JPH08200852A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH08200852A
JPH08200852A JP1354395A JP1354395A JPH08200852A JP H08200852 A JPH08200852 A JP H08200852A JP 1354395 A JP1354395 A JP 1354395A JP 1354395 A JP1354395 A JP 1354395A JP H08200852 A JPH08200852 A JP H08200852A
Authority
JP
Japan
Prior art keywords
outdoor unit
oil
compression mechanism
outdoor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1354395A
Other languages
Japanese (ja)
Other versions
JP3550772B2 (en
Inventor
Ikuji Ishii
郁司 石井
Mari Sada
真理 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP01354395A priority Critical patent/JP3550772B2/en
Publication of JPH08200852A publication Critical patent/JPH08200852A/en
Application granted granted Critical
Publication of JP3550772B2 publication Critical patent/JP3550772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/21Modules for refrigeration systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To improve the comfortableness of air conditioning by eliminating frequent oil returning. CONSTITUTION: The refrigerator comprises a plurality of outdoor units 2A, 2B, ... and a plurality of indoor units 3A, 3B, ... A plurality of types of coefficients corresponding to the difference of the oil feeding amount fed from a compressing mechanism 21 and the oil returning amount returned to the mechanism 21 are set based on the operating capacity of the mechanism 21, and the coefficient is added corresponding to the capacity of the mechanism 21. When the added value added with the coefficient becomes a predetermined value, the oil returning of a lubricant is executed. Further, when the opening of an indoor motor operated expansion valve 32 is limited, the coefficient is set to a large specific value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数台の熱源ユニット
を備えた冷凍装置に関し、特に、油戻し対策に係るもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus having a plurality of heat source units, and more particularly to a measure for returning oil.

【0002】[0002]

【従来の技術】従来より、冷凍装置としての空気調和装
置には、WO94/19654号公報に開示されている
ように、圧縮機と四路切換弁と室外熱交換器と室外電動
膨張弁とを備えた2台の室外ユニットがメイン液ライン
とメインガスラインに対して並列に接続される一方、室
内電動膨張弁と室内熱交換器とを備えた複数台の室内ユ
ニットが上記メイン液ラインとメインガスラインに対し
て並列に接続されて構成されているものがある。
2. Description of the Related Art Conventionally, as disclosed in WO94 / 19654, an air conditioner as a refrigeration system has a compressor, a four-way switching valve, an outdoor heat exchanger, and an outdoor electric expansion valve. The two provided outdoor units are connected in parallel to the main liquid line and the main gas line, while the plurality of indoor units provided with an indoor electric expansion valve and an indoor heat exchanger are provided with the main liquid line and the main liquid line. Some are configured to be connected in parallel to the gas line.

【0003】そして、冷房運転時においては、各室外ユ
ニットの圧縮機から吐出した冷媒は、室外熱交換器で凝
縮してメイン液ラインで合流し、その後、上記冷媒は、
室内電動膨脹弁で減圧して室内熱交換器で蒸発し、メイ
ンガスラインから各室外ユニットに分流して各室外ユニ
ットの圧縮機に戻ることになる。
During the cooling operation, the refrigerant discharged from the compressor of each outdoor unit is condensed in the outdoor heat exchanger and merges in the main liquid line.
It is decompressed by the indoor electric expansion valve, evaporated by the indoor heat exchanger, divided from the main gas line to each outdoor unit, and returned to the compressor of each outdoor unit.

【0004】一方、暖房運転時においては、各室外ユニ
ットの圧縮機から吐出した冷媒は、メインガスラインで
合流した後、室内熱交換器で凝縮してメイン液ラインか
ら各室外ユニットに分流し、その後、上記冷媒は、各室
外ユニットの室外電動膨脹弁で減圧して室外熱交換器で
蒸発し、圧縮機に戻ることになる。
On the other hand, during the heating operation, the refrigerant discharged from the compressor of each outdoor unit merges in the main gas line and then condenses in the indoor heat exchanger to be diverted from the main liquid line to each outdoor unit. After that, the refrigerant is decompressed by the outdoor electric expansion valve of each outdoor unit, evaporated in the outdoor heat exchanger, and returned to the compressor.

【0005】[0005]

【発明が解決しようとする課題】上述した空気調和装置
において、従来、圧縮機の積算運転時間のみで油戻し運
転の間隔を定めていたので、油戻し運転の間隔が短くな
り、快適な空調を行うことができないという問題があっ
た。
In the air conditioner described above, the oil return operation interval is conventionally determined only by the cumulative operation time of the compressor, so that the oil return operation interval is shortened and comfortable air conditioning is achieved. There was a problem that I could not do it.

【0006】つまり、1台の圧縮機を有する室外ユニッ
トを備えた空気調和装置では、図6に示すように、圧縮
機から流出する潤滑油の油上り量は、冷媒の循環量に比
例し、つまり、圧縮機の運転容量を増大するにしたがっ
て増加する(図6A1参照)。一方、圧縮機に戻る循環量
の油戻り量は、圧縮機の運転容量を増大するにしたがっ
て増加するものの(図6B1参照)、圧縮機の運転容量が
小さい領域では、油上り量よりもやや少なく、圧縮機の
運転容量が所定容量より大きくなると、油上り量よりも
多くなる。したがって、油戻り量が油上り量よりも最も
少なくなる点M1を基準に油戻し運転を実行するように設
定すればよい。
That is, in the air conditioner equipped with the outdoor unit having one compressor, as shown in FIG. 6, the amount of lubricating oil flowing out from the compressor is proportional to the circulation amount of the refrigerant, That is, it increases as the operating capacity of the compressor increases (see FIG. 6A1). On the other hand, the oil return amount of the circulation amount returning to the compressor increases as the operating capacity of the compressor increases (see Fig. 6B1), but in the region where the operating capacity of the compressor is small, it is slightly smaller than the oil rise amount. When the operating capacity of the compressor becomes larger than the predetermined capacity, it becomes larger than the oil rising amount. Therefore, the oil return operation may be set on the basis of the point M1 at which the oil return amount becomes smaller than the oil upstream amount.

【0007】しかしながら、上述したように複数台の室
外ユニットを設置する空気調和装置では、複数台の圧縮
機を設けており、その上、運転容量が大きく、冷媒配管
径も大きいため、図5に示すように、圧縮機の運転容量
が小さい領域において、油上り量が図6に比して大きく
なり、且つ油戻り量も少なくなる。
However, in the air conditioner in which a plurality of outdoor units are installed as described above, a plurality of compressors are provided, and in addition, the operating capacity is large and the diameter of the refrigerant pipe is large. As shown in the figure, in a region where the operating capacity of the compressor is small, the oil rise amount is larger and the oil return amount is smaller than that in FIG.

【0008】この結果、上述と同様に、油戻り量が油上
り量よりも最も少なくなる点M2を基準に油戻し運転を実
行するように設定すると、油戻し運転が頻繁に実行され
ることになり、快適性が損なわれるという問題があっ
た。
As a result, similar to the above, if the oil return operation is set to be performed on the basis of the point M2 at which the oil return amount is smaller than the oil rising amount, the oil return operation is frequently executed. However, there was a problem that comfort was lost.

【0009】本発明は、斯かる点に鑑みてなされたもの
で、油戻し運転が頻繁に行われないようにして空調の快
適性の向上を図ることを目的とするものである。
The present invention has been made in view of the above points, and an object thereof is to improve comfort of air conditioning by preventing frequent oil return operation.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明が講じた手段は、油上り量と油戻り量との
関係に対応して油戻し運転の間隔を可変にしたものであ
る。
Means for Solving the Problems In order to achieve the above-mentioned object, the means taken by the present invention is one in which the oil return operation interval is made variable in accordance with the relationship between the oil rising amount and the oil returning amount. Is.

【0011】具体的に、図1に示すように、請求項1に
係る発明が講じた手段は、先ず、圧縮機構(21)と、一
端が圧縮機構(21)に接続され且つ他端に分岐液ライン
(5L-A,5L-B,…)が接続された熱源側熱交換器(23)
とを有し、上記圧縮機構(21)に分岐ガスライン(5G-
A,5G-B,…)が接続された複数の熱源ユニット(2A,2
B,…)が設けられている。そして、該各熱源ユニット
(2A,2B,…)が分岐液ライン(5L-A,5L-B,…)及び
分岐ガスライン(5G-A,5G-B,…)を介して並列に接続
されるメイン液ライン(4L)及びメインガスライン(4
G)が設けられている。更に、膨脹機構(32)と利用側
熱交換器(31)とを有し、上記メイン液ライン(4L)及
びメインガスライン(4G)に対して並列に接続された複
数台の利用ユニット(3A,3B,…)が設けられた冷凍装
置を対象としている。そして、上記圧縮機構(21)から
流出する油上り量と圧縮機構(21)に戻る油戻り量との
差に対応した係数が圧縮機構(21)の運転容量に基づい
て複数種類設定され、上記圧縮機構(21)の運転容量に
対応して上記係数を加算する係数演算手段(81)が設け
られている。加えて、該係数演算手段(81)が加算した
加算値が所定値になると、油戻し運転を実行し、上記係
数演算手段(81)をリセットする油戻し制御手段(82)
が設けられている。
Specifically, as shown in FIG. 1, the means taken by the invention according to claim 1 is such that a compression mechanism (21) is first connected to the compression mechanism (21) at one end and branched to the other end. Heat source side heat exchanger (23) to which liquid lines (5L-A, 5L-B, ...) are connected
And a branch gas line (5G-
A, 5G-B, ...) multiple heat source units (2A, 2)
B, ...) are provided. The heat source units (2A, 2B, ...) Are connected in parallel via the branch liquid lines (5L-A, 5L-B, ...) And the branch gas lines (5G-A, 5G-B, ...). Main liquid line (4 L) and main gas line (4 L
G) is provided. Further, a plurality of utilization units (3A) having an expansion mechanism (32) and a utilization side heat exchanger (31) are connected in parallel to the main liquid line (4L) and the main gas line (4G). , 3B, ...) are provided for the refrigerator. A plurality of types of coefficients corresponding to the difference between the amount of oil rising from the compression mechanism (21) and the amount of oil returned to the compression mechanism (21) are set based on the operating capacity of the compression mechanism (21). Coefficient calculation means (81) for adding the above-mentioned coefficient corresponding to the operating capacity of the compression mechanism (21) is provided. In addition, when the added value added by the coefficient calculation means (81) reaches a predetermined value, an oil return operation is executed and the oil return control means (82) resets the coefficient calculation means (81).
Is provided.

【0012】また、請求項2に係る発明が講じた手段
は、上記請求項1の発明において、係数演算手段(81)
が、膨脹機構(32)の開度が制限さると、係数を大きな
特殊値に設定するように構成されたものである。
The means taken by the invention according to claim 2 is the coefficient calculating means (81) according to the invention of claim 1 above.
However, when the opening degree of the expansion mechanism (32) is limited, the coefficient is set to a large special value.

