JP2021169106A - Metal member joining method and joined body made of joined metal member - Google Patents

Metal member joining method and joined body made of joined metal member Download PDF

Info

Publication number
JP2021169106A
JP2021169106A JP2020072474A JP2020072474A JP2021169106A JP 2021169106 A JP2021169106 A JP 2021169106A JP 2020072474 A JP2020072474 A JP 2020072474A JP 2020072474 A JP2020072474 A JP 2020072474A JP 2021169106 A JP2021169106 A JP 2021169106A
Authority
JP
Japan
Prior art keywords
joined
joining
metal members
members
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020072474A
Other languages
Japanese (ja)
Other versions
JP7475644B2 (en
Inventor
勉 清水
Tsutomu Shimizu
信一 森木
Shinichi Moriki
実 北原
Minoru Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMIZU SEISAKUSHO KK
Original Assignee
SHIMIZU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMIZU SEISAKUSHO KK filed Critical SHIMIZU SEISAKUSHO KK
Priority to JP2020072474A priority Critical patent/JP7475644B2/en
Publication of JP2021169106A publication Critical patent/JP2021169106A/en
Application granted granted Critical
Publication of JP7475644B2 publication Critical patent/JP7475644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a technique that can further improve shape accuracy, in a joined body made of joined metal members formed of iron-based materials.SOLUTION: Two metal members 100 and 200 in which annular contact surfaces complementary to each other are formed are prepared. Power is distributed to a space between the two metal members 100 and 200 through a joined part while applying pressure to the joined part contacted with respective contact surfaces of the prepared two metal members 100 and 200, to join the two metal members 100 and 200 made of iron-based materials to each other. The power is distributed so that a temperature of the joining which the joined part reaches is below a temperature which is lower of melting points of the metal members forming the two metal members 100 and 200 respectively.SELECTED DRAWING: Figure 1

Description

本発明は、鉄系材料からなる金属部材を接合する接合技術に関し、特に、金属部材を気密に接合する接合技術に関する。 The present invention relates to a joining technique for joining a metal member made of an iron-based material, and more particularly to a joining technique for airtightly joining a metal member.

自動車の燃料タンクや化学装置の配管等、種々の容器や管路等の密閉構造を有する構造物は、産業状の多様な分野で使用される。このような構造物は、従来、アーク溶接等の溶接方法(接合方法)で複数の金属部材を接合することにより形成されてきたが、形成された構造物において、溶接部の強度と気密性とを確保することは必ずしも容易ではなかった。そこで、溶接部における強度と気密性とを確保する技術として、構造物を形成する複数の金属部材の一方に所定の形状のリングプロジェクションを設け、リングプロジェクションを介して抵抗溶接を行うこと(リングプロジェクション溶接)が提案されている(例えば、特許文献1参照)。 Structures having a closed structure such as various containers and pipelines, such as fuel tanks for automobiles and piping for chemical equipment, are used in various fields of industry. Conventionally, such a structure has been formed by joining a plurality of metal members by a welding method (joining method) such as arc welding, but in the formed structure, the strength and airtightness of the welded portion It was not always easy to secure. Therefore, as a technique for ensuring the strength and airtightness of the welded portion, a ring projection having a predetermined shape is provided on one of a plurality of metal members forming a structure, and resistance welding is performed via the ring projection (ring projection). Welding) has been proposed (see, for example, Patent Document 1).

特開2011−140290号公報Japanese Unexamined Patent Publication No. 2011-14290

しかしながら、特許文献1のようなリングプロジェクション溶接により金属部材を接合する場合、リングプロジェクション自体が溶融して流動するため、接合の前後において金属部材の相対的な位置関係が変化する。また、アーク溶接等の溶接方法では、溶接部において金属部材や溶接材が溶融して流動するため、接合の前後において金属部材の相対的な位置関係を安定的に維持できない。そのため、これら従来の溶接方法によっては、金属部材を接合した構造体(接合体)の形状にばらつきが生じ、形状精度の高い接合体を得ることが困難である。 However, when metal members are joined by ring projection welding as in Patent Document 1, the ring projection itself melts and flows, so that the relative positional relationship of the metal members changes before and after joining. Further, in a welding method such as arc welding, since the metal member and the welded material melt and flow at the welded portion, the relative positional relationship of the metal member cannot be stably maintained before and after joining. Therefore, depending on these conventional welding methods, the shape of the structure (joint) to which the metal members are joined varies, and it is difficult to obtain a joint with high shape accuracy.

本発明の目的は、このような従来の接合方法における問題点を解消し、鉄系材料で形成された金属部材を接合した接合体において、形状精度をより高くする技術を提供することにある。 An object of the present invention is to solve such a problem in a conventional joining method and to provide a technique for improving shape accuracy in a joined body formed by joining metal members made of an iron-based material.

本発明のうち、請求項1に記載の発明は、鉄系材料からなる2つの金属部材の接合方法であって、(a)互いに相補的な環状の当接面が形成された前記2つの金属部材を準備する工程と、(b)前記2つの金属部材にそれぞれ形成された前記当接面を接触させた接合部に圧力を加えつつ、前記接合部を介して前記2つの金属部材の間に通電することにより、前記接合部において前記2つの金属部材を接合する工程と、を備え、前記工程(b)において前記接合部が到達する接合温度を、前記2つの金属部材をそれぞれ形成する金属材料の融点のうち、より低い方の温度以下にすることを特徴とする。 Of the present invention, the invention according to claim 1 is a method of joining two metal members made of an iron-based material, wherein (a) the two metals having annular contact surfaces complementary to each other are formed. The step of preparing the members and (b) between the two metal members via the joints while applying pressure to the joints formed on the two metal members and in contact with the contact surfaces. A metal material that comprises a step of joining the two metal members at the joint portion by energization, and the joining temperature reached by the joint portion in the step (b), respectively. It is characterized in that the temperature is lower than the lower temperature of the melting point of.

請求項2に記載の発明は、請求項1に記載の発明において、さらに、前記工程(a)で準備された前記2つの金属部材のそれぞれの前記当接面に形成された酸化皮膜を除去する工程を備えることを特徴とする。 The invention according to claim 2 further removes the oxide film formed on the contact surface of each of the two metal members prepared in the step (a) in the invention according to claim 1. It is characterized by having a process.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記2つの金属部材が、オーステナイト系ステンレス鋼により形成されており、前記接合温度が、前記オーステナイト系ステンレス鋼において鋭敏化が生じる上限温度よりも高く設定されていることを特徴とする。 In the invention according to claim 3, in the invention according to claim 1 or 2, the two metal members are formed of austenitic stainless steel, and the bonding temperature is sharpened in the austenitic stainless steel. It is characterized in that it is set higher than the upper limit temperature at which

請求項4に記載の発明は、請求項1または2に記載の発明において、前記2つの金属部材が、オーステナイト系ステンレス鋼により形成されており、前記接合温度が、前記オーステナイト系ステンレス鋼の溶体化が開始する温度よりも高く設定されている
ことを特徴とする。
In the invention according to claim 4, in the invention according to claim 1 or 2, the two metal members are formed of austenitic stainless steel, and the joining temperature is the solution of the austenitic stainless steel. Is characterized in that it is set higher than the starting temperature.

請求項5に記載の発明は、請求項1または2に記載の発明において、前記2つの金属部材が、フェライト系ステンレス鋼により形成されており、前記接合温度が、前記フェライト系ステンレス鋼においてσ脆性が発生する上限温度よりも高く設定されていることを特徴とする。 The invention according to claim 5 is the invention according to claim 1 or 2, wherein the two metal members are formed of ferritic stainless steel, and the joining temperature is σ brittleness in the ferritic stainless steel. It is characterized in that it is set higher than the upper limit temperature at which is generated.

請求項6に記載の発明は、前記2つの金属部材を接合した接合体であって、請求項1ないし5のいずれかに記載の接合方法により接合されていることを特徴とする。 The invention according to claim 6 is a joined body in which the two metal members are joined, and is characterized in that they are joined by the joining method according to any one of claims 1 to 5.

請求項1に係る接合方法によれば、接合時において接合部の温度が2つの金属部材のいずれの融点よりも低くなるので、接合部で2つの金属部材が溶融することが抑制され、2つ金属部材が変形することが抑制される。そのため、接合前後において、2つ金属部材の位置関係を略同一の状態に維持することができるので、得られた接合体の形状のばらつきを抑制し、より形状精度の高い接合体を得ることが可能となる。 According to the joining method according to claim 1, since the temperature of the joint portion is lower than the melting point of any of the two metal members at the time of joining, it is suppressed that the two metal members are melted at the joint portion, and the two metal members are formed. Deformation of the metal member is suppressed. Therefore, since the positional relationship between the two metal members can be maintained in substantially the same state before and after joining, it is possible to suppress variations in the shape of the obtained joined body and obtain a joined body with higher shape accuracy. It will be possible.

請求項2に係る接合方法によれば、当接面に形成された酸化皮膜が除去されるので、2つの金属部材の接合が促進される。そのため、2つ金属部材が変形することがさらに抑制されるので、さらに形状精度の高い接合体を得ることが可能となる。 According to the joining method according to claim 2, since the oxide film formed on the contact surface is removed, the joining of the two metal members is promoted. Therefore, since the deformation of the two metal members is further suppressed, it is possible to obtain a bonded body having higher shape accuracy.

請求項3に係る接合方法によれば、接合部において鋭敏化が生じることを抑制することができるので、接合部において粒界腐食に対する耐食性が低下することを抑制することができる。 According to the joining method according to claim 3, since it is possible to suppress the occurrence of sensitization at the joint portion, it is possible to suppress the deterioration of the corrosion resistance against intergranular corrosion at the joint portion.

