JP2016163015A - Ultraviolet light-emitting element and manufacturing method of same - Google Patents

Ultraviolet light-emitting element and manufacturing method of same Download PDF

Info

Publication number
JP2016163015A
JP2016163015A JP2015043599A JP2015043599A JP2016163015A JP 2016163015 A JP2016163015 A JP 2016163015A JP 2015043599 A JP2015043599 A JP 2015043599A JP 2015043599 A JP2015043599 A JP 2015043599A JP 2016163015 A JP2016163015 A JP 2016163015A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
optical member
ultraviolet light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015043599A
Other languages
Japanese (ja)
Inventor
玉亭 王
Yuting Wan
玉亭 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2015043599A priority Critical patent/JP2016163015A/en
Publication of JP2016163015A publication Critical patent/JP2016163015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet light-emitting element, excellent in light emitting efficiency, having a small performance variation and a manufacturing method of the same.SOLUTION: An ultraviolet light-emitting element 100 includes: a substrate 10; a semiconductor laminate part 20, including a light-emitting layer 22, formed on a first principle plane S1 side of the substrate 10; a first electrode part 31 and a second electrode part 32, for providing the semiconductor laminate part 20 with power; a recess part 11, formed at a part on a second principle plane S2 side positioned on the opposite side of the first principle plane S1 of the substrate; and an optical member 40, disposed at the recess part 11.SELECTED DRAWING: Figure 1

Description

本発明は、紫外線発光素子及びその製造方法に関する。   The present invention relates to an ultraviolet light emitting device and a method for manufacturing the same.

窒化物基板を用いた半導体素子は、さまざまな電子機器に用いられており、演算処理装置や、発光素子や受光素子などの光学デバイス、及び各種センサなどに応用されている。これら窒化物半導体素子の特性を最大限に引き出すために、素子表面や裏面を加工する手法が広く用いられている。
半導体発光素子においては、窒化物基板の全反射を改善し、半導体発光素子からの光取り出し効率を向上させるために、窒化物基板の裏面を粗面加工することで、界面での光の透過率を向上させる技術がよく用いられている。例えば、特許文献1には、六方ピラミッドキャビティが設けられるように窒化物半導体層の成膜を行うことで、半導体層表面に凹凸構造を形成する手法が記載されている。
Semiconductor elements using a nitride substrate are used in various electronic devices, and are applied to arithmetic processing devices, optical devices such as light emitting elements and light receiving elements, and various sensors. In order to bring out the characteristics of these nitride semiconductor devices to the maximum, a technique for processing the device front and back surfaces is widely used.
In the semiconductor light emitting device, the light transmittance at the interface is improved by roughing the back surface of the nitride substrate in order to improve the total reflection of the nitride substrate and improve the light extraction efficiency from the semiconductor light emitting device. A technique for improving the frequency is often used. For example, Patent Document 1 describes a technique for forming a concavo-convex structure on the surface of a semiconductor layer by forming a nitride semiconductor layer so that a hexagonal pyramid cavity is provided.

また、基板の裏面に屈折率が基板より小さい薄膜を形成させる手法も用いられている。例えば、特許文献2には、半導体発光素子の基板の裏面に、屈折率が1.8以上の薄膜を塗布することによって、光の抽出効率を高める手法が記載されている。   A method of forming a thin film having a refractive index smaller than that of the substrate on the back surface of the substrate is also used. For example, Patent Document 2 describes a method of increasing light extraction efficiency by applying a thin film having a refractive index of 1.8 or more to the back surface of a substrate of a semiconductor light emitting element.

特開2005−277423号公報JP 2005-277423 A 特開2010−510671号公報JP 2010-510671 A

半導体発光素子に凹凸構造を形成して光出力を向上させる場合、その凹凸の間隔は発光波長以下、かつ規則的に配列する必要がある。しかしながら、紫外線発光素子が発する光の波長は300nm以下と非常に短波長であるため、紫外線発光素子に適用される凹凸構造の形成は難易度が高い。
一方、基板の裏面に高屈折率の薄膜を形成する手法は簡単だが、薄膜の厚みを薄くかつ安定に制御する必要がある。特に紫外線発光素子の場合、多くの有機薄膜、或いは有機溶剤が含まれている無機薄膜が紫外光を吸収する。このため、上記の薄膜を可能な限り薄くすることにより、紫外光の吸収を抑えることが重要である。また、薄膜が薄いほど、光の干渉効果は膜厚のバラつきによって急激に変化する。それゆえ、基板の裏面に薄膜を形成する場合は、その膜厚を安定に制御できないと、半導体発光素子としての性能ばらつきが大きくなってしまう。
In the case where a concavo-convex structure is formed in a semiconductor light emitting element to improve the light output, the interval between the concavo-convex needs to be equal to or less than the emission wavelength and regularly arranged. However, since the wavelength of the light emitted from the ultraviolet light emitting element is as short as 300 nm or less, it is difficult to form the uneven structure applied to the ultraviolet light emitting element.
On the other hand, although a method for forming a thin film having a high refractive index on the back surface of the substrate is simple, it is necessary to control the thickness of the thin film thinly and stably. Particularly in the case of an ultraviolet light emitting element, many organic thin films or inorganic thin films containing an organic solvent absorb ultraviolet light. For this reason, it is important to suppress the absorption of ultraviolet light by making the above thin film as thin as possible. In addition, the thinner the thin film, the more rapidly the light interference effect changes due to variations in film thickness. Therefore, when a thin film is formed on the back surface of the substrate, if the film thickness cannot be controlled stably, the performance variation as a semiconductor light emitting element will increase.

そこで、この発明はこのような事情に鑑みてなされたものであって、発光効率が高く、しかも性能ばらつきが小さい紫外線発光素子及び紫外線発光素子の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultraviolet light emitting element having high luminous efficiency and small performance variation and a method for manufacturing the ultraviolet light emitting element.

本発明者らは、上記課題を解決するために鋭意検討した結果、以下の紫外線発光素子及びその製造方法により、上記課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明の一態様に係る紫外線発光素子は、基板と、前記基板の第1主面側に形成された発光層を含む半導体積層部と、前記半導体積層部に電力を供給するための第1電極部及び第2電極部と、前記基板の前記第1主面の反対側に位置する第2主面側の一部に形成された凹部と、前記凹部に配置された光学部材と、を備えることを特徴とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by the following ultraviolet light-emitting device and the manufacturing method thereof, and have completed the present invention.
That is, an ultraviolet light emitting element according to an aspect of the present invention includes a substrate, a semiconductor stacked portion including a light emitting layer formed on the first main surface side of the substrate, and a first for supplying power to the semiconductor stacked portion. A first electrode portion and a second electrode portion; a concave portion formed in a part of the second main surface side of the substrate opposite to the first main surface; and an optical member disposed in the concave portion. It is characterized by providing.

また、本発明の一態様に係る紫外線発光素子の製造方法は、基板と、前記基板の第1主面側に形成された発光層を含む半導体積層部と、前記半導体積層部に電力を供給するための第1電極部及び第2電極部とを備える半導体ウエハの、前記第1主面の反対側に位置する第2主面の一部に、ドライエッチングで凹部を形成する凹部形成工程と、前記凹部に光学部材を注入する光学部材注入工程と、注入した前記光学部材の厚みを平滑化する平滑化工程と、を備えることを特徴とする。   According to another aspect of the present invention, there is provided a method for manufacturing an ultraviolet light emitting element, including a substrate, a semiconductor stacked portion including a light emitting layer formed on a first main surface side of the substrate, and supplying power to the semiconductor stacked portion. A recess forming step of forming a recess by dry etching on a part of a second main surface located on the opposite side of the first main surface of a semiconductor wafer including a first electrode portion and a second electrode portion for An optical member injecting step of injecting an optical member into the concave portion and a smoothing step of smoothing the thickness of the injected optical member are provided.

本発明の一態様によれば、発光効率が高く、しかも性能ばらつきが小さい紫外線発光素子を提供することができる。   According to one embodiment of the present invention, an ultraviolet light-emitting element with high emission efficiency and small performance variation can be provided.

本発明の第1の実施形態に係る紫外線発光素子100を示す断面模式図である。It is a cross-sectional schematic diagram which shows the ultraviolet light emitting element 100 which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る紫外線発光素子200を示す断面模式図である。It is a cross-sectional schematic diagram which shows the ultraviolet light emitting element 200 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る紫外線発光素子300を示す断面模式図である。It is a cross-sectional schematic diagram which shows the ultraviolet light emitting element 300 which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る紫外線発光素子400を示す断面模式図である。It is a cross-sectional schematic diagram which shows the ultraviolet light emitting element 400 which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る紫外線発光素子100の製造方法(その1)を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method (the 1) of the ultraviolet light emitting element 100 which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係る紫外線発光素子100の製造方法(その2)を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method (the 2) of the ultraviolet light emitting element 100 which concerns on the 5th Embodiment of this invention. 本発明の第1、第2の比較形態に係る紫外線発光素子600、700を示す断面模式図である。It is a cross-sectional schematic diagram which shows the ultraviolet light emitting elements 600 and 700 which concern on the 1st, 2nd comparative form of this invention.

以下、本発明を実施するための形態(本実施形態)について説明する。
<実施形態>
(1)紫外線発光素子
本実施形態に係る紫外線発光素子は、基板と、前記基板の第1主面側に形成された発光層を含む半導体積層部と、前記半導体積層部に電力を供給するための第1電極部及び第2電極部と、前記基板の第1主面の反対側に位置する(すなわち、第1主面と対向する)第2主面側の一部に形成された凹部と、前記凹部に配置された光学部材と、を備えることを特徴とする。
基板の第2主面側の一部に凹部を有し、この凹部に光学部材が配置されていることにより、発光効率の高い紫外線発光素子が実現される。
Hereinafter, a mode for carrying out the present invention (this embodiment) will be described.
<Embodiment>
(1) Ultraviolet Light-Emitting Element The ultraviolet light-emitting element according to this embodiment is for supplying power to a substrate, a semiconductor laminate including a light-emitting layer formed on the first main surface side of the substrate, and the semiconductor laminate. A first electrode portion and a second electrode portion, and a concave portion formed on a part of the second main surface located on the opposite side of the first main surface of the substrate (that is, facing the first main surface); And an optical member disposed in the recess.
An ultraviolet light emitting element with high luminous efficiency is realized by having a recess in a part on the second main surface side of the substrate and arranging the optical member in this recess.

(2)紫外線発光素子の製造方法
本実施形態に係る紫外線発光素子の製造方法は、基板と、前記基板の第1主面側に形成された発光層を含む半導体積層部と、前記半導体積層部に電力を供給するための第1電極部及び第2電極部とを備える半導体ウエハの、前記第1主面の反対側に位置する第2主面の一部に、ドライエッチングによりで凹部を形成する凹部形成工程と、前記凹部に光学部材を注入する光学部材注入工程と、注入した前記光学部材の厚みを平滑化する平滑化工程と、を備えることを特徴とする。
(2) Method for Manufacturing Ultraviolet Light Emitting Element A method for manufacturing an ultraviolet light emitting element according to this embodiment includes a substrate, a semiconductor stacked portion including a light emitting layer formed on the first main surface side of the substrate, and the semiconductor stacked portion. A recess is formed by dry etching on a part of the second main surface of the semiconductor wafer including the first electrode portion and the second electrode portion for supplying power to the first main surface, which is opposite to the first main surface. A concave portion forming step, an optical member injection step of injecting an optical member into the concave portion, and a smoothing step of smoothing the thickness of the injected optical member.