【0013】[0013]

【作用】上記の構成により、請求項1に係る発明では、
冷房運転又暖房運転時において、係数演算手段(81)
は、各熱源ユニット(2A,2B,…)の圧縮機構(21)か
ら流出する油上り量と圧縮機構(21)に戻る油戻り量と
の差に対応した係数が圧縮機構(21)の運転容量に基づ
いて複数種類設定されているので、圧縮機構(21)の運
転容量に対応して上記係数を加算することになる。そし
て、油戻し制御手段(82)は、上記係数演算手段(81)
が加算した加算値が所定値になると、例えば、100に
成ると、油戻し運転を実行し、上記係数演算手段(81)
をリセットすることになる。
With the above construction, in the invention according to claim 1,
Coefficient calculation means (81) during cooling operation or heating operation
Is a coefficient corresponding to the difference between the amount of oil flowing out from the compression mechanism (21) of each heat source unit (2A, 2B, ...) And the amount of oil returned to the compression mechanism (21). Since a plurality of types are set based on the capacity, the above coefficient will be added according to the operating capacity of the compression mechanism (21). The oil return control means (82) is provided with the coefficient calculation means (81).
When the addition value obtained by adding becomes a predetermined value, for example, when it becomes 100, the oil return operation is executed, and the coefficient calculating means (81).
Will be reset.

【0014】また、請求項2に係る発明では、上記係数
演算手段(81)は、利用ユニット(3A,3B,…)の膨脹
機構(32)の開度が制限さると、冷媒循環量が低下する
ので、係数を大きな特殊値に設定し、油戻し運転を早期
に実行することになる。
In the invention according to claim 2, the coefficient calculating means (81) reduces the refrigerant circulation amount when the opening degree of the expansion mechanism (32) of the utilization unit (3A, 3B, ...) Is limited. Therefore, the coefficient is set to a large special value, and the oil return operation is executed early.

【0015】[0015]

【発明の効果】従って、請求項1に係る発明によれば、
油上り量と油戻り量とに対応した間隔で油戻し運転を実
行するようにしたために、油戻しを確実に行うことがで
きるので、信頼性の高い運転を実行することができる。
Therefore, according to the first aspect of the present invention,
Since the oil return operation is executed at intervals corresponding to the oil rising amount and the oil return amount, the oil return can be reliably performed, so that the operation with high reliability can be executed.

【0016】また、油戻りが行われ難い状態を基準に油
戻し運転の間隔を設定しないので、この油戻し運転を頻
繁に行うことがないことから、快適性の向上を図ること
ができる。
Further, since the interval of the oil return operation is not set on the basis of the state where the oil return is difficult to be performed, the oil return operation is not frequently performed, so that the comfort can be improved.

【0017】また、請求項2に係る発明によれば、膨脹
機構(32)の開度が設定されると、油戻し運転の間隔を
短くすることができるので、油切れを確実に防止するこ
とができる。
Further, according to the second aspect of the invention, when the opening degree of the expansion mechanism (32) is set, the interval of the oil return operation can be shortened, so that the oil shortage can be reliably prevented. You can

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】−全体構成− 図2に示すように、本実施例における冷凍装置としての
空気調和装置(10)は、3台の室外ユニット(2A,2B,
2C)と3台の室内ユニット(3A,3B,3C)がメイン液ラ
イン(4L)及びメインガスライン(4G)に対してそれぞ
れ並列に接続されて構成されている。
-Overall Structure-As shown in FIG. 2, the air conditioner (10) as a refrigerating device in this embodiment has three outdoor units (2A, 2B,
2C) and three indoor units (3A, 3B, 3C) are connected in parallel to the main liquid line (4L) and the main gas line (4G), respectively.

【0020】各室外ユニット(2A,2B,2C)は、圧縮機
構(21)と、四路切換弁(22)と、室外ファン(23-F)
が近接配置された熱源側熱交換器である室外熱交換器
(23)と、室外電動膨張弁(24)とを備えて熱源ユニッ
トを構成している。上記室外熱交換器(23)におけるガ
ス側である一端には冷媒配管(25)が、液側である他端
には分岐液ライン(5L-A,5L-B,5L-C)がそれぞれ接続
されている。
Each outdoor unit (2A, 2B, 2C) includes a compression mechanism (21), a four-way switching valve (22), and an outdoor fan (23-F).
A heat source unit is configured by including an outdoor heat exchanger (23), which is a heat source-side heat exchanger arranged in close proximity, and an outdoor electric expansion valve (24). The refrigerant pipe (25) is connected to one end on the gas side of the outdoor heat exchanger (23), and the branch liquid lines (5L-A, 5L-B, 5L-C) are connected to the other end on the liquid side. Has been done.

【0021】上記ガス側の冷媒配管(25)は、四路切換
弁(22)によって圧縮機構(21)の吐出側と吸込側とに
切換可能に接続される一方、分岐液ライン(5L-A,5L-
B,5L-C)は、上記室外電動膨張弁(24)が設けられて
室外熱交換器(23)とメイン液ライン(4L)とに接続さ
れている。そして、上記各分岐液ライン(5L-A,5L-B,
5L-C)とメイン液ライン(4L)との接続部には、レシー
バ(11)が設けられ、該レシーバ(11)によって各分岐
液ライン(5L-A,5L-B,5L-C)とメイン液ライン(4L)
とが接続されている。
The gas side refrigerant pipe (25) is switchably connected to the discharge side and the suction side of the compression mechanism (21) by a four-way switching valve (22), while the branch liquid line (5L-A) is connected. , 5L-
B, 5L-C) is provided with the outdoor electric expansion valve (24) and is connected to the outdoor heat exchanger (23) and the main liquid line (4L). And, each of the above branch liquid lines (5L-A, 5L-B,
5L-C) and the main liquid line (4L) are connected to each other by a receiver (11), and the receiver (11) connects the branched liquid lines (5L-A, 5L-B, 5L-C) to each other. Main liquid line (4L)
And are connected.

【0022】上記圧縮機構(21)には、分岐ガスライン
(5G-A,5G-B,5G-C)が冷媒配管(25)及び四路切換弁
(22)を介して接続され、該分岐ガスライン(5G-A,5G
-B,5G-C)は、四路切換弁(22)によって圧縮機構(2
1)の吸込側と吐出側とに切換可能に接続されると共
に、メインガスライン(4G)に接続されている。そし
て、上記圧縮機構(21)の吸込側と四路切換弁(22)と
の間の冷媒配管(25)にはアキュムレータ(26)が設け
られている。
A branch gas line (5G-A, 5G-B, 5G-C) is connected to the compression mechanism (21) through a refrigerant pipe (25) and a four-way switching valve (22), and the branch Gas line (5G-A, 5G
-B, 5G-C) uses a four-way switching valve (22) to compress the compression mechanism (2
It is switchably connected to the suction side and the discharge side of 1) and is connected to the main gas line (4G). An accumulator (26) is provided in the refrigerant pipe (25) between the suction side of the compression mechanism (21) and the four-way switching valve (22).

【0023】上記3台の室外ユニット(2A,2B,2C)の
うち第1室外ユニット(2A)が親機に、第2室外ユニッ
ト(2B)及び第3室外ユニット(2C)が子機に構成さ
れ、該第1室外ユニット(2A)が第2室外ユニット(2
B)及び第3室外ユニット(2C)に先行して駆動するよ
うに構成され、第1室外ユニット(2A)と第2室外ユニ
ット(2B)及び第3室外ユニット(2C)とは主として圧
縮機構(21)の構成が異なっている。つまり、第1室外
ユニット(2A)の圧縮機構(21)は、図3に示すよう
に、インバータ制御されて多数段階に容量制御される可
変容量型の上流側圧縮機(COMP-1)と、運転及び停止の
2種類に制御される定容量型の下流側圧縮機(COMP-2)
とが並列に接続された所謂ツイン型に構成されている。
一方、第2室外ユニット(2B)及び第3室外ユニット
(2C)の圧縮機構(21)は、図4に示すように、上流側
圧縮機(COMP-1)と下流側圧縮機(COMP-2)とが何れも
運転及び停止の2種類に制御される定容量型の圧縮機で
構成され、該上流側圧縮機(COMP-1)と下流側圧縮機
(COMP-2)とが並列に接続された所謂ツイン型に構成さ
れている。そして、何れの室外ユニット(2A,2B,2C)
においても上流側圧縮機(COMP-1)が下流側圧縮機(CO
MP-2)に先行して駆動するように構成されている。
Of the three outdoor units (2A, 2B, 2C), the first outdoor unit (2A) is the master unit, and the second outdoor unit (2B) and the third outdoor unit (2C) are the slave units. The first outdoor unit (2A) is replaced by the second outdoor unit (2A).
B) and the third outdoor unit (2C) are configured to be driven in advance, and the first outdoor unit (2A), the second outdoor unit (2B), and the third outdoor unit (2C) are mainly compression mechanisms ( The composition of 21) is different. That is, the compression mechanism (21) of the first outdoor unit (2A) is, as shown in FIG. 3, an inverter-controlled variable capacity upstream compressor (COMP-1) whose capacity is controlled in multiple stages, Constant capacity type downstream compressor (COMP-2) controlled by two types of operation and stop
It is configured as a so-called twin type in which and are connected in parallel.
On the other hand, as shown in FIG. 4, the compression mechanism (21) of the second outdoor unit (2B) and the third outdoor unit (2C) includes an upstream compressor (COMP-1) and a downstream compressor (COMP-2). 2) and 2) are both constant capacity compressors that are controlled to operate and stop, and the upstream compressor (COMP-1) and the downstream compressor (COMP-2) are connected in parallel. It is configured as a so-called twin type. And which outdoor unit (2A, 2B, 2C)
Even in the upstream side compressor (COMP-1)
It is configured to drive prior to MP-2).

【0024】一方、各室内ユニット(3A,3B,3C)は、
室内ファン(31-F)が近接配置された利用側熱交換器で
ある室内熱交換器(31)と、利用側膨脹機構である室内
電動膨張弁(32)とを備えて利用ユニットを構成してい
る。そして、該室内熱交換器(31)は、室内液配管(3
L)及び室内ガス配管(3G)を介してメイン液ライン(4
L)及びメインガスライン(4G)に接続され、該室内液
配管(3L)に室内電動膨張弁(32)が設けられている。
On the other hand, each indoor unit (3A, 3B, 3C) is
An indoor heat exchanger (31), which is a usage-side heat exchanger in which an indoor fan (31-F) is arranged in close proximity, and an indoor electric expansion valve (32), which is a usage-side expansion mechanism, constitute a usage unit. ing. The indoor heat exchanger (31) is connected to the indoor liquid pipe (3
L) and the main liquid line (4) via the indoor gas pipe (3G)
L) and the main gas line (4G), and an indoor electric expansion valve (32) is provided in the indoor liquid pipe (3L).

