JP6071867B2 - Repair welding method and repair weld structure of welded part - Google Patents

Repair welding method and repair weld structure of welded part Download PDF

Info

Publication number
JP6071867B2
JP6071867B2 JP2013263273A JP2013263273A JP6071867B2 JP 6071867 B2 JP6071867 B2 JP 6071867B2 JP 2013263273 A JP2013263273 A JP 2013263273A JP 2013263273 A JP2013263273 A JP 2013263273A JP 6071867 B2 JP6071867 B2 JP 6071867B2
Authority
JP
Japan
Prior art keywords
welding
repair
welded
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013263273A
Other languages
Japanese (ja)
Other versions
JP2015116603A (en
Inventor
雄介 鮎川
雄介 鮎川
駒井 伸好
伸好 駒井
時吉 巧
巧 時吉
拓也 深堀
拓也 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013263273A priority Critical patent/JP6071867B2/en
Publication of JP2015116603A publication Critical patent/JP2015116603A/en
Application granted granted Critical
Publication of JP6071867B2 publication Critical patent/JP6071867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接部分の補修溶接方法及び補修溶接構造に関するもので、例えば、火力発電所に設置された陸用ボイラの大口径配管の溶接部分等、熱の影響を受ける配管の補修に好適な溶接部分の溶接方法及び補修溶接構造に関する。   The present invention relates to a repair welding method and repair weld structure of a welded portion, and is suitable for repairing piping affected by heat, such as a welded portion of a large-diameter piping of a land boiler installed in a thermal power plant. The present invention relates to a welding method of a welded portion and a repair welding structure.

火力発電所に設置された陸用ボイラの大口径配管の溶接部分は、定期的に組織検査、超音波検査等の非破壊検査が行われ、その結果に基づいて、欠陥部分は補修溶接が行われている。補修溶接は、欠陥部分を両側または片側から切除し、その切除した部分に肉盛り溶接を施すのが一般的である。
また、第1の母材と第2の母材とを突き合わせ溶接した溶接部分の補修溶接方法として、第1の母材との境界部及び第2の母材との境界部の両者を含むとともに、第1の母材及び第2の母材の表面から厚み方向に深さを有する領域を当該領域の底面が前記表面に沿うように切除した後、当該領域を肉盛り溶接する溶接部分の補修溶接方法が公知である(例えば、特許文献1参照)。
また、第1の母材と第2の母材とを母材の成分と近い溶接材料で溶接された溶接部分の補修方法として、溶融、固化した後のクリープ延性が母材よりも大きい材料(例えば、母材よりも炭素の含有量が少ない材料)で肉盛り溶接する溶接部分の補修溶接方法が公知である(例えば、特許文献2参照)。
Non-destructive inspections such as structural inspection and ultrasonic inspection are regularly performed on welded parts of large-diameter piping of land boilers installed in thermal power plants, and repair welding is performed on defective parts based on the results. It has been broken. In repair welding, a defective portion is generally excised from both sides or one side, and build-up welding is performed on the excised portion.
In addition, as a repair welding method for the welded portion where the first base material and the second base material are butt welded, both the boundary portion with the first base material and the boundary portion with the second base material are included. After repairing the welded portion where the region having a depth in the thickness direction from the surfaces of the first base material and the second base material is excised so that the bottom surface of the region is along the surface, the region is welded by overlay welding A welding method is known (see, for example, Patent Document 1).
Further, as a repair method for a welded portion in which the first base material and the second base material are welded with a welding material close to the base material component, a material having a larger creep ductility after melting and solidification than the base material ( For example, a repair welding method for a welded portion that is build-up welded with a material having a carbon content smaller than that of a base material is known (see, for example, Patent Document 2).

特開2011−194458号公報JP 2011-194458 A 特開2003−326385号公報JP 2003-326385 A

しかしながら、溶接部分の補修溶接によっても母材や溶接金属に新たに熱が加わり、母材や溶接金属に熱影響部(HAZ(Heat Affected Zone))が形成されるので、意図しない強度低下を招くことがある。
本発明は、上記実情を鑑みて、補修溶接による強度低下を抑制できる溶接部分の補修溶接方法及び補修溶接構造を提供することを目的とする。
However, since heat is newly applied to the base material and the weld metal even by repair welding of the welded portion, and a heat affected zone (HAZ (Heat Affected Zone)) is formed in the base material and the weld metal, unintended strength reduction is caused. Sometimes.
In view of the above circumstances, it is an object of the present invention to provide a repair welding method and a repair weld structure for a welded portion that can suppress a decrease in strength due to repair welding.

本発明は、中空筒状の第1の管材と中空筒状の第2の管材とを第1の溶接材料を周方向に施して突き合わせ溶接した溶接部分の補修溶接方法であって、前記第1の溶接材料は、前記第1の管材及び前記第2の管材と同一材料を用い、前記溶接部分に生じた欠陥を前記第1の管材または前記第2の管材の少なくとも一方を含めて切除するステップと、該切除するステップの次に、切除した領域に前記切除した管材及び前記第1の溶接材料の線膨張係数より大きな線膨張係数を有する第2の溶接材料で肉盛り溶接するステップとを備えたことを特徴とする。
本発明によれば、第1の管材と第2の管材とに内圧と熱が作用した場合に第2の溶接材料で肉盛り溶接された部分がほかの部分よりも膨張する。これにより、一部(第2の溶接材料で肉盛り溶接された部分)が欠落した円環状をなす部分には圧縮応力が生じる。この圧縮応力は、第1の管材と第2の管材とにおいて内圧と熱により周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、溶接による熱影響部に作用する作用応力が低減される。したがって、本発明の溶接部分の補修溶接方法によれば、補修溶接による強度低下を抑制できる。
The present invention provides a repair welding method of the welded parts obtained by a hollow cylindrical first tubular material of the hollow cylindrical second tubular member is subjected to a first welding material circumferentially butt welding, the first The welding material is the same material as the first pipe and the second pipe, and a defect generated in the welded portion is removed including at least one of the first pipe or the second pipe. And, following the excision step , build-up welding with a second welding material having a linear expansion coefficient larger than that of the excised tube material and the first welding material in the excised region. It is characterized by that.
According to the present invention, when internal pressure and heat are applied to the first tube material and the second tube material, the portion welded with the second welding material expands more than the other portions. Thereby, a compressive stress arises in the part which makes the annular | circular shape from which one part (part welded with the 2nd welding material) lacked. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction by internal pressure and heat in the first tube material and the second tube material. Thereby, the acting stress which acts on the heat affected zone by welding is reduced. Therefore, according to the repair welding method for welded portions of the present invention, strength reduction due to repair welding can be suppressed.