請求項4に係る接合方法によれば、接合部において固溶化が進行し、当接面を形成する際に生じた加工誘起マルテンサイトをオーステナイト化することができるので、接合部において孔食に対する耐食性が低下することを抑制することができる。 According to the joining method according to claim 4, solution-forming progresses at the joining portion, and the work-induced martensite generated when the contact surface is formed can be austenite, so that corrosion resistance to pitting corrosion at the joining portion can be achieved. Can be suppressed from decreasing.

請求項5に係る接合方法によれば、接合部においてσ脆化が発生することを抑制することができるので、接合部の耐久性の低下を抑制することができる。 According to the joining method according to claim 5, it is possible to suppress the occurrence of σ embrittlement at the joint portion, so that it is possible to suppress a decrease in the durability of the joint portion.

なお、本発明は、種々の態様で実現することが可能である。例えば、接合方法、その接合方法を用いた容器や配管等の製造方法、および、その接合方法や製造方法で製造された接合体、容器あるいは配管等の態様で実現することができる。 The present invention can be realized in various aspects. For example, it can be realized by a joining method, a method of manufacturing a container, a pipe, or the like using the joining method, and a joint, a container, a pipe, or the like manufactured by the joining method or the manufacturing method.

本発明の第1実施形態として2つの金属部材を接合する接合工程を示す工程図である。It is a process drawing which shows the joining process which joins two metal members as the 1st Embodiment of this invention. 通電により被接合部材が接合される様子を示す説明図である。It is explanatory drawing which shows the state that the member to be joined is joined by energization. 第1実施形態の実施例として得られた接合体の接合部付近の金属組織写真である。It is a metallographic structure photograph of the vicinity of the joint portion of the joint body obtained as an example of the first embodiment. 本発明の第2実施形態としての接合工程の一部を示す工程図である。It is a process drawing which shows a part of the joining process as the 2nd Embodiment of this invention. 第2実施形態の実施例として得られた接合体の接合部付近の金属組織写真である。It is a metallographic structure photograph of the vicinity of the joint portion of the joint body obtained as an example of the second embodiment.

以下、本発明に係る金属部材の接合方法および当該接合方法により接合された接合体の実施形態について図面に基づいて詳細に説明する。 Hereinafter, a method for joining metal members according to the present invention and an embodiment of a joined body joined by the joining method will be described in detail with reference to the drawings.

<第1実施形態>
図1は、本発明の第1実施形態として2つの金属部材を接合する接合工程を示す工程図である。第1実施形態の接合工程では、まず、図1(a)に示すように、接合される2つの金属部材(被接合部材)として、大径管100と、大径管100よりも外径が小さい小径管200とを準備する。
<First Embodiment>
FIG. 1 is a process diagram showing a joining process for joining two metal members as the first embodiment of the present invention. In the joining step of the first embodiment, first, as shown in FIG. 1A, the two metal members to be joined (members to be joined) have a large diameter pipe 100 and an outer diameter larger than that of the large diameter pipe 100. Prepare a small diameter tube 200.

大径管100は、オーステナイト系ステンレス鋼(SUS304等)からなる略円筒状の管材であり、その側面に小径管200を取り付けるための取付穴190が形成されている。取付穴190は、大径管100を外周側から内周側に貫通する穴であり、大径管100の外周側(以下、単に外周側とも謂う)に形成されたテーパー穴191と、テーパー穴191の内周側(以下、単に内周側とも謂う)に形成された平行穴192とからなっている。なお、図1の例では、大径管100にテーパー穴191と平行穴192からなる取付穴190を形成しているが、平行穴を省略し、テーパー穴のみを取付穴として大径管に形成するものとしても良い。 The large-diameter pipe 100 is a substantially cylindrical pipe material made of austenitic stainless steel (SUS304 or the like), and a mounting hole 190 for mounting the small-diameter pipe 200 is formed on the side surface thereof. The mounting hole 190 is a hole that penetrates the large-diameter pipe 100 from the outer peripheral side to the inner peripheral side, and is a taper hole 191 formed on the outer peripheral side (hereinafter, also simply referred to as the outer peripheral side) of the large-diameter pipe 100, and a taper hole. It is composed of parallel holes 192 formed on the inner peripheral side of 191 (hereinafter, also simply referred to as the inner peripheral side). In the example of FIG. 1, a mounting hole 190 composed of a tapered hole 191 and a parallel hole 192 is formed in the large diameter pipe 100, but the parallel hole is omitted and only the tapered hole is formed as a mounting hole in the large diameter pipe. It may be something to do.

テーパー穴191は、その内周面が略円錐台側面状(テーパー形状)で、内径が外周側から内周側に向かって縮小するように形成されている。平行穴192は、略一定の内径が、テーパー穴191の最小の内径、すなわち、テーパー穴191の内周側端の内径と同一となるように形成されている。また、テーパー穴191の周囲には、所謂、ザグリ加工が施されており、水平面Fが形成されている。すなわち、テーパー穴191および平行穴192からなる取付穴190は、円筒状の素管である大径管100に穿孔加工およびザグリ加工を施すことにより形成されている。 The inner peripheral surface of the tapered hole 191 has a substantially truncated cone side surface shape (tapered shape), and the inner diameter thereof is formed so as to decrease from the outer peripheral side to the inner peripheral side. The parallel hole 192 is formed so that a substantially constant inner diameter is the same as the minimum inner diameter of the tapered hole 191, that is, the inner diameter of the inner peripheral side end of the tapered hole 191. Further, so-called counterbore processing is performed around the tapered hole 191 to form a horizontal plane F. That is, the mounting hole 190 composed of the tapered hole 191 and the parallel hole 192 is formed by perforating and counterboring the large-diameter pipe 100 which is a cylindrical raw pipe.

小径管200は、大径管100と同様にオーステナイト系ステンレス鋼からなる管材であり、円筒状の筒状部210と、筒状部210の一端から延びるテーパー部220とを有している。テーパー部220は、外周面がテーパー形状で、筒状部210の反対方向(先端側)に向かって外径が縮小するように形成されている。このようなテーパー部220を有する小径管200は、通常、円筒状の素管の一端に切削加工を施すことにより形成される。なお、以下の説明において、小径管200については、筒状部210からテーパー部220に向かう方向を先端側とも謂い、テーパー部220から筒状部210に向かう方向を後端側とも謂う。 The small-diameter pipe 200 is a pipe material made of austenitic stainless steel like the large-diameter pipe 100, and has a cylindrical tubular portion 210 and a tapered portion 220 extending from one end of the tubular portion 210. The tapered portion 220 has an outer peripheral surface having a tapered shape, and is formed so that the outer diameter decreases toward the opposite direction (tip side) of the tubular portion 210. The small diameter pipe 200 having such a tapered portion 220 is usually formed by cutting one end of a cylindrical raw pipe. In the following description, for the small diameter pipe 200, the direction from the tubular portion 210 to the tapered portion 220 is also referred to as the front end side, and the direction from the tapered portion 220 toward the tubular portion 210 is also referred to as the rear end side.

テーパー部220は、最大の外径(筒状部210の外径)が、大径管100に形成されたテーパー穴191の最大の内径(外周側端の内径)よりも大きく、最小の外径(先端側端の外径)が、テーパー穴191の最小の内径(内周側端の内径)よりも小さくなるように形成されている。また、テーパー部220は、その傾きが、大径管100に設けられたテーパー穴191の傾きと同一となるように形成されている。ここで、テーパー部220およびテーパー穴191の傾きとは、それらの外周面および内周面のテーパー形状に対応する円錐台の側面の傾斜角、すなわち、当該円錐台の軸と側面とがなす角度を謂う。 The maximum outer diameter (outer diameter of the tubular portion 210) of the tapered portion 220 is larger than the maximum inner diameter (inner diameter of the outer peripheral side end) of the tapered hole 191 formed in the large diameter tube 100, and the minimum outer diameter is (Outer diameter of the tip side end) is formed so as to be smaller than the minimum inner diameter (inner diameter of the inner peripheral side end) of the tapered hole 191. Further, the taper portion 220 is formed so that its inclination is the same as the inclination of the taper hole 191 provided in the large diameter pipe 100. Here, the inclination of the tapered portion 220 and the tapered hole 191 is the inclination angle of the side surface of the truncated cone corresponding to the tapered shape of the outer peripheral surface and the inner peripheral surface thereof, that is, the angle formed by the axis and the side surface of the truncated cone. Is called.

このように、図1の例では、小径管200に設けられたテーパー部220は、最大の外径がテーパー穴191の最大の内径よりも大きく、最小の外径がテーパー穴191の最小の内径よりも小さく形成されるとともに、傾きがテーパー穴191と同一となるように形成されている。そのため、小径管200に設けられたテーパー部220と、大径管100に設けられたテーパー穴191とは、互いに面接触し得る形状となっている。なお、本発明および本明細書においては、このように互いに面接触し得るような形状を互いに相補的な形状とも謂う。 As described above, in the example of FIG. 1, the tapered portion 220 provided in the small diameter pipe 200 has a maximum outer diameter larger than the maximum inner diameter of the tapered hole 191 and a minimum outer diameter of the minimum inner diameter of the tapered hole 191. It is formed to be smaller than the taper hole 191 and has the same inclination as the taper hole 191. Therefore, the tapered portion 220 provided in the small diameter pipe 200 and the tapered hole 191 provided in the large diameter pipe 100 have a shape that allows surface contact with each other. In the present invention and the present specification, the shapes that can come into surface contact with each other are also referred to as complementary shapes.

また、以上の説明から分かるように、テーパー穴191の内周面と、テーパー部220の外周面とは、いずれも、環状となっている。ここで、ある部分が環状であるとは、当該部分がその内側に位置する一定の領域を取り囲むような形状であることを謂う。従って、テーパー穴191の内周面と、テーパー部220の外周面とは、互いに相補的な環状の面となっている。 Further, as can be seen from the above description, both the inner peripheral surface of the tapered hole 191 and the outer peripheral surface of the tapered portion 220 are annular. Here, the fact that a certain portion is annular means that the portion has a shape that surrounds a certain region located inside the portion. Therefore, the inner peripheral surface of the tapered hole 191 and the outer peripheral surface of the tapered portion 220 are annular surfaces complementary to each other.

大径管100および小径管200の準備の後、図1(b)に示すように、大径管100および小径管200(すなわち、被接合部材)を組み付ける。具体的には、大径管100の外周側から、小径管200の先端側に設けられたテーパー部220を取付穴190に挿入する。これにより、小径管200に設けられたテーパー部220と、大径管100に形成された取付穴190のテーパー穴191とが面接触した状態、すなわち、テーパー部220の外周面と、テーパー穴191の内周面とが接触した状態で、小径管200が大径管100に組み付けられる。なお、このように、テーパー部220の外周面と、テーパー穴191の内周面とは、互いに当たって接触する(当接する)ように形成されているので、当接面とも謂うことができる。 After preparing the large-diameter pipe 100 and the small-diameter pipe 200, the large-diameter pipe 100 and the small-diameter pipe 200 (that is, the members to be joined) are assembled as shown in FIG. 1 (b). Specifically, the tapered portion 220 provided on the tip end side of the small diameter pipe 200 is inserted into the mounting hole 190 from the outer peripheral side of the large diameter pipe 100. As a result, the tapered portion 220 provided in the small diameter pipe 200 and the tapered hole 191 of the mounting hole 190 formed in the large diameter pipe 100 are in surface contact with each other, that is, the outer peripheral surface of the tapered portion 220 and the tapered hole 191. The small-diameter pipe 200 is assembled to the large-diameter pipe 100 in a state of being in contact with the inner peripheral surface of the above. In this way, the outer peripheral surface of the tapered portion 220 and the inner peripheral surface of the tapered hole 191 are formed so as to come into contact with each other (contact with each other), and thus can also be called a contact surface.

なお、上記の如く、テーパー穴191の周囲にザグリ加工が施されており、水平面Fが形成されているため、小径管200のテーパー部220と大径管100にのテーパー穴191とは、テーパー穴191の全周(すなわち、テーパー部220の全周)に亘って一定の幅(傾斜面に沿った上下方向の幅)で面接触した状態になっている。また、小径管200のテーパー部220および大径管100のテーパー穴191は、上記の如く面接触させた場合に、両者の面接触部分の幅(傾斜面に沿った上下方向の幅)がテーパー穴191の全周(すなわち、テーパー部220の全周)に亘って0.2mm以上1.0mm以下になるように、それぞれ、形状が調整されている。 As described above, since the taper hole 191 is counterbored and the horizontal plane F is formed, the tapered portion 220 of the small diameter pipe 200 and the tapered hole 191 of the large diameter pipe 100 are tapered. It is in a state of surface contact with a constant width (width in the vertical direction along the inclined surface) over the entire circumference of the hole 191 (that is, the entire circumference of the tapered portion 220). Further, when the tapered portion 220 of the small diameter pipe 200 and the tapered hole 191 of the large diameter pipe 100 are brought into surface contact as described above, the width of the surface contact portion between the two (the width in the vertical direction along the inclined surface) is tapered. The shape is adjusted so that the entire circumference of the hole 191 (that is, the entire circumference of the tapered portion 220) is 0.2 mm or more and 1.0 mm or less.

被接合部材の組付の後、組み付けられた被接合部材(大径管100および小径管200)を、電流の供給源である電源装置900に接続する(図1(c))。具体的には、電源装置900に接続された第1の電極体(下側電極体)910上に大径管100を配置するとともに、電源装置900に接続された第2の電極体(上側電極体)920を、矢印で示すように、小径管200の後端側に配置する。 After assembling the members to be joined, the assembled members (large diameter pipe 100 and small diameter pipe 200) are connected to the power supply device 900 which is a current supply source (FIG. 1 (c)). Specifically, the large-diameter tube 100 is arranged on the first electrode body (lower electrode body) 910 connected to the power supply device 900, and the second electrode body (upper electrode body) connected to the power supply device 900 is arranged. Body) 920 is arranged on the rear end side of the small diameter tube 200 as shown by an arrow.

一般に、2つの金属部材の間の接触面における電気抵抗(接触抵抗)は、金属部材自体の電気抵抗よりも高くなる。そのため、2つの電極体910,920を大径管100および小径管200に接続した場合、2つの電極体910,920の間の電気抵抗は、その大部分が、下側電極体910と大径管100との間、大径管100と小径管200との間、および、小径管200と上側電極体920との間のそれぞれの接触抵抗によって発生する。 Generally, the electrical resistance (contact resistance) at the contact surface between two metal members is higher than the electrical resistance of the metal member itself. Therefore, when the two electrode bodies 910 and 920 are connected to the large diameter tube 100 and the small diameter tube 200, most of the electrical resistance between the two electrode bodies 910 and 920 has a large diameter with the lower electrode body 910. It is generated by the contact resistance between the tube 100, between the large diameter tube 100 and the small diameter tube 200, and between the small diameter tube 200 and the upper electrode body 920.

これらの接触抵抗のうち、下側電極体910と大径管100との間、および、小径管200と上側電極体920との間のそれぞれの接触抵抗が高くなると、後述する通電の際に不要なジュール熱が発生し、エネルギーの損失が大きくなるとともに、電極体910,920と被接合部材100,200とが融着する虞がある。 Of these contact resistances, if the contact resistance between the lower electrode body 910 and the large-diameter tube 100 and between the small-diameter tube 200 and the upper electrode body 920 becomes high, it is unnecessary for energization described later. There is a risk that the electrode bodies 910 and 920 and the members 100 and 200 to be joined will be fused together with the generation of a large amount of Joule heat and an increase in energy loss.

そこで、第1実施形態においては、図1(c)に示すように、下側電極体910の上部に大径管100の外周面に対して相補的な形状の凹部919を形成して、大径管100と下側電極体910との間の接触面の面積を広くし、当該接触面における接触抵抗の低減を図っている。また、上側電極体920には、小径管200と接触する側に平面部921を形成して、小径管200と上側電極体920との間の接触面の面積を広くし、当該接触面における接触抵抗の低減を図っている。 Therefore, in the first embodiment, as shown in FIG. 1 (c), a recess 919 having a shape complementary to the outer peripheral surface of the large-diameter tube 100 is formed on the upper portion of the lower electrode body 910 to be large. The area of the contact surface between the diameter tube 100 and the lower electrode body 910 is widened to reduce the contact resistance on the contact surface. Further, the upper electrode body 920 is formed with a flat surface portion 921 on the side in contact with the small diameter tube 200 to widen the area of the contact surface between the small diameter tube 200 and the upper electrode body 920, and the contact on the contact surface is widened. We are trying to reduce resistance.

さらに、第1実施形態においては、電極体910,920を電気伝導度の高いクロム銅で形成することにより、電極体910,920自体の電気抵抗をより低くするとともに、電極体910,920と被接合部材100,200との間の接触抵抗のさらなる低減を図っている。なお、電極体は、必ずしもクロム銅で形成する必要はなく、種々の金属材料で形成することも可能である。但し、電極体自体の電気抵抗、および、電極体と被接合部材との間の接触抵抗の低減を図るため、電極体は、クロム銅をはじめとする銅合金で形成するのが好ましい。 Further, in the first embodiment, by forming the electrode bodies 910 and 920 with chromium copper having high electrical conductivity, the electric resistance of the electrode bodies 910 and 920 itself is further lowered, and the electrode bodies 910 and 920 are covered with the electrode bodies 910 and 920. The contact resistance between the joining members 100 and 200 is further reduced. The electrode body does not necessarily have to be made of chromium copper, and can be made of various metal materials. However, in order to reduce the electrical resistance of the electrode body itself and the contact resistance between the electrode body and the member to be joined, the electrode body is preferably formed of a copper alloy such as chromium copper.

このように被接合部材100,200を電極体910,920に接続した後、図1(d)において矢印で示すように、上側電極体920を下側電極体910に向かって押し下げつつ、電源装置900から電極体910,920を介して電流を出力し、被接合部材100,200に通電を行う。 After connecting the members 100 and 200 to be joined to the electrode bodies 910 and 920 in this way, as shown by the arrows in FIG. 1D, the power supply device while pushing down the upper electrode body 920 toward the lower electrode body 910. A current is output from 900 via the electrode bodies 910 and 920 to energize the members 100 and 200 to be joined.

電源装置900は、予め設定された通電条件に従って、2つの電極体910,920の間に接続された負荷(すなわち、被接合部材100,200)にパルス状の電流を出力する機能を有している。なお、通電条件としては、電流パルスの幅(通電時間)や、電流パルスの高さ(通電電流)が設定可能となっている。 The power supply device 900 has a function of outputting a pulsed current to a load (that is, members to be joined 100, 200) connected between two electrode bodies 910 and 920 according to preset energization conditions. There is. As the energization condition, the width of the current pulse (energization time) and the height of the current pulse (energization current) can be set.

上述の通り、電極体910,920と被接合部材100,200との間の接触抵抗が低減されているので、2つの電極体910,920の間の電気抵抗は、大径管100と小径管200との間、すなわち、テーパー部220とテーパー穴191との接触面における接触抵抗が大部分を占める。そのため、被接合部材100,200に通電することにより、ジュール熱が、主として、テーパー部220とテーパー穴191との接触面で発生するので、当該接触面が局所的に加熱される。 As described above, since the contact resistance between the electrode bodies 910 and 920 and the members to be joined 100 and 200 is reduced, the electrical resistance between the two electrode bodies 910 and 920 is the large diameter tube 100 and the small diameter tube. Most of the contact resistance is between the 200 and the contact surface between the tapered portion 220 and the tapered hole 191. Therefore, when the members 100 and 200 to be joined are energized, Joule heat is mainly generated at the contact surface between the tapered portion 220 and the tapered hole 191 so that the contact surface is locally heated.