【0025】−配管ユニットの構成− 上記空気調和装置(10)は、接続回路部である配管ユニ
ット(12)が設けられており、該配管ユニット(12)
は、各室外ユニット(2A,2B,2C)の分岐液ライン(5L
-A,5L-B,5L-C)及び分岐ガスライン(5G-A,5G-B,5G
-C)とメイン液ライン(4L)及びメインガスライン(4
G)とを接続している。
-Structure of Piping Unit- The air conditioner (10) is provided with a piping unit (12) which is a connection circuit section, and the piping unit (12).
Is the branch liquid line (5L) of each outdoor unit (2A, 2B, 2C).
-A, 5L-B, 5L-C) and branch gas lines (5G-A, 5G-B, 5G)
-C) and main liquid line (4L) and main gas line (4L)
G) is connected to.

【0026】具体的に、分岐液ライン(5L-A,5L-B,5L
-C)は、各室外ユニット(2A,2B,2C)より外部に延び
る分岐液管(5LAa,5LBa,5LCa)と、該分岐液管(5LA
a,5LBa,5LCa)の外端に連続する分岐液通路(5LAb,5
LBb,5LCb)とより構成されている。上記分岐ガスライ
ン(5G-A,5G-B,5G-C)は、室外ユニット(2A,2B,2
C)より外部に延びる分岐ガス管(5GAa,5GBa,5GCa)
と、該分岐ガス管(5GAa,5GBa,5GCa)の外端に連続す
る分岐ガス通路(5GAb,5GBb,5GCb)とより構成されて
いる。
Specifically, the branch liquid lines (5L-A, 5L-B, 5L
-C) is a branch liquid pipe (5LAa, 5LBa, 5LCa) extending outside from each outdoor unit (2A, 2B, 2C) and the branch liquid pipe (5LA).
a, 5LBa, 5LCa) branch liquid passage (5LAb, 5)
LBb, 5LCb). The branch gas lines (5G-A, 5G-B, 5G-C) are the outdoor units (2A, 2B, 2
Branch gas pipe extending from C) to the outside (5GAa, 5GBa, 5GCa)
And a branch gas passage (5GAb, 5GBb, 5GCb) continuous to the outer end of the branch gas pipe (5GAa, 5GBa, 5GCa).

【0027】上記メイン液ライン(4L)は、室内ユニッ
ト(3A,3B,3C)の室内液配管(3L)に接続されるメイ
ン液管(4L-a)と、該メイン液管(4L-a)の一端に連続
し且つ各室外ユニット(2A,2B,2C)の分岐液通路(5L
Ab,5LBb,5LCb)がレシーバ(11)を介して連通するメ
イン液通路(4L-b)とより構成されている。上記メイン
ガスライン(4G)は、室内ユニット(3A,3B,3C)の室
内ガス配管(3G)に接続されるメインガス管(4G-a)
と、該メインガス管(4G-a)の一端に連続し且つ各室外
ユニット(2A,2B,2C)の分岐ガス通路(5GAb,5GBb,
5GCb)が連続するメインガス通路(4G-b)とより構成さ
れている。
The main liquid line (4L) is connected to the indoor liquid pipe (3L) of the indoor unit (3A, 3B, 3C), and the main liquid pipe (4L-a). ) And the branch liquid passage (5L) of each outdoor unit (2A, 2B, 2C)
Ab, 5LBb, 5LCb) and the main liquid passage (4L-b) that communicates via the receiver (11). The main gas line (4G) is a main gas pipe (4G-a) connected to the indoor gas pipe (3G) of the indoor unit (3A, 3B, 3C).
And a branch gas passage (5GAb, 5GBb, 5Gb, 5Gb, which is continuous with one end of the main gas pipe (4G-a) and which is provided in each outdoor unit (2A, 2B, 2C).
5GCb) consists of a continuous main gas passage (4G-b).

【0028】そして、上記配管ユニット(12)は、各室
外ユニット(2A,2B,2C)側の分岐液ライン(5L-A,5L
-B,5L-C)の分岐液通路(5LAb,5LBb,5LCb)及び分岐
ガスライン(5G-A,5G-B,5G-C)の分岐ガス通路(5GA
b,5GBb,5GCb)と、メイン液ライン(4L)のメイン液
通路(4L-b)及びメインガスライン(4G)のメインガス
通路(4G-b)と、上記レシーバ(11)とが一体に形成さ
れてユニット化されている。
The piping unit (12) is a branch liquid line (5L-A, 5L) on the side of each outdoor unit (2A, 2B, 2C).
-B, 5L-C) branch liquid passage (5LAb, 5LBb, 5LCb) and branch gas line (5G-A, 5G-B, 5G-C) branch gas passage (5GA)
b, 5GBb, 5GCb), the main liquid passage (4L-b) of the main liquid line (4L) and the main gas passage (4G-b) of the main gas line (4G), and the receiver (11) are integrated. It is formed and unitized.

【0029】更に、上記配管ユニット(12)には、第1
ガス開閉弁(VR-1)と第2ガス開閉弁(VR-2)とが一体
にユニット化されている。該第1ガス開閉弁(VR-1)
は、第2室外ユニット(2B)側の分岐ガス通路(5GBb)
に設けられて該分岐ガス通路(5GBb)を開閉する開閉機
構を構成する一方、第2ガス開閉弁(VR-2)は、第3室
外ユニット(2C)側の分岐ガス通路(5GCb)に設けられ
て該分岐ガス通路(5GCb)を開閉する開閉機構を構成し
ている。
Further, the piping unit (12) has a first
The gas on-off valve (VR-1) and the second gas on-off valve (VR-2) are integrated into a unit. The first gas on-off valve (VR-1)
Is the branch gas passage (5GBb) on the second outdoor unit (2B) side
The second gas opening / closing valve (VR-2) is provided in the branch gas passage (5GCb) on the side of the third outdoor unit (2C) while the opening / closing mechanism is provided to open and close the branch gas passage (5GBb). Thus, an opening / closing mechanism for opening / closing the branch gas passage (5GCb) is configured.

【0030】上記第1ガス開閉弁(VR-1)及び第2ガス
開閉弁(VR-2)は、外部均圧型可逆弁で構成されてパイ
ロット回路(50)が接続されている。該パイロット回路
(50)は、2つの逆止弁(CV,CV)を有し、且つ第1室
外ユニット(2A)側の分岐ガス通路(5GAb)と、後述す
る第1室外ユニット(2A)側の第1均油補助通路(77-
A)とに接続されて高圧冷媒を導く高圧回路(51)を備
えると共に、2つの逆止弁(CV,CV)を有し、且つ第1
室外ユニット(2A)側の分岐ガス通路(5GAb)と、後述
する第1室外ユニット(2A)側の第1均圧補助通路(77
-A)とに接続されて低圧状態を保持する低圧回路(52)
とを備えている。
The first gas on-off valve (VR-1) and the second gas on-off valve (VR-2) are external pressure equalizing type reversible valves and connected to the pilot circuit (50). The pilot circuit (50) has two check valves (CV, CV), a branch gas passage (5GAb) on the first outdoor unit (2A) side, and a first outdoor unit (2A) side described later. The first oil leveling auxiliary passage (77-
A) is provided with a high pressure circuit (51) that is connected to (A) and guides high pressure refrigerant, and has two check valves (CV, CV), and
A branch gas passage (5GAb) on the outdoor unit (2A) side and a first pressure equalizing auxiliary passage (77 on the first outdoor unit (2A) side, which will be described later.
-A) Low voltage circuit (52) connected to and maintaining a low voltage state
It has and.

【0031】そして、上記パイロット回路(50)は、切
換弁(50-S)によって高圧回路(51)と低圧回路(52)
とを第1ガス開閉弁(VR-1)及び第2ガス開閉弁(VR-
2)に切換え接続し、暖房運転時における第2室外ユニ
ット(2B)の停止時に第1ガス開閉弁(VR-1)を全閉に
なるように制御し、また、暖房運転時における第3室外
ユニット(2C)の停止時に第2ガス開閉弁(VR-2)を全
閉になるように制御している。
The pilot circuit (50) includes a high pressure circuit (51) and a low pressure circuit (52) by means of a switching valve (50-S).
And the first gas on-off valve (VR-1) and the second gas on-off valve (VR-
2) is switched and connected to control the first gas on-off valve (VR-1) to be fully closed when the second outdoor unit (2B) is stopped during heating operation, and the third outdoor unit during heating operation. The second gas on-off valve (VR-2) is controlled to be fully closed when the unit (2C) is stopped.

【0032】尚、上記第2室外ユニット(2B)及び第3
室外ユニット(2C)の室外電動膨張弁(24,24)は、配
管ユニット(12)に設けられていないが、上記第1ガス
開閉弁(VR-1)及び第2開閉弁に対応して、各分岐液ラ
イン(5L-A,5L-B,5L-C)を開閉する開閉機構を兼用し
ており、冷房運転時及び暖房運転時における第2室外ユ
ニット(2B)及び第3室外ユニット(2C)の停止時に全
閉になるように構成されている。
The second outdoor unit (2B) and the third outdoor unit
The outdoor electric expansion valve (24, 24) of the outdoor unit (2C) is not provided in the piping unit (12), but corresponds to the first gas on-off valve (VR-1) and the second on-off valve, It also serves as an opening / closing mechanism that opens and closes each of the branched liquid lines (5L-A, 5L-B, 5L-C), and the second outdoor unit (2B) and the third outdoor unit (2C) during cooling operation and heating operation. ) Is configured to be fully closed when stopped.

【0033】−均圧ラインの構成− 上記各室外ユニット(2A,2B,2C)の間には均圧ライン
(60)が接続されており、該均圧ライン(60)は、各室
外ユニット(2A,2B,2C)における室外熱交換器(23)
のガス側冷媒配管(25,25,25)に接続され、各室外ユ
ニット(2A,2B,2C)の間で双方向の冷媒流通を許容す
るように構成されている。更に、上記均圧ライン(60)
は、各室外ユニット(2A,2B,2C)より外側に延びる均
圧管(61-A,61-B,61-C)の外端に均圧通路(62)が連
続して構成されている。そして、上記均圧通路(62)
は、配管ユニット(12)に形成され、第1室外ユニット
(2A)側から第2室外ユニット(2B)側と第3室外ユニ
ット(2C)側とに分岐した分岐管部に第1均圧弁(SVB
1)及び第2均圧弁(SVB2)が設けられている。
-Structure of Pressure Equalizing Line- A pressure equalizing line (60) is connected between the outdoor units (2A, 2B, 2C), and the pressure equalizing line (60) connects the outdoor units ( 2A, 2B, 2C) outdoor heat exchanger (23)
Is connected to the gas side refrigerant pipes (25, 25, 25) and is configured to allow bidirectional refrigerant flow between the outdoor units (2A, 2B, 2C). Furthermore, the pressure equalizing line (60)
Has a pressure equalizing passage (62) continuously formed at the outer ends of pressure equalizing tubes (61-A, 61-B, 61-C) extending outward from the outdoor units (2A, 2B, 2C). Then, the pressure equalizing passage (62)
Is formed in the piping unit (12) and has a first pressure equalizing valve (in the branch pipe portion branched from the first outdoor unit (2A) side to the second outdoor unit (2B) side and the third outdoor unit (2C) side. SVB
1) and the second pressure equalizing valve (SVB2) are provided.

