JP2017129164A - Piping support structure and method for forming the same - Google Patents
Piping support structure and method for forming the same Download PDFInfo
- Publication number
- JP2017129164A JP2017129164A JP2016007007A JP2016007007A JP2017129164A JP 2017129164 A JP2017129164 A JP 2017129164A JP 2016007007 A JP2016007007 A JP 2016007007A JP 2016007007 A JP2016007007 A JP 2016007007A JP 2017129164 A JP2017129164 A JP 2017129164A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- support structure
- piping
- welded
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Supports For Pipes And Cables (AREA)
Abstract
Description
本発明は、主に屋外の化学プラントなどで使用される配管支持構造及びその形成方法に関するものである。 The present invention relates to a pipe support structure mainly used in an outdoor chemical plant or the like and a method for forming the same.
化学プラントなどで使用される配管は、用途に応じて複雑な形状をしている場合がある。また、設置される場所も、設置、修理、点検などの作業が困難な狭い場所である場合がある。一方で、プラントにおける配管構造には、高い安全性が求められるため、様々な場所に配管を支持する支持部材を設置する必要がある。 Piping used in a chemical plant or the like may have a complicated shape depending on the application. In addition, the installation location may be a narrow location where installation, repair, inspection, and the like are difficult. On the other hand, since the piping structure in a plant requires high safety, it is necessary to install support members for supporting the piping at various places.
図5に、一般的な配管101を、支柱102によって支持した配管支持構造110を示している。一般に、支柱102のような支持部材は、多くの場合、溶接によって配管に溶接される。本例においても、支柱102の上端外周は、配管101に溶接されている。 FIG. 5 shows a pipe support structure 110 in which a general pipe 101 is supported by a column 102. In general, a support member such as the support column 102 is often welded to the pipe by welding. Also in this example, the outer periphery of the upper end of the support column 102 is welded to the pipe 101.
また、このような配管には、ステンレス鋼を材料として用いる場合が多い。ステンレス鋼は、成分中のクロム(Cr)が空気中の酸素と結合し、表面に厚さ数nmの緻密で密着性の高い膜(不動態皮膜)を形成する。そのため、この膜が鋼材内部への腐食の進行を防ぎ、その他の鉄鋼材料と比較して錆びにくい性質を持つためである。 Moreover, stainless steel is often used as a material for such piping. In stainless steel, chromium (Cr) in the component combines with oxygen in the air to form a dense and highly adhesive film (passive film) having a thickness of several nanometers on the surface. For this reason, this film prevents the progress of corrosion inside the steel material, and has the property of being less susceptible to rusting than other steel materials.
しかしながら、ステンレス鋼においても、応力条件、材料成分、環境条件、の3つの因子が揃った場合には、応力腐食という特異な態様の腐食が発生することがある。この特異な腐食によって発生する割れは、応力腐食割れ(SCC:Stress Corrosion Cracking)と呼ばれる。 However, even in stainless steel, when three factors of the stress condition, the material component, and the environmental condition are prepared, a special form of corrosion called stress corrosion may occur. The crack generated by this special corrosion is called stress corrosion cracking (SCC).
応力腐食割れを防ぐためには、上記した3つの因子のうち、少なくともいずれか1つの因子を排除すればよい。例えば、鋼材に約850℃以上の熱を加え、残留応力を除去することで、応力の条件を緩和し、応力因子を排除する方法がある。しかしながら、この方法は、プラント内の狭い場所に設置された配管に適用するには困難である場合が多い。また、この方法では、加熱処理の際に周囲に約450℃〜約850℃となる領域(HAZ:Heat Affected Zone)が生じることがある。この場合は、ステンレス鋼の結晶粒中のクロムが、結晶粒界にクロム炭化物として析出し、結晶粒界近傍のクロム濃度が低下することで、耐食性が低下(鋭敏化)してしまうことがある。 In order to prevent stress corrosion cracking, at least one of the above three factors may be excluded. For example, there is a method of relaxing the stress condition and eliminating the stress factor by applying a heat of about 850 ° C. or more to the steel material to remove the residual stress. However, this method is often difficult to apply to piping installed in a narrow place in the plant. Further, in this method, a region (HAZ: Heat Affected Zone) having a temperature of about 450 ° C. to about 850 ° C. may occur around the heat treatment. In this case, chromium in the crystal grains of the stainless steel precipitates as chromium carbides at the grain boundaries, and the chromium concentration in the vicinity of the crystal grain boundaries decreases, thereby reducing corrosion resistance (sensitization). .
