JP2017129310A - Refrigerating-cycle having a plurality of multiple stage compressors to be connected in parallel - Google Patents

Refrigerating-cycle having a plurality of multiple stage compressors to be connected in parallel Download PDF

Info

Publication number
JP2017129310A
JP2017129310A JP2016008819A JP2016008819A JP2017129310A JP 2017129310 A JP2017129310 A JP 2017129310A JP 2016008819 A JP2016008819 A JP 2016008819A JP 2016008819 A JP2016008819 A JP 2016008819A JP 2017129310 A JP2017129310 A JP 2017129310A
Authority
JP
Japan
Prior art keywords
refrigerant
bypass
gas
housings
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008819A
Other languages
Japanese (ja)
Other versions
JP6718240B2 (en
Inventor
峰正 大村
Minemasa Omura
峰正 大村
村上 健一
Kenichi Murakami
健一 村上
猛志 竹田
Takeshi Takeda
猛志 竹田
尚夫 水野
Hisao Mizuno
尚夫 水野
章夫 川西
Akio Kawanishi
章夫 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016008819A priority Critical patent/JP6718240B2/en
Priority to PCT/JP2017/001519 priority patent/WO2017126539A1/en
Priority to CN201780004242.XA priority patent/CN108369037B/en
Priority to EP17741416.6A priority patent/EP3379169A4/en
Priority to AU2017209481A priority patent/AU2017209481B2/en
Publication of JP2017129310A publication Critical patent/JP2017129310A/en
Application granted granted Critical
Publication of JP6718240B2 publication Critical patent/JP6718240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To level the amount of lube oil within each housing while securing an injection amount in a configuration having a plurality of multiple stage compressors to be connected in parallel, and an injection circuit for supplying refrigerant gas with an intermediate pressure into respective housings of the multiple stage compressors.SOLUTION: A refrigerating-cycle 1 comprises: an oil leveling route 17 for connecting between housings 103A and 103B of a plurality of multiple stage compressors 11A and 11B; a plurality of gas injection circuits 20A and 20B for supplying gas refrigerant within a gas-liquid separator 14 to a corresponding housing of the multiple stage compressors; a plurality of bypass passages 30A and 30B for supplying the refrigerant extracted from a position between a chiller 12 and a first expansion valve 13 to a corresponding housing of the multiple stage compressors; bypass flow control valves 31A and 31B capable of changing the flow rate of at least any one of the bypass passages 20A and 20B of the plurality of multiple stage compressors; check valves 21A and 21B; and a control unit 40.SELECTED DRAWING: Figure 1

Description

本発明は、並列に接続される複数の多段圧縮機と、それらの多段圧縮機の各々のハウジング内に中間圧の冷媒ガスを供給する回路とを備えた冷凍サイクルに関する。   The present invention relates to a refrigeration cycle including a plurality of multistage compressors connected in parallel and a circuit for supplying an intermediate-pressure refrigerant gas into the housing of each of the multistage compressors.

2つの圧縮機構を有する2段圧縮機のハウジング内に、中間圧の冷媒ガスを供給するガスインジェクション回路を備えた冷凍サイクルが知られている。
2段圧縮および中間圧冷媒のインジェクションによれば、1段圧縮により同じ冷凍能力を得る場合と比べて、圧縮効率を担保し、かつ圧縮機から吐出される冷媒の温度を抑制することができる。
また、冷凍能力を広範に変化させるため、並列接続された複数の2段圧縮機を備えた冷凍サイクルも知られている(特許文献1)。
A refrigeration cycle having a gas injection circuit for supplying an intermediate-pressure refrigerant gas in a housing of a two-stage compressor having two compression mechanisms is known.
According to the two-stage compression and the injection of the intermediate pressure refrigerant, the compression efficiency can be ensured and the temperature of the refrigerant discharged from the compressor can be suppressed as compared with the case where the same refrigeration capacity is obtained by the first-stage compression.
Further, a refrigeration cycle including a plurality of two-stage compressors connected in parallel in order to widely change the refrigeration capacity is also known (Patent Document 1).

ところで、冷媒ガスに含まれる潤滑油の圧縮機ハウジングからの吐出量および戻り量が、並列接続された複数の圧縮機の間でばらつくため、長時間に亘り運転を継続していると、ハウジング内の潤滑油が運転条件に応じて一部の圧縮機に偏ってしまう。
そのため、複数の圧縮機のハウジング同士を配管で接続するとともに、ハウジング間に圧力差を与え、圧力差に従って複数の圧縮機のハウジング間で潤滑油を移動させる均油運転が適時に行われる。
特許文献1では、均油に必要な圧力差を与えるために、ガスインジェクション回路を利用している。特許文献1では、複数の圧縮機ハウジング内にそれぞれ中間圧の冷媒ガスを供給するガスインジェクション回路の各々に流量調整弁を設け、それらの流量調整弁の開度を制御してハウジング間に圧力差を与えることで、ハウジング内の潤滑油をハウジング間で平均化している。
By the way, since the discharge amount and the return amount of the lubricant contained in the refrigerant gas from the compressor housing vary among a plurality of compressors connected in parallel, if the operation is continued for a long time, The lubricating oil is biased to some compressors depending on the operating conditions.
Therefore, an oil equalizing operation is performed in a timely manner in which housings of a plurality of compressors are connected by piping, a pressure difference is given between the housings, and lubricating oil is moved between the housings of the plurality of compressors according to the pressure difference.
In patent document 1, in order to give the pressure difference required for oil equalization, the gas injection circuit is utilized. In Patent Document 1, a flow rate adjusting valve is provided in each of the gas injection circuits that supply intermediate pressure refrigerant gas into a plurality of compressor housings. The lubricating oil in the housing is averaged between the housings.

特許第5193011号Japanese Patent No. 5193011

均油を図るため、一部の圧縮機の回転数を上げ、圧縮機に吸入、吐出される冷媒の圧力損失を増やすことにより複数の圧縮機の各々のハウジング間に圧力差を与えることが考えられる。
しかし、それによって各ハウジング内の圧力を変化させてハウジング間に圧力差を与えることができるのは、低圧の冷媒ガスのみがハウジング内に供給される1段圧縮の圧縮機が並列接続されている場合に限られる。
低圧の冷媒ガスだけでなく、ガスインジェクション回路からの中間圧ガスが各ハウジング内に同じ流量だけ供給されていると、一部の圧縮機の回転数を上げたとしても、各ハウジング内の圧力がさほど変化しないので、潤滑油を移動させるために必要なハウジング間の圧力差を得ることが難しい。
そこで、特許文献1のように各ガスインジェクション回路に設けられた流量調整弁の開度を制御して圧縮機ハウジング内への中間圧冷媒ガスの供給量を増減させることが考えられる。しかし、中間圧冷媒ガスの供給量が減少されると、必要なインジェクション量(流量)を確保できないおそれがある。
In order to achieve oil leveling, it is possible to increase the rotational speed of some compressors and increase the pressure loss of refrigerant sucked into and discharged from the compressors, thereby giving a pressure difference between the housings of the multiple compressors. It is done.
However, it is possible to change the pressure in each housing and thereby provide a pressure difference between the housings by connecting in parallel a single-stage compressor in which only low-pressure refrigerant gas is supplied into the housing. Limited to cases.
If not only low-pressure refrigerant gas but also intermediate pressure gas from the gas injection circuit is supplied to each housing at the same flow rate, even if the number of rotations of some compressors is increased, the pressure in each housing Since it does not change so much, it is difficult to obtain the pressure difference between the housings necessary for moving the lubricating oil.
Therefore, it is conceivable to increase or decrease the supply amount of the intermediate-pressure refrigerant gas into the compressor housing by controlling the opening degree of the flow rate adjustment valve provided in each gas injection circuit as in Patent Document 1. However, if the supply amount of the intermediate pressure refrigerant gas is decreased, there is a possibility that a necessary injection amount (flow rate) cannot be secured.

以上より、本発明は、並列に接続される複数の多段圧縮機と、それらの多段圧縮機の各々のハウジング内に中間圧の冷媒ガスを供給するガスインジェクション回路とを備えた冷凍サイクルにおいて、必要なインジェクション量を確保しながら、各ハウジング内の潤滑油を平均化することを目的とする。   As described above, the present invention is necessary in a refrigeration cycle including a plurality of multistage compressors connected in parallel and a gas injection circuit for supplying a refrigerant gas having an intermediate pressure into the housing of each of the multistage compressors. The purpose is to average the lubricating oil in each housing while ensuring a sufficient injection amount.

本発明は、低段側圧縮機構および高段側圧縮機構が含まれる多段の圧縮機構を収容するハウジングをそれぞれ備え、並列に接続される複数の多段圧縮機を備えた冷凍サイクルであって、複数の多段圧縮機、冷却器、第1減圧部、気液分離器、第2減圧部、および蒸発器が順次接続されることにより冷媒回路が構成され、複数の多段圧縮機のハウジング同士を連結する均油経路と、気液分離器内のガス冷媒を、対応する多段圧縮機のハウジング内の低段側圧縮機構と高段側圧縮機構との間に供給する複数のガスインジェクション回路と、冷却器および第1減圧部の間から抽出された冷媒を、対応する多段圧縮機のハウジング内の前記低段側圧縮機構と前記高段側圧縮機構との間に供給する複数のバイパス経路と、複数の多段圧縮機のそれぞれのバイパス経路の少なくともいずれかの流量を変更可能なバイパス弁と、ガスインジェクション回路に備えられ、ハウジング内に向けて流れるガス冷媒の逆流を防ぐ逆止弁と、バイパス弁の開度を制御する制御部と、を備えることを特徴とする。
本発明における「冷却器」は、冷媒の温度を低下させるものであり、凝縮器あるいはガスクーラを包含する。
The present invention is a refrigeration cycle comprising a plurality of multi-stage compressors connected in parallel, each having a housing containing a multi-stage compression mechanism including a low-stage compression mechanism and a high-stage compression mechanism. A multi-stage compressor, a cooler, a first pressure reducing unit, a gas-liquid separator, a second pressure reducing unit, and an evaporator are sequentially connected to form a refrigerant circuit, and a plurality of multi-stage compressor housings are connected to each other. A plurality of gas injection circuits for supplying an oil equalizing path, a gas refrigerant in the gas-liquid separator between a low-stage compression mechanism and a high-stage compression mechanism in a corresponding multi-stage compressor housing, and a cooler And a plurality of bypass paths for supplying the refrigerant extracted from between the first decompression sections between the low-stage compression mechanism and the high-stage compression mechanism in the corresponding multi-stage compressor housing, Each of the multistage compressor A bypass valve that can change the flow rate of at least one of the ipass paths, a check valve that is provided in the gas injection circuit and prevents the reverse flow of the gas refrigerant flowing into the housing, and a controller that controls the opening of the bypass valve And.
The “cooler” in the present invention lowers the temperature of the refrigerant and includes a condenser or a gas cooler.