半導体ウエハの第2主面の一部に、ドライエッチングで凹部を形成する凹部形成工程と、凹部に光学部材を注入する光学部材注入工程と、注入した光学部材の厚みを平滑化する平滑化工程とを備えることにより、性能ばらつきが小さく、信頼性が高い紫外線発光素子を製造することが可能になる。
以下、上述した本実施形態に係る紫外線発光素子及び紫外線発光素子の製造方法における各構成要件について説明する。以下に記載される各構成要件の特徴は、本発明の技術思想を逸脱しない範囲でそれぞれ単独または組み合わせて適用可能である。
A recess forming step for forming a recess by dry etching on a part of the second main surface of the semiconductor wafer, an optical member injection step for injecting an optical member into the recess, and a smoothing step for smoothing the thickness of the injected optical member It is possible to manufacture an ultraviolet light emitting element with small performance variation and high reliability.
Hereinafter, each component in the manufacturing method of the ultraviolet light emitting device and the ultraviolet light emitting device according to the present embodiment described above will be described. The characteristics of each constituent element described below can be applied individually or in combination without departing from the technical idea of the present invention.

(3)基板
本実施形態において、基板は、第1主面側に発光層を含む半導体積層部を形成可能であり、かつ、第1主面の反対側に位置する第2主面側の一部に凹部を形成可能なものであれば特に制限されない。基板の一例としては、窒化アルミニウム(AlN)基板やサファイア(Al)基板が挙げられる。
(3) Substrate In the present embodiment, the substrate is capable of forming a semiconductor stacked portion including a light emitting layer on the first main surface side, and is one on the second main surface side located on the opposite side of the first main surface. If it can form a recessed part in a part, it will not restrict | limit in particular. Examples of the substrate include an aluminum nitride (AlN) substrate and a sapphire (Al 2 O 3 ) substrate.

(3.1)凹部形成方法
基板の第2主面に凹部を形成する方法は特に制限されないが、紫外線発光素子の薄型化の観点から、基板の一部を除去することで形成されるものであることが好ましい。例えば、基板の凹部を形成する領域以外を保護層で覆い、この保護層をマスクに基板をRIEなどでドライエッチングする方法が挙げられる。また、同様に凹部を形成する領域以外を保護層で覆い、この保護層をマスクに基板をアルカリ性の薬液を用いてウェットエッチングする方法も挙げられる。
(3.1) Method for forming recesses The method for forming the recesses on the second main surface of the substrate is not particularly limited, but is formed by removing a part of the substrate from the viewpoint of reducing the thickness of the ultraviolet light emitting element. Preferably there is. For example, there is a method in which a region other than the region where the concave portion of the substrate is formed is covered with a protective layer, and the substrate is dry etched by RIE or the like using this protective layer as a mask. Similarly, there may be mentioned a method in which a region other than the region where the concave portion is formed is covered with a protective layer, and the substrate is wet-etched with an alkaline chemical using the protective layer as a mask.

以下では、本実施形態の一例として、ウェットエッチングする場合の具体例を説明する。
まず、基板の第2主面上に保護層を形成する。保護層は、ウェットエッチングにおいて、基板の第2主面が受ける影響を低減できるものであればよく、例としてはUVテープなどのダイシングに用いられる粘着テープや、粘着性を有するフィルム、またはレジストなどが挙げられる。保護層は、気泡の巻き込みや、隙間などなく第2主面と密着していることが望ましく、かつアルカリ性の薬液により保護層または粘着層が劣化しない耐薬品性を有することが好ましい。
Hereinafter, a specific example in the case of wet etching will be described as an example of the present embodiment.
First, a protective layer is formed on the second main surface of the substrate. The protective layer is not particularly limited as long as it can reduce the influence of the second main surface of the substrate in wet etching. Examples thereof include an adhesive tape used for dicing such as a UV tape, an adhesive film, or a resist. Is mentioned. The protective layer is preferably in close contact with the second main surface without entrainment of bubbles or gaps, and preferably has chemical resistance such that the protective layer or the adhesive layer is not deteriorated by an alkaline chemical solution.

続いて、保護層が形成された状態の基板をアルカリ性の薬液にディップし、ウェットエッチングを行う。アルカリ性の薬液の種類は特に限定されないが、薬液の水素イオン濃度指数(pH)は、pH>12であることが好ましく、例として、水酸化ナトリウムや、水酸化カリウム、アンモニアを含む薬液であることが好ましい。
次に、保護層を除去する工程を行う。保護層を除去する方法は特に限定されないが、基板及び半導体積層部、電極部にダメージを与えない方法が好ましく、保護層を機械的に除去するほか、保護層を有機溶剤などの薬液などを用いて化学的に除去することが好ましい。保護層を除去した後、第2主面上を洗浄するために、有機溶剤、水溶液での洗浄、または、酸素プラズマ、スパッタリングなどによる表面洗浄を行うことが好ましい。
Subsequently, the substrate on which the protective layer is formed is dipped in an alkaline chemical solution, and wet etching is performed. The type of alkaline chemical solution is not particularly limited, but the hydrogen ion concentration index (pH) of the chemical solution is preferably pH> 12. For example, the chemical solution contains sodium hydroxide, potassium hydroxide, or ammonia. Is preferred.
Next, the process of removing a protective layer is performed. The method for removing the protective layer is not particularly limited, but a method that does not damage the substrate, the semiconductor laminated portion, and the electrode portion is preferable. In addition to mechanically removing the protective layer, the protective layer may be a chemical solution such as an organic solvent. It is preferable to remove it chemically. After removing the protective layer, in order to clean the second main surface, it is preferable to perform cleaning with an organic solvent or an aqueous solution, or surface cleaning with oxygen plasma, sputtering, or the like.

(3.2)基板の側面
紫外線発光素子の信頼性向上の観点から、基板の側面の少なくとも一部が光学部材で覆われていることが好ましい。基板の側面が光学部材で覆われていることにより、基板の側面から出射した紫外線が、基板の側面と光学部材との界面で多く反射する。このため、光学部材を介して基板を封止する封止樹脂の紫外線による劣化を抑制することが可能になり、紫外線発光素子の信頼性が向上する。さらに、光学部材と基板の側面との界面で反射された光の一部は基板の第2主面側から出射されるため、光出力が向上するという効果も奏する。また、この封止樹脂の劣化の抑制及び光出力の向上の観点から、基板の第1主面の少なくとも一部も光学部材で覆われている形態も好ましい。
(3.2) Side surface of substrate It is preferable that at least a part of the side surface of the substrate is covered with an optical member from the viewpoint of improving the reliability of the ultraviolet light emitting element. Since the side surface of the substrate is covered with the optical member, a large amount of ultraviolet light emitted from the side surface of the substrate is reflected at the interface between the side surface of the substrate and the optical member. For this reason, it becomes possible to suppress deterioration by the ultraviolet-ray of sealing resin which seals a board | substrate through an optical member, and the reliability of an ultraviolet light emitting element improves. Furthermore, since a part of the light reflected at the interface between the optical member and the side surface of the substrate is emitted from the second main surface side of the substrate, there is an effect that the light output is improved. Further, from the viewpoint of suppressing the deterioration of the sealing resin and improving the light output, it is also preferable that at least a part of the first main surface of the substrate is covered with an optical member.

基板の側面の少なくとも一部を光学部材で覆う方法は特に制限されないが、光学部材注入工程では、注入される光学部材の注入量を凹部の体積よりも多くすること、及び、平滑化工程では、光学部材のうち凹部の内部に配置された部分の厚みが凹部の深さと同じ大きさとなるように、光学部材を平滑化することで、基板の側面の少なくとも一部に光学部材を付着させる方法が製造効率の観点等から好ましい。   The method of covering at least a part of the side surface of the substrate with the optical member is not particularly limited, but in the optical member injection step, the injection amount of the optical member to be injected is larger than the volume of the recess, and in the smoothing step, A method of attaching an optical member to at least a part of a side surface of a substrate by smoothing the optical member so that the thickness of a portion of the optical member disposed inside the concave portion is the same as the depth of the concave portion. It is preferable from the viewpoint of production efficiency.

(3.3)基板の屈折率
光取り出し効率向上の観点から、基板の屈折率は1.7以上であることが好ましい。屈折率が1.7以上の基板材料としては、窒化アルミニウム基板やサファイア基板が挙げられる。
(3.3) Refractive Index of Substrate From the viewpoint of improving light extraction efficiency, the refractive index of the substrate is preferably 1.7 or more. Examples of the substrate material having a refractive index of 1.7 or more include an aluminum nitride substrate and a sapphire substrate.

(3.4)凹部
また、光取り出し効率向上の観点から、例えば断面視したときに、基板の第2主面側の凹部の幅は発光層の幅より広いことが好ましい。ただし、発光層の幅と基板の幅との差が元々小さい場合は、凹部の幅を発光層の幅より極端に広くすると、基板の凹部以外の領域の幅が極端に小さくなってしまい、製造が難しくなるため留意する必要がある。
また、光取り出し効率向上の観点から、例えば断面視したときに、基板の第2主面側の凹部の深さは10nm以上5μm以下であることが好ましい。
(3.4) Concave portion From the viewpoint of improving the light extraction efficiency, for example, when viewed in cross section, the width of the concave portion on the second main surface side of the substrate is preferably wider than the width of the light emitting layer. However, when the difference between the width of the light emitting layer and the width of the substrate is originally small, if the width of the concave portion is made extremely wider than the width of the light emitting layer, the width of the region other than the concave portion of the substrate becomes extremely small. Should be noted because it becomes difficult.
From the viewpoint of improving light extraction efficiency, for example, when viewed in cross section, the depth of the recess on the second main surface side of the substrate is preferably 10 nm or more and 5 μm or less.

(4)半導体積層部
本実施形態において、半導体積層部は、基板の第1主面側に形成された発光層を含むものである。殺菌用途等でのデバイス特性の観点から、中心発光波長(すなわち、発光層が発光する光の中心波長)が230nm以上320nm以下であることが好ましい。
発光効率向上の観点から、半導体積層部は、発光層を挟むように第1導電型の第1半導体層と第2導電側の第2半導体層とを有することが好ましい。紫外線を効率的に発光させる観点から、半導体積層部の各々の層はInAlGa1−x−yN(0≦x+y≦1)から構成されるものが好ましい。なお、「第1導電型」「第2導電型」とは、一方がn型導電型の場合は他方がp型導電型であることを意味する。すなわち、第1導電型がn型の場合は第2導電型がp型となり、第1導電型がp型の場合は第2導電型がn型となる。
(4) Semiconductor laminated part In this embodiment, a semiconductor laminated part contains the light emitting layer formed in the 1st main surface side of a board | substrate. From the viewpoint of device characteristics for sterilization applications and the like, the central emission wavelength (that is, the central wavelength of light emitted from the light emitting layer) is preferably 230 nm or more and 320 nm or less.
From the viewpoint of improving the light emission efficiency, it is preferable that the semiconductor stacked portion has a first semiconductor layer of the first conductivity type and a second semiconductor layer on the second conductivity side so as to sandwich the light emitting layer. From the viewpoint of efficiently emitting ultraviolet light, each layer of the semiconductor stacked portion is preferably composed of In x Al y Ga 1-xy N (0 ≦ x + y ≦ 1). “First conductivity type” and “second conductivity type” mean that when one is an n-type conductivity type, the other is a p-type conductivity type. That is, when the first conductivity type is n-type, the second conductivity type is p-type, and when the first conductivity type is p-type, the second conductivity type is n-type.