また、上述した因子のうち、環境因子を排除する方法として、例えば、特許文献1(特開平8−254594号公報)では、ステンレス鋼の電位を制御することで、電気的防食を施す方法が挙げられている。しかしながら、この方法は、電位の測定及び制御をするための別途の構成が必要となる。 Among the above-mentioned factors, as a method for eliminating environmental factors, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 8-254594), a method of applying electrical corrosion protection by controlling the potential of stainless steel is given. It has been. However, this method requires a separate configuration for measuring and controlling the potential.
以上のような事情に対して、本発明の目的は、応力腐食に対する耐食性の高い配管支持構造及びその形成方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a pipe support structure having high corrosion resistance against stress corrosion and a method for forming the same.
前記目的を達成するため、本発明に係る配管支持構造は、配管と、前記配管の外側に接続した中空の柱状支持部材とを備え、前記支持部材は、一端の外周が前記配管に接続しており、前記配管と前記柱状支持部材は、鋳造により一体に成型されている。 In order to achieve the above object, a pipe support structure according to the present invention includes a pipe and a hollow columnar support member connected to the outside of the pipe, and the support member has an outer periphery connected to the pipe. The pipe and the columnar support member are integrally formed by casting.
また、本発明に係る配管支持構造は、他の形態で、配管と、前記配管の外側に接続した中空の柱状支持部材とを備え、前記支持部材は、一端の外周が前記配管に溶接されており、前記溶接された溶接部は、溶体化処理が成されるようにしてもよい。 Further, the pipe support structure according to the present invention is another embodiment, and includes a pipe and a hollow columnar support member connected to the outside of the pipe, and the support member has an outer periphery welded to the pipe. The welded welded portion may be subjected to a solution treatment.
また、前記柱状支持部材は、前記配管の接合部から少なくとも50mmの長さを有する形態とすることができる。 Moreover, the said columnar support member can be made into the form which has a length of at least 50 mm from the junction part of the said piping.
本発明は、別の側面で配管支持構造の形成方法であり、該形成方法は、配管と、前記配管の外側に接続した中空の柱状支持部材とを備え、前記支持部材は、一端の外周が前記配管に接続している配管支持構造の、前記配管と前記柱状支持部材とを鋳造により一体に成型する。 Another aspect of the present invention is a method for forming a pipe support structure, which includes a pipe and a hollow columnar support member connected to the outside of the pipe, and the support member has an outer periphery at one end. The pipe and the columnar support member of the pipe support structure connected to the pipe are integrally formed by casting.
また、本発明に係る配管支持構造の形成方法は、配管の外側に、中空の柱状支持部材の一端の外周を溶接し、前記溶接された溶接部に、さらに溶体化処理を施すものであってもよい。 Further, the pipe support structure forming method according to the present invention is such that the outer periphery of one end of a hollow columnar support member is welded to the outside of the pipe, and a solution treatment is further applied to the welded welded portion. Also good.
本発明によれば、応力腐食に対する耐食性の高い配管支持構造及びその形成方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the piping support structure with high corrosion resistance with respect to stress corrosion, and its formation method are provided.
以下に、本発明に係る配管の支持構造の実施の形態を、添付図面を参照しながら説明する。 Embodiments of a pipe support structure according to the present invention will be described below with reference to the accompanying drawings.
まず、先に参照した図5を用いて、化学プラントなどで用いられる配管支持のための一般的な構造110についてより詳しく説明する。 First, a general structure 110 for supporting a pipe used in a chemical plant or the like will be described in more detail with reference to FIG.
配管101は、垂直方向から水平方向に管の方向が屈曲している。このような形状の配管は、一般にエルボー管とも呼ばれる。また、支柱102は中空の円柱形状をしている。支柱102の上端は、配管101の屈曲部外壁の形状に沿う形状となっている。そのため、支柱102の上端面は、外周が、その全周にわたって配管101の屈曲部の外側に密着している。尚、配管101及び支柱102の材質には、一般的にステンレス鋼を採用することが多い。 In the pipe 101, the direction of the pipe is bent from the vertical direction to the horizontal direction. A pipe having such a shape is generally called an elbow pipe. The support column 102 has a hollow cylindrical shape. The upper end of the support column 102 has a shape that follows the shape of the outer wall of the bent portion of the pipe 101. Therefore, the outer periphery of the upper end surface of the support column 102 is in close contact with the outside of the bent portion of the pipe 101 over the entire periphery. In general, stainless steel is often used as the material of the pipe 101 and the column 102.
また、このような配管の支持構造の形成方法としては、溶接部103において、配管101と中空の支柱102とを溶接することが行われている。尚、この溶接は支柱102の上端全周にわたって施している。 As a method of forming such a pipe support structure, welding the pipe 101 and the hollow column 102 in the welded portion 103 is performed. This welding is performed over the entire upper end of the support column 102.