【0034】該第1均圧弁(SVB1)は、第2室外ユニッ
ト(2B)の冷房運転の停止時に全閉となって第2室外ユ
ニット(2B)への冷媒流通を阻止し、第2均圧弁(SVB
2)は、第3室外ユニット(2C)の冷房運転の停止時に
全閉となって第3室外ユニット(2C)への冷媒流通を阻
止するように構成されている。
The first pressure equalizing valve (SVB1) is fully closed when the cooling operation of the second outdoor unit (2B) is stopped to prevent the refrigerant from flowing into the second outdoor unit (2B), and the second pressure equalizing valve (SVB1) is closed. (SVB
2) is configured to be fully closed when the cooling operation of the third outdoor unit (2C) is stopped to prevent the refrigerant from flowing to the third outdoor unit (2C).

【0035】−補助冷媒回路の構成− 上記各室外ユニット(2A,2B,2C)には、図3及び図4
に示すように、圧縮機構(21)に潤滑油を戻す油戻し機
構(70)が設けられており、該油戻し機構(70)は、油
分離器(71)と第1油戻し管(72)と第2油戻し管(7
3)と均油バイパス管(74)とを備えている。一方、上
記冷媒配管(25)の一部である下流側圧縮機(COMP-2)
の吸込管(25-S)は、上流側圧縮機(COMP-1)の吸込管
(25-S)より圧力損失が大きく設定され、両圧縮機(CO
MP-1,COMP-2)の間に均油管(75)が接続されている。
この結果、高圧側となる上流側圧縮機(COMP-1)より低
圧側となる下流側圧縮機(COMP-2)に潤滑油が供給され
る。
-Structure of Auxiliary Refrigerant Circuit- Each of the outdoor units (2A, 2B, 2C) has the structure shown in FIGS.
As shown in FIG. 7, an oil return mechanism (70) for returning lubricating oil to the compression mechanism (21) is provided, and the oil return mechanism (70) includes an oil separator (71) and a first oil return pipe (72). ) And the second oil return pipe (7
3) and an oil leveling bypass pipe (74). On the other hand, the downstream compressor (COMP-2) that is a part of the refrigerant pipe (25).
The pressure loss of the suction pipe (25-S) of the compressor is set larger than that of the suction pipe (25-S) of the upstream compressor (COMP-1).
The oil equalizing pipe (75) is connected between MP-1 and COMP-2.
As a result, the lubricating oil is supplied from the upstream compressor (COMP-1) on the high pressure side to the downstream compressor (COMP-2) on the low pressure side.

【0036】上記油分離器(71)は、冷媒配管(25)の
一部である上流側圧縮機(COMP-1)と下流側圧縮機(CO
MP-2)との吐出管(25-D,25-D)の合流部に配設され、
各圧縮機(COMP-1,COMP-2)の吐出管(25-D,25-D)に
は逆止弁(CV-1,CV-2)が設けられている。更に、上流
側圧縮機(COMP-1)の上部と吐出管(25-D)の逆止弁
(CV-1)より下流側との間、及び下流側圧縮機(COMP-
2)の上部と吐出管(25-D)の逆止弁(CV-2)より下流
側との間にはそれぞれ油排出管(76,76)が接続されて
いる。そして、該各油排出管(76,76)は、例えば、ス
クロール型圧縮機の上部に溜る潤滑油を吐出管(25-D,
25-D)に排出するように構成されている。また、上記上
流側圧縮機(COMP-1)の逆止弁(CV-1)は、冷媒循環量
が小さい場合、潤滑油が吐出管(25-D)より確実に排出
されるように管路抵抗を付加している。
The oil separator (71) includes an upstream side compressor (COMP-1) and a downstream side compressor (CO) which are a part of the refrigerant pipe (25).
It is arranged at the confluence of the discharge pipe (25-D, 25-D) with MP-2),
The discharge pipes (25-D, 25-D) of each compressor (COMP-1, COMP-2) are equipped with check valves (CV-1, CV-2). Furthermore, between the upper part of the upstream compressor (COMP-1) and the downstream side of the check valve (CV-1) of the discharge pipe (25-D), and the downstream compressor (COMP-
Oil discharge pipes (76, 76) are connected between the upper part of 2) and the downstream side of the check valve (CV-2) of the discharge pipe (25-D). Then, the oil discharge pipes (76, 76) are, for example, discharge pipes (25 -D,
25-D). Further, the check valve (CV-1) of the upstream compressor (COMP-1) has a pipe line to ensure that the lubricating oil is discharged from the discharge pipe (25-D) when the refrigerant circulation amount is small. Resistance is added.

【0037】上記第1油戻し管(72)は、キャピラリチ
ューブ(CP)を備えて油分離器(71)と第1圧縮機(CO
MP-1)の吸込管(25-S)とに接続され、油分離器(71)
に溜った潤滑油を常時第1圧縮機(COMP-1)に戻すよう
に構成されている。また、上記第2油戻し管(73)は、
油戻し弁(SVP2)を備えて油分離器(71)と第2圧縮機
(COMP-2)の吸込管(25-S)とに接続され、上記油戻し
弁(SVP2)は、所定時間毎に開口して油分離器(71)に
溜った潤滑油を圧縮機構(21)の吸込側に戻すように構
成されている。
The first oil return pipe (72) is provided with a capillary tube (CP) and has an oil separator (71) and a first compressor (CO).
MP-1) suction pipe (25-S) and oil separator (71)
The lubricating oil accumulated in is constantly returned to the first compressor (COMP-1). Further, the second oil return pipe (73) is
It is equipped with an oil return valve (SVP2) and is connected to the oil separator (71) and the suction pipe (25-S) of the second compressor (COMP-2). The lubricating oil that has been opened to and collected in the oil separator (71) is returned to the suction side of the compression mechanism (21).

【0038】上記均油バイパス管(74)は、均油弁(SV
O1)を備え、一端が第2油戻し管(73)の油戻し弁(SV
P2)より上流側に、他端が均圧ライン(60)の均圧管
(61-A,61-B,61-C)にそれぞれ接続されている。そし
て、該均油バイパス管(74)と共に均油運転を実行する
ために、上記均圧ライン(60)の均圧通路(62)には、
第1均圧補助通路(77-A)と第2均油補助通路(77-B)
と第3均圧補助通路(77-C)とが接続され、該各均圧補
助通路(77-A,77-B,77-C)は配管ユニット(12)に組
込まれている。
The oil equalizing bypass pipe (74) is provided with an oil equalizing valve (SV
O1) and one end of the second oil return pipe (73) is an oil return valve (SV
The other end is connected to the pressure equalizing pipes (61-A, 61-B, 61-C) of the pressure equalizing line (60) upstream of P2). Then, in order to perform an oil leveling operation together with the oil leveling bypass pipe (74), the pressure leveling passage (62) of the pressure leveling line (60) is provided with
1st pressure equalization auxiliary passage (77-A) and 2nd oil equalization auxiliary passage (77-B)
And the third pressure equalization auxiliary passage (77-C) are connected, and the respective pressure equalization auxiliary passages (77-A, 77-B, 77-C) are incorporated in the piping unit (12).

【0039】上記第1均圧補助通路(77-A)は、一端が
均圧通路(62)の第1室外ユニット(2A)側に、他端が
第2室外ユニット(2B)及び第3室外ユニット(2C)の
分岐ガス通路(5GBb,5GCb)の合流部に接続され、第1
均油補助弁(SVY1)と逆止弁(CV)とを備えている。上
記第2均圧補助通路(77-B)は、一端が均圧通路(62)
の第2室外ユニット(2B)側に、他端が第1室外ユニッ
ト(2A)の分岐ガス通路(5GAb)に接続され、第2均油
補助弁(SVY2)と逆止弁(CV)とを備えている。上記第
3均圧補助通路(77-C)は、一端が均圧通路(62)の第
3室外ユニット(2C)側に、他端が第1室外ユニット
(2A)の分岐ガス通路(5GAb)に接続され、第3均油補
助弁(SVY3)と逆止弁(CV)とを備えている。
The first pressure equalizing auxiliary passage (77-A) has one end on the first outdoor unit (2A) side of the pressure equalizing passage (62) and the other end on the second outdoor unit (2B) and the third outdoor unit. It is connected to the merging part of the branch gas passage (5GBb, 5GCb) of the unit (2C),
It is equipped with an oil leveling auxiliary valve (SVY1) and a check valve (CV). The second pressure equalizing auxiliary passage (77-B) has a pressure equalizing passage (62) at one end.
On the side of the second outdoor unit (2B), the other end is connected to the branch gas passage (5GAb) of the first outdoor unit (2A), and the second oil auxiliary auxiliary valve (SVY2) and the check valve (CV) are connected. I have it. The third pressure equalizing auxiliary passage (77-C) has one end on the side of the third outdoor unit (2C) of the pressure equalizing passage (62) and the other end of the branch gas passage (5GAb) of the first outdoor unit (2A). And is provided with a third oil leveling auxiliary valve (SVY3) and a check valve (CV).

【0040】そして、上記均油弁(SVO1,SVO1,SVO1)
と第1〜第3均油補助弁(SVY1,SVY2,SVY3)とは、2
〜3時間に一回の均油運転(2〜3分)を実行する際、
又は、油戻し運転の終了後や暖房運転時のデフロスト運
転後などの上記均油運転の実行の際に開閉するように構
成されている。
The oil equalizing valve (SVO1, SVO1, SVO1)
And the first to third oil leveling auxiliary valves (SVY1, SVY2, SVY3) are 2
When performing the oil equalization operation (2 to 3 minutes) once every ~ 3 hours,
Alternatively, it is configured to be opened and closed when the above-described oil-equalizing operation is performed, such as after the end of the oil return operation or after the defrost operation during the heating operation.

【0041】尚、上記第2室外ユニット(2B)の分岐ガ
ス通路(5GBb)と第2均圧補助通路(77-B)との間、及
び第3室外ユニット(2C)の分岐ガス通路(5GCb)と第
3均圧補助通路(77-C)との間には、キャピラリチュー
ブ(CP)を有し、暖房運転時に第1ガス開閉弁(VR-1)
及び第2ガス開閉弁(VR-2)より漏れる冷媒を逃がす補
助冷媒通路(12-s,12-s)が接続されている。
The branch gas passage (5GBb) of the second outdoor unit (2B) and the second pressure equalizing auxiliary passage (77-B), and the branch gas passage (5GCb) of the third outdoor unit (2C). ) And the third pressure equalizing auxiliary passage (77-C) have a capillary tube (CP), and the first gas on-off valve (VR-1) is provided during heating operation.
Also, auxiliary refrigerant passages (12-s, 12-s) for releasing refrigerant leaking from the second gas on-off valve (VR-2) are connected.

