JP2017130560A - Substrate holding device - Google Patents

Substrate holding device Download PDF

Info

Publication number
JP2017130560A
JP2017130560A JP2016009179A JP2016009179A JP2017130560A JP 2017130560 A JP2017130560 A JP 2017130560A JP 2016009179 A JP2016009179 A JP 2016009179A JP 2016009179 A JP2016009179 A JP 2016009179A JP 2017130560 A JP2017130560 A JP 2017130560A
Authority
JP
Japan
Prior art keywords
partial space
substrate
substrate holding
path
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016009179A
Other languages
Japanese (ja)
Other versions
JP6650275B2 (en
Inventor
智浩 石野
Tomohiro Ishino
智浩 石野
淳寿 岩渕
Atsuhisa Iwabuchi
淳寿 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016009179A priority Critical patent/JP6650275B2/en
Publication of JP2017130560A publication Critical patent/JP2017130560A/en
Application granted granted Critical
Publication of JP6650275B2 publication Critical patent/JP6650275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate holding device capable of achieving a further improvement in flatness of a substrate.SOLUTION: In a substrate holding device, a ventilation passage 22 is configured such that a product Ri×Vi, where Ri represents fluid resistance of a ventilation passage 22 communicating ventilation holes 21 each arranged corresponding to an i-th subspace Si (i=1, 2, ..) and Vi represents a volume of a first subspace, is less than the product Ri+1×Vi+1 in an (i+1)th subspace Si+1; and a plurality of projecting portions 11 are designed such that the arrangement mode thereof can be adjusted.SELECTED DRAWING: Figure 1

Description

本発明は、半導体ウエハなどの基板を基体に吸着保持する基板保持装置に関する。   The present invention relates to a substrate holding apparatus that holds a substrate such as a semiconductor wafer by suction on a substrate.

基体の上面に、基板の外縁部を支持する環状の第1支持部と、第1支持部により囲まれた領域内に配置された複数の突起状の第2支持部と、当該領域内に配置された基板を吸着しない領域を形成する筒状部と、が形成され、基板と基体とによって形成される第1支持部の内側の空間の空気吸引が、筒状部に近い吸引口から開始されるように構成されている基板保持装置が提案されている(たとえば、特許文献1参照)。これにより、基板の皺が非吸着部分へ集中する現象の発生が回避されるので、基板の全体的な平坦度の向上が図られている。   An annular first support portion for supporting the outer edge portion of the substrate on the upper surface of the base, a plurality of projecting second support portions disposed in a region surrounded by the first support portion, and disposed in the region A cylindrical portion that forms a region that does not adsorb the formed substrate, and air suction inside the first support portion formed by the substrate and the base is started from a suction port close to the cylindrical portion. A substrate holding device configured as described above has been proposed (see, for example, Patent Document 1). As a result, the occurrence of a phenomenon in which wrinkles of the substrate are concentrated on the non-adsorbed portion is avoided, so that the overall flatness of the substrate is improved.

特許第4348734号公報Japanese Patent No. 4348734

しかし、精細な回路パターンを製造するために半導体露光装置の光源の線幅の微細化が進んでおり、ナノメーターサイズの線幅が主流となりつつあるため、基板の平坦度に対する要求基準が高くなっている。   However, since the line width of the light source of the semiconductor exposure apparatus has been miniaturized in order to manufacture a fine circuit pattern, and the nanometer-sized line width is becoming mainstream, the requirement standard for the flatness of the substrate has increased. ing.

そこで、本発明は、基板の平坦度のさらなる向上を図り得る基板保持装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a substrate holding device that can further improve the flatness of the substrate.

本発明は、上面に開口している複数の通気孔および前記複数の通気孔のそれぞれに連通する通気経路が形成されている平板状の基体と、前記基体の上面から突出して形成されている複数の凸部と、前記基体の上面から突出して前記複数の通気孔および前記複数の凸部を囲うように形成されている環状凸部と、を備えている基板保持装置に関する。   The present invention relates to a flat substrate having a plurality of ventilation holes opened on the upper surface and a ventilation path communicating with each of the plurality of ventilation holes, and a plurality of projections formed from the upper surface of the substrate. The present invention relates to a substrate holding apparatus comprising: a plurality of projections; and an annular projection that protrudes from an upper surface of the base and is formed so as to surround the plurality of vent holes and the plurality of projections.

本発明の基板保持装置は、前記基体の上面、前記環状凸部の内周面および基板の下面により画定されている空間において順に隣接する第1〜第Nの部分空間(N≧3)を区画する隔壁部が前記基体の上面から突出して形成され、前記第1〜第Nの部分空間のうち第iの部分空間(i=1,2,‥N−1)に対応して配置された通気孔を通じた前記通気経路の流体抵抗および当該第iの部分空間の体積の積が、前記第iの部分空間に隣接する第i+1の部分空間に対応して配置された通気孔を通じた前記通気経路の流体抵抗および当該他の部分空間の体積の積よりも小さくなるように、前記通気経路が構成され、かつ、前記複数の凸部が形成されていることを特徴とする。   The substrate holding device of the present invention partitions first to Nth partial spaces (N ≧ 3) adjacent in order in a space defined by the upper surface of the base, the inner peripheral surface of the annular convex portion, and the lower surface of the substrate. A partition wall that protrudes from the upper surface of the base body and is disposed corresponding to the i-th partial space (i = 1, 2,..., N−1) of the first to N-th partial spaces. The ventilation path through the ventilation hole in which the product of the fluid resistance of the ventilation path through the pore and the volume of the i-th partial space is arranged corresponding to the (i + 1) th partial space adjacent to the i-th partial space. The air flow path is configured so as to be smaller than the product of the fluid resistance and the volume of the other partial space, and the plurality of convex portions are formed.