次に、本発明が対象とする、配管101と中空の支柱102との溶接部で生じる特殊な応力腐食割れとその解決方法について説明する。 Next, the special stress corrosion cracking that occurs at the welded portion between the pipe 101 and the hollow column 102 and the solution thereof will be described.
本発明に係る配管支持構造を採用する化学プラントは、海岸に近い沿岸部などに建設することを想定することがある。このような環境下においては、海塩粒子を含んだ雨水やごみが配管に蓄積することがある。特に、配管の屈曲部のような複雑な形状の箇所には、比較的これらが蓄積しやすい傾向にある。また、図5に示すように、配管の屈曲部に支柱を溶接しているような場合には、形状がより複雑になることで、より雨水やごみなどがたまり易くなる。さらに、図5に示すようにエルボー形状の配管の下部に支柱を接合した場合は、配管上部から外周を伝って、雨水やごみが溶接部103に集まる傾向がある。 The chemical plant that employs the pipe support structure according to the present invention may be assumed to be constructed in a coastal area or the like near the coast. Under such circumstances, rainwater and garbage containing sea salt particles may accumulate in the piping. In particular, they tend to accumulate relatively easily in places with complicated shapes such as bent portions of piping. Further, as shown in FIG. 5, when a support column is welded to a bent portion of a pipe, the shape becomes more complicated, and rainwater, dust, and the like are easily collected. Furthermore, as shown in FIG. 5, when a support column is joined to the lower part of an elbow-shaped pipe, rainwater and dust tend to gather at the welded part 103 along the outer periphery from the upper part of the pipe.
一般に、配管の外壁に一旦蓄積した汚れや海塩などの粒子のうち大半は、より強い雨や風などによって流されることが多いため、長期間蓄積し続けることは少ない。しかしながら、配管の溶接部には、溶接工程やプラントの稼働に伴う配管の温度変化等で、微細な隙間や割れ、傷などができることがある。この隙間に入り込んだ海塩粒子などは、雨や風によって流されず、その場に蓄積し続ける場合がある。 In general, most of the particles such as dirt and sea salt once accumulated on the outer wall of the pipe are often swept away by stronger rain or wind, and therefore rarely continue to accumulate for a long time. However, there are cases in which fine gaps, cracks, scratches, and the like are formed in the welded part of the pipe due to a temperature change of the pipe accompanying the welding process or plant operation. The sea salt particles that enter this gap may not be washed away by rain or wind, and may continue to accumulate on the spot.
さらに、図5に示すような配管支持構造110においては、支柱102が中空形状であるため、中空内部に海塩粒子などが入り込むことがある。この場合、中空内部に入り込んだ海塩粒子は、支柱102の内側壁面や、支柱102の内部に位置する配管101の外壁面に付着し、雨や風によって流されることなく蓄積し続けることがある。 Furthermore, in the pipe support structure 110 as shown in FIG. 5, since the support column 102 has a hollow shape, sea salt particles or the like may enter the hollow interior. In this case, the sea salt particles that have entered the hollow interior adhere to the inner wall surface of the column 102 and the outer wall surface of the pipe 101 located inside the column 102 and may continue to accumulate without being washed away by rain or wind. .
また、このような配管101と支柱102とは、一般に、プラントの建設現場において溶接されることが多い。この場合、複雑な溶接を作業性の悪い環境で行う場合があり、溶接状態の不良や、これによる残留応力の発生などの不具合が生じるおそれがある。このようにして配管に生じた残留応力は、配管101の応力腐食割れを発生させる応力因子となり得る。また、接合部103付近には、溶接時に温度ムラが発生することで、ステンレス鋼の組織が鋭敏化することがある。この鋭敏化した組織は、応力腐食割れを発生させる材料因子となり得る。 Also, such pipes 101 and struts 102 are generally often welded at a plant construction site. In this case, complicated welding may be performed in an environment where workability is poor, and there is a possibility that defects such as a poor welding state and generation of residual stress due to this may occur. The residual stress generated in the pipe in this way can be a stress factor that causes stress corrosion cracking of the pipe 101. Further, in the vicinity of the joint portion 103, temperature unevenness may occur during welding, and the structure of the stainless steel may be sensitized. This sensitized structure can be a material factor that causes stress corrosion cracking.