(4.1)第1半導体層
第1半導体層は、例えば、不純物でドープされた窒化インジウムアルミニウムガリウム(InAlGaN)、または、不純物でドープされた窒化アルミニウムガリウム(AlGaN)から構成されている。不純物としては、p型不純物としてマグネシウム(Mg)が例示され、n型不純物としてシリコン(Si)が例示される。
(4.1) First Semiconductor Layer The first semiconductor layer is made of, for example, indium aluminum gallium nitride (InAlGaN) doped with impurities or aluminum gallium nitride (AlGaN) doped with impurities. Examples of the impurity include magnesium (Mg) as a p-type impurity and silicon (Si) as an n-type impurity.

例えば、第1半導体層は、InAlGa1−x−yN(0≦x+y≦1)から構成される複数の層を有し、これら複数の層の少なくとも一部は発光層の格子パラメータに近づくように擬似格子整合的に歪まされている。または、第1半導体層は、一層または複数の層のInAlyGa1−x−yN(0≦x+y≦1)を有し、組成式のxyが厚みと共に変化する(すなわち、厚み方向に沿って線形的または段階的に変化する)組成であってもよい。 For example, the first semiconductor layer has a plurality of layers composed of In x Al y Ga 1-xy N (0 ≦ x + y ≦ 1), and at least a part of the plurality of layers is a lattice of the light emitting layer. It is distorted in a pseudo-lattice matching to approach the parameters. Alternatively, the first semiconductor layer has one or a plurality of layers of In x AlyGa 1-xy N (0 ≦ x + y ≦ 1), and xy in the composition formula changes with the thickness (that is, along the thickness direction). Or a composition that changes linearly or stepwise).

第1半導体層のうち、基板との界面を含む部位は、基板とほぼ同一の組成を有していることが好ましい。これにより、第1半導体層の2次元の成長が促進され、不都合なアイランド形成を回避することができる。また、そのようなアイランド形成を回避することにより、第1半導体層及び後続の成長層での不都合な弾性の歪み緩和が起こることを回避することができる。   Of the first semiconductor layer, the portion including the interface with the substrate preferably has substantially the same composition as the substrate. As a result, two-dimensional growth of the first semiconductor layer is promoted, and inconvenient island formation can be avoided. Further, by avoiding such island formation, it is possible to avoid an undesirable elastic strain relaxation in the first semiconductor layer and the subsequent growth layer.

(4.2)発光層
発光層は、例えば多重量子井戸(「MQW」)層を含む。MQW層は、複数の量子井戸を含み、その量子井戸のそれぞれは、例えばInAlGaN、または、AlGaNから構成されている。一例を挙げると、MQW層は、AlGa1−xN量子井戸及びAlGa1−yN量子井戸を含み、その一方が他方の上に積層された構造を有する。ここで、AlGa1−xN量子井戸のxと、AlGa1−yN量子井戸のyは、互いに異なる値である。xとyの差は、活性領域での電子及び正孔の良好な閉じ込めが得られるように十分に大きくなっていることが好ましい。これにより、放射性の再結合の、非放射性の再結合に対する比を高くすることができる。
(4.2) Light-Emitting Layer The light-emitting layer includes, for example, a multiple quantum well (“MQW”) layer. The MQW layer includes a plurality of quantum wells, and each quantum well is made of, for example, InAlGaN or AlGaN. For example, the MQW layer includes an Al x Ga 1-x N quantum well and an Al y Ga 1-y N quantum well, one of which is stacked on the other. Here, x of the Al x Ga 1-x N quantum well and y of the Al y Ga 1-y N quantum well are different from each other. The difference between x and y is preferably large enough to obtain good confinement of electrons and holes in the active region. This can increase the ratio of radioactive recombination to non-radioactive recombination.

AlGa1−xN量子井戸及びAlGa1−yN量子井戸を含むMQW層において、xとyの値を例示すると、xとyとの差は約0.05であり、xは約0.35で、yは約0.4である。なお、xとyの差が過度に大きい(例えば、約0.3より大きい)と、MQW層の形成中に不都合なアイランド形成が起こってしまう。このため、xとyの差は例えば0.3以下であることが好ましい。 In the MQW layer including the Al x Ga 1-x N quantum well and the Al y Ga 1-y N quantum well, when the values of x and y are exemplified, the difference between x and y is about 0.05, and x is About 0.35 and y is about 0.4. If the difference between x and y is excessively large (for example, greater than about 0.3), inconvenient island formation occurs during the formation of the MQW layer. For this reason, the difference between x and y is preferably 0.3 or less, for example.

また、MQW層は、AlGa1−xN量子井戸及びAlGa1−yN量子井戸の対を1周期として複数の周期を含んでいてよく、全体の厚み(すなわち、総厚)が約50nm未満であってもよい。
また、発光層は任意の薄い電子ブロック(またはn型コンタクトがデバイスの上部に置かれている場合には正孔ブロック)層を有していてもよい。この電子ブロック層は、例えば、Mgのような1つ以上の不純物でドーピングされたAlGa1−xNから構成されていてもよい。電子ブロック層の厚みは、例えば約20nmである。
In addition, the MQW layer may include a plurality of periods with a pair of Al x Ga 1-x N quantum wells and Al y Ga 1-y N quantum wells as one period, and the total thickness (that is, the total thickness) is It may be less than about 50 nm.
The emissive layer may also have an optional thin electron block (or hole block if n-type contact is placed on top of the device) layer. The electron blocking layer may be made of Al x Ga 1-x N doped with one or more impurities such as Mg, for example. The thickness of the electron block layer is, for example, about 20 nm.

(4.3)第2半導体層
発光層上に形成される第2半導体層は、例えば、不純物でドープされたInAlGaN、または、不純物でドープされたAlGaNから構成されている。不純物としては、p型不純物としてマグネシウム(Mg)が例示され、n型不純物としてシリコン(Si)が例示される。
(4.3) Second Semiconductor Layer The second semiconductor layer formed on the light emitting layer is made of, for example, InAlGaN doped with impurities or AlGaN doped with impurities. Examples of the impurity include magnesium (Mg) as a p-type impurity and silicon (Si) as an n-type impurity.

第2半導体層はn型またはp型にドープされているが、第1半導体層とは反対の導電性を有している。例えば、第1半導体層はSi等のn型不純物がドープされてn型の導電性を示している場合、第2半導体層はMg等のp型不純物がドープされてp型の導電性を示している。第2半導体層の厚みは、例えば約50nm〜約100nmである。
また、第2半導体層は、第2導電型にドープされた半導体材料を含むキャップ層を有していてもよい。第2半導体層がp型の導電性を示している場合、このキャップ層は、例えばMgでドープされたGaNを含み、約10nm〜約200nmの厚み、好ましくは約50nmの厚みを有する。
The second semiconductor layer is doped n-type or p-type, but has a conductivity opposite to that of the first semiconductor layer. For example, when the first semiconductor layer is doped with n-type impurities such as Si and exhibits n-type conductivity, the second semiconductor layer is doped with p-type impurities such as Mg and exhibits p-type conductivity. ing. The thickness of the second semiconductor layer is, for example, about 50 nm to about 100 nm.
The second semiconductor layer may have a cap layer containing a semiconductor material doped to the second conductivity type. When the second semiconductor layer exhibits p-type conductivity, the cap layer includes, for example, Mg-doped GaN and has a thickness of about 10 nm to about 200 nm, preferably about 50 nm.

(5)電極部
第1電極部及び第2電極部は、発光層に電力を供給するための電極である。本実施形態において、第1電極部及び第2電極部のそれぞれの配置については特に制限されないが、半導体積層部がメサ型構造の場合、メサ頂部に第1電極部及び第2電極部の一方を配置し、メサ底部に第1電極部及び第2電極部の他方を配置する例が挙げられる。また、他には素子上面と下面とにそれぞれ第1電極部と第2電極部とを配置する例などがある。
(5) Electrode unit The first electrode unit and the second electrode unit are electrodes for supplying power to the light emitting layer. In the present embodiment, the arrangement of each of the first electrode portion and the second electrode portion is not particularly limited. However, when the semiconductor stacked portion has a mesa structure, one of the first electrode portion and the second electrode portion is arranged on the mesa top portion. An example is shown in which the other of the first electrode portion and the second electrode portion is disposed on the mesa bottom. In addition, there is an example in which the first electrode portion and the second electrode portion are arranged on the upper surface and the lower surface of the element, respectively.

一例を挙げると、第2電極部がメサ頂部の第2半導体層に電気的に接続し、第1電極部がメサ底部の第1半導体層に電気的に接続している。また、半導体積層部は絶縁層で部分的に覆われている。この図示しない絶縁層により、第2電極部(すなわち、メサ頂部の第2半導体層に電気的に接続する電極部)は発光層及びメサ底部の第1半導体層から電気的に絶縁されている。   For example, the second electrode portion is electrically connected to the second semiconductor layer at the top of the mesa, and the first electrode portion is electrically connected to the first semiconductor layer at the bottom of the mesa. The semiconductor stacked portion is partially covered with an insulating layer. By this insulating layer (not shown), the second electrode part (that is, the electrode part electrically connected to the second semiconductor layer at the top of the mesa) is electrically insulated from the light emitting layer and the first semiconductor layer at the bottom of the mesa.

第1電極部及び第2電極部はそれぞれ導電性の材料からなり、例えば金(Au)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)またはそれらの組み合わせなどで構成されている。一例を挙げると、p型の半導体層に接続する第1電極部はNi/Au合金で構成されており、n型の半導体層に接続する第2電極部はTi/Al/Ti/Auスタックで構成されている。第1電極部及び第2電極部は、例えばスパッタリングまたは蒸着によって形成される。   Each of the first electrode portion and the second electrode portion is made of a conductive material, and is made of, for example, gold (Au), nickel (Ni), aluminum (Al), titanium (Ti), or a combination thereof. For example, the first electrode portion connected to the p-type semiconductor layer is made of a Ni / Au alloy, and the second electrode portion connected to the n-type semiconductor layer is a Ti / Al / Ti / Au stack. It is configured. The first electrode part and the second electrode part are formed by sputtering or vapor deposition, for example.

また、第1電極部及び第2電極部は紫外線(UV: ultraviolet)反射器も含んでいてよい。UV反射器は、第1電極部及び第2電極部に向かって発光する光子を再度方向付けする(すなわち、光子が半導体積層部から逃げないようにする)こと及び、所望の発光面(例えば、底部表面)に向けて光子を再度方向付けることによって、デバイスの活性領域において生成される光子の抽出効率を改善するように設計される。   The first electrode part and the second electrode part may also include an ultraviolet (UV) reflector. The UV reflector redirects photons that emit light toward the first electrode portion and the second electrode portion (i.e., prevents photons from escaping from the semiconductor stack) and a desired light emitting surface (e.g., It is designed to improve the extraction efficiency of photons generated in the active region of the device by redirecting the photons towards the bottom surface.