本発明の冷凍サイクルにおいて、バイパス経路は、冷却器および第1減圧部の間から抽出された冷媒をガスインジェクション回路へと流入させることが好ましい。   In the refrigeration cycle of the present invention, it is preferable that the bypass path causes the refrigerant extracted from between the cooler and the first decompression unit to flow into the gas injection circuit.

本発明の冷凍サイクルにおいて、制御部は、少なくとも、均油経路を通じて複数の多段圧縮機の各々のハウジング間で潤滑油を移動させる均油運転時に、バイパス弁の開度を制御することができる。   In the refrigeration cycle of the present invention, the control unit can control the opening degree of the bypass valve at least during the oil leveling operation in which the lubricating oil is moved between the housings of the plurality of multistage compressors through the oil leveling path.

本発明の冷凍サイクルは、多段圧縮機から吐出された冷媒の温度である吐出温度を検知する吐出温度センサを備え、制御部は、吐出温度を用いてバイパス弁の開度を制御することが好ましい。   The refrigeration cycle of the present invention preferably includes a discharge temperature sensor that detects a discharge temperature that is the temperature of the refrigerant discharged from the multistage compressor, and the control unit preferably controls the opening degree of the bypass valve using the discharge temperature. .

本発明の冷凍サイクルにおいて、バイパス弁は、流量を調整可能な流量調整弁であり、複数のバイパス経路のそれぞれに備えられていることが好ましい。   In the refrigeration cycle of the present invention, the bypass valve is a flow rate adjustment valve capable of adjusting the flow rate, and is preferably provided in each of the plurality of bypass paths.

本発明の冷凍サイクルにおいて、冷媒回路を循環する冷媒としてCOが用いられていることが好ましい。 In the refrigeration cycle of the present invention, CO 2 is preferably used as the refrigerant circulating in the refrigerant circuit.

冷却器および第1減圧部の間からバイパス経路へと抽出された冷媒は、液体あるいは液相優位の状態であり、気液分離器内から抽出されたガス冷媒よりも圧力が高い。そのため、バイパス弁の開度を制御し、複数のバイパス経路の間で流量に差を付けることにより、均油経路を通じてハウジング内の潤滑油を移動させるために必要なハウジング間の圧力差を実現することができる。本発明では、ハウジング間の圧力差を得るために、気液分離器内から抽出されたガス冷媒をハウジングに供給する複数のガスインジェクション回路のうちの一部についてガス冷媒の流量を減少させる必要がない。   The refrigerant extracted from between the cooler and the first decompression unit to the bypass path is in a liquid or liquid phase dominant state and has a higher pressure than the gas refrigerant extracted from the gas-liquid separator. Therefore, by controlling the opening of the bypass valve and making a difference in the flow rate among the plurality of bypass paths, the pressure difference between the housings required to move the lubricating oil in the housing through the oil leveling path is realized. be able to. In the present invention, in order to obtain the pressure difference between the housings, it is necessary to reduce the flow rate of the gas refrigerant in a part of the plurality of gas injection circuits that supply the gas refrigerant extracted from the gas-liquid separator to the housing. Absent.

本発明における多段圧縮機のハウジング内には、気液分離器内からガスインジェクション回路へと抽出された低温のガス冷媒に加え、冷却器と第1減圧部との間からバイパス経路へと抽出された低温の冷媒が余分に供給されることとなる。
そのため、均油運転時に限らず、ガスインジェクション回路のみを用いるインジェクションによってはハウジング内の温度および圧力や圧縮機から吐出された冷媒の温度が上限を超えるおそれのある運転条件の際に、バイパス経路を用いることができる。
つまり、バイパス経路を通じた低温冷媒のインジェクションを含め、全体として必要なインジェクション量を確保しつつ、圧縮機からそれぞれ吐出される冷媒の過熱やハウジングの温度や内圧が過大となることを防ぐことができる。
In the housing of the multistage compressor in the present invention, in addition to the low-temperature gas refrigerant extracted from the gas-liquid separator to the gas injection circuit, it is extracted from between the cooler and the first pressure reducing unit to the bypass path. Extra low-temperature refrigerant will be supplied.
Therefore, not only during oil leveling operation, but depending on the injection using only the gas injection circuit, the bypass path is not used in operating conditions where the temperature and pressure in the housing or the temperature of the refrigerant discharged from the compressor may exceed the upper limit. Can be used.
In other words, it is possible to prevent overheating of the refrigerant discharged from the compressor and excessive increase in the temperature and internal pressure of the housing while securing the necessary injection amount as a whole, including injection of low-temperature refrigerant through the bypass path. .

本発明におけるバイパス経路には、ガスインジェクション回路を流れるガス冷媒よりも密度が高い冷媒が流れるため、バイパス弁には、ガスインジェクション回路の流量を増減させる場合にガスインジェクション回路に備えられる流量調整弁よりも口径が小さいものを用いることができる。そのため、弁に要するコストを抑えることができる。   Since a refrigerant having a higher density than the gas refrigerant flowing through the gas injection circuit flows in the bypass path in the present invention, the bypass valve has a flow control valve provided in the gas injection circuit when the flow rate of the gas injection circuit is increased or decreased. Also, those having a small diameter can be used. Therefore, the cost required for the valve can be suppressed.

本発明の第1実施形態に係る冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle which concerns on 2nd Embodiment of this invention. 本発明の変形例に係る冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle which concerns on the modification of this invention. 本発明の他の変形例に係る冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle which concerns on the other modification of this invention. 本発明の実施形態との比較例に係る冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle which concerns on a comparative example with embodiment of this invention.

以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
図1に示す冷凍サイクル1は、並列に接続された2つの2段圧縮機11A,11B(以下、圧縮機)を備えた冷媒回路10と、2段圧縮機11A,11Bを相互に接続する均油経路17と、2つの圧縮機11A,11Bに対応して2つずつ用意されたガスインジェクション回路20A,20B、バイパス経路30A,30Bと、冷凍サイクル1の運転全般を制御する制御部40とを備えている。
11A,20A,30Aのように、末尾に「A」の符号が付されたものが互いに対応している。同様に、11B,20B,30Bのように、末尾に「B」の符号が付されたものが互いに対応している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
A refrigeration cycle 1 shown in FIG. 1 includes a refrigerant circuit 10 including two two-stage compressors 11A and 11B (hereinafter referred to as “compressors”) connected in parallel and a two-stage compressor 11A and 11B. An oil path 17, two gas injection circuits 20A and 20B, two bypass paths 30A and 30B prepared in correspondence with the two compressors 11A and 11B, and a control unit 40 that controls the overall operation of the refrigeration cycle 1. I have.
11A, 20A, and 30A, which are suffixed with “A”, correspond to each other. Similarly, the ones denoted by “B” at the end, such as 11B, 20B, and 30B, correspond to each other.

本実施形態の冷凍サイクル1は、例えば、冷凍装置、空気調和機、給湯器等に用いることができる。
制御部40は、熱負荷に応じて、圧縮機11A,11Bのうちの1台のみ、あるいは2台共を動作させることにより、冷凍能力を変更する。
The refrigeration cycle 1 of the present embodiment can be used for, for example, a refrigeration apparatus, an air conditioner, a water heater, and the like.
The control unit 40 changes the refrigeration capacity by operating only one or both of the compressors 11A and 11B according to the heat load.

冷媒回路10は、圧縮機11A,11Bと、冷却器12と、第1膨張弁13と、気液分離器14と、第2膨張弁15と、蒸発器16とが順次接続されることにより構成されている。
冷媒回路10を循環する冷媒として、本実施形態では自然冷媒であるCOを使用している。
但し、その他の冷媒、例えば、アンモニア、プロパン、ハイドロクロロフルオロカーボン(HCFC)類、ハイドロフルオロカーボン(HFC)類等を使用することもできる。
The refrigerant circuit 10 is configured by sequentially connecting the compressors 11A and 11B, the cooler 12, the first expansion valve 13, the gas-liquid separator 14, the second expansion valve 15, and the evaporator 16. Has been.
In the present embodiment, CO 2 that is a natural refrigerant is used as the refrigerant circulating in the refrigerant circuit 10.
However, other refrigerants such as ammonia, propane, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), etc. can also be used.

圧縮機11Aは、低段側圧縮機構101および高段側圧縮機構102と、それらの圧縮機構101,102を駆動する電動機(図示しない)と、圧縮機構101,102および電動機を密閉状態で収容するハウジング103Aとを備えている。圧縮機11A,11Bは、制御部40による制御の下、回転速度に応じて圧縮容量が可変に構成されている。
低段側圧縮機構101として、本実施形態ではロータリーピストン型の圧縮機構が採用されている。
高段側圧縮機構102として、本実施形態ではスクロール型の圧縮機構が採用されている。
上記は一例に過ぎず、適宜に圧縮機構101,102を構成することができる。
The compressor 11A houses the low-stage compression mechanism 101 and the high-stage compression mechanism 102, an electric motor (not shown) that drives the compression mechanisms 101 and 102, and the compression mechanisms 101 and 102 and the electric motor in a sealed state. And a housing 103A. The compressors 11 </ b> A and 11 </ b> B are configured to have a variable compression capacity according to the rotation speed under the control of the control unit 40.
As the low-stage compression mechanism 101, a rotary piston type compression mechanism is employed in the present embodiment.
As the high-stage compression mechanism 102, a scroll-type compression mechanism is employed in the present embodiment.
The above is only an example, and the compression mechanisms 101 and 102 can be appropriately configured.