ここで、図6には、図5において示した配管支持構造110から、支柱102を外した後の配管101を示している。溶接位置111は支柱102の上端面が溶接されていた部分である。また、空洞位置112は、支柱102を配管101に溶接した際に、支柱102の内部の空洞部に位置していた部分である。 Here, FIG. 6 shows the pipe 101 after the support column 102 is removed from the pipe support structure 110 shown in FIG. The welding position 111 is a portion where the upper end surface of the support column 102 has been welded. The cavity position 112 is a portion located in the cavity inside the support column 102 when the support column 102 is welded to the pipe 101.
図7は、一般的な配管支持構造における配管101に発生した亀裂を、拡大して示す模式図である。図7で示す範囲は、配管101における支柱102の溶接部である。なお、本図においては、支柱102は図示していない。 FIG. 7 is an enlarged schematic view showing a crack generated in the pipe 101 in a general pipe support structure. The range shown in FIG. 7 is the welded portion of the column 102 in the pipe 101. In addition, the support | pillar 102 is not illustrated in this figure.
図7に示す亀裂107及び亀裂108は、沿岸部の屋外プラントにおいて、約2年程度使用した配管支持構造に発生した亀裂を示している。溶接位置111付近に発生する亀裂107は、亀裂状の割れが多く、また、空洞位置112の中央付近に発生する亀裂108は、亀甲状の割れが多い。
The
[第1の実施形態]
次に、図1を用いて、第1の実施形態に係る配管支持構造について説明する。
[First Embodiment]
Next, the piping support structure according to the first embodiment will be described with reference to FIG.
図1において、配管1と支柱2とは、ステンレス鋼(例えばSUS321、SUS316、SUS304、などのオーステナイト系ステンレス鋼)を材料とし、鋳造により一体に成型されている。尚、支柱2は中空形状となっている。 In FIG. 1, a pipe 1 and a support column 2 are made of stainless steel (for example, austenitic stainless steel such as SUS321, SUS316, SUS304, etc.) and are integrally formed by casting. The support column 2 has a hollow shape.
このように、配管1と支柱2とをあらかじめ鋳造により一体に成型して配管支持構造10を形成した場合、溶接工程で生じるような部材間の微細な隙間は発生しない。これにより、海塩粒子が隙間に入り込んで蓄積すること防ぐことができる。また、中空の支柱2の空洞内(図5における空洞位置112に該当)に海塩粒子が流れ込むことも防止できる。したがって、応力腐食割れの原因となる、環境因子を排除することができる。 As described above, when the pipe support structure 10 is formed by integrally casting the pipe 1 and the support column 2 in advance by casting, a fine gap between the members that occurs in the welding process does not occur. Thereby, sea salt particles can be prevented from entering and accumulating in the gap. Further, it is possible to prevent sea salt particles from flowing into the cavity of the hollow support column 2 (corresponding to the cavity position 112 in FIG. 5). Therefore, environmental factors that cause stress corrosion cracking can be eliminated.
また、このように、配管1と支柱2とを、あらかじめ鋳造により一体に成型することにより、温度ムラや冷却工程によって発生する、溶接部付近の残留応力の発生を抑制することができる。したがって、応力腐食割れの原因となる、応力因子を排除することができる。 In addition, by integrally forming the pipe 1 and the support column 2 in advance by casting in this way, it is possible to suppress the occurrence of residual stress in the vicinity of the welded portion, which occurs due to temperature unevenness or a cooling process. Therefore, stress factors that cause stress corrosion cracking can be eliminated.
尚、鋳造により一体成型して形成される配管支持構造10においても、鋳造工程における冷却によって残留応力が発生する場合がある。これを除去するために、一体成型した配管支持構造1を、850℃以上の炉内で再度熱処理をしてもよい。これにより、残留応力をより効果的に排除することができる。 Even in the pipe support structure 10 that is integrally formed by casting, residual stress may be generated by cooling in the casting process. In order to remove this, the integrally formed pipe support structure 1 may be heat-treated again in a furnace at 850 ° C. or higher. Thereby, a residual stress can be eliminated more effectively.
これらの結果として、本実施形態における配管支持構造10においては、環境因子及び応力因子が排除され、特殊な態様の応力腐食割れの発生を防ぐことができる。すなわち、前述した一般的な配管支持構造110の使用時においては、溶接位置111及び空洞位置112の領域には、雨水などにより流れてきた海塩粒子などが堆積及び濃縮することがある。しかしながら、本実施の形態によれば、海塩粒子などの接合部への入り込みを防止することで、このような応力因子を解消することができる。 As a result of these, in the pipe support structure 10 in the present embodiment, environmental factors and stress factors are eliminated, and the occurrence of special forms of stress corrosion cracking can be prevented. That is, when the above-described general pipe support structure 110 is used, sea salt particles or the like that have flowed due to rainwater or the like may accumulate and concentrate in the regions of the welding position 111 and the cavity position 112. However, according to the present embodiment, such a stress factor can be eliminated by preventing sea salt particles and the like from entering the joint.