本発明では、前記第1の管材及び前記第2の管材と前記第1の溶接材料は、同一材料からなるので、第1の管材と第2の管材とに内圧と熱が作用した場合に第2の溶接材料で溶接した部分が第1の溶接材料で溶接した部分よりも膨張する。これにより、一部が欠落した円環状をなす部分(第1の溶接材料で溶接された部分)には圧縮応力が生じる。この圧縮応力は、第1の管材と第2の管材とにおいて内圧と熱により周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、溶接による熱影響部に作用する作用応力が低減される。したがって、この溶接部分の補修溶接方法によれば、補修溶接による強度低下を抑制できる。
In the present invention, wherein the first tube and the second tube first welding material, since the same material, the when the pressure and heat is applied to the first tubular member and second tubular member The part welded with the welding material 2 expands more than the part welded with the first welding material. Thereby, a compressive stress arises in the part (part welded with the 1st welding material) which makes the annular | circular shape from which one part was missing. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction by internal pressure and heat in the first tube material and the second tube material. Thereby, the acting stress which acts on the heat affected zone by welding is reduced. Therefore, according to the repair welding method for this welded portion, it is possible to suppress a decrease in strength due to repair welding.

本発明の一態様では、前記第2の溶接材料は、前記第1の管材及び前記第2の管材よりもクリープ強度が大きいことが好ましい。
このようにすれば、第2の溶接材料で肉盛り溶接された部分のクリープ強度を向上させることができる。
In one aspect of the present invention, it is preferable that the second welding material has a higher creep strength than the first pipe member and the second pipe member.
If it does in this way, the creep strength of the part weld-welded with the 2nd welding material can be improved.

本発明は、中空筒状の第1の管材と中空筒状の第2の管材とを第1の溶接材料を周方向に施して突き合わせ溶接した溶接部分の補修溶接構造であって、前記第1の溶接材料は、前記第1の管材及び前記第2の管材と同一材料からなり、前記溶接部分に生じた欠陥を切除した領域に前記第1の管材または前記第2の管材よりも線膨張係数が大きく、且つ前記第1の溶接材料の線膨張係数より大きい第2の溶接材料で肉盛り溶接した補修溶接部を備え、補修後の突合せ部分は前記第1の溶接材料の部分と前記補修溶接部とによって構成されることを特徴とする。
本発明によれば、第1の管材と第2の管材とに内圧と熱が作用した場合に第2の溶接材料で肉盛り溶接された部分がほかの部分よりも膨張する。これにより、一部(第2の溶接材料で肉盛り溶接された部分)が欠落した円環状をなす部分には圧縮応力が生じる。この圧縮応力は、第1の管材と第2の管材とにおいて内圧と熱による周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、溶接による熱影響部に作用する作用応力が低減される。したがって、本発明の溶接部分の補修溶接構造によれば、補修溶接による強度低下を抑制できる。
The present invention is a repair welding structure for a welded portion in which a hollow tubular first pipe member and a hollow tubular second tubular member are subjected to a butt welding by applying a first welding material in a circumferential direction . The welding material is made of the same material as the first tube material and the second tube material, and has a linear expansion coefficient larger than that of the first tube material or the second tube material in a region where a defect generated in the welded portion is removed. but greatly, and with the first repair welds were overlay clad in linear expansion coefficient larger than the second welding material of the welding material, butt portion after repair part and the repair of the first welding material It is comprised by a welding part, It is characterized by the above-mentioned.
According to the present invention, when internal pressure and heat are applied to the first tube material and the second tube material, the portion welded with the second welding material expands more than the other portions. Thereby, a compressive stress arises in the part which makes the annular | circular shape from which one part (part welded with the 2nd welding material) lacked. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction due to internal pressure and heat in the first tube material and the second tube material. Thereby, the acting stress which acts on the heat affected zone by welding is reduced. Therefore, according to the repair welding structure of the welding part of this invention, the strength fall by repair welding can be suppressed.

本発明では、前記第1の管材及び前記第2の管材と前記第1の溶接材料は、同一材料からなるので、第1の管材と第2の管材とに内圧と熱が作用した場合に第2の溶接材料で溶接した部分が第1の溶接材料で溶接した部分よりも膨張する。これにより、一部が欠落した円環状をなす部分(第1の溶接材料で溶接された部分)には圧縮応力が生じる。この圧縮応力は、第1の管材と第2の管材とにおいて内圧と熱により周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、溶接による熱影響部に作用する作用応力が低減される。したがって、この溶接部分の補修溶接方法によれば、補修溶接による強度低下を抑制できる。 In the present invention, wherein the first tube and the second tube first welding material, since the same material, the when the pressure and heat is applied to the first tubular member and second tubular member The part welded with the welding material 2 expands more than the part welded with the first welding material. Thereby, a compressive stress arises in the part (part welded with the 1st welding material) which makes the annular | circular shape from which one part was missing. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction by internal pressure and heat in the first tube material and the second tube material. Thereby, the acting stress which acts on the heat affected zone by welding is reduced. Therefore, according to the repair welding method for this welded portion, it is possible to suppress a decrease in strength due to repair welding.

本発明の一態様では、前記第2の溶接材料は、前記第1の管材及び前記第2の管材よりもクリープ強度が大きいことが好ましい。
このようにすれば、第2の溶接材料で肉盛り溶接された部分のクリープ強度を向上させることができる。
In one aspect of the present invention, it is preferable that the second welding material has a higher creep strength than the first pipe member and the second pipe member.
If it does in this way, the creep strength of the part weld-welded with the 2nd welding material can be improved.