【0042】また、上記各室外ユニット(2A,2B,2C)
の分岐液管(5LAa,5LBa,5LCa)には、リキッドインジ
ェクション管(2j)が接続され、該リキッドインジェク
ション管(2j)は、2つに分岐されると共に、インジェ
クション弁(SVT1,SVT2)とキャピラリチューブ(CP,
CP)とを介して上流側圧縮機(COMP-1)と下流側圧縮機
(COMP-2)とに接続されている。上記リキッドインジェ
クション弁(SVT1,SVT2)は、各圧縮機(COMP-1,COMP
-2)の吐出ガス冷媒温度の過上昇時に開口して吐出ガス
冷媒温度を低下させるように構成されている。
The outdoor units (2A, 2B, 2C) mentioned above
A liquid injection pipe (2j) is connected to the branch liquid pipes (5LAa, 5LBa, 5LCa) of the liquid injection pipe (2j), and the liquid injection pipe (2j) is branched into two, and the injection valves (SVT1, SVT2) and the capillary are connected. Tube (CP,
CP) to the upstream compressor (COMP-1) and the downstream compressor (COMP-2). The above liquid injection valves (SVT1, SVT2) are used for each compressor (COMP-1, COMP
-2) It is configured to open when the discharge gas refrigerant temperature rises excessively to lower the discharge gas refrigerant temperature.

【0043】上記各室外ユニット(2A,2B,2C)におけ
る圧縮機構(21)の吐出側と吸込側との間にはホットガ
スバイパス管(2h)が接続され、該ホットガスバイパス
管(2h)は、ホットガス弁(SVP1)を備え、四路切換弁
(22)の上流側とアキュムレータ(26)の上流側とに接
続されている。上記ホットガス弁(SVP1)は、主として
起動時等において圧縮機構(21)の吐出側と吸込側とを
均圧するように構成されている。
A hot gas bypass pipe (2h) is connected between the discharge side and the suction side of the compression mechanism (21) in each of the outdoor units (2A, 2B, 2C), and the hot gas bypass pipe (2h). Is equipped with a hot gas valve (SVP1) and is connected to the upstream side of the four-way switching valve (22) and the upstream side of the accumulator (26). The hot gas valve (SVP1) is configured to equalize the discharge side and the suction side of the compression mechanism (21) mainly at the time of starting or the like.

【0044】上記第2室外ユニット(2B)及び第3室外
ユニット(2C)には、圧縮機構(21)の吸込側と吐出側
との間には補助バイパス管(2b)が接続され、該補助バ
イパス管(2b)は、圧縮機構(21)の吸込側から吐出側
へのみ冷媒流通を許容する逆止弁(CV)を備え、四路切
換弁(22)の上流側とアキュムレータ(26)の上流側と
に接続されている。上記補助バイパス管(2b)は、暖房
運転中において、第2室外ユニット(2B)及び第3室外
ユニット(2C)が停止した際、分岐ガスライン(5G-B,
5G-C)の冷媒が圧縮機構(21)をバイパスして第1室外
ユニット(2A)に吸引されるように構成されている。
An auxiliary bypass pipe (2b) is connected between the suction side and the discharge side of the compression mechanism (21) in the second outdoor unit (2B) and the third outdoor unit (2C). The bypass pipe (2b) is provided with a check valve (CV) that allows the refrigerant flow only from the suction side to the discharge side of the compression mechanism (21), and the upstream side of the four-way switching valve (22) and the accumulator (26). It is connected to the upstream side. The auxiliary bypass pipe (2b) is provided with a branch gas line (5G-B, when the second outdoor unit (2B) and the third outdoor unit (2C) are stopped during the heating operation.
The refrigerant of 5G-C) is configured to bypass the compression mechanism (21) and be sucked into the first outdoor unit (2A).

【0045】また、上記配管ユニット(12)におけるレ
シーバ(11)とパイロット回路(50)の低圧回路(52)
との間にはガス抜き通路(12-g)が接続されている。該
ガス抜き通路(12-g)は、ガス抜き弁(SVTG)を備えて
配管ユニット(12)に組込まれ、該ガス抜き弁(SVTG)
は、冷房運転時の高圧保護及び暖房運転時の低圧保護の
ために開口するように構成されている。
Further, the receiver (11) and the pilot circuit (50) low-voltage circuit (52) in the piping unit (12).
A gas vent passage (12-g) is connected between and. The gas vent passage (12-g) is equipped with a gas vent valve (SVTG) and is incorporated in the piping unit (12), and the gas vent valve (SVTG)
Is configured to open for high pressure protection during cooling operation and low pressure protection during heating operation.

【0046】−センサ類の構成− 上記各室外ユニット(2A,2B,2C)及び各室内ユニット
(3A,3B,3C)には、各種のセンサが設けられている。
該各室外ユニット(2A,2B,2C)には、室外空気温度T1
を検出する外気温センサ(Th-1)が室外熱交換器(23)
の近傍に、室外熱交換器(23)の液冷媒温度T2を検出す
る室外液温センサ(Th-2)が分岐液ライン(5L-A,5L-
B,5L-C)の分流管に、圧縮機構(21)の吐出冷媒温度T
3を検出する吐出温度センサ(Th31,Th32)が各圧縮機
(COMP-1,COMP-2)の吐出管(25-D,25-D)に、圧縮機
構(21)の吸入冷媒温度T4を検出する吸入温度センサ
(Th-4)が圧縮機構(21)の吸込側冷媒配管(25)に、
各圧縮機(COMP-1,COMP-2)の内部の潤滑油の油温Toを
検出する油温センサ(Th51,Th52)が各圧縮機(COMP-
1,COMP-2)の下部に、室外熱交換器(23)のガス冷媒
温度T6を検出する室外ガス温センサ(Th-6)がガス側の
冷媒配管(25)にそれぞれ設けられている。
-Structure of Sensors-Various sensors are provided in the outdoor units (2A, 2B, 2C) and the indoor units (3A, 3B, 3C).
In each of the outdoor units (2A, 2B, 2C), the outdoor air temperature T1
Outdoor temperature exchanger (23) that detects the outside temperature sensor (Th-1)
An outdoor liquid temperature sensor (Th-2) for detecting the liquid refrigerant temperature T2 of the outdoor heat exchanger (23) is located near the branch liquid line (5L-A, 5L-).
(B, 5L-C), the discharge refrigerant temperature T of the compression mechanism (21)
Discharge temperature sensor (Th31, Th32) that detects 3 sets the suction refrigerant temperature T4 of the compression mechanism (21) to the discharge pipe (25-D, 25-D) of each compressor (COMP-1, COMP-2). A suction temperature sensor (Th-4) for detection is connected to the suction side refrigerant pipe (25) of the compression mechanism (21).
The oil temperature sensor (Th51, Th52) that detects the oil temperature To of the lubricating oil inside each compressor (COMP-1, COMP-2) is connected to each compressor (COMP-
1, COMP-2) is provided below the outdoor heat exchanger (23), and an outdoor gas temperature sensor (Th-6) for detecting the gas refrigerant temperature T6 is provided in each of the gas-side refrigerant pipes (25).

【0047】更に、上記第1室外ユニット(2A)には、
圧縮機構(21)の吐出冷媒圧力PHを検出する高圧圧力セ
ンサ(SP-H)が圧縮機構(21)の吐出側冷媒配管(25)
に、また、圧縮機構(21)の吸入冷媒圧力PLを検出する
低圧圧力センサ(SP-L)が圧縮機構(21)の吸込側冷媒
配管(25)にそれぞれ設けらると共に、上記各圧縮機
(COMP-1,COMP-2)の吐出冷媒圧力が所定高圧になると
作動する高圧保護開閉器(H-PS,H-PS)が各圧縮機(CO
MP-1,COMP-2)の吐出管(25-D,25-D)に設けられてい
る。
Further, in the first outdoor unit (2A),
The high-pressure pressure sensor (SP-H) that detects the discharge refrigerant pressure PH of the compression mechanism (21) is the discharge-side refrigerant pipe (25) of the compression mechanism (21).
In addition, a low-pressure pressure sensor (SP-L) for detecting the suction refrigerant pressure PL of the compression mechanism (21) is provided in the suction-side refrigerant pipe (25) of the compression mechanism (21), and The high pressure protective switch (H-PS, H-PS) that operates when the discharge refrigerant pressure of (COMP-1, COMP-2) reaches a specified high pressure is used for each compressor (CO
It is installed in the discharge pipe (25-D, 25-D) of MP-1, COMP-2).

【0048】また、第2室外ユニット(2B)及び第2室
外ユニット(2B)は、均圧ライン(60)を設けているこ
とから、第1室外ユニット(2A)のように高圧圧力セン
サ(SP-H)及び低圧圧力センサ(SP-L)が設けられてお
らず、各圧縮機(COMP-1,COMP-2)の吐出冷媒圧力が所
定高圧になると作動する高圧保護開閉器(H-PS,H-PS)
が各圧縮機(COMP-1,COMP-2)の吐出管(25-D,25-D)
に、圧縮機構(21)の吐出冷媒圧力が高圧保護開閉器
(H-PS,H-PS)より低圧の所定高圧になると作動する高
圧制御用開閉器(HPSC)が圧縮機構(21)の吐出側冷媒
配管(25)に、圧縮機構(21)の吸入冷媒圧力が所定低
圧になると作動する低圧保護開閉器(L-PS)が圧縮機構
(21)の吸込側冷媒配管(25)にそれぞれ設けられてい
る。
Further, since the second outdoor unit (2B) and the second outdoor unit (2B) are provided with the pressure equalizing line (60), the high pressure sensor (SP) like the first outdoor unit (2A) is provided. -H) and low pressure sensor (SP-L) are not provided, and a high pressure protective switch (H-PS) that operates when the discharge refrigerant pressure of each compressor (COMP-1, COMP-2) reaches a specified high pressure. , H-PS)
Is the discharge pipe (25-D, 25-D) of each compressor (COMP-1, COMP-2)
In addition, the high pressure control switch (HPSC) that operates when the discharge refrigerant pressure of the compression mechanism (21) becomes a predetermined high pressure lower than the high pressure protection switch (H-PS, H-PS) discharges the compression mechanism (21). A low-pressure protective switch (L-PS), which operates when the suction refrigerant pressure of the compression mechanism (21) reaches a predetermined low pressure, is provided in each of the side refrigerant pipes (25) in each of the suction side refrigerant pipes (25) of the compression mechanism (21). Has been.