[第2の実施形態]
第2の実施形態に係る配管支持構造及びその形成方法について、図2を用いて説明する。
[Second Embodiment]
A pipe support structure and a method for forming the pipe support structure according to the second embodiment will be described with reference to FIG.
本実施形態に係る配管支持構造を形成するためには、まず、配管1aと支柱2aとを、溶接部3において溶接する。さらにその後、炉4において全体を熱し、溶体化処理を施し、これによって配管支持構造10aを形成することができる。 In order to form the pipe support structure according to the present embodiment, first, the pipe 1a and the support column 2a are welded at the welded portion 3. Thereafter, the entire furnace 4 is heated and subjected to a solution treatment, whereby the pipe support structure 10a can be formed.
配管1及び支柱2を溶接により接合した場合、溶接部3の周囲にはステンレス鋼が鋭敏化した組織が発生することがある。本実施の形態によれば、溶体化処理を施すことにより配管支持構造10aを形成するので、ステンレス鋼から析出したクロム炭化物を、結晶粒内に再度溶け込ませることができる。この処理の結果、鋭敏化した組織の耐食性を再度回復することができる。 When the pipe 1 and the column 2 are joined by welding, a structure in which stainless steel is sensitized around the welded portion 3 may be generated. According to the present embodiment, since the pipe support structure 10a is formed by performing the solution treatment, the chromium carbide precipitated from the stainless steel can be dissolved again in the crystal grains. As a result of this treatment, the corrosion resistance of the sensitized tissue can be recovered again.
溶体化処理における加熱の条件としては、例えば、SUS304を用いた厚さ約2.5mmの配管に、SUS304を用いた厚さ約2.5mmの支柱を溶接した配管支持構造の場合、1000℃から1200℃の温度で約60分程度加熱することが望ましい。また、溶体化処理の冷却過程においては、SUS304が鋭敏化する温度領域である450℃〜850℃を極力早く脱するために、ブロワ―などを設けて強制的に冷却することが好ましい。 As a heating condition in the solution treatment, for example, in the case of a pipe support structure in which a strut having a thickness of about 2.5 mm using SUS304 is welded to a pipe having a thickness of about 2.5 mm using SUS304, from 1000 ° C. It is desirable to heat at a temperature of 1200 ° C. for about 60 minutes. Further, in the cooling process of the solution treatment, it is preferable to forcibly cool by providing a blower or the like in order to remove 450 ° C. to 850 ° C., which is a temperature range where SUS304 is sensitized, as quickly as possible.
[第3の実施形態]
図3を用いて、第3の実施形態に係る配管支持構造について説明する。尚、本第3の実施形態は、第1の実施形態(図1)の変形例であるため、同一部分、又は、類似部分については、同一符号を付して、重複する説明を省略する。
[Third Embodiment]
The piping support structure according to the third embodiment will be described with reference to FIG. Since the third embodiment is a modification of the first embodiment (FIG. 1), the same portions or similar portions are denoted by the same reference numerals, and redundant description is omitted.
図3は、第3の実施形態における、配管支持構造20と、その形成方法を示している。 FIG. 3 shows a pipe support structure 20 and a method for forming the same in the third embodiment.
まず、図3の形態では、配管21と支柱22を鋳造により一体に成型している。このとき、支柱22の長さLは、少なくとも50mmより長くなっている。ここでいう「長さ」とは、配管21との接続部分から、支柱22の軸方向の端部までの距離を意味している。また、ここでいう接続部分とは、配管21の外壁と支柱22の境界のうちすべての箇所を意味している。 First, in the form of FIG. 3, the pipe 21 and the support column 22 are integrally formed by casting. At this time, the length L of the column 22 is longer than at least 50 mm. The “length” here means the distance from the connecting portion with the pipe 21 to the axial end of the column 22. Moreover, the connection part here means all the places in the boundary of the outer wall of the piping 21, and the support | pillar 22. As shown in FIG.