本発明の基板保持装置によれば、基体に形成された通気経路および通気孔を通じて、基体の上面、環状凸部の内周面および基板の下面により画定された閉空間が減圧されて負圧領域が形成される。この際、閉空間において第iの部分空間(i=1,2,‥N−1)のほうが、隔壁部を介してこれに隣接する第i+1の部分空間よりもごく短時間ではあるものの先に負圧領域が形成される。これは、一の部分空間に対応して配置された通気孔を通じた通気経路の流体抵抗および当該一の部分空間の体積の積が、他の部分空間の当該積よりも小さくなるように通気経路が構成され、かつ、複数の凸部が形成されているためである。   According to the substrate holding device of the present invention, the closed space defined by the upper surface of the substrate, the inner peripheral surface of the annular convex portion, and the lower surface of the substrate is decompressed through the ventilation path and the ventilation hole formed in the substrate, and the negative pressure region. Is formed. At this time, in the closed space, the i-th partial space (i = 1, 2,... N−1) is shorter than the i + 1-th partial space adjacent to the i-th partial space via the partition wall. A negative pressure region is formed. This is because the product of the fluid resistance of the ventilation path through the ventilation holes arranged corresponding to one partial space and the volume of the one partial space is smaller than the product of the other partial space. This is because a plurality of convex portions are formed.

たとえば、通気孔の数が多く設計され、通気孔の開口面積が大きく設計され、通気経路の断面積が小さく設計され、または通気経路の負圧形成始端位置から通気孔までの距離が長く設計されることで、通気経路の流体抵抗を高くすることができる。そのほか、通気経路の途中に通気性のある多孔質体または局所的に断面積が大きくなる空間が配置されることによっても通気経路の流体抵抗が高くすることができる。また、複数の凸部の配置個数が多く設計され、または凸部のサイズが大きく設計されることにより、該当する部分空間の体積を小さくすることができる。   For example, the number of vent holes is designed to be large, the vent hole opening area is designed to be large, the cross-sectional area of the vent path is designed to be small, or the distance from the negative pressure forming start position of the vent path to the vent hole is designed to be long. As a result, the fluid resistance of the ventilation path can be increased. In addition, the fluid resistance of the ventilation path can also be increased by arranging a porous body having air permeability or a space having a locally increased cross-sectional area in the middle of the ventilation path. In addition, the volume of the corresponding partial space can be reduced by designing the arrangement number of the plurality of projections to be large or designing the size of the projections to be large.

よって、基板は第1の部分空間に対応する第1の領域で平坦性が確保され、その後わずかな時間差をもって第1の部分空間に隣接する第2の部分空間に対応する第2の領域で平坦性が確保される。さらにその後わずかな時間差をもって第2の部分空間に隣接する第3の部分空間に対応する第3の領域で平坦性が確保される。このように基板の平坦性がわずかな時間差をもって逐次的に確保されていくことで、当該基板の全体的な平坦性の向上が図られる。   Accordingly, the flatness is ensured in the first region corresponding to the first partial space, and thereafter the substrate is flat in the second region corresponding to the second partial space adjacent to the first partial space with a slight time difference. Sex is secured. Further, flatness is secured in the third region corresponding to the third partial space adjacent to the second partial space with a slight time difference thereafter. Thus, the flatness of the substrate is sequentially secured with a slight time difference, so that the overall flatness of the substrate can be improved.

本発明の一態様の基板保持装置において、前記隔壁部の少なくとも一部が、前記環状凸部と比較して上端面が低くまたは同じ高さに形成されている。   In the substrate holding device according to one aspect of the present invention, at least a part of the partition wall is formed so that the upper end surface is lower or at the same height as the annular protrusion.

本発明の一態様の基板保持装置において、
前記複数の凸部のうち少なくとも一部が、前記環状凸部または前記隔壁部と比較して上端面が高くまたは同じ高さに形成されている。
In the substrate holding device of one embodiment of the present invention,
At least a part of the plurality of convex portions has an upper end surface that is higher than or equal to the annular convex portion or the partition wall.

本発明の一実施形態としての基板保持装置の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram of a substrate holding device as one embodiment of the present invention.

(構成)
図1に示されている本発明の一実施形態としての基板保持装置は、セラミックス焼結体からなる略円板状の基体1を備えている。基体1には、上面に開口している複数の通気孔21および当該複数の通気孔21のそれぞれに連通する通気経路22が形成されている。基体1には、その上面から突出する複数の凸部11と、上面から突出して複数の通気孔21および複数の凸部11を囲う環状凸部12と、環状の第1隔壁部31と、環状の第2隔壁部32と、が形成されている。本実施形態では、凸部11および環状凸部12が、それぞれの高さが一致するように形成されている。
(Constitution)
The substrate holding apparatus as one embodiment of the present invention shown in FIG. 1 includes a substantially disk-shaped substrate 1 made of a ceramic sintered body. The base 1 is formed with a plurality of vent holes 21 opened on the upper surface and a vent path 22 communicating with each of the plurality of vent holes 21. The base body 1 includes a plurality of protrusions 11 protruding from the upper surface, an annular protrusion 12 protruding from the upper surface and surrounding the plurality of vent holes 21 and the plurality of protrusions 11, an annular first partition wall 31, and an annular shape The second partition wall 32 is formed. In this embodiment, the convex part 11 and the cyclic | annular convex part 12 are formed so that each height may correspond.