(6)光学部材
本実施形態において、光学部材は、基板の第2主面側の凹部に配置される。光取り出し効率を改善する観点から、光学部材の屈折率が基板の屈折率より小さいことが好ましい。光学部材の屈折率が前記基板の屈折率より小さいことにより、基板と光学部材との界面での光反射を低減させ、出力を向上させることができるという効果を奏する。
(6) Optical member In this embodiment, an optical member is arrange | positioned at the recessed part by the side of the 2nd main surface of a board | substrate. From the viewpoint of improving the light extraction efficiency, the refractive index of the optical member is preferably smaller than the refractive index of the substrate. When the refractive index of the optical member is smaller than the refractive index of the substrate, the light reflection at the interface between the substrate and the optical member can be reduced and the output can be improved.

また、光学部材は、UVC(ultraviolet C)に耐性があることと、紫外線透過率が波長260〜300nmの領域で80%以上であること、の両特性を備えることが好ましい。さらに、光学部材とレンズとを組み合わせることもあるため、光学部材は接着性があってもよい。光学部材の材料として、シリコーン材料、エポキシ材料、金属酸化物ナノ粒子を含む薄膜などが挙げられるが、特に限定されない。光学部材に適用可能なシリコーン樹脂としては、ダウコーニング社のJCRシリーズや、Schott社のDeep UV200などを用いることができる。また、金属酸化物ナノ粒子の材料として、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化タンタル、酸化ハフニウム、酸化ニオブ、酸化ランタン、酸化ストロンチウム、酸化イットリウム、酸化スズ、酸化アンチモンが使用可能であるが、上記の材料に限定されるものではない。   Moreover, it is preferable that an optical member is equipped with both the characteristics that it is resistant to UVC (ultraviolet C), and an ultraviolet-ray transmittance is 80% or more in the area | region of a wavelength of 260-300 nm. Furthermore, since the optical member and the lens may be combined, the optical member may be adhesive. Examples of the material of the optical member include, but are not limited to, a silicone material, an epoxy material, and a thin film containing metal oxide nanoparticles. As a silicone resin applicable to the optical member, Dow Corning JCR series, Schott Deep UV200, or the like can be used. In addition, titanium oxide, zirconium oxide, zinc oxide, tantalum oxide, hafnium oxide, niobium oxide, lanthanum oxide, strontium oxide, yttrium oxide, tin oxide, and antimony oxide can be used as the material of the metal oxide nanoparticles. It is not limited to the above materials.

また、製造ばらつき及び信頼性向上の観点から、光学部材の厚みは、凹部の深さと略一致することが好ましい。すなわち、光学部材のうち凹部の内部に配置される部分の厚みは、この凹部の深さと同じ大きさ、または、ほぼ同じ大きさであることが好ましい。光学部材の厚みと凹部の深さとを略一致させる方法の一例としては、凹部に、凹部の体積以上の光学部材を注入した後に、基板の第2主面側における凹部以外の表面にスキージを当て、基板平面方向にスキージを動かし、光学部材を平滑化する方法が挙げられる。   Further, from the viewpoint of manufacturing variation and reliability improvement, it is preferable that the thickness of the optical member substantially coincides with the depth of the recess. That is, it is preferable that the thickness of the portion of the optical member disposed inside the recess is the same as or substantially the same as the depth of the recess. As an example of a method for substantially matching the thickness of the optical member and the depth of the concave portion, an optical member having a volume larger than the concave portion is injected into the concave portion, and then a squeegee is applied to the surface other than the concave portion on the second main surface side of the substrate. And a method of smoothing the optical member by moving the squeegee in the direction of the substrate plane.

(7)レンズ
本実施形態では、基板の第2主面側にレンズが設けられ、該レンズの裏面の少なくとも一部が、光学部材のうち凹部の内部に配置された部分と接触することが好ましい。レンズの材料は石英やサファイアなどUVC領域に紫外線透過性があるものであれば構わないが、レンズを紫外線発光素子の第2主面に固定するために、レンズの幅は凹部の幅より広いことが好ましい。
本実施形態において、レンズを設ける方法は特に制限されないが、例えば、平滑化工程の後に、基板の第2主面側にレンズを配置する工程を更に備えることで実現可能である。この場合、前述のとおり、光学部材は接着性を有する材料であることが好ましい。
(7) Lens In this embodiment, it is preferable that a lens is provided on the second main surface side of the substrate, and at least a part of the back surface of the lens is in contact with a portion of the optical member disposed inside the recess. . The lens material may be any material such as quartz or sapphire that is UV transmissive in the UVC region, but in order to fix the lens to the second main surface of the UV light emitting element, the width of the lens must be wider than the width of the recess. Is preferred.
In the present embodiment, the method for providing the lens is not particularly limited. For example, it can be realized by further including a step of arranging the lens on the second main surface side of the substrate after the smoothing step. In this case, as described above, the optical member is preferably a material having adhesiveness.

(8)個片化工程
本実施形態に係る紫外線発光素子の製造方法は、凹部形成工程の後、かつ、光学部材注入工程前に、紫外線発光素子を個片化する個片化工程を更に備えてもよい。
以下に個片化工程の具体例を説明する。
半導体ウエハ上に形成された複数の素子の間に配置されたスクライブラインに沿って、素子の個片化を行うことができる。LSI半導体素子の個片化工程は、通常、ブレードダイシングで行われる。しかしながら、半導体ウエハとして窒化物基板を用いる場合、窒化物基板は非常に硬いため、ブレードダイシングでは窒化物基板を所望の幅で切断することが難しく、窒化物基板に欠けなどの不良も発生しやすいため、生産性が低いという課題がある。そこで、本実施形態では、基板の第1主面からレーザ光を照射することでスクライブラインに溝を形成し、その後、この溝に沿って基板を機械的に分断することが好ましい。レーザ光を用いた溝の形成手段は特には限定されないが、そのレーザ光の波長は365nm、または265nmであることが好ましい。
(8) Individualization process The manufacturing method of the ultraviolet light emitting element which concerns on this embodiment is further equipped with the individualization process which separates an ultraviolet light emitting element after a recessed part formation process and before an optical member injection | pouring process. May be.
A specific example of the singulation process will be described below.
The elements can be separated into individual pieces along a scribe line arranged between a plurality of elements formed on the semiconductor wafer. The individualizing process of LSI semiconductor elements is usually performed by blade dicing. However, when a nitride substrate is used as a semiconductor wafer, since the nitride substrate is very hard, it is difficult to cut the nitride substrate with a desired width by blade dicing, and defects such as chipping tend to occur in the nitride substrate. Therefore, there is a problem that productivity is low. Therefore, in this embodiment, it is preferable to form a groove in the scribe line by irradiating laser light from the first main surface of the substrate, and then mechanically divide the substrate along this groove. The means for forming the groove using laser light is not particularly limited, but the wavelength of the laser light is preferably 365 nm or 265 nm.

次に、レーザでスクライブしたラインにアライメントを実施し、このラインに第1主面側から適切な力で金属ブレード等を押しあてることで基板の割断を行う。これにより、紫外線発光素子の個片化が可能である。個片化工程では1個の紫外線発光素子のみを個片化することだけでなく、複数の紫外線発光素子を含んだ状態で個片化する形態も含む。すなわち、複数の紫外線発光素子を含んだ状態で個片化することにより、複数の独立した発光層が平面方向にアレイ状に配置された紫外線発光素子を形成することができ、このような態様も本実施形態に含まれる。   Next, alignment is performed on a line scribed with a laser, and the substrate is cleaved by pressing a metal blade or the like onto the line from the first main surface side with an appropriate force. Thereby, the ultraviolet light emitting element can be separated. In the singulation process, not only a single ultraviolet light emitting element is singulated, but also a form in which a plurality of ultraviolet light emitting elements are included is included. That is, by separating into pieces including a plurality of ultraviolet light emitting elements, an ultraviolet light emitting element in which a plurality of independent light emitting layers are arranged in an array in the plane direction can be formed. It is included in this embodiment.

(9)実装工程
また、本実施形態に係る紫外線発光素子の製造方法は、凹部形成工程の後、かつ、光学部材注入工程の前に、第1電極部及び第2電極部と配線基板とを接続する実装工程を更に備えてもよい。
実装工程は、紫外線発光素子が備える基板の第1主面側に形成された第1電極部及び第2電極部と、例えばサブマウントと呼ばれる接続基板上の電極部(バンプ部とも称される)とを電気的に接続する工程である。サブマウント基板の材料としては、熱放散性の高いセラミック基板やアルミナ基板や窒化アルミニウム基板が好適に用いられる。また接続にはフリップチップと呼ばれる手法が用いられ、サブマウント基板の電極部と紫外線発光素子の第1主面側に形成された第1電極部及び第2電極部とを適切な熱、超音波、加重で接合させる。サブマウント基板の電極部の材料は、熱放散性に優れ、かつ、第1電極部及び第2電極部との接合性に優れたものがよく、金(Au)、銀(Ag)、銅(Cu)、金錫(AuSn)などの材料及びそれらの組み合わせからなる材料が好適に用いられる。
(9) Mounting Step Further, in the method for manufacturing the ultraviolet light emitting element according to the present embodiment, the first electrode portion, the second electrode portion, and the wiring substrate are formed after the recess forming step and before the optical member injection step. You may further provide the mounting process to connect.
The mounting process includes a first electrode part and a second electrode part formed on the first main surface side of the substrate included in the ultraviolet light emitting element, and an electrode part (also referred to as a bump part) on a connection substrate called a submount, for example. Are electrically connected to each other. As a material for the submount substrate, a ceramic substrate, an alumina substrate, or an aluminum nitride substrate with high heat dissipation is preferably used. In addition, a method called flip chip is used for connection, and an appropriate heat or ultrasonic wave is applied between the electrode portion of the submount substrate and the first electrode portion and the second electrode portion formed on the first main surface side of the ultraviolet light emitting element. Bond with weight. The material of the electrode part of the submount substrate should be excellent in heat dissipation and excellent in bonding property with the first electrode part and the second electrode part. Gold (Au), silver (Ag), copper ( A material made of a material such as Cu) or gold tin (AuSn) or a combination thereof is preferably used.

(10)封止工程
本実施形態に係る紫外線発光素子の製造方法は、平滑化工程の後に、基板の第1主面側及び側面を封止する封止工程を更に備えていてもよい。封止部材には熱硬化性樹脂等が用いられる。前述のとおり、一般的に熱硬化性樹脂は紫外線による劣化が生じやすく製品寿命に影響を与えうるが、基板の側面の少なくとも一部が光学部材で覆われていれば、基板の側面から出射した紫外線が、この側面と光学部材との界面で多く反射する。このため、基板の側面から出射した紫外線による封止部材の劣化を抑制することが可能になる。
以下では、本実施形態の具体的な様態として、第1〜第5の実施形態を図面を用いてそれぞれ説明する。また、本実施形態と比較される、第1、第2の比較形態についても説明する。なお、以下に説明する各図において、同一の構成を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(10) Sealing Step The method for manufacturing an ultraviolet light emitting element according to the present embodiment may further include a sealing step for sealing the first main surface side and the side surface of the substrate after the smoothing step. A thermosetting resin or the like is used for the sealing member. As described above, in general, thermosetting resin is likely to be deteriorated by ultraviolet rays and may affect the product life. However, if at least a part of the side surface of the substrate is covered with an optical member, the thermosetting resin is emitted from the side surface of the substrate. A lot of ultraviolet rays are reflected at the interface between the side surface and the optical member. For this reason, it becomes possible to suppress degradation of the sealing member due to ultraviolet rays emitted from the side surface of the substrate.
Below, the 1st-5th embodiment is each demonstrated using drawing as a specific aspect of this embodiment. In addition, the first and second comparative forms compared with the present embodiment will also be described. Note that, in each drawing described below, parts having the same configuration are denoted by the same reference numerals, and repeated description thereof is omitted.