本実施形態に係る配管支持構造20は、支柱22における配管とは逆の端部25に、例えばさらに支柱の延長部材26を溶接することを想定している。本実施の形態では、長さLを少なくとも50mmとすることで、配管21への熱の伝わりを緩和している。この場合、この延長部材の溶接時に、熱が支柱22を伝って配管21に到達することを緩和できる。これにより、ステンレス組織の鋭敏化を防ぎ、応力腐食割れの材料因子を排除することができる。 The piping support structure 20 according to the present embodiment assumes that, for example, a column extension member 26 is further welded to an end 25 opposite to the piping in the column 22. In the present embodiment, the transmission of heat to the pipe 21 is reduced by setting the length L to at least 50 mm. In this case, at the time of welding of the extension member, heat can be mitigated from reaching the pipe 21 through the support column 22. Thereby, the sensitization of the stainless steel structure can be prevented and the material factor of stress corrosion cracking can be eliminated.
[第4の実施形態]
図4を用いて、第4の実施形態に係る配管支持構造について説明する。尚、本第4の実施形態は、第2の実施形態(図2)及び図3の実施形態(図3)の変形例であるため、同一部分、又は、類似部分については、同一符号を付して、重複する説明を省略する。
[Fourth Embodiment]
A pipe support structure according to the fourth embodiment will be described with reference to FIG. Since the fourth embodiment is a modification of the second embodiment (FIG. 2) and the embodiment of FIG. 3 (FIG. 3), the same or similar parts are denoted by the same reference numerals. Thus, redundant description is omitted.
図4は、第4の実施形態における、配管支持構造30と、その形成方法を示している。 FIG. 4 shows a pipe support structure 30 and a formation method thereof in the fourth embodiment.
まず図4では、配管31と支柱32を、溶接部33において、溶接により接合している。このとき、支柱32の長さLは、図3の場合と同様、少なくとも50mmより長くなっている。さらに、炉4内で、溶体化処理を施している。これにより、形成した配管支持構造30から、溶接により生じた残留応力を除去している。 First, in FIG. 4, the pipe 31 and the support column 32 are joined by welding at the welded portion 33. At this time, the length L of the support column 32 is longer than at least 50 mm as in the case of FIG. Furthermore, solution treatment is performed in the furnace 4. Thereby, the residual stress produced by welding is removed from the formed pipe support structure 30.
配管31と支柱32との溶接時に、大きな熱エネルギーが、溶接部3の周囲に伝わった場合、溶接部3付近で部材の変形が生じてしまうことがある。この変形により、材料の内部に応力が発生してしまい、応力腐食割れの応力因子となってしまう可能性がある。しかしながら、本実施形態のように、溶体化処理を施すことにより、変形により生じた応力を除去することができるため、応力因子を解消することができる。 When large heat energy is transmitted to the periphery of the welded part 3 during welding of the pipe 31 and the support column 32, the member may be deformed in the vicinity of the welded part 3. Due to this deformation, stress is generated inside the material, which may become a stress factor of stress corrosion cracking. However, as in the present embodiment, by applying the solution treatment, the stress caused by the deformation can be removed, so that the stress factor can be eliminated.
本実施形態における配管支持構造30においても、支柱32における配管とは逆の端部35に、例えばさらに支柱の延長部材36を溶接することを想定している。この場合、この延長部材の溶接時に、熱が支柱32を伝って配管32に到達することがある。これにより、ステンレス組織の鋭敏化が生じてしまい、応力腐食割れの材料因子となりうるため、望ましくない。しかしながら、本実施形態のように、長さLを少なくとも50mmとすることで、配管31への熱の伝わりを緩和することで、これを防ぐことができる。 Also in the pipe support structure 30 in the present embodiment, it is assumed that, for example, an extension member 36 of a support column is further welded to an end portion 35 opposite to the piping of the support column 32. In this case, when the extension member is welded, heat may reach the pipe 32 through the support column 32. As a result, sensitization of the stainless steel structure occurs, which can be a material factor for stress corrosion cracking, which is not desirable. However, this can be prevented by reducing the transfer of heat to the pipe 31 by setting the length L to at least 50 mm as in this embodiment.
[その他の態様]
前述した実施形態の説明は、本発明に係る配管支持構造を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は前述した実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
[Other aspects]
The description of the embodiment described above is an example for explaining the pipe support structure according to the present invention, and does not limit the invention described in the claims. Moreover, each part structure of this invention is not restricted to embodiment mentioned above, A various deformation | transformation is possible within the technical scope as described in a claim.
例えば、上述の実施形態では、配管の曲折部の外側に支柱を取り付けたが、曲折部の内側に取り付ける構成であっても良い。また、支柱は垂直に取り付けるものに限らず、水平方向や斜め方向に取り付けたものでもよい。また、本実施形態では、支柱は配管を下方向から支持する構成を用いて説明しているが、上方向から支える構成であってもよい。 For example, in the above-described embodiment, the support column is attached to the outside of the bent portion of the pipe, but the configuration may be attached to the inside of the bent portion. Further, the support column is not limited to a vertical attachment, and may be a horizontal attachment or an oblique attachment. In the present embodiment, the support column is described using a configuration in which the pipe is supported from below, but may be configured to be supported from above.