複数の凸部11のそれぞれは上端面が同じ高さ(高さ方向の位置が同じ)に形成され、かつ、環状凸部12、第1隔壁部31および第2隔壁部32のそれぞれと比較して上端面が同じ高さに形成されている。第1隔壁部31および第2隔壁部32のそれぞれは、環状凸部12と比較して上端面が同じ高さに形成されている。   Each of the plurality of convex portions 11 has an upper end surface formed at the same height (the same position in the height direction), and compared with each of the annular convex portion 12, the first partition wall portion 31, and the second partition wall portion 32. The upper end surface is formed at the same height. Each of the first partition wall portion 31 and the second partition wall portion 32 has an upper end surface formed at the same height as compared with the annular convex portion 12.

通気経路22は、基体1の下面に延在する溝として形成されている。基体1の下面が基台(図示略)の上面に接合されることで、当該溝が真空吸引経路として機能する。少なくとも一方の表面に溝が形成された一対のセラミックス焼結体が当該溝を挟むように接合されることにより、通気経路22が内部に形成された基体1が作製されてもよい。基台に当該真空吸引経路を構成する経路が形成されていてもよい。   The ventilation path 22 is formed as a groove extending on the lower surface of the base 1. When the lower surface of the base 1 is bonded to the upper surface of a base (not shown), the groove functions as a vacuum suction path. The base body 1 in which the ventilation path 22 is formed may be manufactured by joining a pair of ceramic sintered bodies having grooves formed on at least one surface so as to sandwich the grooves. A path constituting the vacuum suction path may be formed on the base.

通気経路22は、円環状の第1周方向経路221、第1周方向経路221よりも外側にある当該円環と中心を同じくする小径円弧形状の第2周方向経路223および第2周方向経路223よりも外側にある当該円環と中心を同じくする大径円弧形状の第3周方向経路225のほか、基体1の径方向に延在して第1周方向経路221および第2周方向経路223を接続する第1径方向経路222および基体1の径方向に延在して第2周方向経路223および第3周方向経路225を接続する第3径方向経路224により構成されている。第2周方向経路223および第3周方向経路225のそれぞれは、基体1の中心軸線を基準とした回転対称性(たとえば3回転対称性)を有するように形成されている。小径円弧形状の第2周方向経路223および大径円弧形状の第3周方向経路225のそれぞれの中心角はたとえばπ/2[rad]に設計されている。第1周方向経路221から径方向外側に延在する単一の始端側経路226が基体1に形成されている。   The ventilation path 22 includes an annular first circumferential path 221, a small-circular arc-shaped second circumferential path 223 and a second circumferential path having the same center as that of the annular ring located outside the first circumferential path 221. In addition to a large-circular arc-shaped third circumferential path 225 having the same center as that of the annular ring outside 223, the first circumferential path 221 and the second circumferential path extend in the radial direction of the base 1. The first radial path 222 connecting the 223 and the third radial path 224 extending in the radial direction of the base 1 and connecting the second circumferential path 223 and the third circumferential path 225 are configured. Each of the second circumferential path 223 and the third circumferential path 225 is formed to have rotational symmetry (for example, three rotational symmetry) with respect to the central axis of the base 1. The center angle of each of the second circumferential path 223 having a small-diameter arc shape and the third circumferential path 225 having a large-diameter arc shape is designed to be, for example, π / 2 [rad]. A single starting end side path 226 extending radially outward from the first circumferential path 221 is formed in the base body 1.

通気孔21は、第1周方向経路221、第2周方向経路223および第3周方向経路225のそれぞれに対応する位置に形成されている。たとえば、第1周方向経路221にはその周方向に等間隔に20個の通気孔21が形成され、第2周方向経路223にはその両端に2個の通気孔21が形成され、第3周方向経路225にはその両端および中間位置に3個の通気孔21が形成されている。   The vent hole 21 is formed at a position corresponding to each of the first circumferential path 221, the second circumferential path 223, and the third circumferential path 225. For example, in the first circumferential path 221, 20 vent holes 21 are formed at equal intervals in the circumferential direction, and in the second circumferential path 223, two vent holes 21 are formed at both ends thereof. Three vent holes 21 are formed in the circumferential path 225 at both ends and an intermediate position.

基体1の上面側に基板(図示略)が載置された場合、基体1の上面、環状凸部12の内周面および基板の下面により閉空間(正確には通気孔21を通じて通気経路22に連通している。)が画定される。閉空間は、第1隔壁部31により画定されている略円形状の第1部分空間S1、第1隔壁部31および第2隔壁部32により画定されている略円環状の第2部分空間S2、および第2隔壁部32および環状凸部12により画定されている略円環状の第3部分空間S3に区別されている。   When a substrate (not shown) is placed on the upper surface side of the base body 1, a closed space (to be precise, the ventilation path 22 through the air holes 21 is formed by the upper surface of the base body 1, the inner peripheral surface of the annular protrusion 12, and the lower surface of the substrate. In communication). The closed space is a substantially circular first partial space S1 defined by the first partition wall portion 31, a substantially annular second partial space S2 defined by the first partition wall portion 31 and the second partition wall portion 32, And a substantially annular third partial space S3 defined by the second partition wall 32 and the annular protrusion 12.