【0049】一方、各室内ユニット(3A,3B,3C)に
は、室内空気温度T7を検出する室温センサ(Th-7)が室
内ファン(31-F)の近傍に、室内熱交換器(31)の液冷
媒温度T8を検出する室内液温センサ(Th-8)が室内液配
管(3L)に、室内熱交換器(31)のガス冷媒温度T9を検
出する室内ガス温センサ(Th-9)が室内ガス配管(3G)
にそれぞれ設けられている。
On the other hand, in each indoor unit (3A, 3B, 3C), a room temperature sensor (Th-7) for detecting the indoor air temperature T7 is provided near the indoor fan (31-F), and the indoor heat exchanger (31 ), An indoor liquid temperature sensor (Th-8) for detecting the liquid refrigerant temperature T8 of the indoor heat exchanger (31) detects the gas refrigerant temperature T9 of the indoor heat exchanger (31) in the indoor liquid pipe (3L). ) Is indoor gas piping (3G)
Are provided respectively.

【0050】−制御の構成− 上記空気調和装置(10)は、コントローラ(80)を備え
ており、該コントローラ(80)は、各センサ(Th11〜SP
-L)及び開閉器(H-PS〜L-PS)の検出信号が入力され、
各センサ(Th11〜SP-L)等の検出信号に基づいて各電動
膨脹弁(24〜32)の開度及び圧縮機構(21)の容量等を
制御している。
-Control Configuration- The air conditioner (10) is provided with a controller (80), and the controller (80) includes the sensors (Th11 to SP).
-L) and switch (H-PS to L-PS) detection signals are input,
The opening degree of each electric expansion valve (24-32), the capacity of the compression mechanism (21), etc. are controlled based on the detection signal of each sensor (Th11-SP-L).

【0051】本発明の特徴として、上記コントローラ
(80)には、油戻し運転のための係数演算手段(81)と
油戻し制御手段(82)とが設けられている。該係数演算
手段(81)は、各室外ユニット(2A,2B,2C)の圧縮機
構(21)から流出する油上り量と圧縮機構(21)に戻る
油戻り量との差に対応した係数が圧縮機構(21)の運転
容量に基づいて複数種類設定され、圧縮機構(21)の運
転容量に対応して上記係数を加算するように構成されて
いる。更に、上記係数演算手段(81)は、室内ユニット
(3A,3B,3C)の室内電動膨張弁(32)の開度が制限さ
ると、係数を大きな特殊値に設定するように構成されて
いる。
As a feature of the present invention, the controller (80) is provided with a coefficient calculation means (81) for oil return operation and an oil return control means (82). The coefficient calculation means (81) has a coefficient corresponding to the difference between the oil upstream amount flowing out from the compression mechanism (21) of each outdoor unit (2A, 2B, 2C) and the oil return amount returning to the compression mechanism (21). A plurality of types are set based on the operating capacity of the compression mechanism (21), and the coefficient is added according to the operating capacity of the compression mechanism (21). Further, the coefficient calculating means (81) is configured to set the coefficient to a large special value when the opening degree of the indoor electric expansion valve (32) of the indoor unit (3A, 3B, 3C) is limited. .

【0052】上記油戻し制御手段(82)は、係数演算手
段(81)が加算した加算値が所定値、例えば、100に
なると、油戻し運転を冷房運転サイクルで実行し、上記
係数演算手段(81)をリセットするように構成されてい
る。
The oil return control means (82) executes the oil return operation in the cooling operation cycle when the added value added by the coefficient calculation means (81) reaches a predetermined value, for example, 100, and the coefficient calculation means (82). 81) is configured to reset.

【0053】具体的に、先ず、各室外ユニット(2A,2
B,2C)の圧縮機構(21)は、冷房負荷又は暖房負荷の
空調負荷に対応して表1及び表2に示すように制御され
ており、第1室外ユニット(2A)における上流側圧縮機
(COMP-1)の容量を順次増減すると共に、他の圧縮機
(COMP-1,COMP-2)を運転及び停止するようにしてい
る。
Specifically, first, each outdoor unit (2A, 2
The compression mechanism (21) of (B, 2C) is controlled as shown in Tables 1 and 2 according to the air conditioning load such as the cooling load or the heating load, and the upstream side compressor in the first outdoor unit (2A). The capacity of (COMP-1) is gradually increased and decreased, and other compressors (COMP-1, COMP-2) are operated and stopped.

【0054】[0054]

【表1】 [Table 1]

【表2】 [Table 2]

【0055】そして、上記表1の容量増加に対し、図5
に示すように、ステップ01からステップ04に圧縮機
構(21)の容量を増大するにしたがって油上り量が油戻
り量に対して大きくなり、その後、ステップ13及びス
テップ14ではやや油上り量が低下するものの、その
後、再びステップ21では油上り量が大きくなる。そし
て、以後、油戻り量が油上り量に対して大きく増加する
ことになる。
Then, as shown in FIG.
As shown in, the oil upflow amount increases with the oil return amount as the capacity of the compression mechanism (21) is increased from step 01 to step 04, and thereafter, the oil upflow amount slightly decreases in step 13 and step 14. However, after that, the amount of oil rising increases again in step 21. Then, thereafter, the amount of returned oil largely increases with respect to the amount of oil rise.

【0056】そこで、上記係数演算手段(81)は、表3
に示すように係数aを設定し、10分毎の圧縮機構(2
1)の容量に対応した係数aを加算することになる。
Therefore, the coefficient calculating means (81) is shown in Table 3
The coefficient a is set as shown in, and the compression mechanism (2
The coefficient a corresponding to the capacity of 1) will be added.

【0057】[0057]

【表3】 [Table 3]

【0058】また、上記係数演算手段(81)は、冷房の
過負荷によって室内電動膨張弁(32)の開度が制限され
ると、冷媒循環量が低下するので、上記係数aを16.
6に設定するようにしている。
Further, when the opening degree of the indoor electric expansion valve (32) is limited by the overload of the cooling, the coefficient calculating means (81) reduces the refrigerant circulation amount.
It is set to 6.

【0059】<空調運転の動作>次に、上記空気調和装
置(10)における空調運転の制御動作について説明す
る。
<Operation of Air Conditioning Operation> Next, the control operation of the air conditioning operation in the air conditioner (10) will be described.

【0060】先ず、冷房運転時においては、四路切換弁
(22)が図3及び図4の実線に切変り、各室外ユニット
(2A,2B,2C)の圧縮機構(21)から吐出した高圧ガス
冷媒は、室外熱交換器(23)で凝縮して液冷媒となり、
この液冷媒は、配管ユニット(12)のメイン液通路(4L
-b)で合流する。その後、上記液冷媒は、室内電動膨張
弁(32)で減圧された後、室内熱交換器(31)で蒸発し
て低圧ガス冷媒となり、このガス冷媒は、配管ユニット
(12)で各分岐ガス通路(5GAb,5GBb,5GCb)に分流
し、各室外ユニット(2A,2B,2C)の圧縮機構(21)に
戻り、この循環動作を繰返すことになる。
First, during the cooling operation, the four-way switching valve (22) is switched to the solid line in FIGS. 3 and 4, and the high pressure discharged from the compression mechanism (21) of each outdoor unit (2A, 2B, 2C). The gas refrigerant is condensed in the outdoor heat exchanger (23) to become a liquid refrigerant,
This liquid refrigerant flows into the main liquid passage (4L) of the piping unit (12).
-Join at b). After that, the liquid refrigerant is decompressed by the indoor electric expansion valve (32) and then evaporated in the indoor heat exchanger (31) to become a low-pressure gas refrigerant. This gas refrigerant is branched into each branch gas in the piping unit (12). The flow is divided into the passages (5GAb, 5GBb, 5GCb), returned to the compression mechanism (21) of each outdoor unit (2A, 2B, 2C), and this circulation operation is repeated.

【0061】一方、暖房運転時においては、上記四路切
換弁(22)が図3及び図4の破線に切変り、各室外ユニ
ット(2A,2B,2C)の圧縮機構(21)から吐出した高圧
ガス冷媒は、配管ユニット(12)に流れ、該配管ユニッ
ト(12)のメインガス通路(4G-b)で合流した後、室内
ユニット(3A,3B,3C)に流れる。そして、このガス冷
媒は、室内熱交換器(31)で凝縮して液冷媒となり、こ
の液冷媒は、配管ユニット(12)のメイン液通路(4L-
b)から各室外ユニット(2A,2B,2C)側の分岐液通路
(5LAb,5LBb,5LCb)に分流される。その後、この液冷
媒は、室外電動膨張弁(24)で減圧された後、室外熱交
換器(23)で蒸発して低圧ガス冷媒となり、各室外ユニ
ット(2A,2B,2C)の圧縮機構(21)に戻り、この循環
動作を繰返すことになる。
On the other hand, during the heating operation, the four-way switching valve (22) is switched to the broken lines in FIGS. 3 and 4, and discharged from the compression mechanism (21) of each outdoor unit (2A, 2B, 2C). The high-pressure gas refrigerant flows into the piping unit (12), merges in the main gas passage (4G-b) of the piping unit (12), and then flows into the indoor units (3A, 3B, 3C). Then, this gas refrigerant is condensed in the indoor heat exchanger (31) to become a liquid refrigerant, and this liquid refrigerant is the main liquid passage (4L-
It is branched from b) to the branch liquid passages (5LAb, 5LBb, 5LCb) on the side of each outdoor unit (2A, 2B, 2C). After that, this liquid refrigerant is decompressed by the outdoor electric expansion valve (24), then evaporated in the outdoor heat exchanger (23) to become a low-pressure gas refrigerant, and the compression mechanism of each outdoor unit (2A, 2B, 2C) ( Returning to 21), this circulation operation is repeated.

【0062】上記冷房運転時及び暖房運転時において、
コントローラ(80)が各室内電動膨張弁(32,32,32)
及び各室外電動膨張弁(24,24,24)の開度を制御する
と共に、室内負荷に対応して各室外ユニット(2A,2B,
2C)における圧縮機構(21)の容量を制御する。具体的
に、上記コントローラ(80)は、第1室外ユニット(2
A)の上流側圧縮機(COMP-1)をインバータ制御により
負荷に対応してほぼリニアに容量制御すると共に、第1
室外ユニット(2A)の下流側圧縮機(COMP-2)と第2室
外ユニット(2B)及び第3室外ユニット(2C)の各圧縮
機(COMP-1,COMP-2)とを運転及び停止制御している。
そして、上記室内ユニット(3A,3B,3C)の負荷が低下
すると、第3室外ユニット(2C)及び第2室外ユニット
(2B)の順に運転を停止し、逆に、室内ユニット(3A,
3B,3C)の負荷が上昇すると、第2室外ユニット(2B)
及び第3室外ユニット(2C)の順に運転を開始すること
になる。
During the cooling operation and the heating operation,
The controller (80) is an electric expansion valve for each room (32, 32, 32)
And the opening degree of each outdoor electric expansion valve (24, 24, 24) is controlled, and each outdoor unit (2A, 2B,
The capacity of the compression mechanism (21) in 2C) is controlled. Specifically, the controller (80) includes the first outdoor unit (2
The capacity of the upstream compressor (COMP-1) in A) is controlled almost linearly in response to the load by inverter control.
Operate and stop the downstream compressor (COMP-2) of the outdoor unit (2A) and the compressors (COMP-1, COMP-2) of the second outdoor unit (2B) and the third outdoor unit (2C) are doing.
When the load on the indoor units (3A, 3B, 3C) decreases, the operation of the third outdoor unit (2C) and the second outdoor unit (2B) is stopped in this order, and conversely, the indoor units (3A, 3A, 3C) are stopped.
3B, 3C) load increases, the second outdoor unit (2B)
Then, the operation will be started in the order of the third outdoor unit (2C).