ハウジング103A内の低段側圧縮機構101に吸入ポートP1を通じて吸入された低圧の冷媒は、低段側圧縮機構101により中間圧にまで圧縮され、低段側圧縮機構101よりも上方のハウジング103A内空間に吐出される。低段側圧縮機構101からハウジング103A内に吐出された冷媒と、ガスインジェクション回路20Aからハウジング103A内に供給された冷媒とが高段側圧縮機構102により吸入される。そして、高段側圧縮機構102により圧縮された高圧のガス冷媒が、吐出ポートP2から冷媒回路10へと吐出される。   The low-pressure refrigerant sucked into the low-stage compression mechanism 101 in the housing 103A through the suction port P1 is compressed to an intermediate pressure by the low-stage compression mechanism 101, and is in the housing 103A above the low-stage compression mechanism 101. It is discharged into the space. The refrigerant discharged from the low-stage compression mechanism 101 into the housing 103A and the refrigerant supplied from the gas injection circuit 20A into the housing 103A are sucked by the high-stage compression mechanism 102. Then, the high-pressure gas refrigerant compressed by the high-stage compression mechanism 102 is discharged from the discharge port P2 to the refrigerant circuit 10.

ここで、「中間圧」は、第2膨張弁15および蒸発器16を経て、低段側圧縮機構101に吸入される冷媒の圧力と、高段側圧縮機構102から吐出される冷媒の圧力との間の圧力をいうものとする。「中間圧」を基準として相対的に低い圧力を「低圧」といい、相対的に高い圧力を「高圧」というものとする。   Here, the “intermediate pressure” refers to the pressure of the refrigerant sucked into the low-stage compression mechanism 101 via the second expansion valve 15 and the evaporator 16, and the pressure of the refrigerant discharged from the high-stage compression mechanism 102. The pressure between. A relatively low pressure based on “intermediate pressure” is referred to as “low pressure”, and a relatively high pressure is referred to as “high pressure”.

圧縮機11Bも、圧縮機11Aと同様に、低段側圧縮機構101および高段側圧縮機構102と、それらの圧縮機構101,102を駆動する電動機(図示しない)と、圧縮機構101,102および電動機を密閉状態で収容するハウジング103Bとを備えている。   Similarly to the compressor 11A, the compressor 11B also includes a low-stage compression mechanism 101 and a high-stage compression mechanism 102, an electric motor (not shown) that drives the compression mechanisms 101 and 102, the compression mechanisms 101 and 102, and And a housing 103B that houses the electric motor in a sealed state.

圧縮機11A,11Bの各々のハウジング103A,103B内の底部には、圧縮機構101,102や電動機の軸受等の摺動部に供給される潤滑油が貯留されている。摺動部に潤滑油を十分に供給して信頼性を確保するため、ハウジング103A,103B内には所定の量の潤滑油が存在している必要がある。
ハウジング103A,103B内の潤滑油は、ハウジング103A,103B内の冷媒に混入された状態でハウジング103A,103B内からそれぞれ吐出され、冷媒回路10を巡ってハウジング103A,103B内へと戻ってくる。
十分な信頼性を確保するため、必要に応じて、高段側圧縮機構102により吐出された冷媒から潤滑油を分離してハウジング103A,103Bへと戻す油戻し機構が設けられる。
Lubricating oil supplied to sliding parts such as the compression mechanisms 101 and 102 and motor bearings is stored in the bottoms of the housings 103A and 103B of the compressors 11A and 11B. In order to sufficiently supply the lubricating oil to the sliding portion to ensure reliability, it is necessary that a predetermined amount of lubricating oil is present in the housings 103A and 103B.
The lubricating oil in the housings 103A and 103B is discharged from the housings 103A and 103B in a state of being mixed with the refrigerant in the housings 103A and 103B, and returns to the housings 103A and 103B through the refrigerant circuit 10.
In order to ensure sufficient reliability, an oil return mechanism is provided as needed to separate the lubricating oil from the refrigerant discharged by the high-stage compression mechanism 102 and return it to the housings 103A and 103B.

圧縮機11A,11Bの運転開始時に、圧縮機11A,11Bの各々のハウジング103A,103B内に同じ量の潤滑油が存在していたとしても、運転が継続されるうちに、圧縮機11A,11Bの間でハウジング103A,103B内の潤滑油の量に偏りが生じる。
それは、圧縮機11A,11Bの個体差による吐出量の相違や、油戻し機構の抵抗の相違等に起因して起こる。
Even when the same amount of lubricating oil is present in the housings 103A and 103B of the compressors 11A and 11B at the start of operation of the compressors 11A and 11B, the compressors 11A and 11B will continue to be operated. The amount of lubricating oil in the housings 103A and 103B is biased between.
This occurs due to a difference in discharge amount due to individual differences between the compressors 11A and 11B, a difference in resistance of the oil return mechanism, and the like.

圧縮機11Aのハウジング103Aと圧縮機11Bのハウジング103Bとの間で潤滑油を移動させ、各ハウジング103A,103B内に必要量の潤滑油を確保するため、ハウジング103A,103B同士が均油経路17により接続されている。
均油経路17は、ハウジング103A,103Bの底部の付近で、圧縮機11Aのハウジング103A内と圧縮機11Bのハウジング103B内とを連結している。
In order to move the lubricating oil between the housing 103A of the compressor 11A and the housing 103B of the compressor 11B, and to secure a necessary amount of lubricating oil in each of the housings 103A and 103B, the housings 103A and 103B communicate with each other through the oil leveling path 17. Connected by.
The oil leveling path 17 connects the inside of the housing 103A of the compressor 11A and the inside of the housing 103B of the compressor 11B near the bottoms of the housings 103A and 103B.

均油経路17には、均油経路17を開閉する均油弁171が備えられている。
均油弁171は、適時に行われる冷凍サイクル1の均油運転時に開かれる。均油運転時以外の運転時には、均油弁171は閉じられる。
均油運転時に均油経路17を通じて潤滑油を圧縮機11A,11Bの各ハウジング103A,103B間で移動させるために必要な圧力差を得るため、本実施形態では、後述するバイパス経路30A,30Bをそれぞれ通じてハウジング103A,103B内に圧力を導入可能である。
The oil leveling path 17 is provided with an oil leveling valve 171 that opens and closes the oil leveling path 17.
The oil equalizing valve 171 is opened during the oil equalizing operation of the refrigeration cycle 1 performed in a timely manner. The oil leveling valve 171 is closed during operation other than during the leveling operation.
In this embodiment, in order to obtain a pressure difference necessary for moving the lubricating oil between the housings 103A and 103B of the compressors 11A and 11B through the oil equalization path 17 during the oil leveling operation, in this embodiment, bypass paths 30A and 30B described later are provided. A pressure can be introduced into the housings 103A and 103B through each.

さて、本実施形態では、冷却器12と蒸発器16との間に第1膨張弁13、気液分離器14、および第2膨張弁15が配置されている。圧縮機11A,11Bから吐出された高温高圧のガス冷媒は、冷却器12において放熱されることで液化される。冷却器12から流れ出た液冷媒は、第1膨張弁13における減圧により気液二相とされ、気液分離器14内において気液分離される。気液分離器14内のガス冷媒が、ガスインジェクション回路20A,20Bを通じて圧縮機11A,11Bのハウジング103A,103B内の低段側圧縮機構101と高段側圧縮機構102との間に供給される。   In the present embodiment, the first expansion valve 13, the gas-liquid separator 14, and the second expansion valve 15 are disposed between the cooler 12 and the evaporator 16. The high-temperature and high-pressure gas refrigerant discharged from the compressors 11 </ b> A and 11 </ b> B is liquefied by releasing heat in the cooler 12. The liquid refrigerant that has flowed out of the cooler 12 is made into a gas-liquid two-phase by depressurization in the first expansion valve 13 and is gas-liquid separated in the gas-liquid separator 14. The gas refrigerant in the gas-liquid separator 14 is supplied between the low-stage compression mechanism 101 and the high-stage compression mechanism 102 in the housings 103A and 103B of the compressors 11A and 11B through the gas injection circuits 20A and 20B. .

本実施形態では、ガスインジェクション回路20A,20Bに共通の配管20により、中間圧のガス冷媒を気液分離器14内から抽出した後、ガスインジェクション回路20Aとガスインジェクション回路20Bとに分岐させている。   In this embodiment, the intermediate pressure gas refrigerant is extracted from the gas-liquid separator 14 by the pipe 20 common to the gas injection circuits 20A and 20B, and then branched to the gas injection circuit 20A and the gas injection circuit 20B. .

冷凍サイクル1においては、圧縮機11A,11Bから吐出される冷媒温度の抑制や、圧縮効率の改善、ハウジング103A,103Bの内圧低下等を目的として、低段側圧縮機構101と高段側圧縮機構102との間に、低温の中間圧ガス冷媒をガスインジェクション回路20A,20Bを通じて供給している。   In the refrigeration cycle 1, the low-stage compression mechanism 101 and the high-stage compression mechanism are used for the purpose of suppressing the temperature of the refrigerant discharged from the compressors 11A and 11B, improving the compression efficiency, lowering the internal pressure of the housings 103A and 103B, and the like. A low-temperature intermediate-pressure gas refrigerant is supplied between the gas injection circuit 20A and the gas injection circuit 20B.

気液分離器14内からガスインジェクション回路20A,20Bへと抽出されるインジェクションガス冷媒は、第2膨張弁15による減圧と、蒸発器16による吸熱とを経ていない。
インジェクションガス冷媒の圧力は、中間圧に相当する。インジェクションガス冷媒の温度は、ハウジング103A,103B内の冷媒の温度よりも低いので、インジェクションガス冷媒がハウジング103A,103B内の冷媒と共に高段側圧縮機構102に吸入されて圧縮されることにより、高段側圧縮機構102から吐出される冷媒の温度が抑制される。
The injection gas refrigerant extracted from the gas-liquid separator 14 to the gas injection circuits 20 </ b> A and 20 </ b> B has not undergone pressure reduction by the second expansion valve 15 and heat absorption by the evaporator 16.
The pressure of the injection gas refrigerant corresponds to an intermediate pressure. Since the temperature of the injection gas refrigerant is lower than the temperature of the refrigerant in the housings 103A and 103B, the injection gas refrigerant is sucked into the high-stage compression mechanism 102 together with the refrigerant in the housings 103A and 103B and compressed. The temperature of the refrigerant discharged from the stage side compression mechanism 102 is suppressed.