以上説明したように、本発明によれば、第1の管材と第2の管材とに内圧と熱が作用した場合に第2の溶接材料で肉盛り溶接された部分がほかの部分よりも膨張する。これにより、一部(第2の溶接材料で肉盛り溶接された部分)が欠落した円環状をなす部分には圧縮応力が生じる。この圧縮応力は、第1の管材と第2の管材とにおいて内圧と熱とにより周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、溶接による熱影響部に作用する作用応力が緩和される。したがって、本発明によれば、補修溶接による強度低下を抑制できる。   As described above, according to the present invention, when internal pressure and heat are applied to the first tube material and the second tube material, the portion welded with the second welding material expands more than the other portions. To do. Thereby, a compressive stress arises in the part which makes the annular | circular shape from which one part (part welded with the 2nd welding material) lacked. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction by internal pressure and heat in the first tube material and the second tube material. Thereby, the action stress which acts on the heat affected zone by welding is relieved. Therefore, according to this invention, the strength fall by repair welding can be suppressed.

本発明の実施の形態1である溶接部分の補修溶接方法を適用した大口径配管を示す図である。It is a figure which shows the large diameter piping to which the repair welding method of the welding part which is Embodiment 1 of this invention is applied. 本発明の実施の形態1である溶接部分の補修溶接方法により補修された溶接部分の外表面を示す図である。It is a figure which shows the outer surface of the welding part repaired with the repair welding method of the welding part which is Embodiment 1 of this invention. 本発明の実施の形態1である溶接部分の補修溶接方法を説明するための断面図である。It is sectional drawing for demonstrating the repair welding method of the welding part which is Embodiment 1 of this invention. 補修溶接長さと重複HAZの作用応力との関係を示す図である。It is a figure which shows the relationship between repair welding length and the action stress of duplication HAZ. 補修溶接長さと重複HAZのクリープ寿命比との関係を示す図である。It is a figure which shows the relationship between repair welding length and the creep life ratio of duplication HAZ. 補修溶接を検討するに際して用いた条件(計算条件)を示す図である。It is a figure which shows the conditions (calculation conditions) used when examining repair welding. 補修溶接の検討結果を示す図である。It is a figure which shows the examination result of repair welding. 補修溶接長さとひずみ応力との関係を示す図である。It is a figure which shows the relationship between repair welding length and a strain stress. 本発明の実施の形態2である溶接部分の補修溶接方法を適用した大口径配管を示す図である。It is a figure which shows the large diameter piping to which the repair welding method of the welding part which is Embodiment 2 of this invention is applied. 本発明の実施の形態2である溶接部分の補修溶接方法により補修された溶接部分の外表面を示す図である。It is a figure which shows the outer surface of the welding part repaired with the repair welding method of the welding part which is Embodiment 2 of this invention. 本発明の実施の形態2である溶接部分の補修溶接方法を説明するための断面図である。It is sectional drawing for demonstrating the repair welding method of the welding part which is Embodiment 2 of this invention.

以下に添付図面を参照して、本発明に係る溶接部分の補修溶接方法及び補修溶接構造の実施の形態を詳細に説明する。ここでは、火力発電所に設置された陸用ボイラの大口径配管の溶接部分を例に説明するが、これに限定されるものではなく、熱の影響を受ける配管の溶接部分全般に適用可能であり、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a repair welding method and repair weld structure for a welded portion according to the present invention will be described below in detail with reference to the accompanying drawings. Here, the welding part of a large-diameter pipe of a land boiler installed in a thermal power plant will be described as an example, but the present invention is not limited to this, and can be applied to general welding parts of pipes affected by heat. The present invention is not limited to the embodiments.

[実施の形態1]
図1は、本発明の実施の形態1である溶接部分の補修溶接方法を適用した大口径配管を示す図である。図2は、本発明の実施の形態1である溶接部分の補修溶接方法により補修された溶接部分の外表面を示す図である。図3は、本発明の実施の形態1である溶接部分の補修溶接方法を説明するための断面図である。
[Embodiment 1]
FIG. 1 is a diagram showing a large-diameter pipe to which a welded part repair welding method according to Embodiment 1 of the present invention is applied. FIG. 2 is a diagram illustrating an outer surface of a welded portion repaired by the welded portion repair welding method according to the first embodiment of the present invention. FIG. 3 is a cross-sectional view for explaining the repair welding method for welded portions according to the first embodiment of the present invention.

本発明の実施の形態1である溶接部分の補修溶接方法は、陸用ボイラの大口径配管の溶接部分に適用される。図1に示すように、陸用ボイラの大口径配管は、外径及び内径、材質が等しい中空筒状の大口径の管材2,3に突き合わせ溶接されることにより構成される。突き合わせ溶接に際しては、大口径の管材2,3の周方向において溶接材料(第1の溶接材料4)が溶融される。陸用ボイラの大口径配管には、クロム(Cr)を含有したフェライト系耐熱鋼による大口径の管材2,3が用いられる。クロムを含有したフェライト系耐熱鋼は、9〜12wt%のクロムを含むフェライト系耐熱鋼であって、高クロム耐熱鋼とも称されるものである。大口径の管材2,3の周方向において溶融される溶接材料(第1の溶接材料4)には、大口径の管材2,3と同一材料の溶接材料が用いられる。   The welded part repair welding method according to the first embodiment of the present invention is applied to a welded part of a large-diameter pipe of a land boiler. As shown in FIG. 1, a large-bore pipe of a land boiler is configured by being butt welded to hollow tubular large-diameter pipe materials 2 and 3 having the same outer diameter, inner diameter, and same material. In the butt welding, the welding material (first welding material 4) is melted in the circumferential direction of the large-diameter pipe materials 2 and 3. Large-diameter pipes 2 and 3 made of ferritic heat-resistant steel containing chromium (Cr) are used for large-diameter pipes of land boilers. The ferritic heat resistant steel containing chromium is a ferritic heat resistant steel containing 9 to 12 wt% of chromium, and is also referred to as a high chromium heat resistant steel. For the welding material (first welding material 4) to be melted in the circumferential direction of the large-diameter pipe materials 2 and 3, the same welding material as that of the large-diameter pipe materials 2 and 3 is used.