【0063】また、冷房運転時及び暖房運転時の何れに
おいても、各室外ユニット(2A,2B,2C)が運転してい
る状態では、第1均圧弁(SVB1)及び第2均圧弁(SVB
2)が開口し、冷房運転時では、高圧ガス冷媒が各室外
熱交換器(23,23,23)をほぼ均等に流れ、暖房運転時
では、低圧ガス冷媒が各室外熱交換器(23,23,23)を
ほぼ均等に流れることになる。
Further, in each of the outdoor units (2A, 2B, 2C) operating in both the cooling operation and the heating operation, the first pressure equalizing valve (SVB1) and the second pressure equalizing valve (SVB1)
2) is opened, the high-pressure gas refrigerant flows substantially evenly through the outdoor heat exchangers (23, 23, 23) during the cooling operation, and the low-pressure gas refrigerant flows through the outdoor heat exchangers (23, 23, 23) during the heating operation. 23, 23) will flow almost evenly.

【0064】つまり、冷房運転時において、例えば、第
3室外ユニット(2C)の運転容量が冷房負荷に対して大
きくなると、圧縮機構(21)から吐出した冷媒の一部が
均圧ライン(60)を通って第1室外ユニット(2A)及び
第2室外ユニット(2B)における室外熱交換器(23,2
3)に流れることになる。逆に、暖房運転時において、
例えば、第3室外ユニット(2C)の運転容量が暖房負荷
に対して大きくなると、第1室外ユニット(2A)及び第
2室外ユニット(2B)の圧縮機構(21)に吸込まれる冷
媒の一部が均圧ライン(60)を通って第3室外ユニット
(2C)の圧縮機構(21)に吸込まれることになる。
That is, during the cooling operation, for example, when the operating capacity of the third outdoor unit (2C) becomes large with respect to the cooling load, a part of the refrigerant discharged from the compression mechanism (21) is equalized by the pressure equalizing line (60). Through the outdoor heat exchangers (23, 2) in the first outdoor unit (2A) and the second outdoor unit (2B)
It will flow to 3). Conversely, during heating operation,
For example, when the operating capacity of the third outdoor unit (2C) becomes large with respect to the heating load, a part of the refrigerant sucked into the compression mechanism (21) of the first outdoor unit (2A) and the second outdoor unit (2B). Will be sucked into the compression mechanism (21) of the third outdoor unit (2C) through the pressure equalizing line (60).

【0065】−各種弁の開閉動作− 上記第3室外ユニット(2C)の冷房運転の停止時には、
室外電動膨張弁(24)及び第2均圧弁(SVB2)を閉鎖
し、停止中の第3室外ユニット(2C)に液冷媒が溜り込
まないようにし、同様に、第2室外ユニット(2B)の冷
房運転も停止すると、室外電動膨張弁(24)及び第1均
圧弁(SVB1)を閉鎖し、停止中の第2室外ユニット(2
B)に液冷媒が溜り込まないようにすると共に、第1室
外ユニット(2A)等と各室内ユニット(3A,3B,3C)と
の間の冷媒量の不足を防止する。尚、第3室外ユニット
(2C)及び第2室外ユニット(2B)の冷房運転の停止時
には、分岐ガスライン(5G-A,5G-B,5G-C)が低圧状態
であるので、第1ガス開閉弁(VR-1)及び第2ガス開閉
弁(VR-2)は開口している。
-Opening / closing operations of various valves-When the cooling operation of the third outdoor unit (2C) is stopped,
The outdoor electric expansion valve (24) and the second pressure equalizing valve (SVB2) are closed to prevent the liquid refrigerant from accumulating in the stopped third outdoor unit (2C), and similarly, for the second outdoor unit (2B). When the cooling operation is also stopped, the outdoor electric expansion valve (24) and the first pressure equalizing valve (SVB1) are closed, and the second outdoor unit (2
The liquid refrigerant is prevented from accumulating in B), and the shortage of the refrigerant amount between the first outdoor unit (2A) and the indoor units (3A, 3B, 3C) is prevented. Since the branch gas lines (5G-A, 5G-B, 5G-C) are in a low pressure state when the cooling operation of the third outdoor unit (2C) and the second outdoor unit (2B) is stopped, The on-off valve (VR-1) and the second gas on-off valve (VR-2) are open.

【0066】一方、第3室外ユニット(2C)の暖房運転
の停止時には、室外電動膨張弁(24)及び第2ガス開閉
弁(VR-2)を閉鎖し、停止中の第3室外ユニット(2C)
に液冷媒が溜り込まないようにし、同様に、第2室外ユ
ニット(2B)の暖房運転も停止すると、室外電動膨張弁
(24)及び第1ガス開閉弁(VR-1)を閉鎖し、停止中の
第2室外ユニット(2B)に液冷媒が溜り込まないように
すると共に、第1室外ユニット(2A)等と各室内ユニッ
ト(3A,3B,3C)との間の冷媒量の不足を防止する。
尚、第3室外ユニット(2C)及び第2室外ユニット(2
B)の暖房運転停止時には、均圧ライン(60)が第1室
外ユニット(2A)等の低圧側に連通するので、第2均圧
弁(SVB2)及び第1均圧弁(SVB1)は開口している。
On the other hand, when the heating operation of the third outdoor unit (2C) is stopped, the outdoor electric expansion valve (24) and the second gas on-off valve (VR-2) are closed to stop the third outdoor unit (2C). )
When the liquid refrigerant does not accumulate in the room and the heating operation of the second outdoor unit (2B) is also stopped, the outdoor electric expansion valve (24) and the first gas on-off valve (VR-1) are closed and stopped. Prevents liquid refrigerant from accumulating in the second outdoor unit (2B) inside, and prevents shortage of the amount of refrigerant between the first outdoor unit (2A) etc. and each indoor unit (3A, 3B, 3C) To do.
The third outdoor unit (2C) and the second outdoor unit (2C
When the heating operation of B) is stopped, the pressure equalizing line (60) communicates with the low pressure side of the first outdoor unit (2A), so the second pressure equalizing valve (SVB2) and the first pressure equalizing valve (SVB1) are open. There is.

【0067】更に、第3室外ユニット(2C)及び第2室
外ユニット(2B)の暖房運転の停止直後において、例え
ば、第3室外ユニット(2C)が停止した際、該第3室外
ユニット(2C)の室外電動膨張弁(24)と第2ガス開閉
弁(VR-2)とを所定時間開口状態とし、具体的に、1〜
2分の間開口状態にする。この結果、第1室外ユニット
(2A)等から高圧ガス冷媒が第3室外ユニット(2C)の
分岐ガスライン(5G-C)及び補助バイパス管(2b)を経
由して分岐液ライン(5L-C)に流れ、該停止中の第3室
外ユニット(2C)における液冷媒をメイン液ライン(4
L)に放出して冷媒量不足を防止している。
Further, immediately after the heating operation of the third outdoor unit (2C) and the second outdoor unit (2B) is stopped, for example, when the third outdoor unit (2C) is stopped, the third outdoor unit (2C) is stopped. The outdoor electric expansion valve (24) and the second gas opening / closing valve (VR-2) are opened for a predetermined time, and
Leave open for 2 minutes. As a result, the high-pressure gas refrigerant from the first outdoor unit (2A), etc. passes through the branch gas line (5G-C) and the auxiliary bypass pipe (2b) of the third outdoor unit (2C) to the branch liquid line (5L-C). ), The liquid refrigerant in the stopped third outdoor unit (2C) flows into the main liquid line (4C).
It is released to L) to prevent a shortage of refrigerant.

【0068】また、上記冷房運転及び暖房運転時におい
て、各均油弁(SVO1,SVO1,SVO1)と各均油補助弁(SV
Y1,SVY2,SVY3)は共に閉鎖される一方、油分離器(7
1)に溜った潤滑油は常時第1油戻し管(72)から圧縮
機構(21)に戻ると共に、所定時間毎に油戻し弁(SVP
2)を開口し、油分離器(71)に溜った潤滑油を第2油
戻し管(73)から圧縮機構(21)に戻している。
Further, during the cooling operation and the heating operation, each oil equalizing valve (SVO1, SVO1, SVO1) and each oil equalizing auxiliary valve (SV)
Y1, SVY2, SVY3) are closed together, while the oil separator (7
The lubricating oil accumulated in 1) always returns from the first oil return pipe (72) to the compression mechanism (21), and at the same time, the oil return valve (SVP)
2) is opened to return the lubricating oil accumulated in the oil separator (71) from the second oil return pipe (73) to the compression mechanism (21).

【0069】更に、冷房運転時及び暖房運転時の何れに
おいても、上記各均油弁(SVO1,SVO1,SVO1)と各均油
補助弁(SVY1,SVY2,SVY3)を適宜開閉制御して均油運
転が行われ、各室外ユニット(2A,2B,2C)の圧縮機構
(21)における潤滑油量が等しくなるようにしている。
Further, in both the cooling operation and the heating operation, the oil equalizing valves (SVO1, SVO1, SVO1) and the oil equalizing auxiliary valves (SVY1, SVY2, SVY3) are controlled to open and close as appropriate. The operation is performed so that the amount of lubricating oil in the compression mechanism (21) of each outdoor unit (2A, 2B, 2C) becomes equal.

【0070】−油戻し運転− 上述した冷房運転及び暖房運転時において、係数演算手
段(81)は、表3に示すように設定された係数aに基づ
いて、10分毎の圧縮機構(21)の容量に対応した係数
aを加算している。また、上記係数演算手段(81)は、
冷房の過負荷によって室内電動膨張弁(32)の開度が制
限されると、上記係数aを16.6に設定している。そ
して、油戻し制御手段(82)は、上記係数演算手段(8
1)が加算した加算値が所定値、例えば、100になる
と、油戻し運転を冷房運転サイクルで実行し、上記係数
演算手段(81)をリセットすることになる。
-Oil Return Operation-During the above-described cooling operation and heating operation, the coefficient calculation means (81) uses the coefficient a set as shown in Table 3 to set the compression mechanism (21) every 10 minutes. The coefficient a corresponding to the capacity of is added. Further, the coefficient calculation means (81) is
When the opening degree of the indoor electric expansion valve (32) is limited due to the overload of the cooling, the coefficient a is set to 16.6. The oil return control means (82) is provided with the coefficient calculation means (8
When the added value added in 1) reaches a predetermined value, for example 100, the oil return operation is executed in the cooling operation cycle, and the coefficient calculation means (81) is reset.