特に、冷凍サイクル1における冷媒の最高温度および最高圧力が高くなりがちなCOを冷媒として使用している場合に、中間圧・低温冷媒のインジェクションが有効である。
ハウジング103A,103B内の電動機コイルを使用可能な温度、潤滑油の品質維持、冷凍サイクルの効率等を考慮すると、中間圧・低温冷媒のインジェクションにより、ハウジング103A,103B内の温度および圧力、そして吐出冷媒の温度を許容限度以下に抑える必要がある。そのためには、所定以上のインジェクション量(インジェクション流量)を確保する必要がある。
In particular, when CO 2 that tends to increase the maximum temperature and the maximum pressure of the refrigerant in the refrigeration cycle 1 is used as the refrigerant, the injection of the intermediate pressure / low temperature refrigerant is effective.
Considering the temperature at which the motor coils in the housings 103A and 103B can be used, maintaining the quality of the lubricating oil, the efficiency of the refrigeration cycle, etc., the temperature and pressure in the housings 103A and 103B and the discharge by the injection of the intermediate pressure / low temperature refrigerant It is necessary to keep the temperature of the refrigerant below the allowable limit. For this purpose, it is necessary to secure an injection amount (injection flow rate) that is greater than or equal to a predetermined value.

次に、本実施形態の主要な特徴であるバイパス経路30A,30Bについて説明する。
バイパス経路30A,30Bは、冷却器12および第1膨張弁13の間と、対応するガスインジェクション回路20A,20Bとを接続する。
バイパス経路30A,30Bにより、冷却器12を経た冷媒が第1膨張弁13および気液分離器14を通らずに(迂回されて)ガスインジェクション回路20A,20Bへと流入し、ガスインジェクション回路20A,20Bを通じてハウジング103A,103B内の低段側圧縮機構101と高段側圧縮機構102との間に供給される。
Next, the bypass paths 30A and 30B, which are the main features of the present embodiment, will be described.
The bypass paths 30A and 30B connect between the cooler 12 and the first expansion valve 13 and the corresponding gas injection circuits 20A and 20B.
By the bypass paths 30A and 30B, the refrigerant that has passed through the cooler 12 flows into the gas injection circuits 20A and 20B without being passed through the first expansion valve 13 and the gas-liquid separator 14 (bypassed), and the gas injection circuits 20A and 20B. 20B is supplied between the low-stage compression mechanism 101 and the high-stage compression mechanism 102 in the housings 103A and 103B.

バイパス経路30A,30Bは、必要なインジェクション量を確保することで、吐出冷媒の温度やハウジング103A,103Bの内圧、サイクル効率等を満足しつつ、均油に必要なハウジング103A,103B間の圧力差を得るために、冷凍サイクル1に備えられている。   By ensuring the required injection amount, the bypass paths 30A and 30B satisfy the temperature of the discharged refrigerant, the internal pressure of the housings 103A and 103B, the cycle efficiency, and the like, and the pressure difference between the housings 103A and 103B necessary for oil leveling. In order to obtain the above, the refrigeration cycle 1 is provided.

冷却器12と第1膨張弁13との間からバイパス経路30A,30Bへと抽出されたバイパス冷媒は、冷却器12を経ているため低温である。また、バイパス冷媒は、第1膨張弁13を経ていないため、液体あるいは液相優位の状態であって、気液分離器14内からガスインジェクション回路20A,20Bへと抽出されたガス冷媒よりも圧力が高い。このバイパス冷媒がハウジング103A,103B内に供給されることで、吐出冷媒の温度やハウジング103A,103Bの内圧を許容値以下に低く抑えつつ、潤滑油をハウジング103A,103B間で移動させるための圧力差を得ることが可能となる。
バイパス経路30A,30Bを通じてハウジング103A,103B内へと供給される低温冷媒は、低段側圧縮機構101によりハウジング103A,103B内に吐出されるガスに対して少量であり、その吐出ガスとの混合時に蒸発し、高段側圧縮機構102へと吸入される。
気液分離器14内から抽出されたガス冷媒よりも圧力が高いバイパス冷媒が流入するため、ガスインジェクション回路20Aには逆止弁21Aが備えられ、ガスインジェクション回路20Bには逆止弁21Bが備えられている。これらの逆止弁21A,21Bにより、ガスインジェクション回路20A,20Bをハウジング103A,103Bに向けてそれぞれ流れる冷媒の逆流を防ぐことができる。
The bypass refrigerant extracted from between the cooler 12 and the first expansion valve 13 to the bypass paths 30 </ b> A and 30 </ b> B has a low temperature because it passes through the cooler 12. Further, since the bypass refrigerant does not pass through the first expansion valve 13, it is in a liquid or liquid phase dominant state, and has a pressure higher than that of the gas refrigerant extracted from the gas-liquid separator 14 to the gas injection circuits 20A and 20B. Is expensive. By supplying the bypass refrigerant into the housings 103A and 103B, the pressure for moving the lubricating oil between the housings 103A and 103B while keeping the temperature of the discharged refrigerant and the internal pressure of the housings 103A and 103B low below an allowable value. A difference can be obtained.
The low-temperature refrigerant supplied into the housings 103A and 103B through the bypass paths 30A and 30B is a small amount with respect to the gas discharged into the housings 103A and 103B by the low-stage compression mechanism 101, and is mixed with the discharged gas. Sometimes it evaporates and is sucked into the higher stage compression mechanism 102.
Since a bypass refrigerant having a pressure higher than that of the gas refrigerant extracted from the gas-liquid separator 14 flows in, the gas injection circuit 20A is provided with a check valve 21A, and the gas injection circuit 20B is provided with a check valve 21B. It has been. By these check valves 21A and 21B, it is possible to prevent the reverse flow of the refrigerant flowing through the gas injection circuits 20A and 20B toward the housings 103A and 103B, respectively.

バイパス経路30Aには、流量を調整可能なバイパス流量調整弁31Aが備えられており、バイパス経路30Bには、流量を調整可能なバイパス流量調整弁31Bが備えられている。
均油運転時にバイパス流量調整弁31A,31Bの各々の開度を制御部40により操作することで、圧縮機11A,11Bの各々のハウジング103A,103B内の圧力を変化させ、ハウジング103A,103B間に圧力差を与えることができる。
The bypass path 30A is provided with a bypass flow rate adjustment valve 31A capable of adjusting the flow rate, and the bypass path 30B is provided with a bypass flow rate adjustment valve 31B capable of adjusting the flow rate.
By operating the opening degree of each of the bypass flow rate adjusting valves 31A and 31B by the control unit 40 during the oil leveling operation, the pressure in the housings 103A and 103B of the compressors 11A and 11B is changed, and between the housings 103A and 103B. A pressure difference can be given.

以下、気液分離器14内からガスインジェクション回路20A,20Bへと抽出されたガス冷媒の流量が調整される場合(比較例)と比較しつつ、本実施形態のバイパス経路30A,30Bによる作用効果を説明する。
比較例は、図5に示すような冷媒サイクルである。
図5に示す冷凍サイクルでは、ガスインジェクション回路20Aに流量調整弁91Aが備えられ、ガスインジェクション回路20Bに流量調整弁91Bが備えられている。
均油運転時に流量調整弁91A,91Bの各々の開度を制御部90によって制御することにより、均油に必要な圧力差をハウジング103A,103B間に与えることを考える。
Hereinafter, the effects of the bypass paths 30A and 30B of the present embodiment are compared with the case where the flow rate of the gas refrigerant extracted from the gas-liquid separator 14 to the gas injection circuits 20A and 20B is adjusted (comparative example). Will be explained.
A comparative example is a refrigerant cycle as shown in FIG.
In the refrigeration cycle shown in FIG. 5, the gas injection circuit 20A is provided with a flow rate adjustment valve 91A, and the gas injection circuit 20B is provided with a flow rate adjustment valve 91B.
It is considered that a pressure difference necessary for oil leveling is given between the housings 103A and 103B by controlling the opening degree of the flow rate adjusting valves 91A and 91B by the control unit 90 during the oil leveling operation.

流量調整弁91A,91Bの開度に応じたガスインジェクション回路20A,20Bのそれぞれの流量に基づいて各ハウジング103A,103B内の圧力が変化する。
例えば、流量調整弁91Aにより流量が減少されると圧縮機11Aのハウジング103A内の圧力が相対的に小さくなり、流量調整弁91Aにより流量が増加されると圧縮機11Bのハウジング103B内の圧力が相対的に大きくなる。そうすると、圧縮機11A,11Bのハウジング103A,103B間の圧力差に従って、均油経路17を通じて潤滑油が移動する。
The pressures in the housings 103A and 103B change based on the flow rates of the gas injection circuits 20A and 20B according to the opening degree of the flow rate adjusting valves 91A and 91B.
For example, when the flow rate is reduced by the flow rate adjusting valve 91A, the pressure in the housing 103A of the compressor 11A becomes relatively small, and when the flow rate is increased by the flow rate adjusting valve 91A, the pressure in the housing 103B of the compressor 11B is reduced. It becomes relatively large. If it does so, lubricating oil will move through the oil equalization path | route 17 according to the pressure difference between housing 103A, 103B of compressor 11A, 11B.

比較例では、均油に必要なハウジング103A,103B間の圧力差を実現するため、圧縮機11Aと圧縮機11Bとの間で、ハウジング103A,103Bに供給されるインジェクション冷媒の流量に差を与える必要がある。そのため、複数のガスインジェクション回路20A,20Bのうちの一方のガスインジェクション回路の流量を減少する必要が生じ、流量が減少された圧縮機11Aについて必要なインジェクション量を確保できない可能性がある。   In the comparative example, in order to realize a pressure difference between the housings 103A and 103B necessary for oil leveling, a difference is given to the flow rate of the injection refrigerant supplied to the housings 103A and 103B between the compressor 11A and the compressor 11B. There is a need. Therefore, it is necessary to reduce the flow rate of one of the gas injection circuits 20A and 20B, and there is a possibility that a necessary injection amount cannot be ensured for the compressor 11A with the reduced flow rate.