第1部分空間S1の体積V1<第2部分空間S2の体積V2<第3部分空間S3の体積V3、という大小関係が成り立つように、複数の凸部11の疎密または相互間隔を含む配置態様が調節されている。たとえば、基体1の上面を基準とした環状凸部12の高さH、第1部分空間S1を画定する円の半径q1、凸部11の体積v(平均体積)および第1部分空間S1に存在する凸部11の個数N1を用いて、第1部分空間S1の体積V1は(q1)2πH−vN1と表わされる。第2部分空間S2の体積V2は{(q2)2−(q1)2}πH−vN2(q2:第2部分空間S2を画定する外側の円の半径 N2:第2部分空間S2に存在する凸部11の個数)と表わされる。同様に、第3部分空間S3の体積V3は{(q3)2−(q3)2}πH−vN3(q3:第3部分空間S3を画定する外側の円の半径 N3:第3部分空間S3に存在する凸部11の個数)と表わされる。q1>q2−q1>q3−q2という大小関係が成り立つ場合など、q1、q2およびq3の大小関係がさまざまに変更されても、各部分空間S1〜S3の体積V1〜V3の大小関係はV1=V2=V3、V2<V3<V1、V3=V1<V2など任意に変更されうる。 An arrangement mode including a plurality of convex portions 11 including sparseness or mutual spacing so that the relationship of volume V1 of the first partial space S1 <volume V2 of the second partial space S2 <volume V3 of the third partial space S3 is established. It has been adjusted. For example, the height H of the annular convex portion 12 with respect to the upper surface of the base body 1, the radius q1 of the circle defining the first partial space S1, the volume v (average volume) of the convex portion 11, and the first partial space S1 exist. The volume V1 of the first partial space S1 is expressed as (q1) 2 πH−vN1 using the number N1 of the convex portions 11 that perform. The volume V2 of the second subspace S2 is {(q2) 2 − (q1) 2 } πH−vN2 (q2: radius of an outer circle that defines the second subspace S2 N2: convexity existing in the second subspace S2 The number of parts 11). Similarly, the volume V3 of the third partial space S3 is {(q3) 2 − (q3) 2 } πH−vN3 (q3: radius of an outer circle defining the third partial space S3 N3: in the third partial space S3 The number of convex portions 11 present). Even when the magnitude relationship of q1, q2, and q3 is variously changed, such as when the magnitude relationship of q1>q2-q1> q3-q2 is established, the magnitude relationship of the volumes V1 to V3 of the partial spaces S1 to S3 is V1 = V2 = V3, V2 <V3 <V1, V3 = V1 <V2, etc. may be arbitrarily changed.

第1部分空間S1は、第1周方向経路221に対応して配置されている通気孔21を介して通気経路22に連通している。第2部分空間S2は、第2周方向経路223に対応して配置されている通気孔21を介して通気経路22に連通している。第3部分空間S3は、第3周方向経路225に対応して配置されている通気孔21を介して通気経路22に連通している。   The first partial space S <b> 1 communicates with the ventilation path 22 through the ventilation holes 21 arranged corresponding to the first circumferential path 221. The second partial space S <b> 2 communicates with the ventilation path 22 through the ventilation hole 21 arranged corresponding to the second circumferential path 223. The third partial space S3 communicates with the ventilation path 22 via the ventilation holes 21 arranged corresponding to the third circumferential path 225.

始端側経路226の外側端部位置(負圧形成始端位置)を通じて通気経路22が真空吸引装置(図示略)に対して接続されている。すなわち、通気経路22を構成する当該経路221〜225のうち、第1周方向経路221が負圧形成始端位置に最も近くなるように、通気経路22が真空吸引装置に対して接続されている。通気経路22の断面積が一様である場合、その流体抵抗は真空吸引装置からの経路が長くなるほど大きくなる。また、第1部分空間S1〜S3のそれぞれに対応する通気孔21の個数は、「20」「6」「9」である。これにより、第1部分空間S1に対応して配置された通気孔21を通じた通気経路22の流体抵抗R1<第2部分空間S2に対応して配置された通気孔21を通じた通気経路22の流体抵抗R2<第3部分空間S3に対応して配置された通気孔21を通じた通気経路22の流体抵抗R3という大小関係が成り立つように設計されている。   The ventilation path 22 is connected to a vacuum suction device (not shown) through the outer end position (negative pressure forming start position) of the start end side path 226. That is, the ventilation path 22 is connected to the vacuum suction device so that the first circumferential path 221 is closest to the negative pressure formation start position among the paths 221 to 225 constituting the ventilation path 22. When the cross-sectional area of the ventilation path 22 is uniform, the fluid resistance increases as the path from the vacuum suction device becomes longer. Further, the number of the vent holes 21 corresponding to each of the first partial spaces S1 to S3 is “20”, “6”, and “9”. Thereby, the fluid resistance R1 of the ventilation path 22 through the ventilation hole 21 arranged corresponding to the first partial space S1 <the fluid in the ventilation path 22 through the ventilation hole 21 arranged corresponding to the second partial space S2. The design is such that the magnitude relationship of the fluid resistance R3 of the ventilation path 22 through the ventilation holes 21 arranged corresponding to the resistance R2 <the third partial space S3 is established.

(機能)
本発明の基板保持装置によれば、基体1に形成された通気経路22および通気孔21を通じて、基体1の上面、環状凸部12の内周面および基板の下面により画定された閉空間が減圧されて負圧領域が形成される。この際、第1部分空間S1のほうが、第2部分空間S2よりもごく短時間ではあるものの先に負圧領域が形成される。これは、第1部分空間S1に対応して配置された通気孔21を通じた通気経路22の流体抵抗R1および第1部分空間S1の体積V1の積R1×V1が、第2部分空間の当該積R2×V2よりも小さくなるように通気経路22が構成され、かつ、複数の凸部11の配置態様が調節されて形成されているためである。同様の理由により、第2部分空間S2のほうが、第3部分空間S3よりもごく短時間ではあるものの先に負圧領域が形成される。
(function)
According to the substrate holding apparatus of the present invention, the closed space defined by the upper surface of the substrate 1, the inner peripheral surface of the annular protrusion 12 and the lower surface of the substrate is decompressed through the ventilation path 22 and the ventilation hole 21 formed in the substrate 1. Thus, a negative pressure region is formed. At this time, the first partial space S1 has a negative pressure region formed earlier than the second partial space S2, although it is much shorter. This is because the product R1 × V1 of the fluid resistance R1 of the ventilation path 22 through the ventilation holes 21 arranged corresponding to the first partial space S1 and the volume V1 of the first partial space S1 is the product of the second partial space. This is because the ventilation path 22 is configured to be smaller than R2 × V2 and the arrangement of the plurality of convex portions 11 is adjusted. For the same reason, the negative pressure region is formed earlier in the second partial space S2 than in the third partial space S3, although the time is much shorter.