【0071】この油戻し運転は、室外電動膨張弁(24)
を全開にし、室内電動膨張弁(32)の開度を油温Toで制
御して行い、例えば、4分間実行し、潤滑油を各室外ユ
ニット(2A,2B,2C)に戻している。
This oil return operation is performed by the outdoor electric expansion valve (24).
Is fully opened, the opening degree of the indoor electric expansion valve (32) is controlled by the oil temperature To, and the operation is performed for, for example, 4 minutes to return the lubricating oil to the outdoor units (2A, 2B, 2C).

【0072】−実施例の特有の効果− 以上のように、本実施例によれば、油上り量と油戻り量
とに対応した間隔で油戻し運転を実行するようにしたた
めに、油戻しを確実に行うことができるので、信頼性の
高い運転を実行することができる。
-Effects peculiar to the embodiment-As described above, according to this embodiment, the oil return operation is executed at the intervals corresponding to the oil upflow amount and the oil return amount. Since reliable operation can be performed, highly reliable operation can be performed.

【0073】また、油戻りが行われ難い状態を基準に油
戻し運転の間隔を設定しないので、この油戻し運転を頻
繁に行うことがないことから、快適性の向上を図ること
ができる。
Further, since the oil return operation interval is not set on the basis of the state where the oil return is difficult to be performed, the oil return operation is not frequently performed, so that the comfort can be improved.

【0074】また、室内電動膨張弁(32)の開度が設定
されると、油戻し運転の間隔を短くすることができるの
で、油切れを確実に防止することができる。
When the opening degree of the indoor electric expansion valve (32) is set, the oil return operation interval can be shortened, so that oil shortage can be reliably prevented.

【0075】−他の変形例− 尚、本実施例においては、冷房運転と暖房運転とを行え
る空気調和装置(10)について説明したが、本発明は、
冷房運転専用及び暖房運転専用の空気調和装置にも適用
することができることは勿論でである。
-Other Modifications- In the present embodiment, the air conditioner (10) capable of performing the cooling operation and the heating operation has been described, but the present invention is
Of course, the present invention can be applied to an air conditioner dedicated to cooling operation and heating operation.

【0076】また、本実施例はツイン型の圧縮機構(2
1)について説明したが、本発明は、1台の圧縮機を有
するものであってもよい。
In this embodiment, the twin type compression mechanism (2
Although 1) has been described, the present invention may have one compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】空気調和装置の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of the air conditioner.

【図3】第1室外ユニットの冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of a first outdoor unit.

【図4】第2及び第3室外ユニットの冷媒回路図であ
る。
FIG. 4 is a refrigerant circuit diagram of second and third outdoor units.

【図5】冷媒循環量に対する潤滑油量の特性図である。FIG. 5 is a characteristic diagram of a lubricating oil amount with respect to a refrigerant circulation amount.

【図6】1台の室外ユニットを有する場合の冷媒循環量
に対する潤滑油量の特性図である。
FIG. 6 is a characteristic diagram of the amount of lubricating oil with respect to the refrigerant circulation amount in the case of having one outdoor unit.

【符号の説明】[Explanation of symbols]

10 空気調和装置 2A,2B,2C 室外ユニット 21 圧縮機構 COMP-1,COMP-2 圧縮機 22 四路切換弁 23 室外熱交換器 24 室外電動膨張弁 3A,3B,3C 室内ユニット 31 室内熱交換器 32 室内電動膨張弁 4L メイン液ライン 4G メインガスライン 5L-A,5L-B,5L-C 分岐液ライン 5G-A,5G-B,5G-C 分岐ガスライン 80 コントローラ 81 係数演算手段 82 油戻し制御手段 10 Air conditioner 2A, 2B, 2C outdoor unit 21 Compression mechanism COMP-1, COMP-2 compressor 22 Four-way switching valve 23 Outdoor heat exchanger 24 Outdoor electric expansion valve 3A, 3B, 3C Indoor unit 31 Indoor heat exchanger 32 Indoor electric expansion valve 4L Main liquid line 4G Main gas line 5L-A, 5L-B, 5L-C Branch liquid line 5G-A, 5G-B, 5G-C Branch gas line 80 Controller 81 Factor calculation means 82 Oil return Control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機構(21)と、一端が圧縮機構(2
1)に接続され且つ他端に分岐液ライン(5L-A,5L-B,
…)が接続された熱源側熱交換器(23)とを有し、上記
圧縮機構(21)に分岐ガスライン(5G-A,5G-B,…)が
接続された複数の熱源ユニット(2A,2B,…)と、 該各熱源ユニット(2A,2B,…)が分岐液ライン(5L-
A,5L-B,…)及び分岐ガスライン(5G-A,5G-B,…)
を介して並列に接続されるメイン液ライン(4L)及びメ
インガスライン(4G)と、 膨脹機構(32)と利用側熱交換器(31)とを有し、上記
メイン液ライン(4L)及びメインガスライン(4G)に対
して並列に接続された複数台の利用ユニット(3A,3B,
…)とを備えた冷凍装置であって、 上記圧縮機構(21)から流出する油上り量と圧縮機構
(21)に戻る油戻り量との差に対応した係数が圧縮機構
(21)の運転容量に基づいて複数種類設定され、上記圧
縮機構(21)の運転容量に対応して上記係数を加算する
係数演算手段(81)と、 該係数演算手段(81)が加算した加算値が所定値になる
と、油戻し運転を実行し、上記係数演算手段(81)をリ
セットする油戻し制御手段(82)とを備えていることを
特徴とする冷凍装置。
1. A compression mechanism (21) and a compression mechanism (2) at one end.
1) and branch liquid line (5L-A, 5L-B,
...) connected to the heat source side heat exchanger (23), and a plurality of heat source units (2A) to which the branch gas lines (5G-A, 5G-B, ...) are connected to the compression mechanism (21). , 2B, ...) and each heat source unit (2A, 2B, ...) of the branch liquid line (5L-
A, 5L-B,…) and branch gas lines (5G-A, 5G-B,…)
Has a main liquid line (4L) and a main gas line (4G) connected in parallel via the, an expansion mechanism (32) and a use side heat exchanger (31), and the main liquid line (4L) and Multiple usage units (3A, 3B, connected in parallel to the main gas line (4G)
...), the coefficient corresponding to the difference between the amount of oil rising from the compression mechanism (21) and the amount of oil returned to the compression mechanism (21) is the operation of the compression mechanism (21). A plurality of types are set based on the capacity, and a coefficient calculation means (81) for adding the above coefficient corresponding to the operating capacity of the compression mechanism (21), and the addition value added by the coefficient calculation means (81) is a predetermined value. Then, the refrigerating apparatus is provided with an oil return control means (82) for performing an oil return operation and resetting the coefficient calculation means (81).
【請求項2】 請求項1記載の冷凍装置において、 係数演算手段(81)は、膨脹機構(32)の開度が制限さ
ると、係数を大きな特殊値に設定するように構成されて
いることを特徴とする冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein the coefficient calculation means (81) is configured to set the coefficient to a large special value when the opening degree of the expansion mechanism (32) is limited. Refrigerating device characterized by.
JP01354395A 1995-01-31 1995-01-31 Refrigeration equipment Expired - Fee Related JP3550772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01354395A JP3550772B2 (en) 1995-01-31 1995-01-31 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01354395A JP3550772B2 (en) 1995-01-31 1995-01-31 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH08200852A true JPH08200852A (en) 1996-08-06
JP3550772B2 JP3550772B2 (en) 2004-08-04

Family

ID=11836078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01354395A Expired - Fee Related JP3550772B2 (en) 1995-01-31 1995-01-31 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3550772B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122708A (en) * 1996-10-22 1998-05-15 Sanyo Electric Co Ltd Air conditioner
JP2013044512A (en) * 2011-08-26 2013-03-04 Yanmar Co Ltd Air conditioning system
CN104236166A (en) * 2013-06-20 2014-12-24 珠海格力电器股份有限公司 Compression module for air conditioning system, air conditioning system and oil balancing method of compression module
CN105571206A (en) * 2016-01-22 2016-05-11 珠海格力电器股份有限公司 Module oil balancing device and module oil balancing control method for compressor system
CN104236166B (en) * 2013-06-20 2016-11-30 珠海格力电器股份有限公司 The oily balance method of the compression module of air conditioning system, air conditioning system and compression module
WO2017126539A1 (en) * 2016-01-20 2017-07-27 三菱重工サーマルシステムズ株式会社 Refrigeration cycle provided with plurality of multistage compressors connected in parallel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122708A (en) * 1996-10-22 1998-05-15 Sanyo Electric Co Ltd Air conditioner
JP2013044512A (en) * 2011-08-26 2013-03-04 Yanmar Co Ltd Air conditioning system
CN104236166A (en) * 2013-06-20 2014-12-24 珠海格力电器股份有限公司 Compression module for air conditioning system, air conditioning system and oil balancing method of compression module
CN104236166B (en) * 2013-06-20 2016-11-30 珠海格力电器股份有限公司 The oily balance method of the compression module of air conditioning system, air conditioning system and compression module
WO2017126539A1 (en) * 2016-01-20 2017-07-27 三菱重工サーマルシステムズ株式会社 Refrigeration cycle provided with plurality of multistage compressors connected in parallel
JP2017129310A (en) * 2016-01-20 2017-07-27 三菱重工業株式会社 Refrigerating-cycle having a plurality of multiple stage compressors to be connected in parallel
CN105571206A (en) * 2016-01-22 2016-05-11 珠海格力电器股份有限公司 Module oil balancing device and module oil balancing control method for compressor system

Also Published As

Publication number Publication date
JP3550772B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
EP0638777B1 (en) Refrigerator
CN1766446B (en) System for detecting mis-connected state between communication lines for multi-type air conditioner and method thereof
US6883346B2 (en) Freezer
JP4609469B2 (en) Air conditioner
CN1782617B (en) Air conditioner and its control method
JPH08200852A (en) Refrigerator
JP3584514B2 (en) Refrigeration equipment
JP3718870B2 (en) Operation control device for refrigeration equipment
JP3635705B2 (en) Refrigeration equipment
JP3750145B2 (en) Refrigeration equipment
JP3538936B2 (en) Refrigerant refrigerant recovery method
JPH08200869A (en) Refrigerator
JP3508264B2 (en) Refrigeration equipment
JP3642078B2 (en) Refrigeration equipment
JP4091995B2 (en) Lubricant recovery structure for compression mechanism
JP3817752B2 (en) Air conditioner
JP3097468B2 (en) Control device for air conditioner
JP3546504B2 (en) Refrigeration equipment
JP2000146346A (en) Refrigerator
JPH08200855A (en) Refrigerator
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPH0749156A (en) Air conditioning apparatus
JPH10281576A (en) Multizone heat pump type air conditioner
JP2976905B2 (en) Air conditioner
JPH0212543Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees