは紫外線透過率が90%以上であることが好ましい。接着層に用いられる材料としては、紫外線に耐性があるものが好ましい。接着層は、例えばシリコーンを主成分とする樹脂で形成することができる。その中でも基板とレンズとの接着性の観点から、ジメチルシリコーンやシリコーンオイル等の熱硬化型の樹脂が望ましい。また接着層の厚みは、紫外線の吸収による劣化を抑制するという観点から、0.1μm以上10μm以下であることが好ましい。シリコーン樹脂は紫外線を吸収してしまうようなフェニル基などを有しないものが好ましく、ジメチルシリコーンやシリコーンオイルを用いることが特に望ましい。適用可能なシリコーン樹脂としてはダウコーニング社のOE、JCRシリーズや、Schott社のDeep UV200等を用いることが出来る。またレンズとして、ガラスをベースにした材料も使用可能であり、旭硝子株式会社のサイトップ(登録商標)や、Crystal Material社のNovaxil等も使用可能であるが、上記の材料に限定されるものではない。
<Lens>
The ultraviolet light emitting device according to an embodiment of the present invention may further include a lens on the second main surface of the substrate including the ultraviolet light emitting element. Examples of the lens forming material include quartz and sapphire. When a lens is manufactured using a sol-gel method, the lens forming material may be a resin material. The shape of the lens is not particularly limited, but any shape such as a hemispherical type, a shell type, and a flat plate type may be used. Further, a member having an optical refractive index control or a wavelength filter function may be further formed on the lens. It is also preferable to provide an adhesive layer between the lens and the substrate and bond them together. In this case, the ultraviolet transmittance of the adhesive layer is preferably 80% or more in a wavelength region of 260 nm or more and 320 nm or less. More preferably, the ultraviolet transmittance is preferably 90% or more. As a material used for the adhesive layer, a material resistant to ultraviolet rays is preferable. The adhesive layer can be formed of, for example, a resin whose main component is silicone. Among these, from the viewpoint of adhesion between the substrate and the lens, a thermosetting resin such as dimethyl silicone or silicone oil is desirable. The thickness of the adhesive layer is preferably 0.1 μm or more and 10 μm or less from the viewpoint of suppressing deterioration due to absorption of ultraviolet rays. The silicone resin preferably does not have a phenyl group that absorbs ultraviolet rays, and it is particularly desirable to use dimethyl silicone or silicone oil. Examples of applicable silicone resins include OE and JCR series manufactured by Dow Corning, Deep UV200 manufactured by Schott, and the like. Further, as a lens, a glass-based material can be used. Cytop (registered trademark) of Asahi Glass Co., Ltd., Novaxil of Crystal Material, etc. can also be used, but are not limited to the above materials. Absent.

<装置>
また、本発明の一実施形態に係る紫外線発光素子を備えた装置を作製してもよい。本発明の一実施形態における紫外線発光装置は、紫外線発光装置から放射される紫外線を用いて、殺菌、計測、樹脂硬化、治療、半導体加工等、種々の装置に用いることが可能である。
装置の一例としては、殺菌装置、計測装置、樹脂硬化装置等が挙げられる。
殺菌装置の一例としては、冷蔵庫、空気洗浄器、加湿器、除湿器、便器等の各種の装置内に紫外線発光装置を組み込むことで、雑菌が繁殖しやすい場所の殺菌を行うことができる。
<Device>
Moreover, you may produce the apparatus provided with the ultraviolet light emitting element which concerns on one Embodiment of this invention. The ultraviolet light emitting device according to one embodiment of the present invention can be used for various devices such as sterilization, measurement, resin curing, treatment, and semiconductor processing using ultraviolet rays emitted from the ultraviolet light emitting device.
Examples of the apparatus include a sterilization apparatus, a measurement apparatus, a resin curing apparatus, and the like.
As an example of the sterilizer, by incorporating an ultraviolet light-emitting device in various devices such as a refrigerator, an air cleaner, a humidifier, a dehumidifier, and a toilet, it is possible to sterilize a place where germs easily propagate.