<第1の実施形態>
図1は、第1の実施形態に係る紫外線発光素子100の構成例を示す断面模式図である。第1の実施形態に係る紫外線発光素子は、基板10と、基板10の第1主面S1側に形成された半導体積層部20と、半導体積層部20に電力を供給するための第1電極部31及び第2電極部32と、基板10の第1主面S1の反対側に位置する第2主面S2側の一部に形成された凹部11と、この凹部11に配置された光学部材40と、を備える。半導体積層部20は、第1導電型の第1半導体層21と、発光層22と、第2導電型の第2半導体層23とを有する。また、第1電極部31が第1半導体層21に電気的に接続し、第2電極部32が第2半導体層23に電気的に接続している。また、図1に示すように断面視したときに、凹部11の幅11aは発光層22の幅22aよりも広いことが好ましい。
<First Embodiment>
FIG. 1 is a schematic cross-sectional view illustrating a configuration example of an ultraviolet light emitting device 100 according to the first embodiment. The ultraviolet light emitting element according to the first embodiment includes a substrate 10, a semiconductor stacked unit 20 formed on the first main surface S <b> 1 side of the substrate 10, and a first electrode unit for supplying power to the semiconductor stacked unit 20. 31 and the second electrode portion 32, the concave portion 11 formed on a part of the second main surface S2 side opposite to the first main surface S1 of the substrate 10, and the optical member 40 disposed in the concave portion 11 And comprising. The semiconductor stacked unit 20 includes a first conductive type first semiconductor layer 21, a light emitting layer 22, and a second conductive type second semiconductor layer 23. Further, the first electrode portion 31 is electrically connected to the first semiconductor layer 21, and the second electrode portion 32 is electrically connected to the second semiconductor layer 23. Further, the width 11 a of the recess 11 is preferably wider than the width 22 a of the light emitting layer 22 when viewed in cross section as shown in FIG.

第1の実施形態に係る紫外線発光素子100は、基板10の第2主面S2側の一部に凹部11を有し、この凹部11に光学部材40が配置されている。これにより、後述の図7(a)に示す紫外線発光素子(第1の比較形態)と比較して、発光効率の高い紫外線発光素子が実現される。また、後述の図7(b)に示す紫外線発光素子(第2の比較形態)と比較して、光学部材40の厚さを凹部11の深さで調整することができるので、光学部材40を薄く、しかも膜厚のばらつきを抑えて製造することができる。したがって、製造ばらつきが小さく、所望の光学特性を示す紫外線発光素子が実現される。   The ultraviolet light emitting element 100 according to the first embodiment has a recess 11 in a part of the substrate 10 on the second main surface S2 side, and the optical member 40 is disposed in the recess 11. Thereby, an ultraviolet light emitting element having higher luminous efficiency is realized as compared with the ultraviolet light emitting element (first comparative example) shown in FIG. Moreover, since the thickness of the optical member 40 can be adjusted by the depth of the recessed part 11 compared with the ultraviolet light emitting element (2nd comparison form) shown in below-mentioned FIG.7 (b), the optical member 40 is used. It is thin and can be manufactured while suppressing variations in film thickness. Therefore, an ultraviolet light-emitting element having a small manufacturing variation and exhibiting desired optical characteristics is realized.

<第2の実施形態>
図2は、第2の実施形態に係る紫外線発光素子200の構成例を示す断面模式図である。図2に示すように、第2の実施形態に係る紫外線発光素子200では、第1電極部31と第2電極部32とが、実装基板50のバンプ電極部51とそれぞれ接続されている。そして、実装基板50と、基板10の第1主面S1との間に位置する部位と、基板10の側面S3とが封止樹脂60で覆われている(すなわち、封止されている)。基板10の第2主面S2と光学部材40は、封止樹脂60で覆われていない。これ以外の構成は、第1実施形態に係る紫外線発光素子100と同一である。
<Second Embodiment>
FIG. 2 is a schematic cross-sectional view showing a configuration example of the ultraviolet light emitting element 200 according to the second embodiment. As shown in FIG. 2, in the ultraviolet light emitting element 200 according to the second embodiment, the first electrode portion 31 and the second electrode portion 32 are connected to the bump electrode portion 51 of the mounting substrate 50, respectively. The portion located between the mounting substrate 50 and the first main surface S1 of the substrate 10 and the side surface S3 of the substrate 10 are covered with the sealing resin 60 (that is, sealed). The second main surface S2 of the substrate 10 and the optical member 40 are not covered with the sealing resin 60. Other configurations are the same as those of the ultraviolet light emitting device 100 according to the first embodiment.

<第3の実施形態>
図3は、第3の実施形態に係る紫外線発光素子300の構成例を示す断面模式図である。図3に示すように、第3の実施形態に係る紫外線発光素子300は、基板10の側面S3が光学部材40´で覆われており、その外側が封止樹脂60で覆われている。これ以外の構成は、第2実施形態に係る紫外線発光素子300と同一である。
<Third Embodiment>
FIG. 3 is a schematic cross-sectional view illustrating a configuration example of an ultraviolet light emitting element 300 according to the third embodiment. As shown in FIG. 3, in the ultraviolet light emitting element 300 according to the third embodiment, the side surface S <b> 3 of the substrate 10 is covered with the optical member 40 ′, and the outside thereof is covered with the sealing resin 60. Other configurations are the same as those of the ultraviolet light emitting element 300 according to the second embodiment.

基板10の側面S3が光学部材40´で覆われていることにより、基板10の側面S3から出射した紫外線が側面S3と光学部材40´との界面で多く反射する。このため、封止樹脂60のうち、特に光学部材を40´介して側面S3を封止する部分が紫外線により劣化することを抑制することが可能になり、紫外線発光素子の信頼性が向上する。さらに、光学部材40´と側面S3との界面で反射した光の一部は基板10の第2主面S2側から出射するため、紫外線発光素子の光出力が向上するという効果をも奏する。   Since the side surface S3 of the substrate 10 is covered with the optical member 40 ', a large amount of ultraviolet light emitted from the side surface S3 of the substrate 10 is reflected at the interface between the side surface S3 and the optical member 40'. For this reason, it becomes possible to suppress that the part which seals side surface S3 through the optical member 40 'among sealing resin 60 especially deteriorates with an ultraviolet-ray, and the reliability of an ultraviolet light emitting element improves. Furthermore, since a part of the light reflected at the interface between the optical member 40 ′ and the side surface S 3 is emitted from the second main surface S 2 side of the substrate 10, there is an effect that the light output of the ultraviolet light emitting element is improved.

<第4の実施形態>
図4は、第4の実施形態に係る紫外線発光素子400の構成例を示す断面模式図である。図4に示すように、第4の実施形態に係る紫外線発光素子400は、基板10の第2主面S2側にレンズ70が設けられており、このレンズ70の裏面の一部が凹部11に配置された光学部材40と接触している。また、図4に示すように断面視したときに、レンズ70の幅70aは凹部11の幅11aよりも広いことが好ましい。これ以外の構成は、第1実施形態に係る紫外線発光素子100と同一である。
<Fourth Embodiment>
FIG. 4 is a schematic cross-sectional view illustrating a configuration example of an ultraviolet light emitting device 400 according to the fourth embodiment. As shown in FIG. 4, the ultraviolet light emitting element 400 according to the fourth embodiment is provided with a lens 70 on the second main surface S <b> 2 side of the substrate 10, and a part of the back surface of the lens 70 is in the recess 11. It is in contact with the arranged optical member 40. In addition, when viewed in cross section as shown in FIG. 4, the width 70 a of the lens 70 is preferably wider than the width 11 a of the recess 11. Other configurations are the same as those of the ultraviolet light emitting device 100 according to the first embodiment.

レンズ70を所望の形状にすることにより、発光層22で生成した光を集光・拡散等させて所望の光学特性の紫外線発光素子を得ることが可能になる。第4の実施形態に係る紫外線発光素子400においては、光学部材40が接着性を有する材料であれば、レンズ70を容易に搭載することが可能となる。   By forming the lens 70 in a desired shape, it is possible to obtain an ultraviolet light emitting element having desired optical characteristics by condensing and diffusing the light generated in the light emitting layer 22. In the ultraviolet light emitting element 400 according to the fourth embodiment, the lens 70 can be easily mounted if the optical member 40 is a material having adhesiveness.

<第5の実施形態>
図5(a)〜図6(c)は、第5の実施形態に係る紫外線発光素子の製造方法を示す断面模式図である。
図5(a)に示すように、まず、凹部形成工程では、基板10と、基板10の第1主面S1側に形成された半導体積層部20と、半導体積層部20に電気的に接続する第1電極部31及び第2電極部32とを備える基板10を用意する。そして、この用意した基板10の第2主面S2の一部に、保護層80を形成する。ここで、基板10は半導体ウエハである。保護層80は、例えばフォトレジストからなるパターン(すなわち、レジストパターン)である。この保護層80をマスクに、基板10の第2主面S2側をドライエッチングまたはウェットエッチングする。これにより、図5(b)に示すように、基板10の第2主面S2側に凹部11を形成する。
<Fifth Embodiment>
Fig.5 (a)-FIG.6 (c) are cross-sectional schematic diagrams which show the manufacturing method of the ultraviolet-ray light emitting element which concerns on 5th Embodiment.
As shown in FIG. 5A, first, in the recess forming step, the substrate 10, the semiconductor stacked portion 20 formed on the first main surface S1 side of the substrate 10, and the semiconductor stacked portion 20 are electrically connected. A substrate 10 including a first electrode part 31 and a second electrode part 32 is prepared. And the protective layer 80 is formed in a part of 2nd main surface S2 of this prepared board | substrate 10. FIG. Here, the substrate 10 is a semiconductor wafer. The protective layer 80 is, for example, a pattern made of a photoresist (that is, a resist pattern). Using this protective layer 80 as a mask, the second main surface S2 side of the substrate 10 is dry etched or wet etched. Thereby, as shown in FIG. 5B, the recess 11 is formed on the second main surface S <b> 2 side of the substrate 10.