図3(a)に示すように、突き合わせ溶接される一方の大口径の管材2と他方の大口径の管材3との間にはV形の開先が設けられ、開先に沿って溶接材料(第1の溶接材料4)が溶融され、固まった溶接材料(以下「溶接金属4」という)を介して、一方の大口径の管材2と他方の大口径の管材3とが接合(溶接)される。そして、一方の大口径の管材2と他方の大口径の管材3において溶融された第1の溶接材料4の熱の影響を受けた領域には熱影響部(HAZ)24,34が形成される。熱影響部24,34は、一方の大口径の管材2と他方の大口径の管材3とにおいて溶接金属4と接する境界面に沿って形成される。具体的には、図2及び図3(a)に示すように、開先に沿って略一定の深さで形成される。   As shown in FIG. 3 (a), a V-shaped groove is provided between one large-diameter pipe 2 and the other large-diameter pipe 3 to be butt-welded, and a welding material along the groove. One large-diameter pipe 2 and the other large-diameter pipe 3 are joined (welded) via a welded material (hereinafter referred to as “welded metal 4”) in which the (first welding material 4) is melted and solidified. Is done. Heat-affected portions (HAZ) 24 and 34 are formed in regions affected by the heat of the first welding material 4 melted in one large-diameter pipe 2 and the other large-diameter pipe 3. . The heat-affected portions 24 and 34 are formed along a boundary surface in contact with the weld metal 4 in one large-diameter pipe 2 and the other large-diameter pipe 3. Specifically, as shown in FIG. 2 and FIG. 3A, it is formed with a substantially constant depth along the groove.

陸用ボイラの大口径配管は、内圧や熱応力等による疲労等により、溶接部分に亀裂等の欠陥を生じる。この場合には、本発明の実施の形態1である溶接部分の補修溶接方法を実行することになる。   The large-bore piping of a land boiler causes defects such as cracks in the weld due to fatigue due to internal pressure, thermal stress, and the like. In this case, the repair welding method for the welded portion according to the first embodiment of the present invention is executed.

ここでは、図3(a)に示すように、大口径の管材3と溶接金属4とにわたり生じた欠陥Cの補修方法を例に説明する。
本発明の実施の形態1である溶接部分の補修溶接方法では、まず、機械的又は電気的な方法で、亀裂等の欠陥Cが生じた部分を切除するステップを実行する(図3(b)参照)。具体的には、図3(b)に示すように、溶接部分に生じた欠陥を大口径の管材3を含めて切除する。
Here, as shown in FIG. 3A, a method for repairing a defect C generated over the large-diameter pipe material 3 and the weld metal 4 will be described as an example.
In the repair welding method for welded portions according to the first embodiment of the present invention, first, a step of cutting off a portion where a defect C such as a crack has occurred is performed by a mechanical or electrical method (FIG. 3B). reference). Specifically, as shown in FIG. 3 (b), the defect generated in the welded portion is excised including the large-diameter pipe material 3.

つぎに、欠陥が切除された領域を大口径の管材2,3よりも線膨張係数が大きくクリープ強度も大きな溶接材料(第2の溶接材料5)で補修(肉盛り溶接)するステップを実行する(図3(c)参照)。大口径の管材2,3よりも線膨張係数が大きくクリープ強度も大きな材料には、インコネル(登録商標)系の溶接材料(ニッケル基合金)が用いられる。   Next, a step of repairing (overlay welding) the area where the defect has been removed with a welding material (second welding material 5) having a larger linear expansion coefficient and a larger creep strength than the large-diameter pipe materials 2 and 3 is executed. (See FIG. 3C). An Inconel (registered trademark) welding material (nickel-based alloy) is used as a material having a larger linear expansion coefficient and a larger creep strength than the large-diameter pipe materials 2 and 3.

このように、欠陥が切除された領域を第2の溶接材料5で補修すると、図2及び図3(c)に示すように、欠陥Cを切除した部分に沿って溶接材料(第2の溶接材料5)が溶融され、固まった溶接材料(以下「補修溶接金属5」という)を介して、大口径の管材3と溶接金属4とが接合(溶接)される。そして、大口径の管材3と溶接金属4とにおいて溶融された第2の溶接材料5の熱の影響を受けた領域には熱影響部(HAZ)35,45が形成される。熱影響部35,45は、大口径の管材3と溶接金属4とにおいて補修溶接金属5と接する境界面に沿って形成される。具体的には、欠陥が切除された領域に沿って略一定の深さで形成される。そして、第1の溶接材料4の熱の影響を受け、さらに、第2の溶接材料5の熱の影響を受けた領域には重複熱影響部(重複HAZ)345が形成される。   Thus, when the area | region where the defect was excised is repaired with the 2nd welding material 5, as shown in FIG.2 and FIG.3 (c), as shown in FIG.2 and FIG.3 (c), welding material (2nd welding material) is followed. The large-diameter pipe 3 and the weld metal 4 are joined (welded) through a welded material (hereinafter referred to as “repair weld metal 5”) in which the material 5) is melted and hardened. Heat-affected portions (HAZ) 35 and 45 are formed in regions affected by the heat of the second welding material 5 melted in the large-diameter pipe 3 and the weld metal 4. The heat affected portions 35 and 45 are formed along a boundary surface in contact with the repair weld metal 5 in the large diameter pipe material 3 and the weld metal 4. Specifically, it is formed with a substantially constant depth along the region where the defect has been removed. An overlapping heat affected zone (overlapping HAZ) 345 is formed in a region affected by the heat of the first welding material 4 and further affected by the heat of the second welding material 5.