また殺菌装置の別の例としては、ウォーターサーバーや浄水器、給水器、排水処理装置、透析用水殺菌モジュール等の装置内に本発明の一実施形態に係る紫外線発光装置を組み込むことで、水等の流体内に含まれる雑菌を殺菌することができる。
また殺菌装置の別の例としては、掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機等の装置内に本発明の一実施形態に係る紫外線発光装置を組み込むことで、床や布等の表面及び内部に含まれる雑菌を殺菌することができる。
また殺菌装置の別の例としては、室内殺菌灯に本発明の一実施形態に係る紫外線発光装置を組み込むことで、空気中の細菌の殺菌を行うことができる。
Further, as another example of the sterilization apparatus, by incorporating the ultraviolet light emitting apparatus according to one embodiment of the present invention in a water server, a water purifier, a water supply device, a waste water treatment apparatus, a water sterilization module for dialysis, etc. The germs contained in the fluid can be sterilized.
As another example of the sterilizing apparatus, the ultraviolet light emitting device according to one embodiment of the present invention is incorporated in a vacuum cleaner, a futon dryer, a shoe dryer, a washing machine, a clothes dryer, or the like, thereby allowing a floor or cloth to be used. It is possible to sterilize miscellaneous bacteria contained on the surface and the like.
Moreover, as another example of the sterilization apparatus, bacteria in the air can be sterilized by incorporating the ultraviolet light emitting apparatus according to one embodiment of the present invention into an indoor sterilization lamp.

次に図面を用いて本発明の一実施形態に係る紫外線発光装置を説明する。
<第1実施形態>
図1に本発明の第1実施形態に係る紫外線発光装置の断面図の一例を示す。
第1実施形態に係る紫外線発光装置1は、接合基板2と、基板3a及び窒化物半導体層3bを有する紫外線発光素子3と、接続配線4aを有する筐体4と、接合基板2と筐体4とを電気的に接続するワイヤー5と、第1樹脂層6と、第2樹脂層7と、を備える。
接合基板2は、断面が凹字形状の筐体4の凹部4bの底部に設けられる。紫外線発光素子3は、基板3aの第1主面31に窒化物半導体層3bが配置されてなり、紫外線発光素子3の窒化物半導体層3b側が接合基板2と向かい合うようにして、紫外線発光素子3が半田8を介して接合基板2と電気的に接続される。
Next, an ultraviolet light emitting device according to an embodiment of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 shows an example of a cross-sectional view of the ultraviolet light emitting device according to the first embodiment of the present invention.
The ultraviolet light emitting device 1 according to the first embodiment includes a bonding substrate 2, an ultraviolet light emitting element 3 having a substrate 3a and a nitride semiconductor layer 3b, a casing 4 having a connection wiring 4a, a bonding substrate 2 and a casing 4. Are provided with a wire 5, a first resin layer 6, and a second resin layer 7.
The bonding substrate 2 is provided at the bottom of the recess 4b of the housing 4 having a concave cross section. The ultraviolet light emitting element 3 includes a nitride semiconductor layer 3b disposed on the first main surface 31 of the substrate 3a, and the ultraviolet light emitting element 3 is arranged such that the nitride semiconductor layer 3b side of the ultraviolet light emitting element 3 faces the bonding substrate 2. Are electrically connected to the bonding substrate 2 via the solder 8.

なお、図1では、接合基板2と紫外線発光素子3とが半田8を介して電気的に接続されている例を示しているが、特に半田8に限定されない。
接続配線4aは、筐体4の凹部4bの底部部分に設けられ、接合基板2と接続配線4aとが、ワイヤー5を介して電気的に接続される。
筐体4は、断面視で、筐体4内に収容された紫外線発光素子3の基板3aの、第1主面31とは逆側の第2主面32が、筐体4の開口側端部と略一致となるように形成される。そして、接合基板2、接続配線4a、ワイヤー5全体を覆うように、筐体4の凹部4bに第1樹脂層6が充填され、さらに、第1樹脂層6の上に、第2樹脂層7が充填されている。第1樹脂層6は、断面視で、上面が、筐体4内に配置された紫外線発光素子3の高さの1/2程度の位置に達するように形成され、第2樹脂層7は、上面が、筐体4の開口側端部と略一致するように形成される。このため、接合基板2、接続配線4a及びワイヤー5、また、窒化物半導体層3bの側面の一部が第1樹脂層6によって覆われ、窒化物半導体層3bの側面の他の部分及び基板3aの側面が第2樹脂層7によって覆われる。
Although FIG. 1 shows an example in which the bonding substrate 2 and the ultraviolet light emitting element 3 are electrically connected via the solder 8, the invention is not particularly limited to the solder 8.
The connection wiring 4 a is provided at the bottom portion of the recess 4 b of the housing 4, and the bonding substrate 2 and the connection wiring 4 a are electrically connected via the wire 5.
The housing 4 has a second main surface 32 opposite to the first main surface 31 of the substrate 3a of the ultraviolet light emitting element 3 accommodated in the housing 4 in a sectional view. It is formed so as to be approximately coincident with the portion. Then, the first resin layer 6 is filled in the concave portion 4b of the housing 4 so as to cover the bonding substrate 2, the connection wiring 4a, and the entire wire 5, and the second resin layer 7 is further formed on the first resin layer 6. Is filled. The first resin layer 6 is formed so that the upper surface thereof reaches a position about a half of the height of the ultraviolet light emitting element 3 disposed in the housing 4 in a sectional view, and the second resin layer 7 The upper surface is formed so as to substantially coincide with the opening side end of the housing 4. Therefore, a part of the side surface of the bonding substrate 2, the connection wiring 4a and the wire 5, and the nitride semiconductor layer 3b is covered with the first resin layer 6, and the other part of the side surface of the nitride semiconductor layer 3b and the substrate 3a. Are covered with the second resin layer 7.

このように第1樹脂層6及び第2樹脂層7を筐体4の凹部4bに充填することによって、紫外線発光装置の機械的強度を向上させることができる。
また、第1樹脂層6のみによりワイヤー5全体を封止しているため、より一層ワイヤー5を保護することができる。つまり、ワイヤー5は、第1樹脂層6のみにより覆われているため、第1樹脂層6を紫外線に対して耐性の強い材料にすることで、ワイヤー5に付加される応力等の外力を低減し、耐久性を高めることができる。
また第2樹脂層7は、紫外線透過率が大きく、第1樹脂層6の上部を封止している。これにより、光を放射する窒化物半導体層3bと空気との屈折率差を第2樹脂層7で緩和することが可能となり、紫外線発光素子3の側面から放射された光の取り出し効率を高める事ができる。
By filling the first resin layer 6 and the second resin layer 7 in the recess 4b of the housing 4 in this way, the mechanical strength of the ultraviolet light emitting device can be improved.
Moreover, since the wire 5 whole is sealed only by the 1st resin layer 6, the wire 5 can be protected further. That is, since the wire 5 is covered only with the first resin layer 6, external force such as stress applied to the wire 5 is reduced by making the first resin layer 6 a material resistant to ultraviolet rays. And durability can be improved.
The second resin layer 7 has a high ultraviolet transmittance and seals the upper part of the first resin layer 6. Thereby, the refractive index difference between the nitride semiconductor layer 3b that emits light and the air can be relaxed by the second resin layer 7, and the extraction efficiency of the light emitted from the side surface of the ultraviolet light emitting element 3 can be improved. Can do.

<第2実施形態>
図2に本発明の第2実施形態に係る紫外線発光装置の断面図の一例を示す。
第2実施形態に係る紫外線発光装置11は、図1に示す第1実施形態における紫外線発光装置1において、さらに、レンズ12を備えたものである。紫外線発光装置1と同一部には同一符号を付与しその詳細な説明は省略する。
図2に示すように、紫外線発光装置11は、断面視で、紫外線発光素子3の基板3aの第2主面32が、筐体4の開口側端部よりも低い位置となるように配置される。
そして、断面視で、基板3aの幅よりも直径が長い半球型のレンズ12が、基板3aの第2主面32上に配置される。
基板3aの第2主面32上にレンズ12をさらに備えることで、光取り出し効率をさらに高める事ができる。
Second Embodiment
FIG. 2 shows an example of a cross-sectional view of an ultraviolet light emitting device according to the second embodiment of the present invention.
The ultraviolet light emitting device 11 according to the second embodiment is further provided with a lens 12 in the ultraviolet light emitting device 1 according to the first embodiment shown in FIG. The same parts as those of the ultraviolet light emitting device 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIG. 2, the ultraviolet light emitting device 11 is arranged so that the second main surface 32 of the substrate 3 a of the ultraviolet light emitting element 3 is positioned lower than the opening side end of the housing 4 in a cross-sectional view. The
Then, the hemispherical lens 12 having a diameter larger than the width of the substrate 3a in a cross-sectional view is disposed on the second main surface 32 of the substrate 3a.
By further including the lens 12 on the second main surface 32 of the substrate 3a, the light extraction efficiency can be further increased.

次に、本発明の一実施形態における紫外線発光装置を、実施例及び比較例を挙げてより具体的に説明する。なお、本発明は、以下に説明する各実施例に限定されるものではない。   Next, the ultraviolet light emitting device in one embodiment of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to each Example demonstrated below.

(実施例1)
200μmの厚みを有するアルミナイトライド単結晶基板(3a)の第1主面側に、MOCVD法によりn−AlGaN層とAlGaNとGaNを交互に積層したMQW層p−GaN層を有する窒化物半導体層3bを形成した。この窒化物半導体層3bをエッチング処理してメサ形状に成型し、n−AlGaN層上にNi、Al、Ni、Ti及びAuがこの順に積層されてなる電極を形成し、p−GaN層上にNi、Ti及びAuがこの順に積層されてなる電極を形成し、紫外線発光素子を得た。
得られた紫外線発光素子を、窒化アルミセラミックを母材とする接合基板2にフリップチップ実装した。
Example 1
A nitride semiconductor layer having an MQW layer p-GaN layer in which n-AlGaN layers, AlGaN and GaN are alternately stacked by MOCVD method on the first main surface side of an aluminum nitride single crystal substrate (3a) having a thickness of 200 μm 3b was formed. The nitride semiconductor layer 3b is etched to form a mesa shape, and an electrode in which Ni, Al, Ni, Ti, and Au are stacked in this order is formed on the n-AlGaN layer, and the p-GaN layer is formed. An electrode in which Ni, Ti and Au were laminated in this order was formed to obtain an ultraviolet light emitting device.
The obtained ultraviolet light-emitting element was flip-chip mounted on the bonding substrate 2 using aluminum nitride ceramic as a base material.

次に、筐体4の凹部4bの底面に銀ペーストを用いて接合基板2を固定した。さらに接合基板2と筐体4に設けられた接続配線4aとを金ワイヤー(5)で電気的に接続した。
次にアルミナイトライド単結晶基板(3a)の第2主面上に、シリコーン樹脂を1ミクロンの厚みで塗布し、さらにその上に石英からなる半球型のレンズ12を搭載した。次に、筐体4の凹部4bにエポキシ樹脂(第1樹脂層6に相当)を充填した。エポキシ樹脂(6)の高さは紫外線発光素子3の上面から120μmの位置となるように制御した。また金ワイヤー(5)のループ頂点はエポキシ層で覆われていない状況であった。
最後に、レンズ12用の接着層に用いたシリコーン樹脂(第2樹脂層7に相当)を追加充填した。シリコーン樹脂(7)は半球レンズの底面に到達するまで充填し、紫外線発光装置11を得た。
Next, the bonding substrate 2 was fixed to the bottom surface of the recess 4b of the housing 4 using silver paste. Furthermore, the connection board | substrate 4 and the connection wiring 4a provided in the housing | casing 4 were electrically connected with the gold wire (5).
Next, a silicone resin was applied to a thickness of 1 micron on the second main surface of the aluminum nitride single crystal substrate (3a), and a hemispherical lens 12 made of quartz was mounted thereon. Next, an epoxy resin (corresponding to the first resin layer 6) was filled in the recess 4b of the housing 4. The height of the epoxy resin (6) was controlled to be 120 μm from the upper surface of the ultraviolet light emitting element 3. Further, the loop apex of the gold wire (5) was not covered with the epoxy layer.
Finally, a silicone resin (corresponding to the second resin layer 7) used for the adhesive layer for the lens 12 was additionally filled. The silicone resin (7) was filled until reaching the bottom surface of the hemispherical lens, and the ultraviolet light emitting device 11 was obtained.

(実施例2)
金ワイヤー5が完全に覆われるまで、エポキシ樹脂(第1樹脂層6に相当)を充填したこと以外は実施例1と同様の方法で紫外線発光装置を作製した。
(Example 2)
An ultraviolet light emitting device was produced in the same manner as in Example 1 except that the epoxy resin (corresponding to the first resin layer 6) was filled until the gold wire 5 was completely covered.

(比較例1)
実施例1でエポキシ樹脂(第1樹脂層6に相当)によって封止していた領域についてもシリコーン樹脂(第2樹脂層7に相当)で封止したこと以外は実施例1と同様の方法で紫外線発光装置を作製した。つまり比較例1ではエポキシ樹脂では封止を行わず、筐体4の凹部4bは全てシリコーン樹脂で封止した。
(Comparative Example 1)
The region sealed with the epoxy resin (corresponding to the first resin layer 6) in Example 1 was also the same as that of Example 1 except that it was sealed with the silicone resin (corresponding to the second resin layer 7). An ultraviolet light emitting device was produced. That is, in Comparative Example 1, the epoxy resin was not sealed, and all the recesses 4b of the housing 4 were sealed with a silicone resin.

(比較例2)
比較例1でシリコーン樹脂(第2樹脂層7に相当)によって封止していた領域をエポキシ樹脂(第1樹脂層6に相当)で封止したこと以外は比較例1と同様の方法で紫外線発光装置を作製した。つまり比較例2ではシリコーン樹脂では封止を行わず、筐体4の凹部4bは全てエポキシ樹脂で封止した。
(Comparative Example 2)
In the same manner as in Comparative Example 1 except that the region sealed with the silicone resin (corresponding to the second resin layer 7) in Comparative Example 1 was sealed with an epoxy resin (corresponding to the first resin layer 6). A light emitting device was manufactured. That is, in Comparative Example 2, the silicone resin was not sealed, and all the recesses 4b of the housing 4 were sealed with an epoxy resin.

<実施した比較実験>
実施例1、2及び比較例1、2に示す方法で、紫外線発光装置をそれぞれ10個ずつ作製した。得られた紫外線発光装置に300mA/1000Hrの条件で通電試験を実施した。通電試験の判定基準としては、通電中に電気的短絡やオープン(断線)が生じた紫外線発光装置を不良と見なし、さらに通電前の光出力を「1」と規格化した時の相対出力値を比較評価した。評価結果をまとめたものを表1に示す。なお、表1において、光出力は10個の紫外線発光装置の相対出力値の平均値を表す。
<Comparison experiment conducted>
Ten ultraviolet light emitting devices were produced by the methods shown in Examples 1 and 2 and Comparative Examples 1 and 2, respectively. An energization test was performed on the obtained ultraviolet light emitting device under the condition of 300 mA / 1000 Hr. As a criterion for the current test, the relative output value when the UV light emitting device that is electrically shorted or opened during disconnection is considered defective and the light output before power is normalized to “1” is used. Comparative evaluation was made. Table 1 summarizes the evaluation results. In Table 1, light output represents an average value of relative output values of 10 ultraviolet light emitting devices.

Figure 2017130587
Figure 2017130587

表1に示すように、比較例1の構造では、電気的不良が5個発生した。電気的不良である不良モードと判断された紫外線発光装置について外観を確認したところ、接合基板2の上方に相当する位置において金ワイヤー(5)が破断されていた事によるものと確認した。同様に比較例1では試験前はゲル状であったシリコーン樹脂(第2樹脂層7に相当)が、試験後には硬化し、多数のクラックが入っている事が確認された。これは紫外線発光素子3から放射される紫外線によりシリコーン樹脂に変性又は硬化が生じ、クラック発生時の応力で金ワイヤー(5)が切断されたものと考える。   As shown in Table 1, in the structure of Comparative Example 1, five electrical failures occurred. When the external appearance of the ultraviolet light emitting device determined to be an electrical failure mode was confirmed, it was confirmed that the gold wire (5) was broken at a position corresponding to the upper side of the bonding substrate 2. Similarly, in Comparative Example 1, it was confirmed that the silicone resin (corresponding to the second resin layer 7) that was in a gel state before the test was cured after the test and had many cracks. This is presumably because the silicone resin was denatured or cured by the ultraviolet rays radiated from the ultraviolet light emitting element 3, and the gold wire (5) was cut by the stress at the time of the crack occurrence.

比較例2に関しては、電気的不良は発生しなかったが、試験後の平均出力は実施例1、2と比較して10%程度低いものとなった。これはエポキシ樹脂によって紫外線発光素子の側面から放射された光の一部が外部に取り出されないためと考えられる。
実施例1及び実施例2の紫外線発光装置は、電気特性不良及び光出力低下もない事が確認された。
Regarding Comparative Example 2, no electrical failure occurred, but the average output after the test was about 10% lower than Examples 1 and 2. This is presumably because part of the light emitted from the side surface of the ultraviolet light emitting element by the epoxy resin is not taken out.
It was confirmed that the ultraviolet light emitting devices of Example 1 and Example 2 were free from poor electrical characteristics and light output.

1、11 紫外線発光装置
2 接合基板
3 紫外線発光素子
3a 基板
3b 窒化物半導体層
4 筐体
4a 接続配線
4b 凹部
5 ワイヤー
6 第1樹脂層
7 第2樹脂層
8 半田
12 レンズ
DESCRIPTION OF SYMBOLS 1, 11 Ultraviolet light-emitting device 2 Bonding board 3 Ultraviolet light-emitting element 3a Substrate 3b Nitride semiconductor layer 4 Case 4a Connection wiring 4b Recessed part 5 Wire 6 First resin layer 7 Second resin layer 8 Solder 12 Lens

Claims (9)

一方の面に窒化物半導体層を有する基板を備えた紫外線発光素子と、
上面が、前記基板の前記窒化物半導体層を有する側の面と対向して配置され、前記紫外線発光素子と電気的に接続される接合基板と、
外部接続用の接続配線を有する筐体と、
前記接合基板と前記接続配線とを電気的に接続するワイヤーと、
少なくとも前記ワイヤーの一部を封止する第1樹脂層と、
前記第1樹脂層の上層に設けられ前記第1樹脂層とは特性の異なる第2樹脂層と、を備える紫外線発光装置。
An ultraviolet light emitting device comprising a substrate having a nitride semiconductor layer on one side;
An upper surface is disposed to face the surface of the substrate having the nitride semiconductor layer, and is a bonded substrate that is electrically connected to the ultraviolet light emitting element.
A housing having connection wiring for external connection;
A wire for electrically connecting the bonding substrate and the connection wiring;
A first resin layer that seals at least a portion of the wire;
An ultraviolet light emitting device comprising: a second resin layer provided on an upper layer of the first resin layer and having different characteristics from the first resin layer.
前記第1樹脂層は前記第2樹脂層よりも紫外線透過率が低い請求項1に記載の紫外線発光装置。   The ultraviolet light emitting device according to claim 1, wherein the first resin layer has a lower ultraviolet transmittance than the second resin layer. 前記筐体は、前記紫外線発光素子及び前記接合基板を収容する凹部を有し、
前記紫外線発光素子及び前記接合基板は、前記接合基板が前記凹部の底面側となるように配置され、
前記第1樹脂層は、前記接合基板全体と、前記窒化物半導体層の側面の一部と、前記ワイヤーの少なくとも一部を覆うように形成され、
前記第2樹脂層は、前記窒化物半導体層の側面の少なくとも前記基板側の端部を覆うように形成される請求項1又は請求項2に記載の紫外線発光装置。
The housing has a recess for accommodating the ultraviolet light emitting element and the bonding substrate,
The ultraviolet light emitting element and the bonding substrate are arranged such that the bonding substrate is on the bottom surface side of the recess,
The first resin layer is formed so as to cover the entire bonding substrate, a part of a side surface of the nitride semiconductor layer, and at least a part of the wire,
The ultraviolet light emitting device according to claim 1, wherein the second resin layer is formed so as to cover at least an end portion of the side surface of the nitride semiconductor layer on the substrate side.
前記ワイヤー全体が前記第1樹脂層により覆われている請求項1から請求項3のいずれか一項に記載の紫外線発光装置。   The ultraviolet light-emitting device according to claim 1, wherein the entire wire is covered with the first resin layer. 前記紫外線発光素子の前記接合基板側の端部から前記基板に垂直な方向を前記紫外線発光素子の高さとしたとき、
前記第1樹脂層と前記第2樹脂層との界面の位置は、前記紫外線発光素子の高さの1/2となる位置以下である請求項1から請求項4のいずれか一項に記載の紫外線発光装置。
When the direction perpendicular to the substrate from the end of the ultraviolet light emitting element on the bonding substrate side is the height of the ultraviolet light emitting element,
5. The position of the interface between the first resin layer and the second resin layer is equal to or less than a position that is ½ of the height of the ultraviolet light emitting element. 6. UV light emitting device.
前記第2樹脂層の紫外線透過率は90%以上である請求項1から請求項5の何れか一項に記載の紫外線発光装置。   The ultraviolet light emitting device according to any one of claims 1 to 5, wherein the second resin layer has an ultraviolet transmittance of 90% or more. 前記第1樹脂層の紫外線透過率は10%以下である請求項1から請求項6の何れか一項に記載の紫外線発光装置。   The ultraviolet light-emitting device according to claim 1, wherein the ultraviolet transmittance of the first resin layer is 10% or less. 前記基板の前記窒化物半導体層とは逆側の面に、さらにレンズを備える請求項1から請求項7の何れか一項に記載の紫外線発光装置。   The ultraviolet light emitting device according to any one of claims 1 to 7, further comprising a lens on a surface of the substrate opposite to the nitride semiconductor layer. 請求項1から請求項8の何れか一項に記載の紫外線発光装置を備える装置。   An apparatus comprising the ultraviolet light emitting device according to any one of claims 1 to 8.
JP2016010081A 2016-01-21 2016-01-21 Ultraviolet light emitting device and device having the same Pending JP2017130587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010081A JP2017130587A (en) 2016-01-21 2016-01-21 Ultraviolet light emitting device and device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010081A JP2017130587A (en) 2016-01-21 2016-01-21 Ultraviolet light emitting device and device having the same

Publications (1)

Publication Number Publication Date
JP2017130587A true JP2017130587A (en) 2017-07-27

Family

ID=59396772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010081A Pending JP2017130587A (en) 2016-01-21 2016-01-21 Ultraviolet light emitting device and device having the same

Country Status (1)

Country Link
JP (1) JP2017130587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052419A (en) * 2017-08-30 2020-04-21 创光科学株式会社 Light emitting device
JP2021502695A (en) * 2017-11-08 2021-01-28 廈門市三安光電科技有限公司 Ultraviolet LED package structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052419A (en) * 2017-08-30 2020-04-21 创光科学株式会社 Light emitting device
CN111052419B (en) * 2017-08-30 2023-06-30 日机装株式会社 Light emitting device
JP2021502695A (en) * 2017-11-08 2021-01-28 廈門市三安光電科技有限公司 Ultraviolet LED package structure
JP7130745B2 (en) 2017-11-08 2022-09-05 廈門市三安光電科技有限公司 Ultraviolet LED package structure

Similar Documents

Publication Publication Date Title
JP6386015B2 (en) Light emitting element
JP6758044B2 (en) Light emitting element and lighting system
KR101891257B1 (en) Light Emitting Device and Manufacturing Method thereof
US10686108B2 (en) Semiconductor device package
KR101276053B1 (en) Semiconductor light emitting device and light emitting apparatus
JPH11191641A (en) Semiconductor light-emitting element, semiconductor light-emitting device using the same and manufacture thereof
JP5786868B2 (en) Semiconductor light emitting device
CN107278333B (en) Light emitting device and lamp unit having the same
JP2009049342A (en) Light emitting device
JP2011519484A (en) Light emitting device and manufacturing method thereof
JP2003174193A (en) Nitride-based compound semiconductor light-emitting device, and manufacturing method thereof
JP2011086910A (en) Semiconductor light emitting element
US20170317230A1 (en) Supporting substrate for semiconductor device, semiconductor apparatus comprising the same, and method for manufacturing the same
JP2012204373A (en) Semiconductor light-emitting element
KR101439153B1 (en) Led chip with curvature board and led package using the same
JP2017130587A (en) Ultraviolet light emitting device and device having the same
JP2006073618A (en) Optical element and manufacturing method thereof
JP2016163015A (en) Ultraviolet light-emitting element and manufacturing method of same
KR20160065349A (en) Nitride semiconductor light emitting chip and light emitting device having the same
US9608167B2 (en) Light emitting device
KR101764129B1 (en) Semiconductor light emitting device and method of manufacturing the same
CN107735872B (en) Light emitting device and light emitting device package including the same
US10270006B2 (en) Light emitting device and light emitting module
US20230141035A1 (en) Ultraviolet (uv) light source and method of manufacturing the same
KR101294711B1 (en) Semiconductor light emimitting device