次に、図5(c)に示すように、個片化工程では、基板10を分割して複数の紫外線発光素子に個片化する。
次に、光学部材注入工程では、図6(a)に示すように、形成された凹部11に光学部材40を注入する。次に、平滑化工程では、注入された光学部材4の厚みを平滑化する。例えば、図6(b)に示すように、基板10の第2主面S2のうち凹部11が形成されていない領域にスキージ90を準備した後に、このスキージ90を平面方向(すなわち、第2主面S2に平行な方向)に移動させることで光学部材40の厚みを平滑化する。この例においては、光学部材40は注入時には流動性を有し、所定の処理により硬化可能なものであることが好ましい。以上の工程を経て、図6(c)に示すように、紫外線発光素子100が完成する。
Next, as shown in FIG. 5C, in the singulation process, the substrate 10 is divided into a plurality of ultraviolet light emitting elements.
Next, in the optical member injection step, the optical member 40 is injected into the formed recess 11 as shown in FIG. Next, in the smoothing step, the thickness of the injected optical member 4 is smoothed. For example, as shown in FIG. 6B, after the squeegee 90 is prepared in a region of the second main surface S2 of the substrate 10 where the recess 11 is not formed, the squeegee 90 is moved in the plane direction (that is, the second main surface S2). The thickness of the optical member 40 is smoothed by moving in a direction parallel to the surface S2. In this example, it is preferable that the optical member 40 has fluidity at the time of injection and can be cured by a predetermined treatment. Through the above steps, the ultraviolet light emitting device 100 is completed as shown in FIG.

第5の実施形態によれば、平坦な基板の平面上に光学部材を延伸形成する場合(後述の第2の比較形態)と比較して、光学部材の厚みを所望の厚みに高精度に制御することが可能である。
また、第5の実施形態では、凹部11の体積よりも注入された光学部材40の体積(すなわち、注入量)の方を大きくしてもよい。これにより、光学部材40の余剰分を基板10の側面に流延させることができ、基板10の側面も光学部材40で覆われた形態(例えば、第3実施形態に係る紫外線発光素子300)を形成することができる。また、凹部11に注入される光学部材40の体積をさらに大きくすることによって、基板10の側面だけでなく、基板10の第1主面側も光学部材40で覆うことが可能となる。
According to the fifth embodiment, the thickness of the optical member is controlled to a desired thickness with high accuracy compared to the case where the optical member is stretched and formed on the plane of a flat substrate (second comparative embodiment described later). Is possible.
In the fifth embodiment, the volume of the injected optical member 40 (that is, the injection amount) may be larger than the volume of the recess 11. Thereby, the surplus part of the optical member 40 can be cast on the side surface of the substrate 10 and the side surface of the substrate 10 is also covered with the optical member 40 (for example, the ultraviolet light emitting element 300 according to the third embodiment). Can be formed. Further, by further increasing the volume of the optical member 40 injected into the concave portion 11, not only the side surface of the substrate 10 but also the first main surface side of the substrate 10 can be covered with the optical member 40.

<第1の比較形態>
図7(a)は、第1の比較形態に係る紫外線発光素子600の構成例を示す断面模式図である。図7(a)に示すように、第1の比較形態に係る紫外線発光素子600は、基板110と、基板110の第1主面S101側に形成された半導体積層部120と、半導体積層部120に電力を供給するための第1電極部131及び第2電極部132とを備える。半導体積層部120は、第1導電型の第1半導体層21と、発光層22と、第2導電型の第2半導体層23とを有する。また、第1電極部31が第1半導体層21に電気的に接続し、第2電極部32が第2半導体層23に電気的に接続している。この紫外線発光素子600は、基板110の第2主面S102側に凹部は形成されていない。
<First comparative form>
FIG. 7A is a schematic cross-sectional view showing a configuration example of the ultraviolet light emitting element 600 according to the first comparative embodiment. As shown in FIG. 7A, the ultraviolet light emitting device 600 according to the first comparative embodiment includes a substrate 110, a semiconductor stacked portion 120 formed on the first main surface S101 side of the substrate 110, and a semiconductor stacked portion 120. The first electrode part 131 and the second electrode part 132 for supplying electric power to the power source are provided. The semiconductor stacked unit 120 includes a first conductive type first semiconductor layer 21, a light emitting layer 22, and a second conductive type second semiconductor layer 23. Further, the first electrode portion 31 is electrically connected to the first semiconductor layer 21, and the second electrode portion 32 is electrically connected to the second semiconductor layer 23. In the ultraviolet light emitting element 600, no recess is formed on the second main surface S102 side of the substrate 110.

<第2の比較形態>
図7(b)は、第2の比較形態に係る紫外線発光素子700の構成例を示す断面模式図である。図7(b)に示すように、第2の比較形態に係る紫外線発光素子700は、基板110の第2主面S102側に配置された光学部材140を備える。すなわち、凹部が形成されていない平坦な第2主面S102上に、光学部材140が延伸形成されている。これ以外の構成は、第1の比較形態と同一である。
<Second comparative form>
FIG. 7B is a schematic cross-sectional view showing a configuration example of the ultraviolet light emitting element 700 according to the second comparative embodiment. As shown in FIG. 7B, the ultraviolet light emitting element 700 according to the second comparative embodiment includes an optical member 140 disposed on the second main surface S102 side of the substrate 110. That is, the optical member 140 is stretched and formed on the flat second main surface S102 where no recess is formed. Other configurations are the same as those of the first comparative embodiment.

<実施形態の効果>
本発明の実施形態は以下の効果を奏する。
(1)基板10の第2主面S2側に凹部11が形成されており、この凹部11に光学部材40が配置されている。これにより、光学部材40がない場合(例えば、第1の比較形態)と比較して、基板10の第2主面S2での光の反射を低減することができ、基板10からの光取出し効率が向上する。このため、発光効率が高い紫外線発光素子を提供することができる。
<Effect of embodiment>
The embodiment of the present invention has the following effects.
(1) The concave portion 11 is formed on the second main surface S2 side of the substrate 10, and the optical member 40 is disposed in the concave portion 11. Thereby, compared with the case where there is no optical member 40 (for example, 1st comparative form), reflection of the light in 2nd main surface S2 of the board | substrate 10 can be reduced, and the light extraction efficiency from the board | substrate 10 is possible. Will improve. For this reason, the ultraviolet light emitting element with high luminous efficiency can be provided.

(2)また、光学部材40の厚さを凹部11の深さに略一致させることが容易であり、光学部材40の厚さを凹部11の深さで調整することができる。これにより、光学部材40の厚みのばらつきを低減することができるので、紫外線発光素子の性能ばらつきを小さくすることができる。例えば、光学部材40の厚みのばらつきを低減することによって、光学部材40における紫外線の吸収ばらつきや光の干渉効果のばらつきを低減することができる。これにより、紫外線発光素子の光出力のばらつきを小さくすることができる。 (2) Moreover, it is easy to make the thickness of the optical member 40 substantially coincide with the depth of the recess 11, and the thickness of the optical member 40 can be adjusted by the depth of the recess 11. Thereby, since the dispersion | variation in the thickness of the optical member 40 can be reduced, the dispersion | variation in the performance of an ultraviolet light emitting element can be made small. For example, by reducing the variation in the thickness of the optical member 40, it is possible to reduce the variation in the absorption of ultraviolet rays and the variation in the light interference effect in the optical member 40. Thereby, the dispersion | variation in the optical output of an ultraviolet light emitting element can be made small.

(3)また、基板10の側面S3が光学部材40´で覆われていることにより、この側面S3から出射した紫外線が側面S3と光学部材40´との界面で多く反射する。このため、封止樹脂60のうち、特に光学部材を40´を介して側面S3を覆っている部分が紫外線により劣化することを抑制することができるので、紫外線発光素子の信頼性を向上させることができる。さらに、光学部材40´と側面S3との界面で反射した光の一部は基板10の第2主面S2側から出射するため、紫外線発光素子の光出力を向上させることができる。 (3) Since the side surface S3 of the substrate 10 is covered with the optical member 40 ', a large amount of ultraviolet light emitted from the side surface S3 is reflected at the interface between the side surface S3 and the optical member 40'. For this reason, since it can suppress that the part which covers side surface S3 especially through 40 'among sealing resin 60 via ultraviolet rays can suppress by ultraviolet rays, the reliability of an ultraviolet light emitting element is improved. Can do. Furthermore, since a part of the light reflected at the interface between the optical member 40 ′ and the side surface S 3 is emitted from the second main surface S 2 side of the substrate 10, the light output of the ultraviolet light emitting element can be improved.

以下、本発明の実施例と、比較例とについてそれぞれ説明する。
[実施例1]
まず、厚さ200μmのAlN単結晶基板の第1主面上に、AlN層を4μm、N型Al0.7Ga0.3N層を2μm、発光層としてのAlGaN層、P型Al0.1Ga0.9N層、P型GaN層200nmを積層した。次に、この積層した膜を外部から電力を印加するためにメサ型構造に形成し、N型Al0.7Ga0.3N層の表面の一部に第1電極部を形成し、P型GaN層の表面の一部に第2電極部を形成した。以上の工程を経て、紫外線発光素子パターンを有する半導体ウエハを用意した。
Examples of the present invention and comparative examples will be described below.
[Example 1]
First, an AlN layer is 4 μm, an N-type Al 0.7 Ga 0.3 N layer is 2 μm, an AlGaN layer as a light-emitting layer, a P-type Al 0. A 1 Ga 0.9 N layer and a P-type GaN layer 200 nm were stacked. Next, this laminated film is formed in a mesa structure in order to apply electric power from the outside, a first electrode part is formed on a part of the surface of the N-type Al 0.7 Ga 0.3 N layer, and P A second electrode portion was formed on a part of the surface of the type GaN layer. Through the above steps, a semiconductor wafer having an ultraviolet light emitting element pattern was prepared.

次に、この半導体ウエハのAlN単結晶基板の第2主面の一部にレジストからなる保護層を形成し、塩素ガスのプラズマによりドライエッチングを施し、深さ1μmの凹部を形成した。
次に、形成された凹部に、この凹部の体積と略等しい量の光学材料としてシリコーン樹脂を注入し、このシリコーン樹脂が凹部を充填するように平滑化した。その後150℃、1時間の条件でシリコーン樹脂の硬化を実施し、シリコーン樹脂を硬化せしめて紫外線発光素子を得た。
Next, a protective layer made of a resist was formed on a part of the second main surface of the AlN single crystal substrate of this semiconductor wafer, and dry etching was performed by chlorine gas plasma to form a recess having a depth of 1 μm.
Next, a silicone resin was injected into the formed recess as an optical material in an amount substantially equal to the volume of the recess, and the silicone resin was smoothed so as to fill the recess. Thereafter, the silicone resin was cured at 150 ° C. for 1 hour, and the silicone resin was cured to obtain an ultraviolet light emitting device.

次に、第1電極部及び第2電極部のパターンに対応したパターンのバンプ電極部を有する実装基板(サブマウント基板)上に得られた紫外線発光素子を実装し、実装基板と基板の第2主面に挟まれる領域をエポキシ樹脂で封止し、実装基板に実装された紫外線発光素子を得た。
得られた紫外線発光素子の断面を走査型電子顕微鏡で確認したところ、凹部に充填されたシリコーン樹脂の厚みは全領域にわたって1μmであった。
Next, the obtained ultraviolet light emitting element is mounted on a mounting substrate (submount substrate) having a bump electrode portion having a pattern corresponding to the pattern of the first electrode portion and the second electrode portion, and the mounting substrate and the second of the substrate are mounted. The region sandwiched between the main surfaces was sealed with an epoxy resin to obtain an ultraviolet light emitting element mounted on a mounting substrate.
When the cross section of the obtained ultraviolet light emitting element was confirmed with a scanning electron microscope, the thickness of the silicone resin filled in the recesses was 1 μm over the entire region.

[実施例2]
シリコーン樹脂の注入量を凹部の体積よりも多くした以外は実施例1と同様の方法で紫外線発光素子を得た。
得られた紫外線発光素子の断面を走査型電子顕微鏡で確認したところ、凹部に充填されたシリコーン樹脂の厚みは全領域にわたって1μmであった。また、基板の側面もシリコーン樹脂で覆われていることも確認された。
[Example 2]
An ultraviolet light-emitting device was obtained in the same manner as in Example 1 except that the amount of silicone resin injected was larger than the volume of the recess.
When the cross section of the obtained ultraviolet light emitting element was confirmed with a scanning electron microscope, the thickness of the silicone resin filled in the recesses was 1 μm over the entire region. It was also confirmed that the side surface of the substrate was also covered with silicone resin.

[実施例3]
シリコーン樹脂を注入した後に、その上からAlN単結晶基板の第2主面上にレンズを設置した後に、シリコーン樹脂を硬化せしめた以外は、実施例1と同様の方法で紫外線発光素子を得た。
得られた紫外線発光素子の断面を走査型電子顕微鏡で確認したところ、凹部に充填されたシリコーン樹脂の厚みは全領域にわたって1μmであった。すなわち、レンズの設置により、実施例1と同様に、シリコーン樹脂の厚みが均一化されたことが確認された。
[Example 3]
After injecting the silicone resin, an ultraviolet light emitting device was obtained in the same manner as in Example 1 except that the silicone resin was cured after setting a lens on the second main surface of the AlN single crystal substrate from above. .
When the cross section of the obtained ultraviolet light emitting element was confirmed with a scanning electron microscope, the thickness of the silicone resin filled in the recesses was 1 μm over the entire region. That is, it was confirmed that the thickness of the silicone resin was made uniform by installing the lens in the same manner as in Example 1.

[比較例1]
ドライエッチングによる凹部を形成しなかったことと、AlN単結晶基板の第2主面上にシリコーン樹脂を配置し、シリコーン樹脂の厚みが最も薄くなるように該シリコーン樹脂を平滑化した以外は、実施例1と同様の方法で紫外線発光素子を得た。
得られた紫外線発光素子の断面を査型電子顕微鏡で確認したところ、シリコーン樹脂の厚みは15μm〜50μmの範囲でばらついていることが確認された。
[Comparative Example 1]
Implemented except that no recess was formed by dry etching and that the silicone resin was placed on the second main surface of the AlN single crystal substrate and the silicone resin was smoothed so that the thickness of the silicone resin was the smallest. An ultraviolet light emitting device was obtained in the same manner as in Example 1.
When the cross section of the obtained ultraviolet light emitting element was confirmed with a scanning electron microscope, it was confirmed that the thickness of the silicone resin varied in the range of 15 μm to 50 μm.

[比較例2]
ドライエッチングによる凹部の形成をしなかったことと、シリコーン樹脂の注入及び平滑化をしなかった以外は実施例1と同様の方法で紫外線発光素子を得た。
[実施例と比較例との比較]
実施例1、2、及び比較例1、2で得られた紫外線発光素子(各10個)のそれぞれに100mAの定電流を印加し、積分球により、各素子の中心波長である230〜320nmの波長の光強度を測定し、比較例2の紫外線発光素子の平均の光強度を1としたときの実施例1〜3、比較例1の平均の光強度を表1にまとめた。また、実施例2及び比較例1、2で得られた紫外線発光素子に、温度85℃湿度85%の条件下で300mAの定電流を500時間印加し続け、連続通電試験を行った後に、各紫外線発光素子の断面を観察し、封止樹脂の劣化の有無を確認した結果も表1にまとめた。
[Comparative Example 2]
An ultraviolet light-emitting device was obtained in the same manner as in Example 1 except that the concave portions were not formed by dry etching and that the silicone resin was not injected and smoothed.
[Comparison between Examples and Comparative Examples]
A constant current of 100 mA was applied to each of the ultraviolet light-emitting elements (10 elements each) obtained in Examples 1 and 2 and Comparative Examples 1 and 2, and the central wavelength of each element was 230 to 320 nm by an integrating sphere. The light intensity of the wavelength was measured, and the average light intensity of Examples 1 to 3 and Comparative Example 1 when the average light intensity of the ultraviolet light-emitting device of Comparative Example 2 was set to 1 is shown in Table 1. In addition, a constant current of 300 mA was continuously applied to the ultraviolet light-emitting devices obtained in Example 2 and Comparative Examples 1 and 2 under the condition of a temperature of 85 ° C. and a humidity of 85% for 500 hours, Table 1 also shows the results of observing the cross section of the ultraviolet light emitting element and confirming the presence or absence of deterioration of the sealing resin.

Figure 2016163015
Figure 2016163015

実施例1では、比較例2と比較して光強度が1.2倍に向上した。AlN単結晶基板の屈折率が高いため、外への入射角度が25°以上の発光は全て反射されてしまうため、比較例2のような構造では内部の発光が外部に取り出すことが困難となる。これに対し、実施例1は、屈折率がAlN単結晶基板よりも小さく、1μmと非常に薄くかつ厚みが均一なシリコーン樹脂(光学部材)を有するため、反射光が低減され光取出し効率が向上し、光強度が向上したものと考えられる。   In Example 1, the light intensity was improved by 1.2 times compared to Comparative Example 2. Since the refractive index of the AlN single crystal substrate is high, all of the emitted light with an incident angle of 25 ° or more to the outside is reflected. Therefore, in the structure as in Comparative Example 2, it is difficult to extract the emitted light inside. . In contrast, Example 1 has a silicone resin (optical member) whose refractive index is smaller than that of an AlN single crystal substrate and is very thin as 1 μm and has a uniform thickness, so that reflected light is reduced and light extraction efficiency is improved. However, the light intensity is considered to be improved.

実施例2では、比較例2と比較して光強度が1.3倍に向上した。また、実施例2では、通電試験後もシリコーン樹脂及び封止樹脂の劣化は確認されなかった。実施例2の紫外線発光素子では、屈折率の大きいAlN単結晶基板の側面が屈折率の小さいシリコーン樹脂で覆われることで、AlN単結晶基板の側面とシリコーン樹脂との界面で紫外光が反射する。これにより、封止樹脂の劣化を防ぐとともに、反射した光がAlN単結晶基板の第2主面から外部に取り出されて光強度が向上したものと考えられる。   In Example 2, the light intensity was improved 1.3 times compared to Comparative Example 2. In Example 2, the deterioration of the silicone resin and the sealing resin was not confirmed even after the energization test. In the ultraviolet light emitting element of Example 2, the side surface of the AlN single crystal substrate having a large refractive index is covered with the silicone resin having a small refractive index, so that the ultraviolet light is reflected at the interface between the side surface of the AlN single crystal substrate and the silicone resin. . Thereby, while preventing deterioration of sealing resin, it is thought that the reflected light was taken out from the 2nd main surface of the AlN single crystal substrate, and the light intensity improved.

一方、比較例1では、比較例2と比較して光強度が0.6倍に低下した。これはシリコーン樹脂の厚みが15μm〜50μmの厚い範囲でばらついていることで紫外光の透過性が低下したことに起因するものと考えられる。さらに、通電試験後の比較例1の紫外線発光素子の光強度は、通電試験前の比較例2の紫外線発光素子と比較して0.5倍となった。   On the other hand, in Comparative Example 1, the light intensity was reduced to 0.6 times compared to Comparative Example 2. This is considered to be due to the fact that the transmittance of the ultraviolet light is lowered because the thickness of the silicone resin varies in a thick range of 15 μm to 50 μm. Furthermore, the light intensity of the ultraviolet light emitting element of Comparative Example 1 after the energization test was 0.5 times that of the ultraviolet light emitting element of Comparative Example 2 before the energization test.

本発明は、計測機器や殺菌機器等に用いられる紫外線発光素子及びその製造方法として好適に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as an ultraviolet light emitting element used for measuring equipment, sterilizing equipment, and the like and a method for producing the same.

10 基板
11 凹部
20 半導体積層部
21 第1半導体層
22 発光層
23 第2半導体層
31 第1電極部
32 第2電極部
40 光学部材
50 実装基板
51 バンプ電極部
60 封止樹脂
70 レンズ
80 保護層
100、200、300、400 紫外線発光素子
DESCRIPTION OF SYMBOLS 10 Substrate 11 Recess 20 Semiconductor laminated part 21 First semiconductor layer 22 Light emitting layer 23 Second semiconductor layer 31 First electrode part 32 Second electrode part 40 Optical member 50 Mounting substrate 51 Bump electrode part 60 Sealing resin 70 Lens 80 Protective layer 100, 200, 300, 400 Ultraviolet light emitting element

Claims (15)