これにより、本発明の実施の形態1である溶接部分の補修溶接構造は、図2及び図3(c)に示すように、突き合わせ溶接される一方の大口径の管材2と他方の大口径の管材3との間にはV形の開先が設けられ、開先に沿って第1の溶接材料4が溶融され、固まった溶接金属4を介して、一方の大口径の管材2と他方の大口径の管材3とが接合(溶接)される。さらに、欠陥を切除した部分に沿って第2の溶接材料5が溶融され、固まった補修溶接金属(補修溶接部)5を介して、大口径の管材3と溶接金属4とが接合(溶接)される。そして、一方の大口径の管材2と他方の大口径の管材3とにおいて溶融された第1の溶接材料4の熱の影響を受けた領域には熱影響部(HAZ)24,34が形成され、大口径の管材3と溶接金属4とにおいて溶融された第2の溶接材料5の熱の影響を受けた領域には熱影響部(HAZ)35,45が形成される。また、第1の溶接材料4の熱の影響と第2の溶接材料5の熱の影響を受けた領域には重複熱影響部(重複HAZ)345が形成される。   Thereby, as shown in FIG.2 and FIG.3 (c), the repair welding structure of the welding part which is Embodiment 1 of this invention is one large diameter pipe material 2 and the other large diameter of which are butt-welded. A V-shaped groove is provided between the pipe material 3, and the first welding material 4 is melted along the groove, and the large-diameter pipe material 2 and the other welding pipe 4 are passed through the solidified weld metal 4. The large diameter pipe material 3 is joined (welded). Further, the second welding material 5 is melted along the part where the defect has been removed, and the large-diameter pipe 3 and the weld metal 4 are joined (welded) via the solidified repair weld metal (repair weld portion) 5. Is done. Heat-affected zones (HAZ) 24 and 34 are formed in regions affected by the heat of the first welding material 4 melted in one large-diameter pipe 2 and the other large-diameter pipe 3. Heat-affected portions (HAZ) 35 and 45 are formed in regions affected by the heat of the second welding material 5 melted in the large-diameter pipe 3 and the weld metal 4. In addition, an overlapping heat affected zone (overlapping HAZ) 345 is formed in a region affected by the heat of the first welding material 4 and the heat of the second welding material 5.

上述した本発明の実施の形態1である溶接部分の補修溶接構造によれば、陸上ボイラの大口径配管に陸上ボイラの内圧と熱が作用した場合に補修溶接された補修溶接部(補修溶接金属5)がほかの部分(大口径の管材2,3及び溶接金属4)よりも膨張する。これにより、一部(補修溶接金属5)が欠落した円環状をなす溶接部分(大口径の管材2,3及び溶接金属4)には圧縮応力が生じる。この圧縮応力は、大口径配管において内圧と熱により周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、補修溶接による熱影響部に作用する作用応力が低減される。この作用応力の低減により、補修溶接による強度低下を抑制できる。この結果、補修溶接による熱影響部のクリープ寿命の長寿命化も可能になる。   According to the repair weld structure of the welded portion that is the first embodiment of the present invention described above, a repair weld (repair weld metal) that is repair welded when the internal pressure and heat of the land boiler are applied to the large-diameter piping of the land boiler. 5) expands more than other parts (large-diameter pipe materials 2, 3 and weld metal 4). Thereby, a compressive stress arises in the welding part (large-diameter pipe materials 2 and 3 and weld metal 4) which makes the annular shape from which a part (repair weld metal 5) lacked. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction by internal pressure and heat in a large-diameter pipe. Thereby, the action stress which acts on the heat affected zone by repair welding is reduced. By reducing the acting stress, strength reduction due to repair welding can be suppressed. As a result, it is possible to extend the creep life of the heat-affected zone by repair welding.

また、第2の溶接材料5には、大口径の管材2,3よりもクリープ強度も大きなインコネル(登録商標)系の溶接材料が用いられるので、補修溶接金属5によってもクリープ寿命の長寿命化が可能になる。   In addition, since the second welding material 5 is made of Inconel (registered trademark) welding material having a larger creep strength than the large-diameter pipe materials 2 and 3, the repair welding metal 5 can also increase the creep life. Is possible.

図4は、補修溶接長さと重複HAZの作用応力との関係を示す図であり、図5は、補修溶接長さと重複HAZのクリープ寿命比との関係を示す図である。
図4に示すように、溶接金属の材料と補修溶接金属の材料とが同じ同材補修の場合には、補修溶接長さを長くしても重複HAZの作用応力は一定となるので、補修溶接によって重複HAZの作用応力を減ずることはできない。一方、溶接金属の材料よりも線膨張係数が大きい異材補修の場合には、補修溶接長さを長くすると重複HAZの作用応力は減少(反比例)する。
FIG. 4 is a diagram showing the relationship between the repair weld length and the acting stress of the overlap HAZ, and FIG. 5 is a diagram showing the relationship between the repair weld length and the creep life ratio of the overlap HAZ.
As shown in FIG. 4, when the weld metal material and the repair weld metal material are the same material repair, the acting stress of the overlapping HAZ is constant even if the repair weld length is increased. Therefore, the working stress of the overlapping HAZ cannot be reduced. On the other hand, in the case of dissimilar material repair having a linear expansion coefficient larger than that of the weld metal material, if the repair weld length is increased, the acting stress of the overlapping HAZ decreases (inversely proportional).

また、図5に示すように、同材補修の場合には、補修溶接長さを長くしても重複HAZのクリープ寿命比は一定となるので、補修溶接によって重複HAZのクリープ寿命を長寿命化することはできない。一方、溶接金属の材料よりも線膨張係数が大きい異材補修の場合には、補修溶接長さを長くすると重複HAZのクリープ寿命比は大きくなり、クリープ寿命は長くなる。これにより、溶接金属の材料よりも線膨張係数が大きい異材補修により熱影響部のクリープ寿命の長寿命化が可能になる。   In addition, as shown in FIG. 5, in the case of repairing the same material, the creep life ratio of the overlapping HAZ is constant even if the repair welding length is increased, so that the creep life of the overlapping HAZ is extended by repair welding. I can't do it. On the other hand, in the case of repairing a different material having a linear expansion coefficient larger than that of the weld metal material, if the repair welding length is increased, the creep life ratio of the overlapping HAZ is increased, and the creep life is increased. This makes it possible to extend the creep life of the heat-affected zone by repairing a different material having a linear expansion coefficient larger than that of the weld metal material.

図6は、補修溶接を検討するに際して用いた条件を示す図である。図7は、補修溶接の検討結果を示す図であり、図8は、補修溶接長さとひずみ応力との関係を示す図である。
図6に示すように、大口径配管の径600mm、大口径配管の管周長1885mm、溶接金属に9〜12wt%のクロムを用いるフェライト系耐熱鋼、補修溶接金属にインコネル(登録商標)用いた検討結果である。補修溶接長さRを50mmから10mm刻みで検討する。
FIG. 6 is a diagram showing the conditions used when examining repair welding. FIG. 7 is a diagram showing the results of examination of repair welding, and FIG. 8 is a diagram showing the relationship between repair welding length and strain stress.
As shown in FIG. 6, the diameter of the large-diameter pipe is 600 mm, the pipe circumference of the large-diameter pipe is 1885 mm, ferritic heat-resistant steel using 9 to 12 wt% chromium as the weld metal, and Inconel (registered trademark) is used as the repair weld metal. This is the result of the study. The repair welding length R is examined in increments of 50 mm to 10 mm.

図6に示した条件によると、熱伸び差Lは、下記の数式1で求めることができる。

Figure 0006071867
According to the conditions shown in FIG. 6, the thermal expansion difference L can be obtained by the following formula 1.
Figure 0006071867

また、歪応力Sは、下記の数式2で求めることができる。

Figure 0006071867
Further, the strain stress S can be obtained by the following formula 2.
Figure 0006071867

これらを整理すると、図7及び図8に示す結果が得られる。図7及び図8によると、歪応力Sは、補修溶接長さに比例することがわかる。   When these are arranged, the results shown in FIGS. 7 and 8 are obtained. 7 and 8, it can be seen that the strain stress S is proportional to the repair weld length.

[実施の形態2]
図9は、本発明の実施の形態2である溶接部分の補修溶接方法を適用した大口径配管を示す図である。図10は、本発明の実施の形態2である溶接部分の補修溶接方法により補修された溶接部分の外表面を示す図である。図11は、本発明の実施の形態2である溶接部分の補修溶接方法を説明するための断面図である。
[Embodiment 2]
FIG. 9 is a diagram showing a large-diameter pipe to which the welded part repair welding method according to the second embodiment of the present invention is applied. FIG. 10 is a diagram illustrating an outer surface of a welded portion repaired by the welded portion repair welding method according to the second embodiment of the present invention. FIG. 11 is a cross-sectional view for explaining a repair welding method for welded portions according to the second embodiment of the present invention.

ここでは、図11(a)に示すように、大口径の管材3と溶接金属4とにわたり生じた欠陥Cの補修方法を例に説明する。
本発明の実施の形態2である溶接部分の補修溶接方法では、一方の大口径の管材2との境界部及び他方の大口径の管材3との境界部の両者を含むとともに、一方の大口径の管材2及び他方の大口径の管材3の表面から厚み方向に深さを有する領域を当該領域の底面が前記表面に沿うように切除するステップを実行する(図11(b)参照)。
Here, as shown in FIG. 11A, a method for repairing a defect C generated over the large-diameter pipe material 3 and the weld metal 4 will be described as an example.
In the repair welding method of the welding part which is Embodiment 2 of this invention, while including both the boundary part with the pipe material 2 of one large diameter, and the boundary part with the pipe material 3 of the other large diameter, one large diameter A step of cutting a region having a depth in the thickness direction from the surface of the tube material 2 and the other large-diameter tube material 3 so that the bottom surface of the region is along the surface is executed (see FIG. 11B).

つぎに、切除された領域を切除した領域よりも線膨張係数が大きくクリープ強度も大きな溶接材料(第2の溶接材料6)で補修(肉盛り溶接)するステップを実行する(図11(c)参照)。切除した領域よりも線膨張係数が大きくクリープ強度も大きな溶接材料(第2の溶接材料6)には、インコネル(登録商標)系の溶接材料(ニッケル基合金)が用いられる。   Next, a step of repairing (building-up welding) with a welding material (second welding material 6) having a larger linear expansion coefficient and a higher creep strength than the removed region is executed (FIG. 11C). reference). An Inconel (registered trademark) welding material (nickel-based alloy) is used as the welding material (second welding material 6) having a larger linear expansion coefficient and a larger creep strength than the cut region.

このように、欠陥が切除された領域を第2の溶接材料6で補修すると、図10及び図11(c)に示すように、欠陥Cを切除した部分に沿って溶接材料(第2の溶接材料6)が溶融され、固まった溶接材料(以下「補修溶接金属6」という)を介して、一方の大口径の管材2と他方の大口径の管材3とが接合(溶接)される。そして、一方の大口径の管材2と溶接金属4、他方の大口径の管材3と溶接金属4とにおいて溶融された第2の溶接材料6の熱の影響を受けた領域には熱影響部(HAZ)26,36が形成される。熱影響部26,36は、一方の大口径の管材2、溶接金属4、他方の大口径の管材3において補修溶接金属6と接する境界面に沿って形成される。具体的には、欠陥が切除された領域に沿って略一定の深さで形成される。そして、第1の溶接材料4の熱の影響を受け、さらに、第2の溶接材料6の熱の影響を受けた領域には重複熱影響部(重複HAZ)246,346が形成される。   Thus, when the area | region in which the defect was excised is repaired with the 2nd welding material 6, as shown in FIG.10 and FIG.11 (c), as shown in FIG.10 and FIG.11 (c), a welding material (2nd welding material) is followed. One large-diameter pipe 2 and the other large-diameter pipe 3 are joined (welded) through a welded material (hereinafter referred to as “repair weld metal 6”) in which the material 6) is melted and solidified. Then, in the region affected by the heat of the second welding material 6 melted in the pipe material 2 and the weld metal 4 on one large diameter and the pipe material 3 and the weld metal 4 on the other large diameter, the heat affected zone ( HAZ) 26, 36 are formed. The heat-affected portions 26 and 36 are formed along a boundary surface in contact with the repair weld metal 6 in one large-diameter tube material 2, the weld metal 4, and the other large-diameter tube material 3. Specifically, it is formed with a substantially constant depth along the region where the defect has been removed. Then, overlapping heat affected zones (overlapping HAZ) 246 and 346 are formed in a region affected by the heat of the first welding material 4 and further affected by the heat of the second welding material 6.

これにより、本発明の実施の形態2である溶接部分の補修溶接構造は、図11(c)に示すように、突き合わせ溶接される一方の大口径の管材2と他方の大口径の管材3との間にはV形の開先が設けられ、開先に沿って第1の溶接材料4が溶融され、固まった溶接金属4を介して、一方の大口径の管材2と他方の大口径の管材3とが接合(溶接)される。さらに、欠陥を切除した部分に沿って第2の溶接材料6が溶融され、固まった補修溶接金属6(補修溶接部)を介して、大口径の管材2,3と溶接金属4とが接合(溶接)される。そして、一方の大口径の管材2と他方の大口径の管材3とにおいて溶融された第1の溶接材料4の熱の影響を受けた領域には熱影響部(HAZ)24,34が形成され、大口径の管材2,3と溶接金属4とにおいて溶融された第2の溶接材料6の熱の影響を受けた領域には熱影響部(HAZ)26,36が形成される。また、第1の溶接材料4の熱の影響と第2の溶接材料6の熱の影響を受けた領域には重複熱影響部(重複HAZ)246,346が形成される。   Thereby, as shown in FIG.11 (c), the repair welding structure of the welding part which is Embodiment 2 of this invention has one large diameter pipe material 2 and the other large diameter pipe material 3 which are butt-welded. A V-shaped groove is provided between the first large-diameter pipe 2 and the other large-diameter pipe via the weld metal 4 in which the first welding material 4 is melted along the groove. The pipe material 3 is joined (welded). Further, the second welding material 6 is melted along the portion where the defect has been removed, and the large-diameter pipe materials 2 and 3 are joined to the weld metal 4 via the solidified repair weld metal 6 (repair weld). Welding). Heat-affected zones (HAZ) 24 and 34 are formed in regions affected by the heat of the first welding material 4 melted in one large-diameter pipe 2 and the other large-diameter pipe 3. Heat-affected zones (HAZ) 26 and 36 are formed in regions affected by the heat of the second welding material 6 melted in the large-diameter pipe materials 2 and 3 and the weld metal 4. In addition, overlapping heat affected zones (overlapping HAZ) 246 and 346 are formed in regions affected by the heat of the first welding material 4 and the heat of the second welding material 6.

上述した本発明の実施の形態2である溶接部分の補修溶接構造によれば、陸上ボイラの大口径配管に陸上ボイラの内圧と熱が作用した場合に補修溶接された補修溶接部(補修溶接金属部分)がほかの部分(大口径の管材2,3及び溶接金属4)よりも膨張する。これにより、一部(補修溶接金属部分)が欠落した円環状をなす部分(大口径の管材2,3及び溶接金属4)には圧縮応力が生じる。この圧縮応力は、大口径配管において内圧と熱により周方向に生じる引っ張り応力(フープ応力)を緩和する。これにより、補修溶接による熱影響部に作用する作用応力が低減される。また、この作用応力の低減により、補修溶接による強度低下を抑制できる。この結果、補修溶接による熱影響部のクリープ寿命の長寿命化も可能になる。   According to the repair weld structure of the weld portion according to the second embodiment of the present invention described above, a repair weld (repair weld metal) that is repair welded when the internal pressure and heat of the land boiler is applied to the large-diameter pipe of the land boiler. The portion) expands more than the other portions (the large-diameter pipe materials 2, 3 and the weld metal 4). As a result, a compressive stress is generated in an annular portion (large diameter pipe materials 2 and 3 and weld metal 4) in which a part (repair weld metal portion) is missing. This compressive stress relieves tensile stress (hoop stress) generated in the circumferential direction by internal pressure and heat in a large-diameter pipe. Thereby, the action stress which acts on the heat affected zone by repair welding is reduced. Moreover, the reduction in strength due to repair welding can be suppressed by reducing the acting stress. As a result, it is possible to extend the creep life of the heat-affected zone by repair welding.

また、第2の溶接材料6には、大口径の管材2,3よりもクリープ強度も大きなインコネル(登録商標)系の溶接材料が用いられるので、補修溶接金属6によってもクリープ寿命の長寿命化が可能になる。   In addition, since the second welding material 6 is an Inconel (registered trademark) welding material having a creep strength larger than that of the large-diameter pipe materials 2 and 3, the repair welding metal 6 also increases the creep life. Is possible.

以上説明したように、本発明は、補修溶接による強度低下を抑制できるので、火力発電所に設置された陸用ボイラの大口径配管の溶接部分等、熱の影響を受ける配管の溶接部分の補修に好適である。   As described above, since the present invention can suppress a decrease in strength due to repair welding, repair of a welded portion of a pipe affected by heat, such as a welded portion of a large-diameter pipe of a land-use boiler installed in a thermal power plant. It is suitable for.

2 第1の管材
24 熱影響部(HAZ)
26 熱影響部(HAZ)
3 第2の管材
34 熱影響部(HAZ)
345 重複熱影響部(重複HAZ)
346 重複熱影響部(重複HAZ)
35 熱影響部(HAZ)
36 熱影響部(HAZ)
4 第1の溶接材料(溶接金属)
45 熱影響部
5 第2の溶接材料(補修溶接金属)(補修溶接部)
6 第2の溶接材料(補修溶接金属)(補修溶接部)
2 First pipe material 24 Heat affected zone (HAZ)
26 Heat affected zone (HAZ)
3 Second pipe material 34 Heat affected zone (HAZ)
345 Overlap heat affected zone (overlap HAZ)
346 Overlap heat affected zone (overlap HAZ)
35 Heat-affected zone (HAZ)
36 Heat affected zone (HAZ)
4 First welding material (welded metal)
45 Heat-affected zone 5 Second welding material (repair weld metal) (repair weld zone)
6 Second welding material (repair weld metal) (repair weld)

Claims (4)

中空筒状の第1の管材と中空筒状の第2の管材とを第1の溶接材料を周方向に施して突き合わせ溶接した溶接部分の補修溶接方法であって、
前記第1の溶接材料は、前記第1の管材及び前記第2の管材と同一材料を用い、
前記溶接部分に生じた欠陥を前記第1の管材または前記第2の管材の少なくとも一方を含めて切除するステップと、該切除するステップの次に、切除した領域に前記切除した管材及び前記第1の溶接材料の線膨張係数より大きな線膨張係数を有する第2の溶接材料で肉盛り溶接するステップとを備えたことを特徴とする溶接部分の補修溶接方法。
A repair welding method for a welded portion in which a first tubular material having a hollow cylindrical shape and a second tubular material having a hollow cylindrical shape are subjected to butt welding by applying the first welding material in the circumferential direction,
The first welding material uses the same material as the first pipe material and the second pipe material,
A step of cutting out defects generated in the welded portion including at least one of the first pipe material and the second pipe material, and the cutting step and the first pipe material and the first pipe after the cutting step . And a step of build-up welding with a second welding material having a linear expansion coefficient larger than the linear expansion coefficient of the welding material.
前記第2の溶接材料は、前記第1の管材及び前記第2の管材よりもクリープ強度が大きいことを特徴とする請求項に記載の溶接部分の補修溶接方法。 2. The repair welding method for a welded portion according to claim 1 , wherein the second welding material has a higher creep strength than the first pipe material and the second pipe material. 中空筒状の第1の管材と中空筒状の第2の管材とを第1の溶接材料を周方向に施して突き合わせ溶接した溶接部分の補修溶接構造であって、
前記第1の溶接材料は、前記第1の管材及び前記第2の管材と同一材料からなり、
前記溶接部分に生じた欠陥を切除した領域に前記第1の管材または前記第2の管材よりも線膨張係数が大きく、且つ前記第1の溶接材料の線膨張係数より大きい第2の溶接材料で肉盛り溶接した補修溶接部を備え、補修後の突合せ部分は前記第1の溶接材料の部分と前記補修溶接部とによって構成されることを特徴とする溶接部分の補修溶接構造。
A repair welding structure for a welded portion in which a first tubular material having a hollow cylindrical shape and a second tubular material having a hollow cylindrical shape are subjected to a first welding material in a circumferential direction and butt-welded,
The first welding material is made of the same material as the first pipe material and the second pipe material,
The first tubular member or said second linear expansion coefficient greatly than tubing in the region was resected defects generated on the welded portion, and said first weld material linear expansion coefficient larger than the second welding material A repair weld structure for a welded portion, comprising a repair weld portion that has been welded and welded, wherein the repaired butt portion is constituted by the first weld material portion and the repair weld portion .
前記第2の溶接材料は、前記第1の管材及び前記第2の管材よりもクリープ強度が大きいことを特徴とする請求項に記載の溶接部分の補修溶接構造。
The repair welding structure for a welded portion according to claim 3 , wherein the second welding material has a higher creep strength than the first pipe material and the second pipe material.
JP2013263273A 2013-12-20 2013-12-20 Repair welding method and repair weld structure of welded part Active JP6071867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263273A JP6071867B2 (en) 2013-12-20 2013-12-20 Repair welding method and repair weld structure of welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263273A JP6071867B2 (en) 2013-12-20 2013-12-20 Repair welding method and repair weld structure of welded part

Publications (2)

Publication Number Publication Date
JP2015116603A JP2015116603A (en) 2015-06-25
JP6071867B2 true JP6071867B2 (en) 2017-02-01

Family

ID=53529834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263273A Active JP6071867B2 (en) 2013-12-20 2013-12-20 Repair welding method and repair weld structure of welded part

Country Status (1)

Country Link
JP (1) JP6071867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082541B2 (en) * 2018-07-20 2022-06-08 三菱重工業株式会社 Repair welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159288A (en) * 1981-03-26 1982-10-01 Babcock Hitachi Kk Method for reparative welding
JP2003326385A (en) * 2002-05-14 2003-11-18 Mitsubishi Heavy Ind Ltd Welding method for repairing
JP2011194458A (en) * 2010-03-23 2011-10-06 National Institute For Materials Science Repair welding method

Also Published As

Publication number Publication date
JP2015116603A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5442456B2 (en) Corrosion-resistant alloy welds in carbon steel structures and pipelines adapted to large axial plastic strain
JP6730927B2 (en) Products for welded joints with step design
JP4828667B2 (en) Butt welded joint of welded structure and method of manufacturing the same
JP5979665B2 (en) Method for welding tube body to header and welded structure in which tube body is welded to header
JP5953272B2 (en) Preventive maintenance repair method for welded part of membrane panel for boiler
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
US20220090711A1 (en) System and method for manufacturing pipes
JP6071867B2 (en) Repair welding method and repair weld structure of welded part
JP5304392B2 (en) Dissimilar joint structure and manufacturing method thereof
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
JP2011064197A (en) Joined turbine rotor components and method of joining turbine rotor components
Shuaib et al. Friction stir seal welding (FSSW) tube-tubesheet joints made of steel
JP4929096B2 (en) Overlay welding method for piping
JP6404754B2 (en) Steel pipe repair method
JP2019113166A (en) Pipeline welding part reinforcement structure and boiler plant including the same and pipeline welding part reinforcement method
JP2012170964A (en) Welding method and welding joint of high-chrome steel
JP5896933B2 (en) How to repair welds
JP2014505885A (en) Metal weight loss probe and metal weight loss probe manufacturing method
JPH03207575A (en) Circumferential welding method for double pipes
JP4461031B2 (en) Repair welding method and repair weld member
Allen et al. Nickel-containing superalloy laser weld qualities and properties
US11872663B2 (en) Repair welding method
JP2009050889A (en) Welding method and structure of weld joint
Simion et al. Study of fatigue behavior of longitudinal welded pipes
Mróz et al. Study of the TIG Welding Process of Thin-Walled Components Made of 17-4 PH Steel in the Aspect of Weld Distortion Distribution. Materials 2023, 16, 4854

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R151 Written notification of patent or utility model registration

Ref document number: 6071867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151