そして、通電によりテーパー部220とテーパー穴191との接触面を局所的に加熱するとともに、上側電極体920を下側電極体910に向かって押し下げて、接触面に圧力を加えることにより、接触面において大径管100と小径管200とが接合される。なお、このように、テーパー部220とテーパー穴191との接触面は、大径管100と小径管200とが接合される部分であるので、接合部とも呼ぶことができる。 Then, the contact surface between the tapered portion 220 and the tapered hole 191 is locally heated by energization, and the upper electrode body 920 is pushed down toward the lower electrode body 910 to apply pressure to the contact surface. In, the large-diameter pipe 100 and the small-diameter pipe 200 are joined. As described above, the contact surface between the tapered portion 220 and the tapered hole 191 is a portion where the large-diameter pipe 100 and the small-diameter pipe 200 are joined, and thus can also be called a joint portion.

また、第1実施形態では、テーパー部220の外周面およびテーパー穴191の内周面、すなわち、テーパー部220およびテーパー穴191のそれぞれに形成された当接面は、環状となっている。そのため、テーパー穴191とテーパー部220との接合部が環状となるので、大径管100と小径管200とは、気密に接合される。ここで、気密とは、環状の接合部において、その内側の領域と外側の領域とが接続されていないことを謂う。 Further, in the first embodiment, the outer peripheral surface of the tapered portion 220 and the inner peripheral surface of the tapered hole 191, that is, the contact surfaces formed on the tapered portion 220 and the tapered hole 191 are annular. Therefore, since the joint portion between the tapered hole 191 and the tapered portion 220 is annular, the large diameter pipe 100 and the small diameter pipe 200 are airtightly joined. Here, airtightness means that the inner region and the outer region are not connected at the annular joint.

図2は、通電により大径管100および小径管200(被接合部材)が接合される様子を示す説明図である。なお、図2では、大径管100および小径管200を、これら双方の中心軸を通る平面で切断した様子を拡大して示している。 FIG. 2 is an explanatory view showing how the large-diameter pipe 100 and the small-diameter pipe 200 (members to be joined) are joined by energization. Note that FIG. 2 shows an enlarged view of the large-diameter pipe 100 and the small-diameter pipe 200 cut in a plane passing through the central axes of both of them.

上述の通り、大径管100に設けられたテーパー穴191と、小径管200に設けられたテーパー部220とは相補的な形状となっている。そのため、図2(a)に示すように、大径管100および小径管200を組み付けた状態において、テーパー穴191とテーパー部220とは、接合部CSにおいて面接触する。 As described above, the tapered hole 191 provided in the large-diameter pipe 100 and the tapered portion 220 provided in the small-diameter pipe 200 have a complementary shape. Therefore, as shown in FIG. 2A, when the large-diameter pipe 100 and the small-diameter pipe 200 are assembled, the tapered hole 191 and the tapered portion 220 are in surface contact at the joint portion CS.

この状態で、図2(b)において白抜きの矢印で示すように、小径管200を大径管100に向かって押し下げることにより、黒塗りの矢印で示すように、テーパー穴191とテーパー部220との間の接合部CSに圧力が加わる。そして、予め設定された通電条件に従って、電源装置900により大径管100と小径管200との間に通電すると、電流が接合部CSを介して流れ、接合部CSが局所的に加熱される。 In this state, by pushing down the small diameter pipe 200 toward the large diameter pipe 100 as shown by the white arrow in FIG. 2B, the tapered hole 191 and the tapered portion 220 are shown by the black arrow. Pressure is applied to the joint CS between and. Then, when energization is performed between the large-diameter pipe 100 and the small-diameter pipe 200 by the power supply device 900 according to the preset energization conditions, a current flows through the joint portion CS, and the joint portion CS is locally heated.

なお、通電中においては、接合部CSで発生した熱が接合部CSの周辺領域に伝達される。このように接合部CSの周辺領域に熱が伝達されると、伝達された熱により周辺領域の材料特性(耐食性や機械特性等)に影響が生じる虞がある。この熱の影響を受ける接合部CSの周辺領域(熱影響部)は、通電時間が長くなるほど拡大する。そのため、接合部CSの周辺領域への熱の伝達を抑制し、熱影響部の拡大を抑制するため、通電時間は、熱影響部の拡大速度に対して十分に短くするのが好ましい。具体的には、溶着部分の温度が900〜1,000℃まで上昇する場合には、通電時間(電流が流れ始めてからピークに達するまでの時間Tp)は、1ms以上100ms未満とするのが好ましく、5ms以上50ms未満とするのがより好ましく、10ms以上30ms未満とするのが特に好ましい。 During energization, the heat generated at the joint CS is transferred to the peripheral region of the joint CS. When heat is transferred to the peripheral region of the joint portion CS in this way, the transferred heat may affect the material properties (corrosion resistance, mechanical properties, etc.) of the peripheral region. The peripheral region (heat-affected zone) of the joint portion CS affected by this heat expands as the energization time becomes longer. Therefore, in order to suppress heat transfer to the peripheral region of the joint portion CS and suppress expansion of the heat-affected zone, it is preferable that the energization time is sufficiently short with respect to the expansion speed of the heat-affected zone. Specifically, when the temperature of the welded portion rises to 900 to 1,000 ° C., the energization time (time Tp from the start of current flow to the peak) is preferably 1 ms or more and less than 100 ms. It is more preferably 5 ms or more and less than 50 ms, and particularly preferably 10 ms or more and less than 30 ms.

一方、通電により発生するジュール熱は接合部CSに集中するため、上述のように通電時間を短くしても、通電電流を十分に大きくすることにより、接合部CSの温度を急速に上昇させ、接合部CSの温度を接合に適した温度(接合温度)にまで到達させることができる。通電電流は、このように設定された接合温度、通電時間、接合部CSの面積、被接合部材100,200の材質や形状等に基づいて、シミュレーション等を行うことにより適宜設定される。 On the other hand, Joule heat generated by energization is concentrated in the joint CS. Therefore, even if the energization time is shortened as described above, the temperature of the joint CS is rapidly raised by sufficiently increasing the energization current. The temperature of the joint portion CS can be brought to a temperature suitable for joining (joining temperature). The energizing current is appropriately set by performing a simulation or the like based on the joining temperature, the energizing time, the area of the joint portion CS, the materials and shapes of the members 100 and 200 to be joined, and the like set in this way.

なお、接合温度、すなわち接合部CSの到達温度は、一般的に、固相での接合が可能な温度(固相接合温度:熱力学温度で融点の約0.5倍の温度)以上であれば良い。一方、接合温度の上限は、被接合部材100,200を形成している金属材料の融点(以下、被接合部材100,200の融点とも謂う)に設定される。従って、被接合部材100,200をオーステナイト系ステンレス鋼で形成している第1実施形態では、接合温度は、オーステナイト系ステンレス鋼の融点(約1400℃)以下に設定される。 The bonding temperature, that is, the temperature reached at the bonding portion CS, is generally equal to or higher than the temperature at which bonding in the solid phase is possible (solid phase bonding temperature: thermodynamic temperature, which is about 0.5 times the melting point). Just do it. On the other hand, the upper limit of the joining temperature is set to the melting point of the metal material forming the members to be joined 100 and 200 (hereinafter, also referred to as the melting points of the members 100 and 200 to be joined). Therefore, in the first embodiment in which the members 100 and 200 to be joined are made of austenitic stainless steel, the joining temperature is set to be equal to or lower than the melting point (about 1400 ° C.) of the austenitic stainless steel.

第1実施形態では、このように、接合温度を被接合部材100,200の融点以下となるようにしているが、接合部CSを固相接合温度以上に加熱とするともに、接合部CSに圧力を加えているため、大径管100と小径管200とは、図2(c)に示すように、接合部BRで接合され、大径管11と小径管12とが一体化した接合体10が得られる。そのため、第1実施形態によれば、接合部CSにおいて、被接合部材100,200を十分に高い強度で接合することができる。 In the first embodiment, the joining temperature is set to be equal to or lower than the melting point of the members 100 and 200 to be joined in this way. As shown in FIG. 2C, the large-diameter pipe 100 and the small-diameter pipe 200 are joined at the joint portion BR, and the large-diameter pipe 11 and the small-diameter pipe 12 are integrated into the joint body 10. Is obtained. Therefore, according to the first embodiment, the members 100 and 200 to be joined can be joined with sufficiently high strength in the joint portion CS.

そして、第1実施形態では、接合温度を被接合部材100,200の融点以下にすることにより、被接合部材100,200は、そのいずれもが溶融することなく、互いに接合される。そのため、被接合部材100,200が溶融して変形することが抑制されるので、図2(c)に示すように、接合後に得られる接合体10における大径管11と小径管12との位置関係は、接合前と略同一の状態に維持される。このように、接合前後において被接合部材の位置関係が略同一の状態に維持されるので、より形状精度の高い接合体10を得ることが可能となる。 Then, in the first embodiment, by setting the joining temperature to be equal to or lower than the melting point of the members 100 and 200 to be joined, the members 100 and 200 to be joined are joined to each other without melting. Therefore, it is suppressed that the members 100 and 200 to be joined are melted and deformed. Therefore, as shown in FIG. 2 (c), the positions of the large-diameter pipe 11 and the small-diameter pipe 12 in the joined body 10 obtained after joining. The relationship is maintained in substantially the same state as before joining. In this way, since the positional relationship of the members to be joined is maintained in substantially the same state before and after joining, it is possible to obtain a joined body 10 having higher shape accuracy.

また、第1実施形態では、接合温度を被接合部材100,200の融点以下としているため、接合部CS,BRにおいて被接合部材100,200の溶融と再凝固が発生しない。そのため、再凝固が発生することによる、結晶粒の粗粒化や、添加元素や不純物の偏析が抑制されるので、接合部BRの近傍の領域において、粗粒化によって延性や靱性が低下したり、偏析によって耐食性や機械特性(材料特性)が変化することが抑制される。 Further, in the first embodiment, since the joining temperature is set to be equal to or lower than the melting point of the members to be joined 100 and 200, melting and resolidification of the members 100 and 200 to be joined do not occur in the joint portions CS and BR. Therefore, the coarsening of crystal grains and the segregation of additive elements and impurities due to the occurrence of re-solidification are suppressed, so that the ductility and toughness may decrease due to the coarsening in the region near the joint BR. , Changes in corrosion resistance and mechanical properties (material properties) due to segregation are suppressed.

なお、上述の通り、接合温度は、固相接合温度以上とすれば良いが、第1実施形態では、被接合部材をオーステナイト系ステンレス鋼で形成しているため、接合温度は、オーステナイト系ステンレス鋼において鋭敏化が発生する上限温度(鋭敏化温度:約800℃)よりも高くするのが好ましい。このように、接合温度を鋭敏化温度よりも高くすることにより、接合部BRの鋭敏化を抑制し、接合部BRにおいて粒界腐食に対する耐食性が低下することを抑制することができる。 As described above, the bonding temperature may be equal to or higher than the solid phase bonding temperature, but in the first embodiment, since the member to be bonded is made of austenitic stainless steel, the bonding temperature is austenitic stainless steel. It is preferable that the temperature is higher than the upper limit temperature at which sensitization occurs (sensitization temperature: about 800 ° C.). By setting the bonding temperature higher than the sensitization temperature in this way, it is possible to suppress the sensitization of the bonding portion BR and suppress the deterioration of the corrosion resistance to intergranular corrosion at the bonding portion BR.

さらに、接合温度は、オーステナイト系ステンレス鋼において固溶化(溶体化とも呼ばれる)が開始する温度(固溶化温度:約1100℃)よりも高くするのが好ましい。このように、接合温度を固溶化温度よりも高くすることにより、テーパー穴191やテーパー部220を形成する際の機械加工等で生じた加工誘起マルテンサイトをオーステナイト化することができる。そのため、接合部BRに加工誘起マルテンサイトが残存し、接合部BRにおいて孔食(すきま腐食)に対する耐食性が低下することを抑制することができる。 Further, the bonding temperature is preferably higher than the temperature at which solidification (also referred to as solution) starts in austenitic stainless steel (solidification temperature: about 1100 ° C.). By setting the joining temperature higher than the solution temperature in this way, it is possible to austenite the work-induced martensite generated by machining or the like when forming the tapered hole 191 or the tapered portion 220. Therefore, it is possible to prevent the process-induced martensite from remaining in the joint BR and reducing the corrosion resistance to pitting corrosion (crevice corrosion) in the joint BR.

<第1実施形態の実施例>
第1実施形態の接合工程によって、被接合部材の接合が可能であることを確認するため、実施例として接合体を作成し、得られた接合体における接合部の状態を観察を行った。具体的には、被接合部材として、SUS304で形成された径の異なる素管から、テーパー穴を形成した大径管とテーパー部を形成した小径管とを準備し、上述の通り、被接合部材の接合を行って接合体を得た。そして、得られた接合体から接合部を含む領域を切り出し、接合部の金属組織の観察を行った。なお、接合にあたっては、通電時間は、30msとし、通電電流は、接合温度が900℃となるように設定した。
<Example of the first embodiment>
In order to confirm that the members to be joined can be joined by the joining step of the first embodiment, a joined body was prepared as an example, and the state of the joined portion in the obtained joined body was observed. Specifically, as a member to be joined, a large-diameter pipe having a tapered hole and a small-diameter pipe having a tapered portion are prepared from raw pipes having different diameters formed by SUS304, and as described above, the member to be joined. To obtain a bonded body. Then, a region including the joint was cut out from the obtained joint, and the metal structure of the joint was observed. In joining, the energizing time was set to 30 ms, and the energizing current was set so that the joining temperature was 900 ° C.

金属組織の観察にあたっては、大径管および小径管の双方の中心軸を通る面で接合体を切断して試料を作成し、試料の切断面を研磨した。そして、切断面の研磨の後、試料をエッチング液に浸漬することで金属組織を現出させた。エッチング液としては、オーステナイト系ステンレス鋼であるSUS304の金属組織を現出させるため、マーブル試薬(硫酸銅4g、塩酸20mlおよび水20mlの混合液)を用いた。 In observing the metallographic structure, a sample was prepared by cutting the joint on the surface passing through the central axes of both the large-diameter tube and the small-diameter tube, and the cut surface of the sample was polished. Then, after polishing the cut surface, the metal structure was exposed by immersing the sample in the etching solution. As the etching solution, a marble reagent (a mixed solution of 4 g of copper sulfate, 20 ml of hydrochloric acid and 20 ml of water) was used in order to reveal the metal structure of SUS304, which is an austenitic stainless steel.

このように、接合部付近の金属組織を現出させた試料を光学顕微鏡で観察することにより、接合部の金属組織を観察した。図3は、第1実施形態の実施例として得られた接合体の接合部付近の金属組織写真である。 In this way, the metal structure of the joint was observed by observing the sample in which the metal structure near the joint was exposed with an optical microscope. FIG. 3 is a photograph of the metallographic structure of the vicinity of the joint portion of the joint body obtained as an example of the first embodiment.

図3から分かるように、第1実施形態の実施例において、接合部には、被接合部材(大径管および小径管)が溶融し、溶融した部分が再凝固した際に生じる再凝固部(ナゲットとも呼ばれる)が形成されていなかった。このことから、第1実施形態の接合方法によれば、被接合部材の溶融が抑制され、ナゲットの形成による延性や靱性の低下や材料特性の変化が生じないものと考えられる。 As can be seen from FIG. 3, in the embodiment of the first embodiment, the re-solidified portion (large-diameter pipe and small-diameter pipe) formed in the joint portion when the members to be joined (large-diameter pipe and small-diameter pipe) are melted and the melted portion is re-solidified. (Also called a nugget) was not formed. From this, it is considered that according to the joining method of the first embodiment, the melting of the member to be joined is suppressed, and the ductility and toughness are not lowered or the material properties are not changed due to the formation of the nugget.

また、大径管の内周側においては、テーパー穴およびテーパー部の傾きの加工誤差によりすきまが生じているものの、外周側においては、大径管と小径管とが一体化していることが確認できた。このことから、第1実施形態の接合方法によれば、大径管と小径管とを気密に接合することが可能であることが確認できた。 In addition, it was confirmed that the large-diameter pipe and the small-diameter pipe were integrated on the outer peripheral side, although there was a gap on the inner peripheral side of the large-diameter pipe due to the machining error of the taper hole and the inclination of the tapered portion. did it. From this, it was confirmed that the large-diameter pipe and the small-diameter pipe can be airtightly joined by the joining method of the first embodiment.

一方、図3に示すように、大径管の外周側では、接合部から外周側に延びる突出部(ばり)が形成されていた。また、接合部の略全域に亘って、接合部に沿った鍛流線(ファイバーフロー)が形成されていた。通常、このような突出部や鍛流線は、被接合部材が塑性変形する際に形成されるものである。このことから、図3に示す実施例の接合体を作成した際には、接合時の温度上昇によって接合部付近における被接合部材の強度が低下し、接合部およびその近傍領域が塑性変形したものと考えられる。 On the other hand, as shown in FIG. 3, on the outer peripheral side of the large-diameter pipe, a protruding portion (burr) extending from the joint portion to the outer peripheral side was formed. Further, a forging stream line (fiber flow) was formed along the joint portion over substantially the entire area of the joint portion. Usually, such protrusions and streamlines are formed when the member to be joined is plastically deformed. From this, when the joint body of the example shown in FIG. 3 was prepared, the strength of the member to be joined in the vicinity of the joint portion decreased due to the temperature rise at the time of joining, and the joint portion and the region in the vicinity thereof were plastically deformed. it is conceivable that.

しかしながら、図3に示すように、突出部の大きさは十分に小さく、また、鍛流線の形成も接合部の極近傍の領域に限られていた。このことから、第1実施形態の接合方法によれば、接合の前後において大径管と小径管との位置関係に大きな変化が発生せず、より形状精度の高い接合体を得ることが可能となることが確認できた。 However, as shown in FIG. 3, the size of the protruding portion is sufficiently small, and the formation of the forged streamline is also limited to the region very close to the joint portion. From this, according to the joining method of the first embodiment, the positional relationship between the large-diameter pipe and the small-diameter pipe does not change significantly before and after the joining, and it is possible to obtain a joined body with higher shape accuracy. It was confirmed that it would be.

<第2実施形態>
図4は、本発明の第2実施形態としての接合工程の一部を示す工程図である。なお、第2実施形態の接合工程は、被接合部材100,200の表面に形成されている不動態皮膜を除去する工程を有している点で、図1に示す第1実施形態の接合工程と異なっている。他の点は、第1実施形態と同様であるので、図4では、電源装置の接続(図4(d))より後の工程については、図示を省略している。
<Second Embodiment>
FIG. 4 is a process diagram showing a part of the joining process as the second embodiment of the present invention. The joining step of the second embodiment includes a step of removing the passivation film formed on the surfaces of the members 100 and 200 to be joined. Is different. Since the other points are the same as those of the first embodiment, the steps after the connection of the power supply device (FIG. 4 (d)) are not shown in FIG.

第2実施形態においても、図4(a)に示すように、第1実施形態と同様の被接合部材100,200を準備する。一般的に、ステンレス鋼の表面には、ステンレス鋼中のクロムが空気中の酸素によって酸化することで、自然に不動態皮膜(酸化皮膜)が形成される。そのため、接合の際に接触する被接合部材100,200の当接面(テーパー穴191の内周面とテーパー部220の外周面)にも不動態皮膜が自然に形成されている。しかしながら、このように自然に形成された不動態皮膜は、必ずしも均一とはならず、また、厚みも必要以上に厚くなる虞がある。 Also in the second embodiment, as shown in FIG. 4A, the same members 100 and 200 to be joined as in the first embodiment are prepared. Generally, on the surface of stainless steel, a passivation film (oxide film) is naturally formed by oxidizing chromium in the stainless steel by oxygen in the air. Therefore, a passivation film is naturally formed on the contact surfaces of the members 100 and 200 to be joined (the inner peripheral surface of the tapered hole 191 and the outer peripheral surface of the tapered portion 220) that come into contact with each other at the time of joining. However, the passivation film formed naturally in this way is not always uniform, and the thickness may be thicker than necessary.

そこで、第2実施形態では、準備した被接合部材100,200に酸洗処理を施し、被接合部材100,200の表面に形成された不動態皮膜を一旦除去する。具体的には、図4(b)に示すように、酸(酸性電解液等)を含有させた布Cを電極810に巻き付け、その電極810に電気印可装置800によって所定の電流量の電気を印可しながら、テーパー穴191の内周面およびテーパー部220の外周面を、電極810に巻き付けた布Cで軽くなぞる(すなわち、電極810に巻き付けた布Cをそれらの部位に接触させる)。なお、そのように、被接合部材100あるいは被接合部材200に酸洗処理を施す場合には、布Cを巻き付けていない他の電極820を被接合部材100あるいは被接合部材200に接触させる。また、被接合部材100,200の表面に形成された不動態皮膜を除去するための酸としては、酸性電解液(たとえば、ケミカル山本社製 ピカ素#SUSブライト等)を好適に用いることができる。かかる電気の印可によって、テーパー穴191の内周面およびテーパー部220の外周面に形成された不動態皮膜が一旦除去される。これにより、酸洗処理が施された被接合部材100aのテーパー穴191の内周面および被接合部材200aのテーパー部220の外周面には、新たに、極めて薄く(数nm程度)かつ均一な不動態皮膜が形成される。 Therefore, in the second embodiment, the prepared members 100 and 200 to be joined are pickled to temporarily remove the passivation film formed on the surfaces of the members 100 and 200 to be joined. Specifically, as shown in FIG. 4B, a cloth C containing an acid (acidic electrolytic solution or the like) is wound around an electrode 810, and a predetermined amount of electricity is applied to the electrode 810 by an electric applying device 800. While applying, lightly trace the inner peripheral surface of the tapered hole 191 and the outer peripheral surface of the tapered portion 220 with the cloth C wound around the electrode 810 (that is, the cloth C wound around the electrode 810 is brought into contact with those parts). When the member 100 or the member 200 to be joined is pickled in this way, another electrode 820 to which the cloth C is not wound is brought into contact with the member 100 or the member 200 to be joined. Further, as an acid for removing the passivation film formed on the surfaces of the members 100 and 200 to be joined, an acidic electrolytic solution (for example, Pika element #SUS Bright manufactured by Chemical Mountain Headquarters) can be preferably used. .. By applying such electricity, the passivation film formed on the inner peripheral surface of the tapered hole 191 and the outer peripheral surface of the tapered portion 220 is temporarily removed. As a result, the inner peripheral surface of the tapered hole 191 of the member 100a to be pickled and the outer peripheral surface of the tapered portion 220 of the member 200a to be joined are newly made extremely thin (about several nm) and uniform. A passivation film is formed.

このように、酸洗処理を施すことにより、被接合部材100aのテーパー穴191の内周面および被接合部材200aのテーパー部220の外周面の当接面に形成された不動態被膜が極めて薄くかつ均一となるため、当接面が接触した接合部において接合が促進される。そのため、通電時間をより短くし、あるいは、接合温度をより低くしても、被接合部材100a,200a(すなわち、被接合部材100aのテーパー穴191の内周面および被接合部材200aのテーパー部220の外周面)を確実に接合することが可能となる。このように、接合部への入熱量をより少なくすることができるので、接合部の周辺の熱影響部の拡大を抑制し、接合部において耐食性や機械特性等の材料特性に影響が生じることを抑制することができる。 By performing the pickling treatment in this way, the passivation coating formed on the inner peripheral surface of the tapered hole 191 of the member to be joined 100a and the contact surface of the outer peripheral surface of the tapered portion 220 of the member to be joined 200a becomes extremely thin. Moreover, since it becomes uniform, the joining is promoted at the joining portion where the contact surfaces are in contact with each other. Therefore, even if the energization time is shortened or the joining temperature is lowered, the joined members 100a and 200a (that is, the inner peripheral surface of the tapered hole 191 of the joined member 100a and the tapered portion 220 of the joined member 200a). (Outer peripheral surface) can be reliably joined. In this way, since the amount of heat input to the joint can be further reduced, the expansion of the heat-affected zone around the joint can be suppressed, and the material properties such as corrosion resistance and mechanical properties can be affected at the joint. It can be suppressed.

<第2実施形態の実施例>
第2実施形態の接合工程によっても、被接合部材を接合できることを確認するため、実施例として接合体を作成し、得られた接合体における接合部の状態を観察を行った。具体的には、第1実施形態の実施例と同様に、大径管と小径管とを準備し、上述の通り、不動態被膜の除去と、被接合部材の接合とを行って接合体を得た。そして、第1実施形態の実施例と同様に試料を作成し、接合部の金属組織の観察を行った。なお、接合にあたっては、通電時間は、第1実施形態の実施例と同じ30msとした。一方、通電電流は、接合温度が第1実施形態の実施例よりも低い850℃となるように設定した。
<Example of the second embodiment>
In order to confirm that the members to be joined can be joined by the joining step of the second embodiment, a joined body was prepared as an example, and the state of the joined portion in the obtained joined body was observed. Specifically, as in the embodiment of the first embodiment, a large-diameter pipe and a small-diameter pipe are prepared, and as described above, the passivation coating is removed and the members to be joined are joined to form a joined body. Obtained. Then, a sample was prepared in the same manner as in the examples of the first embodiment, and the metallographic structure of the joint was observed. In joining, the energizing time was set to 30 ms, which was the same as in the examples of the first embodiment. On the other hand, the energizing current was set so that the joining temperature was 850 ° C., which was lower than that of the embodiment of the first embodiment.

図5は、第2実施形態の実施例として得られた接合体の接合部付近の金属組織写真である。図5から分かるように、第2実施形態の実施例においても、接合部にはナゲットが形成されていなかった。このことから、第2実施形態の接合方法によっても、被接合部材の溶融が抑制され、ナゲットの形成による延性や靱性の低下や材料特性の変化が生じないものと考えられる。また、大径管の外周側において、大径管と小径管とが一体化していることが確認できた。このことから、第2実施形態の接合方法によっても、大径管と小径管とを気密に接合することが可能であることが確認できた。 FIG. 5 is a photograph of the metallographic structure of the vicinity of the joint portion of the joint body obtained as an example of the second embodiment. As can be seen from FIG. 5, the nugget was not formed at the joint even in the embodiment of the second embodiment. From this, it is considered that the joining method of the second embodiment also suppresses the melting of the member to be joined, and the ductility and toughness are not lowered or the material properties are not changed due to the formation of the nugget. In addition, it was confirmed that the large-diameter pipe and the small-diameter pipe were integrated on the outer peripheral side of the large-diameter pipe. From this, it was confirmed that the large-diameter pipe and the small-diameter pipe can be airtightly joined by the joining method of the second embodiment.

さらに、第2実施形態の実施例においても、大径管の外周側に突出部が形成されていた。しかしながら、第2実施形態の実施例では、接合部に鍛流線が形成されていたものの、鍛流線が形成されている領域は、図3に示す第1実施形態の実施例よりも小さかった。このことから、第2実施形態の実施例では、第1実施形態の実施例よりも接合温度を低くすることにより、接合時の温度上昇によって強度が低下した領域が小さくなり、塑性変形を抑制できることが分かった。このように、第2実施形態の接合方法によれば、接合時の被接合部材の塑性変形が抑制されるので、接合の前後における大径管と小径管との位置関係の変化がさらに抑制され、さらに形状精度の高い接合体を得ることが可能となることが分かった。 Further, also in the embodiment of the second embodiment, the protruding portion is formed on the outer peripheral side of the large diameter pipe. However, in the embodiment of the second embodiment, although the forging line was formed at the joint, the region where the forging line was formed was smaller than that of the embodiment of the first embodiment shown in FIG. .. From this, in the embodiment of the second embodiment, by lowering the joining temperature as compared with the embodiment of the first embodiment, the region where the strength is lowered due to the temperature rise at the time of joining becomes smaller, and the plastic deformation can be suppressed. I found out. As described above, according to the joining method of the second embodiment, the plastic deformation of the member to be joined at the time of joining is suppressed, so that the change in the positional relationship between the large-diameter pipe and the small-diameter pipe before and after the joining is further suppressed. It was found that it is possible to obtain a bonded body with even higher shape accuracy.

<第2実施形態の変形例>
第2実施形態では、酸洗処理により被接合部材の表面に形成されていた不動態被膜を除去しているが、不動態被膜の除去は、酸洗処理の他、準備した被接合部材100,200を水素ガスや一酸化炭素等の還元性雰囲気の炉内で加熱することにより除去することも可能である。
<Modified example of the second embodiment>
In the second embodiment, the passivation film formed on the surface of the member to be joined is removed by the pickling treatment, but the passivation film is removed by the pickling treatment and the prepared member 100 to be joined. It is also possible to remove 200 by heating in a furnace having a reducing atmosphere such as hydrogen gas or carbon monoxide.

さらに、第2実施形態では、被接合部材100a,200aの組付(図4(c))および電源装置900への接続(図4(d))と、および、被接合部材100a,200aへの通電(図1(d)参照)に先立って不動態被膜の除去を行っているが、不動態皮膜の除去は、還元性雰囲気中において被接合部材に通電することによって行うこともできる。 Further, in the second embodiment, the members to be joined 100a and 200a are assembled (FIG. 4 (c)) and connected to the power supply device 900 (FIG. 4 (d)), and the members to be joined 100a and 200a are connected. The passivation film is removed prior to energization (see FIG. 1D), but the passivation film can also be removed by energizing the member to be joined in a reducing atmosphere.

このようにすれば、接合部が加熱され、被接合部材の当接面に形成されていた不動態被膜が除去されるとともに、接合部に不動態被膜が形成されていない状態で接合が行われるので、被接合部材の接合が促進される。そのため、さらに通電時間を短縮しあるいは接合温度を低くしても、被接合部材を確実に接合することができるので、接合体の形状精度をさらに高くするとともに、接合部周辺の熱影響部の拡大をさらに抑制し、耐食性や機械特性等の材料特性に影響が生じることをさらに抑制することができる。 By doing so, the joint portion is heated, the passivation film formed on the contact surface of the member to be joined is removed, and the joint is performed in a state where the passivation film is not formed on the joint portion. Therefore, the joining of the members to be joined is promoted. Therefore, even if the energization time is further shortened or the joining temperature is lowered, the members to be joined can be reliably joined, so that the shape accuracy of the joined body is further improved and the heat-affected zone around the joined portion is expanded. Can be further suppressed, and the influence on material properties such as corrosion resistance and mechanical properties can be further suppressed.

<変形例>
本発明は上記各実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
<Modification example>
The present invention is not limited to each of the above embodiments, and can be implemented in various aspects without departing from the gist thereof. For example, the following modifications are also possible.

<変形例1>
上記各実施形態では、大径管100および小径管200にそれぞれテーパー穴191およびテーパー部220を設け、テーパー穴191の内周面およびテーパー部220の外周面(当接面)を接触させて接合を行っているが、2つの被接合部材にそれぞれ形成される当接面は、互いに相補的な形状であり、かつ、環状に形成されていれば良い。例えば、円筒状の同径の2つの管材を、その端面で接合するものとしても良く、また、円環状のフランジが設けられた第1の金属部材と、当該フランジに対して相補的な形状に形成された取付面が形成された第2の金属部材を接合するものとしても良い。さらに、当接面は、環状であれば、必ずしも円環状やテーパー形状である必要はなく、楕円錐台側面状や四角形状であっても良い。さらに、当接面は、上記各実施形態のテーパー穴191およびテーパー部220のように明確な面として形成されている必要はなく、ミクロ的な形状として角部分に形成されていても良い。
<Modification example 1>
In each of the above embodiments, the large-diameter pipe 100 and the small-diameter pipe 200 are provided with a tapered hole 191 and a tapered portion 220, respectively, and the inner peripheral surface of the tapered hole 191 and the outer peripheral surface (contact surface) of the tapered portion 220 are brought into contact with each other for joining. However, the contact surfaces formed on the two members to be joined may have shapes complementary to each other and may be formed in an annular shape. For example, two cylindrical pipe members having the same diameter may be joined at their end faces, or the first metal member provided with an annular flange may have a shape complementary to the flange. A second metal member having a formed mounting surface may be joined. Further, the contact surface does not necessarily have to be an annular shape or a tapered shape as long as it is an annular shape, and may be an elliptical frustum side surface shape or a quadrangular shape. Further, the contact surface does not have to be formed as a clear surface like the tapered hole 191 and the tapered portion 220 of each of the above embodiments, and may be formed at a corner portion as a micro shape.

<変形例2>
上記各実施形態では、被接合部材100,200をオーステナイト系ステンレス鋼で形成しているが、被接合部材は、フェライト系ステンレス鋼(SUS430等)やマルテンサイト系ステンレス鋼(SUS410等)の種々のステンレス鋼で形成することができる。また、一般的に、被接合部材は、鉄系材料(鉄系合金および純鉄)であれば任意の材料で形成されていれば良い。この場合においても、被接合部材の接合が促進される点で、第2実施形態あるいはその変形例のように、被接合部材の当接面に形成されている酸化皮膜を除去するのが好ましい。
<Modification 2>
In each of the above embodiments, the members 100 and 200 to be joined are made of austenite stainless steel, but the members to be joined are various types of ferritic stainless steel (SUS430, etc.) and martensitic stainless steel (SUS410, etc.). It can be made of stainless steel. Further, in general, the member to be joined may be made of any iron-based material (iron-based alloy and pure iron). Also in this case, it is preferable to remove the oxide film formed on the contact surface of the member to be joined, as in the second embodiment or a modification thereof, in that the joining of the member to be joined is promoted.

なお、被接合部材をフェライト系ステンレス鋼で形成している場合には、接合温度は、フェライト系ステンレス鋼において、σ脆性が発生する上限温度(σ脆化温度:約800℃)よりも高くするのが好ましい。このように、接合温度をσ脆化温度以上とすることにより、接合部においてσ脆化が発生することが抑制されるので、接合部の耐久性の低下を抑制することが可能となる。 When the member to be joined is made of ferritic stainless steel, the joining temperature is higher than the upper limit temperature at which σ brittleness occurs (σ embrittlement temperature: about 800 ° C.) in ferritic stainless steel. Is preferable. By setting the joint temperature to be equal to or higher than the σ embrittlement temperature in this way, the occurrence of σ embrittlement at the joint portion is suppressed, so that it is possible to suppress a decrease in the durability of the joint portion.

また、被接合部材を工具鋼や構造用鋼で形成している場合には、接合温度は、オーステナイトへの変態が開始する温度(Ac1変態点)以上とするのが好ましく、オーステナイトへの変態が完了する温度(Ac3変態点)以上とするのがより好ましい。このように、接合温度をオーステナイト変態点(Ac1変態点あるいはAc3変態点)以上とすることで、オーステナイト変態点を通過する際の結晶構造の変化により接合がより強固になるので、接合部における接合体の強度をより高くすることが可能となる。 When the member to be joined is made of tool steel or structural steel, the joining temperature is preferably equal to or higher than the temperature at which the transformation to austenite starts (Ac1 transformation point), and the transformation to austenite occurs. It is more preferable that the temperature is equal to or higher than the completion temperature (Ac3 transformation point). In this way, by setting the bonding temperature to the austenite transformation point (Ac1 transformation point or Ac3 transformation point) or higher, the bonding becomes stronger due to the change in the crystal structure when passing through the austenite transformation point, so that the bonding at the bonding portion becomes stronger. It is possible to increase the strength of the body.

<変形例3>
上記各実施形態では、同種のステンレス鋼(オーステナイト系ステンレス鋼)で形成された被接合部材100,200(100a,200a)を接合しているが、2つの被接合部材を互いに異なる鉄系材料で形成するものとしても良い。この場合においても、接合温度を2つの被接合部材の融点のうちのより低い温度以下とすることにより、接合部において各被接合部材が溶融することが抑制される。そのため、溶融部において各被接合部材の添加元素が平均化され、接合部において合金組成が変化することが抑制される。このように、接合部において各被接合部材の合金組成が変化することが抑制されることにより、各被接合部材の材料特性が変化することを抑制することができる。
<Modification example 3>
In each of the above embodiments, the members to be joined 100, 200 (100a, 200a) made of the same type of stainless steel (austenitic stainless steel) are joined, but the two members to be joined are made of different iron-based materials. It may be formed. Even in this case, by setting the joining temperature to be lower than the melting point of the two members to be joined, it is possible to prevent each member to be joined from melting at the joint. Therefore, the additive elements of each member to be joined are averaged in the molten portion, and the change in the alloy composition in the joint portion is suppressed. As described above, by suppressing the change in the alloy composition of each member to be joined at the joint portion, it is possible to suppress the change in the material properties of each member to be joined.

但し、2つの被接合部材が互いに異なる鉄系材料で形成されている場合、熱膨張率の違い等により熱サイクル疲労が発生し、接合部に損傷が発生する虞がある。そのため、2つの被接合部材は、同種の鉄系材料で形成するのが好ましい。 However, when the two members to be joined are made of different iron-based materials, thermal cycle fatigue may occur due to a difference in the coefficient of thermal expansion or the like, and the joint may be damaged. Therefore, it is preferable that the two members to be joined are made of the same type of iron-based material.

一方、2つの被接合部材を互いに異なる鉄系材料で形成することにより、接合体の各部をより適切な材料で形成することができる。例えば、オーステナイト系ステンレス鋼で形成されたタンクと、マルテンサイト系ステンレス鋼で形成されたノズルとを接合して接合体を形成するものとしても良い。この場合、タンクを深絞りが容易なオーステナイト系ステンレス鋼で形成することによりタンクの容量を大きくすることが容易となるとともに、ノズルをマルテンサイト系ステンレス鋼で形成することにより高い硬度が要求されるノズルをより容易に形成することができる。 On the other hand, by forming the two members to be joined with different iron-based materials, each part of the joined body can be formed with a more appropriate material. For example, a tank made of austenitic stainless steel and a nozzle made of martensitic stainless steel may be joined to form a bonded body. In this case, it is easy to increase the capacity of the tank by forming the tank with austenitic stainless steel that can be easily drawn deeply, and high hardness is required by forming the nozzle with martensitic stainless steel. The nozzle can be formed more easily.

また、本発明に係る接合方法は、鉄系材料の2つの被接合部材の接合のみならず、インコネルやハステロイ等のニッケル系合金同士の接合や、それらのニッケル系合金と鉄系材料との接合にも用いることができる。加えて、そのように本発明に係る接合方法を、ニッケル系合金同士の接合や、それらのニッケル系合金と鉄系材料との接合に用いる場合には、ニッケル系合金中のニッケル成分の割合を8.0質量%以上20質量%以下にするのが、接合強度の保持の面で好ましい。 Further, the joining method according to the present invention includes not only joining two members to be joined of iron-based materials, but also joining of nickel-based alloys such as Inconel and Hastelloy, and joining of these nickel-based alloys and iron-based materials. Can also be used for. In addition, when the joining method according to the present invention is used for joining nickel-based alloys or joining those nickel-based alloys with iron-based materials, the ratio of nickel components in the nickel-based alloys is used. It is preferable that the content is 8.0% by mass or more and 20% by mass or less in terms of maintaining the bonding strength.

一方、本発明に係る接合方法においては、2つの被接合部材の電気抵抗を140μΩ・cm以下に調整するとともに、2つの被接合部材の熱伝導率を30Wm・k以下に調整すると、少ない電力によって高い強度で接合することが可能になるので好ましい。加えて、2つの被接合部材の電気抵抗を120μΩ・cm以下に調整し、2つの被接合部材の熱伝導率を20Wm・k以下に調整すると、より好ましい。 On the other hand, in the joining method according to the present invention, when the electric resistance of the two members to be joined is adjusted to 140 μΩ · cm or less and the thermal conductivity of the two members to be joined is adjusted to 30 Wm · k or less, a small amount of electric power is used. It is preferable because it enables joining with high strength. In addition, it is more preferable to adjust the electrical resistance of the two members to be joined to 120 μΩ · cm or less and the thermal conductivity of the two members to be joined to 20 Wm · k or less.

<変形例4>
上記各実施形態では、通電時間を十分に短くすることにより、接合部CSの周辺の熱影響部の拡大を抑制しているが、接合体において熱影響部の存在が問題にならない場合には、通電時間を長くすることも可能である。例えば、接合後、得られた接合体に熱処理(固溶化処理や焼き入れ・焼き戻し等)を施す場合や、被接合部材を軟鉄等で形成した場合等においては、熱影響部が存在しても鋭敏化や脆化等の問題が発生しないため、通電時間を長くすることができる。
<Modification example 4>
In each of the above embodiments, the expansion of the heat-affected zone around the joint CS is suppressed by sufficiently shortening the energization time, but when the presence of the heat-affected zone in the joint does not matter, It is also possible to lengthen the energizing time. For example, when the obtained bonded body is heat-treated (solidification treatment, quenching, tempering, etc.) after bonding, or when the member to be bonded is formed of soft iron or the like, a heat-affected zone is present. However, since problems such as sensitization and embrittlement do not occur, the energization time can be lengthened.

本発明の接合方法は、上述の通り優れた効果を奏するものであるから、種々の鉄系材料からなる金属部材を気密に接合する接合方法として好適に用いることができる。また、本発明の接合体は、上述の通り優れた効果を奏するものであるから、気密性を要する種々の機械部品として好適に用いることができる。 Since the joining method of the present invention exerts an excellent effect as described above, it can be suitably used as a joining method for airtightly joining metal members made of various iron-based materials. Further, since the bonded body of the present invention exerts an excellent effect as described above, it can be suitably used as various mechanical parts requiring airtightness.

10‥接合体
11‥大径管
12‥小径管
100,100a‥大径管
190,190a‥取付穴
191,191a‥テーパー穴
192,192a‥平行穴
200,200a‥小径管
210,210a‥筒状部
220,220a‥テーパー部
900‥電源装置
910‥下側電極体
919‥凹部
920‥上側電極体
921‥平面部
BR‥接合部
CS‥接合部
F・・水平面
10 ... Joint body 11 ... Large diameter pipe 12 ... Small diameter pipe 100, 100a ... Large diameter pipe 190, 190a ... Mounting hole 191, 191a ... Tapered hole 192,192a ... Parallel hole 200, 200a ... Small diameter pipe 210, 210a ... Cylindrical Part 220, 220a ... Tapered part 900 ... Power supply device 910 ... Lower electrode body 919 ... Recessed part 920 ... Upper electrode body 921 ... Flat part BR ... Joint part CS ... Joint part F ... Horizontal plane

Claims (6)

鉄系材料からなる2つの金属部材の接合方法であって、
(a)互いに相補的な環状の当接面が形成された前記2つの金属部材を準備する工程と、
(b)前記2つの金属部材にそれぞれ形成された前記当接面を接触させた接合部に圧力を加えつつ、前記接合部を介して前記2つの金属部材の間に通電することにより、前記接合部において前記2つの金属部材を接合する工程と、
を備え、
前記工程(b)において前記接合部が到達する接合温度を、前記2つの金属部材をそれぞれ形成する金属材料の融点のうち、より低い方の温度以下にすることを特徴とする接合方法。
It is a method of joining two metal members made of iron-based material.
(A) A step of preparing the two metal members having an annular contact surface formed complementary to each other, and a step of preparing the two metal members.
(B) The joint is formed by applying pressure to the joint formed in contact with the contact surface formed on each of the two metal members and energizing between the two metal members via the joint. The step of joining the two metal members in the part and
With
A joining method characterized in that the joining temperature reached by the joining portion in the step (b) is set to be lower than the melting point of the metal material forming the two metal members, respectively.
請求項1に記載の接合方法であって、さらに、
前記工程(a)で準備された前記2つの金属部材のそれぞれの前記当接面に形成された酸化皮膜を除去する工程を備える、
接合方法。
The joining method according to claim 1, further
A step of removing an oxide film formed on the contact surface of each of the two metal members prepared in the step (a) is provided.
Joining method.
請求項1または2に記載の接合方法であって、
前記2つの金属部材は、オーステナイト系ステンレス鋼により形成されており、
前記接合温度は、前記オーステナイト系ステンレス鋼において鋭敏化が生じる上限温度よりも高く設定されている、
接合方法。
The joining method according to claim 1 or 2.
The two metal members are made of austenitic stainless steel.
The joining temperature is set higher than the upper limit temperature at which sensitization occurs in the austenitic stainless steel.
Joining method.
請求項1または2に記載の接合方法であって、
前記2つの金属部材は、オーステナイト系ステンレス鋼により形成されており、
前記接合温度は、前記オーステナイト系ステンレス鋼の溶体化が開始する温度よりも高く設定されている、
接合方法。
The joining method according to claim 1 or 2.
The two metal members are made of austenitic stainless steel.
The joining temperature is set higher than the temperature at which the solution of the austenitic stainless steel starts.
Joining method.
請求項1または2に記載の接合方法であって、
前記2つの金属部材は、フェライト系ステンレス鋼により形成されており、
前記接合温度は、前記フェライト系ステンレス鋼においてσ脆性が発生する上限温度よりも高く設定されている、
接合方法。
The joining method according to claim 1 or 2.
The two metal members are made of ferritic stainless steel.
The joining temperature is set higher than the upper limit temperature at which σ brittleness occurs in the ferritic stainless steel.
Joining method.
請求項1ないし5のいずれかに記載の接合方法により、前記2つの金属部材を接合した、接合体。 A joined body obtained by joining the two metal members by the joining method according to any one of claims 1 to 5.
JP2020072474A 2020-04-14 2020-04-14 Method for joining metal components Active JP7475644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072474A JP7475644B2 (en) 2020-04-14 2020-04-14 Method for joining metal components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072474A JP7475644B2 (en) 2020-04-14 2020-04-14 Method for joining metal components

Publications (2)

Publication Number Publication Date
JP2021169106A true JP2021169106A (en) 2021-10-28
JP7475644B2 JP7475644B2 (en) 2024-04-30

Family

ID=78149923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072474A Active JP7475644B2 (en) 2020-04-14 2020-04-14 Method for joining metal components

Country Status (1)

Country Link
JP (1) JP7475644B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039507B2 (en) 2007-10-31 2012-10-03 日立オートモティブシステムズ株式会社 High pressure fuel supply pump and method of manufacturing the same
JP5850763B2 (en) 2012-02-27 2016-02-03 日新製鋼株式会社 Stainless steel diffusion bonding products
JP6806445B2 (en) 2016-01-18 2021-01-06 三菱重工業株式会社 Piping support structure and its formation method
JP7178020B2 (en) 2018-03-23 2022-11-25 株式会社小松精機工作所 Surface cleaning method and bonding method for thin metal plate

Also Published As

Publication number Publication date
JP7475644B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2005000516A1 (en) Press-fit joint structure
Binesh Diffusion brazing of IN718/AISI 316L dissimilar joint: Microstructure evolution and mechanical properties
JP4540392B2 (en) Liquid phase diffusion bonding method for metal machine parts
JP5402988B2 (en) Liquid phase diffusion bonded pipe joint and manufacturing method thereof
JPH11129078A (en) Welding two phase stainless steel
KR101254348B1 (en) Heat treatment method in press-fit connection
JP4456471B2 (en) Liquid phase diffusion bonding method for metal machine parts and metal machine parts
JP2002301577A (en) Method of joining martensitic stainless steel
JP2021169106A (en) Metal member joining method and joined body made of joined metal member
CN113718134A (en) Ni-based alloy pipe and welded joint
JP3822853B2 (en) Press-fit joining method
JP4130734B2 (en) Ceramic disperse iron-base alloy bonded structure and its manufacturing method
Kurc-Lisiecka et al. Laser welding of stainless steel
Poláková et al. Titanium and stainless steel MIG LSC welding
Dwibedi et al. To investigate the influence of weld time on joint characteristics of Hastelloy X weldments fabricated by RSW process
JP4051042B2 (en) ERW steel pipe containing Cr and method for producing the same
Saffer et al. Laser beam welding of heat-resistant mixed joints using laser-based pre-and post-heating
Majerik et al. Analysis of the technological process of welding a membrane wall with Inconel 625 nickel alloy
Baranov et al. Study on the influence of different energy sources on the structure and mechanical properties of a welded joint from an ep693 nickel alloy
JPH11197853A (en) Joining method for martensitic stainless steel
JPH0813428B2 (en) Clad steel pipe joining method
JP7456559B1 (en) Stainless steel and copper joined body and its manufacturing method, and stainless steel and copper joining method
JP5171755B2 (en) Press-fit joining method
JP4440229B2 (en) Press-fit joining method
JP3626593B2 (en) Liquid phase diffusion bonding method in oxidizing atmosphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240410

R150 Certificate of patent or registration of utility model

Ref document number: 7475644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150