基板と、
前記基板の第1主面側に形成された発光層を含む半導体積層部と、
前記半導体積層部に電力を供給するための第1電極部及び第2電極部と、
前記基板の前記第1主面の反対側に位置する第2主面側の一部に形成された凹部と、
前記凹部に配置された光学部材と、を備える紫外線発光素子。
A substrate,
A semiconductor laminate including a light emitting layer formed on the first main surface side of the substrate;
A first electrode portion and a second electrode portion for supplying power to the semiconductor stacked portion;
A recess formed in a part of the second main surface side located on the opposite side of the first main surface of the substrate;
And an optical member disposed in the recess.
前記第1主面と前記第2主面との間に位置する側面の少なくとも一部が、前記光学部材で覆われている請求項1に記載の紫外線発光素子。   The ultraviolet light emitting element according to claim 1, wherein at least a part of a side surface located between the first main surface and the second main surface is covered with the optical member. 前記第2主面側に配置されたレンズをさらに備え、
前記レンズの裏面の少なくとも一部が前記凹部に配置された前記光学部材と接触する請求項1または2に記載の紫外線発光素子。
A lens disposed on the second main surface side;
The ultraviolet light emitting element according to claim 1, wherein at least a part of the back surface of the lens is in contact with the optical member disposed in the concave portion.
前記基板の屈折率は、1.7以上である請求項1〜3のいずれか一項に記載の紫外線発光素子。   The ultraviolet light emitting element according to any one of claims 1 to 3, wherein the substrate has a refractive index of 1.7 or more. 前記光学部材の屈折率は、前記基板の屈折率よりも低い請求項1〜4のいずれか一項に記載の紫外線発光素子。   The ultraviolet light emitting element according to any one of claims 1 to 4, wherein a refractive index of the optical member is lower than a refractive index of the substrate. 前記光学部材の紫外線透過率が、波長が260nm以上300nm以下の領域で80%以上である請求項1〜5のいずれか一項に記載の紫外線発光素子。   The ultraviolet light-emitting element according to claim 1, wherein the ultraviolet transmittance of the optical member is 80% or more in a wavelength region of 260 nm or more and 300 nm or less. 断面視したときに、前記凹部の幅は前記発光層の幅よりも広い請求項1〜6のいずれか一項に記載の紫外線発光素子。   The ultraviolet light-emitting element according to claim 1, wherein the width of the concave portion is wider than the width of the light-emitting layer when viewed in cross section. 前記凹部の深さは10nm以上5μm以下である請求項1〜7のいずれか一項に記載の紫外線発光素子。   The ultraviolet light emitting element according to any one of claims 1 to 7, wherein a depth of the concave portion is 10 nm or more and 5 µm or less. 前記光学部材のうち前記凹部の内部に配置された部分の厚みが、前記凹部の深さと同じ大きさである請求項1〜8のいずれか一項に記載の紫外線発光素子。   The ultraviolet light emitting element according to any one of claims 1 to 8, wherein a thickness of a portion of the optical member disposed inside the recess is the same as a depth of the recess. 発光波長が230nm以上320nm以下である請求項1〜9のいずれか一項に記載の紫外線発光素子。   The ultraviolet light emitting element according to claim 1, wherein the emission wavelength is 230 nm or more and 320 nm or less. 基板と、前記基板の第1主面側に形成された発光層を含む半導体積層部と、前記半導体積層部に電力を供給するための第1電極部及び第2電極部とを備える半導体ウエハの、前記第1主面の反対側に位置する第2主面の一部に、ドライエッチングで凹部を形成する凹部形成工程と、
前記凹部に光学部材を注入する光学部材注入工程と、
注入した前記光学部材の厚みを平滑化する平滑化工程と、を備える紫外線発光素子の製造方法。
A semiconductor wafer comprising: a substrate; a semiconductor stacked portion including a light emitting layer formed on the first main surface side of the substrate; and a first electrode portion and a second electrode portion for supplying power to the semiconductor stacked portion A recess forming step of forming a recess by dry etching on a part of the second main surface located on the opposite side of the first main surface;
An optical member injection step of injecting an optical member into the recess,
And a smoothing step of smoothing the thickness of the injected optical member.
前記光学部材注入工程では、
注入される前記光学部材の注入量は前記凹部の体積よりも多く、
前記平滑化工程では、
前記光学部材のうち前記凹部の内部に配置された部分の厚みが前記凹部の深さと同じ大きさとなるように該光学部材を平滑化し、かつ、前記基板の側面の少なくとも一部に前記光学部材を付着させる請求項11に記載の紫外線発光素子の製造方法。
In the optical member injection step,
The injection amount of the optical member to be injected is larger than the volume of the recess,
In the smoothing step,
The optical member is smoothed so that the thickness of the portion of the optical member disposed inside the recess is the same as the depth of the recess, and the optical member is provided on at least a part of the side surface of the substrate. The manufacturing method of the ultraviolet light emitting element of Claim 11 made to adhere.
前記平滑化工程の後に、前記第2主面側にレンズを配置するレンズ配置工程を更に備える請求項11または12に記載の紫外線発光素子の製造方法。   The manufacturing method of the ultraviolet light emitting element according to claim 11 or 12, further comprising a lens arranging step of arranging a lens on the second main surface side after the smoothing step. 前記凹部形成工程の後、かつ、前記光学部材注入工程前に、前記半導体ウエハを分割して複数の紫外線発光素子に個片化する個片化工程を更に備える請求項11〜13のいずれか一項に記載の紫外線発光素子の製造方法。   14. The singulation step of dividing the semiconductor wafer into pieces into a plurality of ultraviolet light emitting elements after the recess formation step and before the optical member injection step. The manufacturing method of the ultraviolet light emitting element of a term. 前記凹部形成工程の後、かつ、前記光学部材注入工程前に、前記第1電極部及び前記第2電極部を配線基板に接続する実装工程を更に備える請求項11〜14のいずれか一項に記載の紫外線発光素子の製造方法。   The mounting process which connects the said 1st electrode part and the said 2nd electrode part to a wiring board after the said recessed part formation process and before the said optical member injection | pouring process is further provided in any one of Claims 11-14. The manufacturing method of the ultraviolet-ray light emitting element of description.
JP2015043599A 2015-03-05 2015-03-05 Ultraviolet light-emitting element and manufacturing method of same Pending JP2016163015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043599A JP2016163015A (en) 2015-03-05 2015-03-05 Ultraviolet light-emitting element and manufacturing method of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043599A JP2016163015A (en) 2015-03-05 2015-03-05 Ultraviolet light-emitting element and manufacturing method of same

Publications (1)

Publication Number Publication Date
JP2016163015A true JP2016163015A (en) 2016-09-05

Family

ID=56847591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043599A Pending JP2016163015A (en) 2015-03-05 2015-03-05 Ultraviolet light-emitting element and manufacturing method of same

Country Status (1)

Country Link
JP (1) JP2016163015A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093136A (en) * 2016-12-07 2018-06-14 日機装株式会社 Optical semiconductor device
WO2020153191A1 (en) * 2019-01-25 2020-07-30 ソニー株式会社 Light-emitting device and image display device
JPWO2019235565A1 (en) * 2018-06-08 2021-06-24 日機装株式会社 Semiconductor light emitting device
JP2023125123A (en) * 2022-02-28 2023-09-07 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046124A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light-emitting element and manufacturing method therefor
JP2004096113A (en) * 2002-09-02 2004-03-25 Samsung Electro Mech Co Ltd Light emitting diode and its manufacturing method
JP2004128057A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Light emitting device and its manufacturing method
JP2004363343A (en) * 2003-06-05 2004-12-24 Nichia Chem Ind Ltd Light emitting device and method of forming the same
JP2009032958A (en) * 2007-07-27 2009-02-12 Kyocera Corp Light-emitting element and illuminator
JP2009218569A (en) * 2008-02-13 2009-09-24 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting device and production method therefor
JP2010087292A (en) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Light emitting element
US20100244065A1 (en) * 2009-03-30 2010-09-30 Koninklijke Philips Electronics N.V. Semiconductor light emitting device grown on an etchable substrate
US20110294240A1 (en) * 2010-05-28 2011-12-01 Yu-Sik Kim Light-emitting device, light-emitting system including the same, and fabricating method thereof
US20120193664A1 (en) * 2011-01-31 2012-08-02 Lextar Electronics Corp. Semiconductor light emitting structure
JP2013084881A (en) * 2011-10-10 2013-05-09 Lg Innotek Co Ltd Light-emitting device
JP2013106048A (en) * 2011-11-16 2013-05-30 Lg Innotek Co Ltd Light-emitting device, and light-emitting device provided with the same
US20130299861A1 (en) * 2010-09-30 2013-11-14 Byd Company Limited Led structure, led device and methods for forming the same
JP2014068010A (en) * 2012-09-24 2014-04-17 Lg Innotek Co Ltd Ultraviolet light emitting device
WO2014108782A1 (en) * 2013-01-09 2014-07-17 Koninklijke Philips N.V. Shaped cavity in substrate of a chip scale package led
WO2015016150A1 (en) * 2013-07-30 2015-02-05 独立行政法人情報通信研究機構 Semiconductor light emitting element and method for manufacturing same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046124A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light-emitting element and manufacturing method therefor
JP2004096113A (en) * 2002-09-02 2004-03-25 Samsung Electro Mech Co Ltd Light emitting diode and its manufacturing method
JP2004128057A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Light emitting device and its manufacturing method
JP2004363343A (en) * 2003-06-05 2004-12-24 Nichia Chem Ind Ltd Light emitting device and method of forming the same
JP2009032958A (en) * 2007-07-27 2009-02-12 Kyocera Corp Light-emitting element and illuminator
JP2009218569A (en) * 2008-02-13 2009-09-24 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting device and production method therefor
JP2010087292A (en) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Light emitting element
US20100244065A1 (en) * 2009-03-30 2010-09-30 Koninklijke Philips Electronics N.V. Semiconductor light emitting device grown on an etchable substrate
US20110294240A1 (en) * 2010-05-28 2011-12-01 Yu-Sik Kim Light-emitting device, light-emitting system including the same, and fabricating method thereof
US20130299861A1 (en) * 2010-09-30 2013-11-14 Byd Company Limited Led structure, led device and methods for forming the same
US20120193664A1 (en) * 2011-01-31 2012-08-02 Lextar Electronics Corp. Semiconductor light emitting structure
JP2013084881A (en) * 2011-10-10 2013-05-09 Lg Innotek Co Ltd Light-emitting device
JP2013106048A (en) * 2011-11-16 2013-05-30 Lg Innotek Co Ltd Light-emitting device, and light-emitting device provided with the same
JP2014068010A (en) * 2012-09-24 2014-04-17 Lg Innotek Co Ltd Ultraviolet light emitting device
WO2014108782A1 (en) * 2013-01-09 2014-07-17 Koninklijke Philips N.V. Shaped cavity in substrate of a chip scale package led
WO2015016150A1 (en) * 2013-07-30 2015-02-05 独立行政法人情報通信研究機構 Semiconductor light emitting element and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093136A (en) * 2016-12-07 2018-06-14 日機装株式会社 Optical semiconductor device
US10847699B2 (en) 2016-12-07 2020-11-24 Nikkiso Co., Ltd. Optical semiconductor apparatus
JPWO2019235565A1 (en) * 2018-06-08 2021-06-24 日機装株式会社 Semiconductor light emitting device
JP7055201B2 (en) 2018-06-08 2022-04-15 日機装株式会社 Semiconductor light emitting device
WO2020153191A1 (en) * 2019-01-25 2020-07-30 ソニー株式会社 Light-emitting device and image display device
JPWO2020153191A1 (en) * 2019-01-25 2021-12-02 ソニーグループ株式会社 Luminous device and image display device
JP7484727B2 (en) 2019-01-25 2024-05-16 ソニーグループ株式会社 Light emitting device and image display device
US12068441B2 (en) 2019-01-25 2024-08-20 Sony Group Corporation Light-emitting device and image display apparatus
JP2023125123A (en) * 2022-02-28 2023-09-07 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
JP7425955B2 (en) 2022-02-28 2024-02-01 日亜化学工業株式会社 Light-emitting device and method for manufacturing the light-emitting device

Similar Documents

Publication Publication Date Title
US9142729B2 (en) Light emitting element
KR102427642B1 (en) Semiconductor light emitting device
US8470621B2 (en) Method for fabricating a flip-chip semiconductor optoelectronic device
JP5657591B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4557542B2 (en) Nitride light emitting device and high luminous efficiency nitride light emitting device
JP5100301B2 (en) Light emitting device
JP4812369B2 (en) Method for manufacturing light emitting device
TWI652838B (en) Nitride semiconductor ultraviolet light emitting device and method of manufacturing same
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
JP2012195345A (en) Semiconductor light-emitting device
JP2014003283A (en) Semiconductor light-emitting device and light source unit
WO2010041370A1 (en) Nitride semiconductor light emitting diode
US10651337B2 (en) Supporting substrate for semiconductor device, semiconductor apparatus comprising the same, and method for manufacturing the same
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
TW201434180A (en) Semiconductor light emitting device and method for manufacturing the same
TW201349570A (en) Semiconductor light emitting device and a method for manufacturing the same
JPWO2015033638A1 (en) Semiconductor light emitting device
JP2016163015A (en) Ultraviolet light-emitting element and manufacturing method of same
JP2022516669A (en) Vertical structure blue light emitting diode and its manufacturing method
JP2008198876A (en) GaN-BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
US20130341661A1 (en) Semiconductor light emitting element
JP2006073618A (en) Optical element and manufacturing method thereof
JP2011071444A (en) Light-emitting element
JP2012178453A (en) GaN-BASED LED ELEMENT
KR20090115902A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507