また、配管及び支柱の断面形状は、円形に限らず、角形等、その他の形状であってもよい。尚、中空の支柱の代わりに内部に空洞を持たない支柱を取り付けてもよい。また、配管の肉厚は、約1mmから約50mm程度であってもよく、同様に、支柱の肉厚は約1mmから約500mm程度であってもよい。 Further, the cross-sectional shapes of the pipe and the support are not limited to a circle, but may be other shapes such as a square. In addition, you may attach the support | pillar which does not have a cavity inside instead of a hollow support | pillar. Further, the thickness of the pipe may be about 1 mm to about 50 mm, and similarly, the thickness of the support column may be about 1 mm to about 500 mm.
1 配管
1a 配管
2 支柱
2a 支柱
3 溶接部
4 炉
10 配管支持構造
10a 配管支持構造
20 配管支持構造
20a 配管支持構造
21 配管
22 支柱
25 端部
26 延長部材
30 配管支持構造
31 配管
32 支柱
33 溶接部
35 端部
36 延長部材
100 配管支持構造
101 配管
102 支柱
103 溶接部
107 亀裂
108 亀裂
111 溶接位置
112 空洞位置
L 長さ
DESCRIPTION OF SYMBOLS 1 Piping 1a Piping 2 Strut 2a Strut 3 Welding part 4 Furnace 10 Piping support structure 10a Piping support structure 20 Piping support structure 20a Piping support structure 21 Piping 22 Strut 25 End 26 Extension member 30 Piping support structure 31 Piping 32 Strut 33 Welding part 35 End 36 Extension member 100 Piping support structure 101 Piping 102 Strut 103
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016007007A JP6806445B2 (en) | 2016-01-18 | 2016-01-18 | Piping support structure and its formation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016007007A JP6806445B2 (en) | 2016-01-18 | 2016-01-18 | Piping support structure and its formation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017129164A true JP2017129164A (en) | 2017-07-27 |
JP6806445B2 JP6806445B2 (en) | 2021-01-06 |
Family
ID=59396119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016007007A Active JP6806445B2 (en) | 2016-01-18 | 2016-01-18 | Piping support structure and its formation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6806445B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019093540A (en) * | 2017-11-20 | 2019-06-20 | 東陽建設工機株式会社 | Reinforcement cutter |
JP2021169106A (en) * | 2020-04-14 | 2021-10-28 | 株式会社清水製作所 | Metal member joining method and joined body made of joined metal member |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52111438A (en) * | 1976-03-17 | 1977-09-19 | Daiichi Koshuha Kogyo Kk | Method of partly solid solution treatment for stainless steel pipes and the like |
JPS53119218A (en) * | 1977-03-29 | 1978-10-18 | Daiichi Koshuha Kogyo Kk | Partially solublizing treatment of stainless material |
JPS54153996A (en) * | 1978-05-25 | 1979-12-04 | Toshiba Corp | Sub-cooling sea water system for emergency |
JPS5541610U (en) * | 1978-09-12 | 1980-03-17 | ||
US4244606A (en) * | 1978-09-28 | 1981-01-13 | Shell Oil Company | Apparatus for reducing thermal fatigue in a piping suspension system for a high temperature furnace |
JPS57115475U (en) * | 1981-01-12 | 1982-07-17 | ||
JPS5958277U (en) * | 1982-10-12 | 1984-04-16 | 三菱重工業株式会社 | Piping support device |
JPH08254594A (en) * | 1995-03-17 | 1996-10-01 | Hitachi Ltd | Prevention method for stress corrosion cracking and hydrogen induced cracking of metal part |
JP2000040094A (en) * | 1998-07-22 | 2000-02-08 | Kubota Corp | Method and device for designing solid conveying pipeline and record medium |
JP2000234702A (en) * | 1999-02-10 | 2000-08-29 | Ishikawajima Harima Heavy Ind Co Ltd | Downcast pipe supporting structure of evaporator for heat recovery steam generator |
WO2007129703A1 (en) * | 2006-05-09 | 2007-11-15 | Nippon Steel & Sumikin Stainless Steel Corporation | Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance |
JP2010065838A (en) * | 2008-09-12 | 2010-03-25 | Mitsui Mining & Smelting Co Ltd | Method for corrosion prevention in pipe installation structure and mounting frame of pipe |
JP2015112642A (en) * | 2013-12-16 | 2015-06-22 | 三菱重工業株式会社 | Pipe connection method, and pipe connection structure |
-
2016
- 2016-01-18 JP JP2016007007A patent/JP6806445B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52111438A (en) * | 1976-03-17 | 1977-09-19 | Daiichi Koshuha Kogyo Kk | Method of partly solid solution treatment for stainless steel pipes and the like |