よって、基板は第1部分空間S1に対応する第1領域で平坦性がまず確保され、その後でわずかな時間差をもって第2部分空間S2に対応する第2領域で平坦性が確保され、さらにわずかな時間差をもって第3部分空間S3に対応する第3領域で平坦性が確保される。このように基板の平坦性がわずかな時間差をもって逐次的に確保されていくことで、当該基板の全体的な平坦性の向上が図られる。   Accordingly, the flatness of the substrate is first ensured in the first region corresponding to the first partial space S1, and thereafter flatness is ensured in the second region corresponding to the second partial space S2 with a slight time difference. Flatness is ensured in the third region corresponding to the third partial space S3 with a time difference. Thus, the flatness of the substrate is sequentially secured with a slight time difference, so that the overall flatness of the substrate can be improved.

(本発明の他の実施形態)
前記実施形態では、外側が内側を順次囲むように形成された環状の第1隔壁部31、環状の第2隔壁部32および環状凸部12により、外側が内側を順次囲むような3つの部分空間S1〜S3に区分されたが、他の実施形態として閉空間が単一の環状の隔壁部およびこれを囲む環状凸部12により2つの部分空間に区分されてもよく、外側が内側を順次囲むように形成された3つ以上の環状の隔壁部および環状凸部12により4つ以上の部分空間に区分されてもよい。部分空間は、基体1の径方向(中心から外側に向かう方向)に順次配置されるように区分されるほか、代替的または付加的に、基体1の周方向(中心囲むように回る方向)に順次配置されるように区分されてもよい。
(Other embodiments of the present invention)
In the embodiment, the three partial spaces whose outer side sequentially surrounds the inner side by the annular first partition wall part 31, the annular second partition wall part 32 and the annular convex part 12 formed so that the outer side sequentially surrounds the inner side. Although it was divided into S1 to S3, as another embodiment, the closed space may be divided into two partial spaces by a single annular partition wall portion and an annular convex portion 12 surrounding this, and the outer side sequentially surrounds the inner side. It may be divided into four or more partial spaces by three or more annular partition walls and annular protrusions 12 formed as described above. The partial spaces are divided so as to be sequentially arranged in the radial direction of the base body 1 (the direction from the center toward the outside), and alternatively or additionally, in the circumferential direction of the base body 1 (the direction of turning around the center). You may partition so that it may arrange sequentially.

通気経路22の延在態様はさまざまに変更されてもよい。たとえば、基体1の径方向外側に向かって少なくとも一部が周方向に折り返しを伴って(蛇行して)延在するように通気経路22が形成されてもよい。通気経路22の負圧領域始端位置は、基体1の中心に近い内側領域にある必要はなく、基体1の外周縁に近い外側領域にあってもよい。   The extending aspect of the ventilation path 22 may be variously changed. For example, the ventilation path 22 may be formed so that at least a part of the base body 1 extends in the circumferential direction with a turn (meandering) toward the outer side in the radial direction. The start position of the negative pressure region of the ventilation path 22 does not have to be in the inner region near the center of the base 1, and may be in the outer region near the outer peripheral edge of the base 1.

複数の凸部11のうち少なくとも一部が、環状凸部12、第1隔壁部31および第2隔壁部32のうち少なくとも1つと比較して上端面が高く形成されていてもよい。第1隔壁部31の少なくとも一部が、環状凸部12と比較して上端面が低く形成されていてもよい。同様に、第2隔壁部32の少なくとも一部が、環状凸部12と比較して上端面が低く形成されていてもよい。隔壁部31、32の上部に周方向に延在する一の切欠きまたは周方向に配置された複数の切欠きが形成されることで、隔壁部31、32の一部が、環状凸部12と比較して上端面が低く形成される。   At least a part of the plurality of convex portions 11 may have a higher upper end surface than at least one of the annular convex portion 12, the first partition wall portion 31, and the second partition wall portion 32. At least a part of the first partition wall 31 may be formed with a lower upper end surface as compared with the annular protrusion 12. Similarly, at least a part of the second partition wall portion 32 may be formed with a lower upper end surface as compared with the annular convex portion 12. By forming one notch extending in the circumferential direction or a plurality of notches arranged in the circumferential direction at the upper part of the partition walls 31, 32, a part of the partition walls 31, 32 is formed into the annular protrusion 12. The upper end surface is formed lower than that.

(実施例)
(実施例1)
炭化ケイ素焼結体からなる径φ300[mm]、厚さt2[mm]の略円板状の基体1が作製された。径500[μm]、高さ200[μm]の略円柱状の複数の凸部11が基体1の上面に形成され、基体1の中心を基準として中心径297[mm]、幅0.3[mm]、高さ200[μm]の略円環状の環状凸部12が基体1の上面に形成された。複数の凸部11は、基体1の上面の全体にわたり均一密度となるように間隔3.5[mm]の三角格子状に配置された。基体1の中心を基準として中心径145[mm]、幅0.1[mm]、高さ200[μm]の略円環状の第1隔壁部31が基体1の上面に形成された。基体1の中心を基準として中心径230[mm]、幅0.1[mm]、高さ200[μm]の略円環状の第2隔壁部32が基体1の上面に形成された。通気孔21および通気経路22が図1に示されている実施形態にしたがって基体1に形成された。これにより、部分空間S1〜S3のそれぞれの体積V1〜V3は表1に示されているように設計された。
(Example)
Example 1
A substantially disk-shaped substrate 1 having a diameter φ300 [mm] and a thickness t2 [mm] made of a silicon carbide sintered body was produced. A plurality of substantially cylindrical convex portions 11 having a diameter of 500 [μm] and a height of 200 [μm] are formed on the upper surface of the base 1, with a center diameter of 297 [mm] and a width of 0.3 [based on the center of the base 1. mm] and a height of 200 [μm], a substantially annular ring-shaped convex portion 12 was formed on the upper surface of the substrate 1. The plurality of convex portions 11 were arranged in a triangular lattice shape with an interval of 3.5 [mm] so as to have a uniform density over the entire top surface of the base 1. A substantially annular first partition wall 31 having a center diameter of 145 [mm], a width of 0.1 [mm], and a height of 200 [μm] with respect to the center of the substrate 1 was formed on the upper surface of the substrate 1. A substantially annular second partition wall 32 having a central diameter of 230 [mm], a width of 0.1 [mm], and a height of 200 [μm] with respect to the center of the base 1 was formed on the upper surface of the base 1. Vent holes 21 and vent paths 22 were formed in the substrate 1 according to the embodiment shown in FIG. Accordingly, the volumes V1 to V3 of the partial spaces S1 to S3 were designed as shown in Table 1.

第1周方向経路221、第2周方向経路223および第3周方向経路225のそれぞれの(中心位置の)基体1の中心を基準とした径方向位置は100[mm]、200[mm]、280[mm]に設計された。経路221〜225は幅0.8[mm]、深さ0.6[mm]の断面略矩形状に形成された。これにより、部分空間S1〜S3のそれぞれに対応する通気経路22の流体抵抗R1〜R3は表1に示されているように設計された。ここでは、負圧領域始端位置から通気経路22に沿った距離xについて通気経路22(および通気孔21)の断面積a(x)の逆数1/a(x)が各通気孔21まで積分され、当該積分値の該当部分空間S1〜S3における平均値が流体抵抗R1〜R3として表1に示されているように設計された。これにより、実施例1の基板保持装置が構成された。   The radial positions of the first circumferential path 221, the second circumferential path 223, and the third circumferential path 225 with respect to the center of the base 1 (at the center position) are 100 [mm], 200 [mm], It was designed to 280 [mm]. The paths 221 to 225 were formed to have a substantially rectangular cross section with a width of 0.8 [mm] and a depth of 0.6 [mm]. Thus, the fluid resistances R1 to R3 of the ventilation path 22 corresponding to the partial spaces S1 to S3 are designed as shown in Table 1. Here, the reciprocal 1 / a (x) of the cross-sectional area a (x) of the ventilation path 22 (and the ventilation hole 21) is integrated to each ventilation hole 21 with respect to the distance x along the ventilation path 22 from the start position of the negative pressure region. The average values of the integral values in the corresponding partial spaces S1 to S3 are designed as shown in Table 1 as fluid resistances R1 to R3. Thereby, the substrate holding apparatus of Example 1 was configured.

(実施例2)
第1部分空間S1における基体1の上面が、他の部分空間S2、S3における基体1の上面よりも50[μm]だけ低くなるように基体1が形成され、かつ、第1部分空間S1に配置された複数の凸部11の高さが250[μm]に設計されたほかは、実施例1と同様に構成された実施例2の基板保持装置が作製された。
(Example 2)
The base body 1 is formed such that the upper surface of the base body 1 in the first partial space S1 is lower by 50 [μm] than the upper surface of the base body 1 in the other partial spaces S2 and S3, and is disposed in the first partial space S1. A substrate holding device of Example 2 configured in the same manner as in Example 1 was manufactured except that the height of the plurality of convex portions 11 was designed to be 250 [μm].

(実施例3)
第2部分空間S2における基体1の上面が、他の部分空間S1、S3における基体1の上面よりも50[μm]だけ低くなるように基体1が形成され、かつ、第2部分空間S2に配置された複数の凸部11の高さが250[μm]に設計されたほかは、実施例1と同様に構成された実施例3の基板保持装置が作製された。
(Example 3)
The base body 1 is formed such that the upper surface of the base body 1 in the second partial space S2 is lower by 50 [μm] than the upper surface of the base body 1 in the other partial spaces S1 and S3, and is disposed in the second partial space S2. A substrate holding device of Example 3 configured in the same manner as in Example 1 was manufactured except that the height of the plurality of convex portions 11 was designed to be 250 [μm].

(実施例4)
第3部分空間S3における基体1の上面が、他の部分空間S1、S2における基体1の上面よりも50[μm]だけ低くなるように基体1が形成され、かつ、第3部分空間S3に配置された複数の凸部11の高さが250[μm]に設計されたほかは、実施例1と同様に構成された実施例4の基板保持装置が作製された。
Example 4
The base body 1 is formed such that the upper surface of the base body 1 in the third partial space S3 is lower by 50 [μm] than the upper surface of the base body 1 in the other partial spaces S1 and S2, and is disposed in the third partial space S3. A substrate holding device of Example 4 configured in the same manner as in Example 1 was manufactured except that the height of the plurality of raised portions 11 was designed to be 250 [μm].

(実施例5)
第1隔壁部31が基体1の中心を基準として中心径120.0[mm]の位置に形成されたほかは、実施例1と同様に構成された実施例5の基板保持装置が作製された。
(Example 5)
A substrate holding device of Example 5 configured similarly to Example 1 was produced except that the first partition wall 31 was formed at a position having a center diameter of 120.0 [mm] with respect to the center of the base 1. .

(実施例6)
第2隔壁部32が基体1の中心を基準として中心径205.0[mm]の位置に形成されたほかは、実施例5と同様に構成された実施例6の基板保持装置が作製された。
(Example 6)
A substrate holding apparatus according to Example 6 having the same configuration as that of Example 5 was manufactured except that the second partition wall portion 32 was formed at a position having a center diameter of 205.0 [mm] with respect to the center of the base 1. .

(実施例7)
本実施例の基体1の第1隔壁部31、第2隔壁部32および環状凸部12のそれぞれの高さが196[μm]に設計されたほかは、実施例1と同様に構成された実施例7の基板保持装置が作製された。
(Example 7)
An embodiment configured in the same manner as in Example 1 except that the height of each of the first partition wall portion 31, the second partition wall portion 32, and the annular convex portion 12 of the base body 1 of this embodiment is designed to be 196 [μm]. The substrate holding device of Example 7 was produced.

(実施例8)
本実施例の基体1の第1隔壁部31および第2隔壁部32のそれぞれの高さが196[μm]に設計されたほかは、実施例1と同様に構成された実施例8の基板保持装置が作製された。
(Example 8)
The substrate holding of Example 8 configured in the same manner as in Example 1 except that the height of each of the first partition wall portion 31 and the second partition wall portion 32 of the base 1 of this embodiment is designed to be 196 [μm]. A device was made.

(評価方法)
各実施例の基板保持装置を用いて径φ300[mm]、厚さt0.7[mm]の略円板状の基板が吸着保持された際の平坦度がレーザー干渉計を用いて評価された。当該測定結果が表1に示されている。
(Evaluation method)
The flatness when a substantially disk-shaped substrate having a diameter of φ300 [mm] and a thickness of t0.7 [mm] was sucked and held using the substrate holding apparatus of each example was evaluated using a laser interferometer. . The measurement results are shown in Table 1.

(比較例1)
始端側経路226において、始端から基体1の上面まで連通するように開口された位置が、第2部分空間S2までを70[mm]、および第3部分空間S3までを30[mm]となるよう設計されたほかは、実施例1と同様に構成された基板保持装置が作製され、R1×V1>R2×V2>R3×V3に設計された。比較例1の基板保持装置を用いて径φ300[mm]、厚さt0.7[mm]の略円板状の基板が吸着保持された際の平坦度がレーザー干渉計を用いて評価された。当該測定結果が表2に示されている。
(Comparative Example 1)
In the starting end side path 226, the position opened so as to communicate from the starting end to the upper surface of the substrate 1 is 70 [mm] up to the second partial space S2 and 30 [mm] up to the third partial space S3. Except for the design, a substrate holding device configured in the same manner as in Example 1 was manufactured, and R1 × V1> R2 × V2> R3 × V3 was designed. The flatness when a substantially disk-shaped substrate having a diameter of φ300 [mm] and a thickness of t0.7 [mm] was sucked and held using the substrate holding apparatus of Comparative Example 1 was evaluated using a laser interferometer. . The measurement results are shown in Table 2.

(比較例2)
第1部分空間S1に配置された複数の凸部11の高さが400[μm]に設計され、第2部分空間S2に配置された複数の凸部11の高さが110[μm]に設計され、第3部分空間S3に配置された複数の凸部11の高さが80[μm]に設計されたほかは、実施例1と同様に構成された基板保持装置が作製され、R1×V1>R2×V2>R3×V3に設計された。比較例2の基板保持装置を用いて径φ300[mm]、厚さt0.7[mm]の略円板状の基板が吸着保持された際の平坦度がレーザー干渉計を用いて評価された。当該測定結果が表2に示されている。
(Comparative Example 2)
The height of the plurality of convex portions 11 arranged in the first partial space S1 is designed to be 400 [μm], and the height of the plurality of convex portions 11 arranged in the second partial space S2 is designed to be 110 [μm]. A substrate holding device having the same configuration as in Example 1 is manufactured except that the height of the plurality of convex portions 11 arranged in the third partial space S3 is designed to be 80 [μm], and R1 × V1. > R2 × V2> R3 × V3. The flatness when a substantially disk-shaped substrate having a diameter of 300 [mm] and a thickness of t0.7 [mm] was sucked and held using the substrate holding apparatus of Comparative Example 2 was evaluated using a laser interferometer. . The measurement results are shown in Table 2.

表1および表2から、各実施例の基板保持装置のほうが、各比較例の基板保持装置よりも吸着保持された基板の平坦度が高いことがわかる。   From Table 1 and Table 2, it can be seen that the substrate holding device of each example has higher flatness of the substrate held by suction than the substrate holding device of each comparative example.

1‥基体、11‥凸部、12‥環状凸部、21‥通気孔、22‥通気経路、31‥第1隔壁部、32‥第2隔壁部、S1‥第1部分空間、S2‥第2部分空間、S3‥第3部分空間。 DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 11 ... convex part, 12 ... annular convex part, 21 ... vent hole, 22 ... ventilation path, 31 ... 1st partition part, 32 ... 2nd partition part, S1 ... 1st partial space, S2 ... 2nd Partial space, S3. Third partial space.

Claims (3)

上面に開口している複数の通気孔および前記複数の通気孔のそれぞれに連通する通気経路が形成されている平板状の基体と、前記基体の上面から突出して形成されている複数の凸部と、前記基体の上面から突出して前記複数の通気孔および前記複数の凸部を囲うように形成されている環状凸部と、を備えている基板保持装置であって、
前記基体の上面、前記環状凸部の内周面および基板の下面により画定されている空間において順に隣接する第1〜第Nの部分空間(N≧3)を区画する隔壁部が前記基体の上面から突出して形成され、前記第1〜第Nの部分空間のうち第iの部分空間(i=1,2,‥N−1)に対応して配置された通気孔を通じた前記通気経路の流体抵抗および当該第iの部分空間の体積の積が、前記第iの部分空間に隣接する第i+1の部分空間に対応して配置された通気孔を通じた前記通気経路の流体抵抗および当該他の部分空間の体積の積よりも小さくなるように、前記通気経路が構成され、かつ、前記複数の凸部が形成されていることを特徴とする基板保持装置。
A plurality of vent holes opened on the upper surface and a flat base body in which a ventilation path communicating with each of the plurality of vent holes is formed; and a plurality of convex portions formed to protrude from the upper surface of the base body; A substrate holding apparatus comprising: an annular convex portion that protrudes from the upper surface of the base body and is formed so as to surround the plurality of vent holes and the plurality of convex portions;
A partition wall section that sequentially defines first to Nth partial spaces (N ≧ 3) adjacent to each other in the space defined by the upper surface of the base, the inner peripheral surface of the annular convex portion, and the lower surface of the substrate is an upper surface of the base. The fluid in the ventilation path is formed through a ventilation hole that protrudes from the first to N-th partial spaces and is arranged corresponding to the i-th partial space (i = 1, 2,..., N−1). The product of the resistance and the volume of the i-th partial space is the fluid resistance of the ventilation path and the other part through the vent hole arranged corresponding to the (i + 1) -th partial space adjacent to the i-th partial space. The substrate holding apparatus, wherein the ventilation path is configured and the plurality of convex portions are formed so as to be smaller than a product of a volume of space.
請求項1記載の基板保持装置において、
前記隔壁部の少なくとも一部が、前記環状凸部と比較して上端面が低くまたは同じ高さに形成されていることを特徴とする基板保持装置。
The substrate holding apparatus according to claim 1, wherein
At least a part of the partition wall is formed such that the upper end surface is lower or at the same height as the annular protrusion.
請求項1または2記載の基板保持装置において、
前記複数の凸部のうち少なくとも一部が、前記環状凸部または前記隔壁部と比較して上端面が高くまたは同じ高さに形成されていることを特徴とする基板保持装置。
The substrate holding apparatus according to claim 1 or 2,
At least a part of the plurality of protrusions has a top end surface formed higher or at the same height as the annular protrusion or the partition wall.
JP2016009179A 2016-01-20 2016-01-20 Substrate holding device Active JP6650275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009179A JP6650275B2 (en) 2016-01-20 2016-01-20 Substrate holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009179A JP6650275B2 (en) 2016-01-20 2016-01-20 Substrate holding device

Publications (2)

Publication Number Publication Date
JP2017130560A true JP2017130560A (en) 2017-07-27
JP6650275B2 JP6650275B2 (en) 2020-02-19

Family

ID=59395078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009179A Active JP6650275B2 (en) 2016-01-20 2016-01-20 Substrate holding device

Country Status (1)

Country Link
JP (1) JP6650275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505841A (en) * 2016-02-08 2019-02-28 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, method for unloading a substrate, and method for loading a substrate
JP2020113699A (en) * 2019-01-16 2020-07-27 株式会社東京精密 Wafer chuck and wafer holding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221130A (en) * 1986-03-24 1987-09-29 Toshiba Corp Vacuum chuck apparatus
JP2007273693A (en) * 2006-03-31 2007-10-18 Nikon Corp Member, method, and device for holding substrate, and device and method for exposure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221130A (en) * 1986-03-24 1987-09-29 Toshiba Corp Vacuum chuck apparatus
JP2007273693A (en) * 2006-03-31 2007-10-18 Nikon Corp Member, method, and device for holding substrate, and device and method for exposure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505841A (en) * 2016-02-08 2019-02-28 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, method for unloading a substrate, and method for loading a substrate
US11664264B2 (en) 2016-02-08 2023-05-30 Asml Netherlands B.V. Lithographic apparatus, method for unloading a substrate and method for loading a substrate
JP2020113699A (en) * 2019-01-16 2020-07-27 株式会社東京精密 Wafer chuck and wafer holding device
JP7186356B2 (en) 2019-01-16 2022-12-09 株式会社東京精密 Wafer chuck and wafer holder

Also Published As

Publication number Publication date
JP6650275B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
TWI726994B (en) 3d printed plasma arrestor for an electrostatic chuck
US20200312696A1 (en) Electrostatic-chuck heater
JP6424700B2 (en) Electrostatic chuck device
JP2016539895A (en) Glass substrate forming equipment
JP6838963B2 (en) Vacuum suction member
JP2017130560A (en) Substrate holding device
JP2014116433A (en) Substrate holding member
JP2016143706A (en) Substrate holding device and manufacturing method of semiconductor device
KR101282839B1 (en) A porous chuck of improved vacuum suction power
KR102071123B1 (en) Substrate holding device, substrate holding member, and substrate holding method
JP6588367B2 (en) Substrate support member
JP3947843B2 (en) Vacuum chuck
KR101393029B1 (en) Porous chuck having variable vacuum path
JP2017135331A (en) Substrate holding device
JP2020068317A (en) Substrate holding member
JP7307582B2 (en) Substrate holding member
JP6680649B2 (en) Vacuum suction member
JPH11284056A (en) Absorbing and fixing apparatus
KR101739795B1 (en) Edge ring and manufacturing method thereof
JP6704834B2 (en) Heating device
JP6934335B2 (en) Vacuum suction member
US20230264411A1 (en) Molding device
JP2017199790A (en) Vacuum suction member
JP2019062044A (en) Substrate holding member and substrate holding method
US20180122658A1 (en) Heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6650275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250