上記の比較例とは異なり、本実施形態(図1)では、気液分離器14内からガスインジェクション回路20A,20Bへと抽出されるガス冷媒の流量には差を付けておらず、バイパス流量調整弁31A,31Bにより調整されるバイパス経路30A,30Bの流量差によってハウジング103A,103B間に圧力差を与えている。
バイパス経路30A,30Bに抽出される冷媒の流量は、ハウジング103A,103B間で潤滑油を移動させるために必要な限度で足りる。
上述したように、冷却器12と第1膨張弁13との間からバイパス経路30A,30Bに抽出される冷媒は、液体あるいは液相優位の状態であり、気液分離器14内から抽出されたガス冷媒よりも圧力が高いため、バイパス経路30A,30Bに若干量を抽出すれば、バイパス流量調整弁31A,31Bの一方を全開し、他方を全閉したときを最大として、均油経路17を潤滑油が移動するために必要なハウジング103A,103B間の圧力差を確保することができる。
Unlike the above comparative example, in this embodiment (FIG. 1), there is no difference in the flow rate of the gas refrigerant extracted from the gas-liquid separator 14 to the gas injection circuits 20A and 20B, and the bypass flow rate. A pressure difference is given between the housings 103A and 103B by the flow rate difference between the bypass passages 30A and 30B adjusted by the adjusting valves 31A and 31B.
The flow rate of the refrigerant extracted to the bypass paths 30A and 30B is sufficient as long as it is necessary to move the lubricating oil between the housings 103A and 103B.
As described above, the refrigerant extracted into the bypass passages 30A and 30B from between the cooler 12 and the first expansion valve 13 is in a liquid or liquid phase dominant state and extracted from the gas-liquid separator 14. Since the pressure is higher than that of the gas refrigerant, if a small amount is extracted into the bypass passages 30A and 30B, the oil equalization passage 17 is set to the maximum when one of the bypass flow rate adjusting valves 31A and 31B is fully opened and the other is fully closed. A pressure difference between the housings 103A and 103B necessary for the movement of the lubricating oil can be ensured.

また、バイパス経路30A,30Bを流れる冷媒は液体あるいは液相優位の状態であり、ガス冷媒よりも密度が高いため、バイパス経路30A,30Bのバイパス流量調整弁31A,31Bには、ガスインジェクション回路20A,20Bの流量調整弁91A,91B(図5)よりも口径が小さいものを用いることができる。そのため、本実施形態では、比較例に対して流量調整弁に要するコストを抑えることができる。   In addition, since the refrigerant flowing through the bypass paths 30A and 30B is in a liquid or liquid phase dominant state and has a higher density than the gas refrigerant, the bypass flow rate adjusting valves 31A and 31B of the bypass paths 30A and 30B include a gas injection circuit 20A. , 20B flow regulating valves 91A, 91B (FIG. 5) can be used. Therefore, in this embodiment, the cost which a flow volume adjustment valve requires with respect to a comparative example can be held down.

均油運転時の制御部40による制御について説明する。
冷凍サイクル1の運転が長時間継続されており、圧縮機11Aのハウジング103Aと圧縮機11Bのハウジング103Bとの間で潤滑油の偏りが生じている可能性のある適宜なタイミングで、冷凍サイクル1は制御部40により均油運転に移行される。
The control by the control unit 40 during the oil leveling operation will be described.
The operation of the refrigeration cycle 1 is continued for a long time, and the refrigeration cycle 1 is performed at an appropriate timing at which there may be a deviation in the lubricating oil between the housing 103A of the compressor 11A and the housing 103B of the compressor 11B. Is transferred to the oil leveling operation by the control unit 40.

本実施形態の制御部40は、運転条件に応じてハウジング103A,103B内から流出した潤滑油の量を積算し、ハウジング103A,103B間における潤滑油の偏りの状況を推定することで、冷凍サイクル1を均油運転に移行する。具体的には、均油弁171を開き、バイパス流量調整弁31A,31Bの開度を設定する。均油運転が行われる毎に、流出した潤滑油の積算量はリセットされる。
均油運転が、所定の運転継続時間毎に行われるようにしてもよい。
The control unit 40 of the present embodiment integrates the amount of lubricating oil that has flowed out of the housings 103A and 103B in accordance with the operating conditions, and estimates the state of unevenness of the lubricating oil between the housings 103A and 103B. 1 is shifted to oil leveling operation. Specifically, the oil equalizing valve 171 is opened and the opening degree of the bypass flow rate adjusting valves 31A and 31B is set. Every time the oil leveling operation is performed, the accumulated amount of the lubricating oil that has flowed out is reset.
The oil leveling operation may be performed every predetermined operation duration time.

圧縮機11Aのハウジング103A内から圧縮機11Bのハウジング103B内へと潤滑油が移動する向きに応じた圧力差と、それとは逆に、圧縮機11Bのハウジング103B内から圧縮機11Aのハウジング103A内へと潤滑油が移動する向きに応じた圧力差とが圧縮機11A,11Bのハウジング103A,103Bに与えられる。そうすると、圧縮機11A,11Bのいずれのハウジング103A,103B内に潤滑油が多いのか、いずれのハウジング103A,103B内に潤滑油が少ないのかが不明であっても、ハウジング103A,103B内の潤滑油の平均化を図ることができる。   The pressure difference according to the direction in which the lubricating oil moves from the housing 103A of the compressor 11A to the housing 103B of the compressor 11B, and conversely, the inside of the housing 103A of the compressor 11A from the housing 103B of the compressor 11B. A pressure difference corresponding to the direction in which the lubricating oil moves is applied to the housings 103A and 103B of the compressors 11A and 11B. Then, even if it is unclear which housing 103A, 103B of compressor 11A, 11B has a lot of lubricating oil or which housing 103A, 103B has little lubricating oil, the lubricating oil in housings 103A, 103B Can be averaged.

そのため、制御部40は、まず、圧縮機11Aのハウジング103Aの圧力 > 圧縮機11Bのハウジング103Bの圧力となるように、バイパス流量調整弁31Aの開度がバイパス流量調整弁31Bの開度よりも大きくなるようにバイパス流量調整弁31A,31Bのそれぞれの開度を設定する。その後、圧縮機11Aのハウジング103Aの圧力 < 圧縮機11Bのハウジング103Bの圧力となるように、バイパス流量調整弁31Bの開度がバイパス流量調整弁31Aの開度よりも大きくなるようにバイパス流量調整弁31A,31Bのそれぞれの開度を設定する。
そうすると、均油運転前における各ハウジング103A,103B内の潤滑油の偏りの状況によらず、圧縮機11A,11Bのハウジング103A,103B間で潤滑油が平均化される。
Therefore, the control unit 40 first determines that the opening degree of the bypass flow rate adjustment valve 31A is larger than the opening degree of the bypass flow rate adjustment valve 31B so that the pressure of the housing 103A of the compressor 11A> the pressure of the housing 103B of the compressor 11B. The opening degree of each of the bypass flow rate adjusting valves 31A and 31B is set so as to increase. Thereafter, the bypass flow rate adjustment is performed so that the opening degree of the bypass flow rate adjustment valve 31B is larger than the opening degree of the bypass flow rate adjustment valve 31A so that the pressure of the housing 103A of the compressor 11A <the pressure of the housing 103B of the compressor 11B. The respective opening degrees of the valves 31A and 31B are set.
Then, the lubricating oil is averaged between the housings 103A and 103B of the compressors 11A and 11B regardless of the state of unevenness of the lubricating oil in the respective housings 103A and 103B before the oil leveling operation.

なお、本実施形態において、圧縮機11A,11Bのいずれかの回転数を上げ、吸入、吐出される冷媒の圧力損失を増やすことによりハウジング103A,103B間の圧力差の実現に寄与することも許容される。   In the present embodiment, it is allowed to contribute to the realization of the pressure difference between the housings 103A and 103B by increasing the number of revolutions of the compressors 11A and 11B and increasing the pressure loss of the refrigerant sucked and discharged. Is done.

ところで、バイパス流量調整弁31Aや31Bが開いていれば、対応するバイパス経路30A,30Bが開通しているので、開通しているバイパス経路30A,30Bを通じてハウジング103A,103B内には、冷却器12と第1膨張弁13との間から抽出された低温の冷媒が供給される。ハウジング103A,103Bには、ガスインジェクション回路20A,20Bを通じて低温のガス冷媒が供給されているが、それに加え、開通しているバイパス経路30A,30Bを通じて低温の冷媒が余分に供給されることとなる。   By the way, if the bypass flow rate adjusting valves 31A and 31B are open, the corresponding bypass paths 30A and 30B are open. Therefore, the cooler 12 is provided in the housings 103A and 103B through the open bypass paths 30A and 30B. And a low-temperature refrigerant extracted from between the first expansion valve 13 and the first expansion valve 13. Low-temperature gas refrigerant is supplied to the housings 103A and 103B through the gas injection circuits 20A and 20B. In addition, extra low-temperature refrigerant is supplied through the open bypass paths 30A and 30B. .

そのため、ガスインジェクション回路20A,20Bのみを用いるガスインジェクションによってはハウジング103A,103B内の温度および圧力や圧縮機11A,11Bから吐出された冷媒の温度が上限を超えるおそれのある運転条件の際に、バイパス経路30A,30Bを用いることができる。
本実施形態の制御部40は、均油運転時には限らず、バイパス流量調整弁31A,31Bの開度を制御することにより、バイパス経路30A,30Bを通じた低温冷媒のインジェクションを行う。
Therefore, depending on the gas injection using only the gas injection circuits 20A and 20B, the temperature and pressure in the housings 103A and 103B and the temperature of the refrigerant discharged from the compressors 11A and 11B may exceed the upper limit. Bypass paths 30A and 30B can be used.
The control unit 40 of the present embodiment performs the injection of the low-temperature refrigerant through the bypass paths 30A and 30B by controlling the opening degree of the bypass flow rate adjusting valves 31A and 31B, not only during the oil leveling operation.

制御部40は、バイパス流量調整弁31A,31Bの各々の開度を制御するにあたり、圧縮機11A,11Bから吐出された冷媒の温度を指標として用いる。
そのために、冷媒回路10には、圧縮機11Aから吐出された冷媒の温度を検知する温度センサ32Aと、圧縮機11Bから吐出された冷媒の温度を検知する温度センサ32Bとが備えられている。
以下、圧縮機11A,11Bからそれぞれ吐出された冷媒の温度のことを「吐出温度」と称する。
The controller 40 uses the temperature of the refrigerant discharged from the compressors 11A and 11B as an index when controlling the opening degree of each of the bypass flow rate adjusting valves 31A and 31B.
For this purpose, the refrigerant circuit 10 includes a temperature sensor 32A that detects the temperature of the refrigerant discharged from the compressor 11A and a temperature sensor 32B that detects the temperature of the refrigerant discharged from the compressor 11B.
Hereinafter, the temperature of the refrigerant discharged from the compressors 11A and 11B is referred to as “discharge temperature”.

図1に示すように、制御部40は、温度センサ32A,32Bから吐出温度を取得する吐出温度取得部41と、温度センサ32A,32Bにより検知された吐出温度が所定の閾値を超えているか否かを判定する判定部42と、判定部42による判定結果に応じてバイパス流量調整弁31A,31Bの開度を設定する開度設定部43とを備えている。   As shown in FIG. 1, the control unit 40 determines whether or not the discharge temperature acquisition unit 41 that acquires the discharge temperature from the temperature sensors 32A and 32B and the discharge temperature detected by the temperature sensors 32A and 32B exceeds a predetermined threshold value. And a degree-of-opening setting unit 43 that sets the degree of opening of the bypass flow rate adjusting valves 31A and 31B according to the result of determination by the determination unit 42.

制御部40による制御のフローについて説明する。
制御部40の吐出温度取得部41は、温度センサ32A,32Bによりそれぞれ検知された吐出温度を取得する。
次に、制御部40の判定部42は、取得された圧縮機11A,11Bの吐出温度がそれぞれ所定の閾値を超えているか否かを判定する。
そして、制御部40の開度設定部43は、吐出温度が閾値を超えている場合に、閾値を超えている吐出温度に対応する圧縮機のハウジング(103A,103Bの一方または両方)に接続されたバイパス経路のバイパス流量調整弁(31A,31Bの一方または両方)を所定の開度で開く。
A flow of control by the control unit 40 will be described.
The discharge temperature acquisition unit 41 of the control unit 40 acquires the discharge temperatures detected by the temperature sensors 32A and 32B, respectively.
Next, the determination unit 42 of the control unit 40 determines whether or not the acquired discharge temperatures of the compressors 11A and 11B exceed a predetermined threshold value.
The opening degree setting unit 43 of the control unit 40 is connected to the compressor housing (one or both of 103A and 103B) corresponding to the discharge temperature exceeding the threshold when the discharge temperature exceeds the threshold. The bypass flow rate adjustment valve (one or both of 31A and 31B) in the bypass path is opened at a predetermined opening.

例えば、圧縮機11Aの吐出温度が閾値を超えているならば、開度設定部43は、バイパス流量調整弁31Aを開くことで低温の冷媒を圧縮機11Aのハウジング103A内に供給する。その冷媒がハウジング103A内の冷媒と共に高段側圧縮機構102により圧縮されることで、圧縮機11Aの吐出温度が抑制される。
また、圧縮機11Bの吐出温度が閾値を超えているならば、開度設定部43は、バイパス流量調整弁31Bを開いて低温の冷媒を圧縮機11Bのハウジング103B内に供給し、圧縮機11Bの吐出温度を抑制する。
閾値温度に対する吐出温度の偏差が大きい程、バイパス流量調整弁31A,31Bを大きい開度に設定することが好ましい。それにより、吐出温度を迅速に閾値以下に抑えることができる。
吐出温度が閾値以下である場合は、吐出温度を抑制するためにバイパス流量調整弁31A,31Bを開く必要はない。
For example, if the discharge temperature of the compressor 11A exceeds the threshold value, the opening degree setting unit 43 supplies the low-temperature refrigerant into the housing 103A of the compressor 11A by opening the bypass flow rate adjustment valve 31A. The refrigerant is compressed by the high-stage compression mechanism 102 together with the refrigerant in the housing 103A, so that the discharge temperature of the compressor 11A is suppressed.
If the discharge temperature of the compressor 11B exceeds the threshold value, the opening degree setting unit 43 opens the bypass flow rate adjustment valve 31B to supply low-temperature refrigerant into the housing 103B of the compressor 11B, and the compressor 11B. Suppresses the discharge temperature.
As the deviation of the discharge temperature from the threshold temperature is larger, it is preferable to set the bypass flow rate adjusting valves 31A and 31B to a larger opening. Thereby, the discharge temperature can be quickly suppressed below the threshold value.
When the discharge temperature is equal to or lower than the threshold value, it is not necessary to open the bypass flow rate adjustment valves 31A and 31B in order to suppress the discharge temperature.

以上のように、吐出温度を用いてバイパス流量調整弁31A,31Bの開度を制御することを通じて、吐出温度と同様に、ハウジング103A,103Bの温度および内圧も許容値以下に抑えることができる。
吐出温度の代わりにハウジング103A,103Bの温度や内圧等の検出値を用いて、あるいは、運転条件に応じて決められた所定の開度にて、バイパス流量調整弁31A,31Bを制御することもできる。
As described above, by controlling the opening degree of the bypass flow rate adjusting valves 31A and 31B using the discharge temperature, the temperature and the internal pressure of the housings 103A and 103B can be suppressed to an allowable value or less as well as the discharge temperature.
The bypass flow rate adjusting valves 31A and 31B may be controlled using detected values such as the temperature and internal pressure of the housings 103A and 103B instead of the discharge temperature, or at a predetermined opening determined according to the operating conditions. it can.

以上で説明したように、本実施形態では、気液分離器14内から抽出されてハウジング103A,103B内へと供給されるガス冷媒よりも圧力が高い冷媒が、バイパス経路30A,30Bを通じてハウジング103A,103B内へと供給されるとともに、バイパス流量調整弁31A,31Bの開度の制御により、バイパス経路20A,20Bのそれぞれの流量に差が与えられる。
この構成により、均油運転時には、圧縮機11Aと圧縮機11Bとのハウジング103A,103B間に圧力差を与えて均油を図ることができる。
また、均油運転時に限らず、バイパス経路30A,30Bを通じた低温冷媒のインジェクションにより、ガスインジェクション回路20A,20Bを通じたインジェクションと合わせた全体として、必要なインジェクション量を確保しつつ、圧縮機11A,11Bからそれぞれ吐出される冷媒の過熱やハウジング103A,103Bの温度や内圧が過大となることを防ぐことができる。
As described above, in the present embodiment, the refrigerant having a higher pressure than the gas refrigerant extracted from the gas-liquid separator 14 and supplied to the housings 103A and 103B passes through the bypass passages 30A and 30B. , 103B, and the flow rate of each of the bypass paths 20A, 20B is given a difference by controlling the opening degree of the bypass flow rate adjusting valves 31A, 31B.
With this configuration, at the time of the oil leveling operation, the pressure difference can be given between the housings 103A and 103B of the compressor 11A and the compressor 11B to achieve the leveling.
Further, not only during the oil leveling operation, the compressor 11A, while ensuring the necessary injection amount as a whole, together with the injection through the gas injection circuits 20A, 20B, by injection of the low-temperature refrigerant through the bypass paths 30A, 30B. It is possible to prevent the refrigerant discharged from 11B from being overheated and the temperatures and internal pressures of the housings 103A and 103B from becoming excessive.

本実施形態では、圧縮機11A,11Bのそれぞれの吐出温度に応じて、バイパス経路30A,30Bの流量をバイパス流量調整弁31A,31Bによりそれぞれ適切な流量に調整することができる。そのため、例えば、閾値からの吐出温度の偏差が大きいほど大きい開度となるようにバイパス流量調整弁31A,31Bを制御し、閾値から逸脱した吐出温度を迅速に閾値以下に収めるといったように、吐出温度を適切にコントロールすることが可能となる。   In the present embodiment, the flow rates of the bypass paths 30A and 30B can be adjusted to appropriate flow rates by the bypass flow rate adjusting valves 31A and 31B, respectively, according to the discharge temperatures of the compressors 11A and 11B. Therefore, for example, the bypass flow rate adjusting valves 31A and 31B are controlled so that the opening degree increases as the deviation of the discharge temperature from the threshold value increases, and the discharge temperature deviating from the threshold value quickly falls below the threshold value. It becomes possible to control the temperature appropriately.

さらに、本実施形態では、インジェクションのための配管が、ガスインジェクション回路20A,20Bへのバイパス経路30A,30Bの流入位置よりも下流では1つにまとまっており、インジェクション冷媒を受け入れるインジェクションポートP3をハウジング103A,103Bのそれぞれにつき1つだけ設ければよい。そのため、ガスインジェクション回路20Aおよびバイパス経路30Aを(またはガスインジェクション回路20Bおよびバイパス経路30Bを)個別に構成する場合と比べて、重量やコストを抑えることができる。   Furthermore, in this embodiment, the piping for injection is united downstream from the inflow positions of the bypass paths 30A and 30B to the gas injection circuits 20A and 20B, and the injection port P3 that receives the injection refrigerant is housed. It is only necessary to provide one for each of 103A and 103B. Therefore, compared with the case where the gas injection circuit 20A and the bypass path 30A (or the gas injection circuit 20B and the bypass path 30B) are individually configured, weight and cost can be suppressed.

流量調整弁21A,31Bに代えてオンオフ弁を用いることも可能である。例えば、バイパス経路30A,30Bにそれぞれ配置されたオンオフ弁を断続的にON/OFFさせ、単位時間あたりのONの比率を変更したり、バイパス経路30A,30Bのそれぞれに複数のオンオフ弁を並列に設けて、それらのオンオフ弁のON/OFFの個数比を変更したりすることで、流量調整弁と同様の機能を実現することができる。   It is also possible to use an on / off valve instead of the flow rate adjusting valves 21A and 31B. For example, ON / OFF valves arranged in the bypass paths 30A, 30B are intermittently turned ON / OFF, the ON ratio per unit time is changed, or a plurality of ON / OFF valves are connected in parallel to each of the bypass paths 30A, 30B. By providing and changing the ON / OFF number ratio of these on / off valves, the same function as the flow rate adjusting valve can be realized.

〔第2実施形態〕
次に、図2を参照し、本発明の第2実施形態について説明する。
第2実施形態は、インジェクションガス冷媒よりも温度が低い冷媒を圧縮機11A,11Bのハウジング103A,103Bに供給するためのより基本的な回路を示している。
図2に示す冷凍サイクル2では、バイパス経路30A,30Bがガスインジェクション回路20A,20Bには接続されておらず、ハウジング103A,103B内に直接接続されている。
ガスインジェクション回路20A,20Bに備えられた逆止弁21A,21Bにより、ガスインジェクション回路20A,20Bにおける冷媒の逆流を防いでいる。 図2に示す構成によっても、バイパス流量調整弁31A,31Bの開度を制御部40により制御してバイパス経路30A,30Bに流量差を与えることで、均油に必要なハウジング103A,103B間の圧力差を得ることができる。
また、吐出温度等の許容値に対して厳しい運転条件であっても、バイパス経路30A,30Bを通じてハウジング103A,103B内にそれぞれ供給されるインジェクション冷媒により、過熱を防ぐために必要なインジェクション量を確保することができる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
The second embodiment shows a more basic circuit for supplying a refrigerant having a temperature lower than that of the injection gas refrigerant to the housings 103A and 103B of the compressors 11A and 11B.
In the refrigeration cycle 2 shown in FIG. 2, the bypass paths 30A and 30B are not connected to the gas injection circuits 20A and 20B, but are directly connected to the housings 103A and 103B.
The check valves 21A and 21B provided in the gas injection circuits 20A and 20B prevent the refrigerant from flowing back in the gas injection circuits 20A and 20B. Also by the configuration shown in FIG. 2, the opening degree of the bypass flow rate adjusting valves 31A and 31B is controlled by the control unit 40 to give a flow rate difference to the bypass paths 30A and 30B, so that between the housings 103A and 103B necessary for oil leveling. A pressure difference can be obtained.
Further, even under severe operating conditions with respect to the allowable value such as the discharge temperature, the injection refrigerant necessary to prevent overheating is secured by the injection refrigerant supplied into the housings 103A and 103B through the bypass paths 30A and 30B, respectively. be able to.

図3に示す冷凍サイクル3は、圧縮機11Aのハウジング103AのインジェクションポートP3へと流入するインジェクション冷媒の圧力を検知する圧力センサ33Aと、圧縮機11Bのハウジング103BのインジェクションポートP3へと流入するインジェクション冷媒の圧力を検知する圧力センサ33Bとを備えている。
制御部40は、圧力センサ33A,33Bによりそれぞれ検知される圧力に基づいて、バイパス経路30A,30Bに必要十分な流量差が付くようにバイパス流量調整弁31A,31Bの開度を制御することができる。そうすることで、均油に必要なハウジング103A,103B間の圧力差をより確実に得ることができる。
The refrigeration cycle 3 shown in FIG. 3 includes a pressure sensor 33A that detects the pressure of the injection refrigerant flowing into the injection port P3 of the housing 103A of the compressor 11A, and an injection that flows into the injection port P3 of the housing 103B of the compressor 11B. And a pressure sensor 33B for detecting the pressure of the refrigerant.
The control unit 40 can control the opening degree of the bypass flow rate adjusting valves 31A and 31B based on the pressures detected by the pressure sensors 33A and 33B so that a necessary and sufficient flow rate difference is applied to the bypass paths 30A and 30B. it can. By doing so, the pressure difference between the housings 103A and 103B necessary for oil leveling can be obtained more reliably.

また、圧縮機11A,11Bの吐出温度等をより適切にコントロールするため、制御部40は、温度センサ32A,32Bにより検知される吐出温度に加え、圧力センサ33A,33Bにより検知される圧力を用いて、対応するバイパス流量調整弁31A,31Bの開度を制御することができる。   Further, in order to more appropriately control the discharge temperature and the like of the compressors 11A and 11B, the control unit 40 uses the pressure detected by the pressure sensors 33A and 33B in addition to the discharge temperature detected by the temperature sensors 32A and 32B. Thus, the opening degree of the corresponding bypass flow rate adjusting valves 31A, 31B can be controlled.

図2に示す冷凍サイクル2においてバイパス経路30A,30Bからのインジェクション冷媒が流入するインジェクションポートP3´の近傍に圧力センサ33A,33Bを設けることもできる。その場合も、制御部40により、圧力センサ33A,33Bにより検知される圧力を用いて、バイパス流量調整弁31A,31Bの開度を制御することができる。   In the refrigeration cycle 2 shown in FIG. 2, pressure sensors 33A and 33B may be provided in the vicinity of the injection port P3 ′ into which the injection refrigerant from the bypass paths 30A and 30B flows. Also in that case, the opening degree of the bypass flow rate adjusting valves 31A and 31B can be controlled by the control unit 40 using the pressure detected by the pressure sensors 33A and 33B.

上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
図1の冷凍サイクル1のバイパス流量調整弁31A,31Bに代えて、オンオフ弁を用いることもできる。制御部40により、例えば、バイパス経路30Aに対応するオンオフ弁を開き、バイパス経路30Bに対応するオンオフ弁を閉じることにより、圧縮機11A,11Bの各ハウジング103A,103B間に、潤滑油の移動に必要な圧力差を持たせることができる。
また、圧縮機11A,11Bからの吐出温度が閾値を超えていたならば、吐出温度が閾値を超えている圧縮機に対応するバイパス経路のオンオフ弁を開くことにより、吐出温度等の制限を守ることができる。
In addition to the above, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
Instead of the bypass flow rate adjustment valves 31A and 31B of the refrigeration cycle 1 in FIG. 1, on / off valves can be used. For example, the controller 40 opens the on / off valve corresponding to the bypass path 30A and closes the on / off valve corresponding to the bypass path 30B, thereby moving the lubricant between the housings 103A and 103B of the compressors 11A and 11B. A necessary pressure difference can be provided.
Further, if the discharge temperature from the compressors 11A and 11B exceeds a threshold value, the restriction of the discharge temperature and the like is protected by opening an on / off valve of a bypass path corresponding to the compressor whose discharge temperature exceeds the threshold value. be able to.

本発明の冷凍サイクルにおいては、少なくとも、インジェクション量を確保しながら、圧縮機のハウジング103A,103B間で均油できれば目的に足りる。吐出温度の制限は、一定速度で運転される圧縮機の場合や、押しのけ量の観点から、必要でない場合もある。
したがって、本発明の冷凍サイクルにおいては、複数の圧縮機の各ハウジングに対応するバイパス経路30A,30Bのうち流量の変更が必要であるものにだけバイパス弁を設けることができ、必ずしも、バイパス経路30A,30Bにそれぞれバイパス弁を設ける必要はない。
例えば、図4に示す冷凍サイクル4のように、バイパス経路30A,30Bの口径に差を与えてバイパス経路30A,30Bの流量を互いに相違させるとともに、流量が大きい一方のバイパス経路30Aにだけオンオフ弁35を設けることができる。
上記構成においては、オンオフ弁35を開放することによって、あるいは、オンオフ弁35を閉じることによって、ハウジング103A,103B間に均油のための圧力差を与えることができる。
In the refrigeration cycle of the present invention, it is sufficient if the oil can be leveled between the housings 103A and 103B of the compressor while at least securing the injection amount. The discharge temperature limitation may not be necessary in the case of a compressor operated at a constant speed or from the viewpoint of displacement.
Therefore, in the refrigeration cycle of the present invention, the bypass valve can be provided only in the bypass paths 30A and 30B corresponding to the respective housings of the plurality of compressors, and the flow rate needs to be changed. , 30B need not be provided with a bypass valve.
For example, as in the refrigeration cycle 4 shown in FIG. 4, the flow rates of the bypass paths 30A and 30B are made different from each other by giving a difference in the diameters of the bypass paths 30A and 30B, and only the bypass path 30A having a large flow rate is turned on / off. 35 can be provided.
In the above configuration, a pressure difference for oil equalization can be given between the housings 103A and 103B by opening the on / off valve 35 or closing the on / off valve 35.

上述した冷凍サイクル1,2,3は、並列に接続される2つの圧縮機11A,11Bを備えて構成されているが、並列に接続される3つ以上の圧縮機を備えて構成されていてもよい。その場合も、複数の圧縮機の各々のハウジングが相互に均油経路により接続されている。そして、各圧縮機にそれぞれ用意されたバイパス経路のバイパス弁の開度が制御される。例えば、3つの圧縮機のうちの1つの圧縮機に対応するバイパス弁を所定の開度で開き、残りの2つの圧縮機に対応するバイパス弁を閉じると、相対的に圧力が高いハウジングから、相対的に圧力が低いハウジングへと潤滑油を移動させることができる。   The refrigeration cycles 1, 2 and 3 described above are configured to include two compressors 11A and 11B connected in parallel, but are configured to include three or more compressors connected in parallel. Also good. Also in this case, the housings of the plurality of compressors are connected to each other by an oil equalizing path. And the opening degree of the bypass valve of the bypass path prepared for each compressor is controlled. For example, when a bypass valve corresponding to one of the three compressors is opened at a predetermined opening degree and the bypass valves corresponding to the remaining two compressors are closed, the housing having a relatively high pressure, Lubricating oil can be moved to a relatively low pressure housing.

1,2,3,4 冷凍サイクル
10 冷媒回路
11A,11B 圧縮機(多段圧縮機)
12 冷却器
13 第1膨張弁(第1減圧部)
14 気液分離器
15 膨張弁(第2減圧部)
16 蒸発器
17 均油経路
20A,20B ガスインジェクション回路
21A,21B 逆止弁
30A,30B バイパス経路
31A,31B バイパス流量調整弁(バイパス弁)
32A,32B 温度センサ(吐出温度センサ)
33A,33B 圧力センサ
35 オンオフ弁
40 制御部
41 吐出温度取得部
42 判定部
43 開度設定部
90 制御部
91A,91B 流量調整弁
101 低段側圧縮機構
102 高段側圧縮機構
103A,103B ハウジング
171 均油弁
P1 吸入ポート
P2 吐出ポート
P3 インジェクションポート
1, 2, 3, 4 Refrigeration cycle 10 Refrigerant circuit 11A, 11B Compressor (multistage compressor)
12 cooler 13 1st expansion valve (1st decompression part)
14 Gas-liquid separator 15 Expansion valve (second decompression unit)
16 Evaporator 17 Oil equalizing path 20A, 20B Gas injection circuit 21A, 21B Check valve 30A, 30B Bypass path 31A, 31B Bypass flow rate adjusting valve (bypass valve)
32A, 32B Temperature sensor (Discharge temperature sensor)
33A, 33B Pressure sensor 35 On-off valve 40 Control unit 41 Discharge temperature acquisition unit 42 Determination unit 43 Opening setting unit 90 Control unit 91A, 91B Flow rate adjustment valve 101 Low stage compression mechanism 102 High stage compression mechanism 103A, 103B Housing 171 Oil leveling valve P1 Suction port P2 Discharge port P3 Injection port

Claims (6)

低段側圧縮機構および高段側圧縮機構が含まれる多段の圧縮機構を収容するハウジングをそれぞれ備え、並列に接続される複数の多段圧縮機を備えた冷凍サイクルであって、
前記複数の多段圧縮機、冷却器、第1減圧部、気液分離器、第2減圧部、および蒸発器が順次接続されることにより冷媒回路が構成され、
前記複数の多段圧縮機の前記ハウジング同士を連結する均油経路と、
前記気液分離器内のガス冷媒を、対応する前記多段圧縮機の前記ハウジング内の前記低段側圧縮機構と前記高段側圧縮機構との間に供給する複数のガスインジェクション回路と、
前記冷却器および前記第1減圧部の間から抽出された冷媒を、対応する前記多段圧縮機の前記ハウジング内の前記低段側圧縮機構と前記高段側圧縮機構との間に供給する複数のバイパス経路と、
前記複数の多段圧縮機のそれぞれの前記バイパス経路の少なくともいずれかの流量を変更可能なバイパス弁と、
前記ガスインジェクション回路に備えられ、前記ハウジング内に向けて流れる前記ガス冷媒の逆流を防ぐ逆止弁と、
前記バイパス弁の開度を制御する制御部と、を備える、
ことを特徴とする冷凍サイクル。
A refrigeration cycle comprising a plurality of multistage compressors connected in parallel, each having a housing containing a multistage compression mechanism including a low stage compression mechanism and a high stage compression mechanism,
A refrigerant circuit is configured by sequentially connecting the plurality of multistage compressors, a cooler, a first decompression unit, a gas-liquid separator, a second decompression unit, and an evaporator,
An oil equalizing path connecting the housings of the plurality of multistage compressors;
A plurality of gas injection circuits for supplying gas refrigerant in the gas-liquid separator between the low-stage compression mechanism and the high-stage compression mechanism in the housing of the corresponding multistage compressor;
A plurality of refrigerants extracted from between the cooler and the first pressure reducing unit are supplied between the low-stage compression mechanism and the high-stage compression mechanism in the housing of the corresponding multistage compressor. A bypass path,
A bypass valve capable of changing the flow rate of at least one of the bypass paths of each of the plurality of multistage compressors;
A check valve provided in the gas injection circuit for preventing a back flow of the gas refrigerant flowing into the housing;
A control unit for controlling the opening degree of the bypass valve,
A refrigeration cycle characterized by that.
前記バイパス経路は、
前記冷却器および前記第1減圧部の間から抽出された冷媒を前記ガスインジェクション回路へと流入させる、
ことを特徴とする請求項1に記載の冷凍サイクル。
The bypass path is
Allowing the refrigerant extracted from between the cooler and the first decompression section to flow into the gas injection circuit;
The refrigeration cycle according to claim 1.
前記制御部は、
少なくとも、前記均油経路を通じて前記複数の多段圧縮機の各々の前記ハウジング間で潤滑油を移動させる均油運転時に、
前記バイパス弁の開度を制御する、
ことを特徴とする請求項1または2に記載の冷凍サイクル。
The controller is
At least during oil leveling operation in which lubricating oil is moved between the housings of each of the plurality of multistage compressors through the oil leveling path,
Controlling the opening of the bypass valve;
The refrigeration cycle according to claim 1 or 2, characterized in that.
前記多段圧縮機から吐出された冷媒の温度である吐出温度を検知する吐出温度センサを備え、
前記制御部は、
前記吐出温度を用いて前記バイパス弁の開度を制御する、
ことを特徴とする請求項1から3のいずれか一項に記載の冷凍サイクル。
A discharge temperature sensor that detects a discharge temperature that is a temperature of refrigerant discharged from the multistage compressor;
The controller is
Control the opening of the bypass valve using the discharge temperature,
The refrigeration cycle according to any one of claims 1 to 3, wherein
前記バイパス弁は、
流量を調整可能な流量調整弁であり、
前記複数のバイパス経路のそれぞれに備えられている、
ことを特徴とする請求項1から4のいずれか一項に記載の冷凍サイクル。
The bypass valve is
This is a flow control valve that can adjust the flow rate.
Provided in each of the plurality of bypass paths;
The refrigeration cycle according to any one of claims 1 to 4, wherein
前記冷媒回路を循環する冷媒としてCOが用いられている、
ことを特徴とする請求項1から5のいずれか一項に記載の冷凍サイクル。
CO 2 is used as a refrigerant circulating in the refrigerant circuit,
The refrigeration cycle according to any one of claims 1 to 5, wherein:
JP2016008819A 2016-01-20 2016-01-20 Refrigeration cycle with multiple multi-stage compressors connected in parallel Active JP6718240B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016008819A JP6718240B2 (en) 2016-01-20 2016-01-20 Refrigeration cycle with multiple multi-stage compressors connected in parallel
PCT/JP2017/001519 WO2017126539A1 (en) 2016-01-20 2017-01-18 Refrigeration cycle provided with plurality of multistage compressors connected in parallel
CN201780004242.XA CN108369037B (en) 2016-01-20 2017-01-18 Refrigeration cycle having a plurality of multistage compressors connected in parallel
EP17741416.6A EP3379169A4 (en) 2016-01-20 2017-01-18 Refrigeration cycle provided with plurality of multistage compressors connected in parallel
AU2017209481A AU2017209481B2 (en) 2016-01-20 2017-01-18 Refrigeration cycle provided with plurality of multistage compressors connected in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008819A JP6718240B2 (en) 2016-01-20 2016-01-20 Refrigeration cycle with multiple multi-stage compressors connected in parallel

Publications (2)

Publication Number Publication Date
JP2017129310A true JP2017129310A (en) 2017-07-27
JP6718240B2 JP6718240B2 (en) 2020-07-08

Family

ID=59361822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008819A Active JP6718240B2 (en) 2016-01-20 2016-01-20 Refrigeration cycle with multiple multi-stage compressors connected in parallel

Country Status (5)

Country Link
EP (1) EP3379169A4 (en)
JP (1) JP6718240B2 (en)
CN (1) CN108369037B (en)
AU (1) AU2017209481B2 (en)
WO (1) WO2017126539A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300275A (en) * 2017-08-08 2017-10-27 广东欧科空调制冷有限公司 The damping Fen Ye mechanisms and air conditioner of a kind of compressor set
JP2019045002A (en) * 2017-08-30 2019-03-22 アイシン精機株式会社 Control method of heat pump

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151262B2 (en) * 2018-08-10 2022-10-12 富士電機株式会社 Heat pump device and refrigerant flow rate calculation method
CN109682105B (en) * 2019-02-12 2024-04-09 珠海格力电器股份有限公司 Air Conditioning System
CN110553834B (en) * 2019-09-09 2021-02-09 广州兰石技术开发有限公司 Accelerated life test system for refrigeration valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200852A (en) * 1995-01-31 1996-08-06 Daikin Ind Ltd Refrigerator
JP2001116376A (en) * 1999-10-20 2001-04-27 Sharp Corp Supercritical vapor compression type refrigerating cycle
JP2009109065A (en) * 2007-10-29 2009-05-21 Hitachi Appliances Inc Refrigeration system
JP2011179783A (en) * 2010-03-03 2011-09-15 Hitachi Appliances Inc Refrigerating device
JP2013053758A (en) * 2011-08-31 2013-03-21 Mitsubishi Heavy Ind Ltd Supercritical cycle and heat pump hot-water supplier using the same
JP5193011B2 (en) * 2008-12-09 2013-05-08 三菱重工業株式会社 Refrigeration cycle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387411B2 (en) * 2007-11-30 2013-03-05 Daikin Industries, Ltd. Refrigeration apparatus
JP2010112579A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Refrigerating device
EP2339265B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
CN104048453B (en) * 2013-03-12 2016-01-06 珠海格力电器股份有限公司 The equal oily control method of compressor assembly and Multi-compressor parallel system
CN104197595B (en) * 2014-09-01 2016-08-24 珠海格力电器股份有限公司 Judge method and the heat transmission equipment of the air compensation whether over range of double-stage compressor
CN105180493B (en) * 2015-09-01 2019-12-24 珠海格力电器股份有限公司 Compressor module, multi-module unit and oil balancing control method of multi-module unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200852A (en) * 1995-01-31 1996-08-06 Daikin Ind Ltd Refrigerator
JP2001116376A (en) * 1999-10-20 2001-04-27 Sharp Corp Supercritical vapor compression type refrigerating cycle
JP2009109065A (en) * 2007-10-29 2009-05-21 Hitachi Appliances Inc Refrigeration system
JP5193011B2 (en) * 2008-12-09 2013-05-08 三菱重工業株式会社 Refrigeration cycle
JP2011179783A (en) * 2010-03-03 2011-09-15 Hitachi Appliances Inc Refrigerating device
JP2013053758A (en) * 2011-08-31 2013-03-21 Mitsubishi Heavy Ind Ltd Supercritical cycle and heat pump hot-water supplier using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300275A (en) * 2017-08-08 2017-10-27 广东欧科空调制冷有限公司 The damping Fen Ye mechanisms and air conditioner of a kind of compressor set
JP2019045002A (en) * 2017-08-30 2019-03-22 アイシン精機株式会社 Control method of heat pump

Also Published As

Publication number Publication date
AU2017209481B2 (en) 2019-07-11
EP3379169A1 (en) 2018-09-26
WO2017126539A1 (en) 2017-07-27
CN108369037A (en) 2018-08-03
CN108369037B (en) 2020-05-26
JP6718240B2 (en) 2020-07-08
EP3379169A4 (en) 2018-10-03
AU2017209481A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2017126539A1 (en) Refrigeration cycle provided with plurality of multistage compressors connected in parallel
WO2014068967A1 (en) Refrigeration device
JP5502459B2 (en) Refrigeration equipment
KR20070065417A (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
WO2006025530A1 (en) Refrigerating apparatus
JP7122507B2 (en) refrigeration cycle equipment
JP3861913B1 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP2015148406A (en) Refrigeration device
JP2015148407A (en) Refrigeration device
JP5496645B2 (en) Refrigeration equipment
JP6080031B2 (en) Refrigeration equipment
KR101332478B1 (en) Freezing device
JP2013155972A (en) Refrigeration device
JP2011133210A (en) Refrigerating apparatus
JP5659909B2 (en) Heat pump equipment
JP2011137557A (en) Refrigerating apparatus
JPWO2017138419A1 (en) Refrigeration equipment
KR20110074710A (en) Freezing device
JP2014159950A (en) Freezer
JP6555584B2 (en) Refrigeration equipment
JP7078724B2 (en) Refrigeration cycle device and its control method
JP2005134080A (en) Refrigerator
JP2008232564A (en) Refrigerating device and control method for refrigerating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150