JPS53119218A (en) * | 1977-03-29 | 1978-10-18 | Daiichi Koshuha Kogyo Kk | Partially solublizing treatment of stainless material |
JPS54153996A (en) * | 1978-05-25 | 1979-12-04 | Toshiba Corp | Sub-cooling sea water system for emergency |
JPS5541610U (en) * | 1978-09-12 | 1980-03-17 | ||
US4244606A (en) * | 1978-09-28 | 1981-01-13 | Shell Oil Company | Apparatus for reducing thermal fatigue in a piping suspension system for a high temperature furnace |
JPS57115475U (en) * | 1981-01-12 | 1982-07-17 | ||
JPS5958277U (en) * | 1982-10-12 | 1984-04-16 | 三菱重工業株式会社 | Piping support device |
JPH08254594A (en) * | 1995-03-17 | 1996-10-01 | Hitachi Ltd | Prevention method for stress corrosion cracking and hydrogen induced cracking of metal part |
JP2000040094A (en) * | 1998-07-22 | 2000-02-08 | Kubota Corp | Method and device for designing solid conveying pipeline and record medium |
JP2000234702A (en) * | 1999-02-10 | 2000-08-29 | Ishikawajima Harima Heavy Ind Co Ltd | Downcast pipe supporting structure of evaporator for heat recovery steam generator |
WO2007129703A1 (en) * | 2006-05-09 | 2007-11-15 | Nippon Steel & Sumikin Stainless Steel Corporation | Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance |
JP2010065838A (en) * | 2008-09-12 | 2010-03-25 | Mitsui Mining & Smelting Co Ltd | Method for corrosion prevention in pipe installation structure and mounting frame of pipe |
JP2015112642A (en) * | 2013-12-16 | 2015-06-22 | 三菱重工業株式会社 | Pipe connection method, and pipe connection structure |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019093540A (en) * | 2017-11-20 | 2019-06-20 | 東陽建設工機株式会社 | Reinforcement cutter |
JP2021169106A (en) * | 2020-04-14 | 2021-10-28 | 株式会社清水製作所 | Metal member joining method and joined body made of joined metal member |
JP7475644B2 (en) | 2020-04-14 | 2024-04-30 | 株式会社清水製作所 | Method for joining metal components |
Also Published As
Publication number | Publication date |
---|---|
JP6806445B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104551526A (en) | Method for repairing internal cracks of weld joint of container device | |
JPS622903B2 (en) | ||
JP2017129164A (en) | Piping support structure and method for forming the same | |
US20080277921A1 (en) | Method and a Sleeve for Joining Two Components | |
JP2015174147A (en) | Process for welding pipe connections for high temperature applications | |
CN103128427B (en) | A kind of welding procedure method of large cast steel node under low-temperature condition | |
JP4915251B2 (en) | Clad welded structure of low alloy steel base metal | |
JP4948834B2 (en) | Corrosion-resistant coating alloy and member coated therewith | |
CN107738039B (en) | Steel membrane type tube panel sealing welding method | |
CN111421296B (en) | On-line surfacing repair method for maintaining weld joints of carbon steel branch pipe | |
JP5687825B2 (en) | Distortion suppression jig and steel wall repair method | |
Saha et al. | Failure of a secondary superheater tube in a 140-MW thermal power plant | |
JP6118714B2 (en) | Welded joint structure of thick-walled large-diameter pipe and its welding method | |
JP5782210B1 (en) | Regenerative heat treatment method for heat-resistant metal material member with creep damage | |
Hilson et al. | Spatial variation of residual stresses in a welded pipe for high temperature applications | |
JP2008214710A (en) | Method for improving residual stress | |
JP2007009986A (en) | Glass lining tube | |
JPH02195097A (en) | Telescoping pipe fitting and production thereof | |
JP6015681B2 (en) | Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment | |
KR102723402B1 (en) | An exhaust system | |
Saha et al. | Investigation of probable cause of damage of steam drum of naphtha cracking furnace | |
JPH04135067A (en) | Residual stress reducing method for tube inside fitting weld zone | |
JP2015116603A (en) | Repair welding method and repair welding structure of welded portion | |
JPH02133191A (en) | Preventing method for stress corrosion cracking of vessel through-pipe | |
Ravi et al. | An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200519 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6806445 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |