JP3626593B2 - Liquid phase diffusion bonding method in oxidizing atmosphere - Google Patents

Liquid phase diffusion bonding method in oxidizing atmosphere Download PDF

Info

Publication number
JP3626593B2
JP3626593B2 JP09023898A JP9023898A JP3626593B2 JP 3626593 B2 JP3626593 B2 JP 3626593B2 JP 09023898 A JP09023898 A JP 09023898A JP 9023898 A JP9023898 A JP 9023898A JP 3626593 B2 JP3626593 B2 JP 3626593B2
Authority
JP
Japan
Prior art keywords
joint
bonding
stress
mpa
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09023898A
Other languages
Japanese (ja)
Other versions
JPH11285860A (en
Inventor
泰士 長谷川
英司 津留
有一 佐藤
茂克 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09023898A priority Critical patent/JP3626593B2/en
Publication of JPH11285860A publication Critical patent/JPH11285860A/en
Application granted granted Critical
Publication of JP3626593B2 publication Critical patent/JP3626593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料の液相拡散接合に関するものであり、詳しくは炭素鋼及び合金鋼の液相拡散接合、あるいはこれら合金鋼と炭素鋼の液相拡散接合に有用であり、酸化雰囲気中での接合が可能であって、接合部強度と靭性の優れた継手を得ることができる液相拡散接合方法に係るものである。
【0002】
【従来の技術】
液相拡散接合は、接合しようとする材料の間に、箔、粉末あるいはメッキ等の形態で被接合材よりも融点の低い共晶組成を有する合金を介在させて加圧し、挿入合金(以下インサートメタルと称する)の液相線直上の温度に接合部を加熱することによって溶融、等温凝固させる接合法であり、固相接合法の一種と考えられている。
液相拡散接合は比較的低い加圧力で接合できることから、接合による残留応力や、変形を極力避ける必要のある接合に用いられ、同時に溶接の困難な高合金鋼、耐熱鋼の接合にも適用されている技術である。
【0003】
液相拡散接合によって接合する材料は、多くの場合合金組成として0.50%以上のCrを含有する。Cr含有材料は緻密な酸化Cr(多くの場合Cr)皮膜を表面に形成するために、耐酸化性、耐食性が優れているのが特徴である。従って、接合時の加熱によっても当然接合面には酸化皮膜が形成されることとなり、溶融したインサートメタルの濡れが阻害され、接合に必要な原子の拡散が著しく妨げられる。
それ故、従来は特開昭53−81458号公報、特開昭62−34685号公報、さらに特開昭62−227595号公報に見られるように、いずれも接合の際には雰囲気を真空、不活性、もしくは還元性に保たねばならず、接合コストの著しい上昇を招いていた。
【0004】
本発明者らは研究を重ねた結果、成分としてVを含有するインサートメタルは酸化雰囲気中でも液相拡散接合が可能であることを見出だした。しかも、Vはインサートメタルの融点を上昇させる元素ではあるが、他の元素(本発明においては専らSi)を適当に調整することで、接合性の極めて優れたインサートメタルを得ることができることを見出だした。
【0005】
Vを含有し、Si量を増加させた液相拡散接合用合金箔は殆ど前例が無い。米国特許第3856513号にMなる組成を有する合金についての開示がある。式中MはFe,Ni,Co,V,Crからなる群から選ばれる金属であり、YはP,B,Cからなる群から選ばれる元素であり、ZはAl,Si,Sn,Ge,In,Sb,Beからなる群から選ばれる元素であり、aは約60〜90原子%の範囲にあり、bは約10〜30原子%の範囲にあり、cは約0.1〜15原子%の範囲にある。このような材料は、現在周知の処理技術を用いて溶融物からの急速冷却によって工業的に製造され、実用化されている。
【0006】
しかしながらこの場合には、Vは基材として使用すること及び合金をアモルファス化することを目的としたものであって、接合用の合金箔として開示されたものではない。しかも、Siの含有量が低く、箔の融点は本発明に比較して相当に高いため、液相拡散接合の実現は極めて困難である。加えてB含有量も本発明とは全く異なっており、含有量が高いために接合部近傍Mo、もしくはCr含有合金側に粗大な析出物を生成するので、接合強度が本発明の箔を用いて得られる接合部に比較して全く低いものとなる。
また特開昭53−81458号公報は、米国特許第3856513号の合金を箔の形で提供するものであるが、この場合にはVを成分として含有していないため、酸化雰囲気中での液相拡散接合は全く不可能である。
【0007】
なお、本発明において「酸化雰囲気」とあるのは、接合雰囲気中に体積%で0.1%以上の酸素ガスを含有し、酸素分圧が10−3以上、即ち還元性のガス、例えばH,HS,水蒸気その他を含有している場合でも酸化力が酸素濃度相当で0.1%以上である雰囲気を意味している。
また「融点」とあるのは、2元以上の合金においては、特に断わらない限りにおいて、その状態図上での固相線を意味するものとする。
【0008】
本発明者らは既に、上記の知見に基づき、酸化雰囲気中で液相拡散接合を施工する場合において、Vを0.1〜20.0原子%含有し、Siを増加したインサートメタルを用いれば接合が可能であることを見出だし、酸化雰囲気中での接合が可能な液相拡散接合用合金箔に関する技術を特公平6−9748号公報で開示している。
即ちその要旨とするところは、原子%でB:0.5〜10.0%未満、Si:15.0〜30.0%、V:0.1〜20.0%を含有し、あるいは更に、(A)Cr:0.1〜20.0%、Fe:0.1〜20.0%、Mo:0.1〜20.0%の1種又は2種以上、及び/又は(B)W:0.1〜10.0%、Co:0.1〜10.0%の1種又は2種を含有し、残部は実質的にNi及び不可避の不純物よりなる組成を有し、厚さが3.0〜120μmであることを特徴とする、酸化雰囲気中での接合が可能な液相拡散接合用合金箔であり、あるいは加えて実質的にガラス質であるあることを特徴とする液相拡散接合用合金箔である。
【0009】
ところが、このようにVを含有する箔を用いて液相拡散接合を行う場合、確かに添加したVは被接合材料の表面に生成する酸化皮膜と複合酸化物を生成するが、開先面が平滑でない場合において、液体金属と接触するように接合時の負荷応力(便宜上、「接合応力」と称する)を必要な値に高めても、溶融酸化物が十分に溶融金属中に分散せず、被接合材料と溶融金属の界面に濃密に残留したり、あるいは余剰溶融金属と共に開先間から外部に排出されず、等温凝固の最終凝固位置に残留して帯状に残留する場合があることを見出だした。残留した複合酸化物は微細に分散すれば継手強度を上昇させ得るが、密集あるいは合体した場合には接合強度及び靭性を著しく低下させる場合があり、問題となっている。
【0010】
この溶融複合酸化物は、常に酸化雰囲気中での接合を可能とするVを含有し、被接合材料表面に生成する酸化皮膜の成分を含有する、融点が600〜850℃程度の液体酸化物となっていて、酸化雰囲気中での液相拡散接合に特有な生成物であり、この生成物なくしては酸化雰囲気中での液相拡散接合は困難である。しかも、その溶融複合酸化物の残留による継手特性の劣化は、酸化雰囲気中での接合が可能なV含有箔に固有であって、その解決法は全く見出だされていなかった。
【0011】
単なる液相拡散接合の継手の特性改善の観点からは、特開平5−318143号公報に鋼材の疲労強度に優れた接合方法として、接合時の温度、加圧力、時間を式で規定する技術の開示があるが、酸化雰囲気中での接合を前提としておらず、接合箔中のV添加技術に関する記述が無く、従って当然Vを含む低融点複合酸化物に関する記述も全く無い。また特許第2541061号には、鋼材の接合方法に関する技術の開示があり、接合温度と冷却速度の制御に関する記述はあるものの、これもまた酸化雰囲気中での接合に関する技術ではなく、しかも低融点複合酸化物に関しての記述がない。これらの技術は、いずれも前述の課題を解決できる技術ではない。
【0012】
この低融点複合酸化物による継手特性劣化を防止するには、接合開先面をインサートメタルの厚みよりも小さな凹凸に加工することで平滑とし、これら溶融酸化物の均一分散あるいは開先面からのアプセットによる排出を促す方法が考えられる。しかし、インサートメタルの厚みが薄い場合において、開先面の精密加工は工業技術的に困難でかつ高価であり、接合施工コストの上昇を招くため、本接合技術の工業的実用化には解決すべき課題が残されている。
【0013】
【発明が解決しようとする課題】
本発明は上記課題を解決するためになしたものであり、その要旨は以下の通りである。
質量%で、少なくともV:0.1〜5.0%、Si:1.0〜8.0%、を含有し、さらにB:0.5〜5.0%、P:0.5〜5.0%の1種または2種を含有し、残部がNiおよび不可避的不純物からなり、その結晶構造のうち60%以上が非晶質である、5〜100μm厚さのアモルファスインサートメタルを接合箔として用いる液相拡散接合において、酸素を0.1 vol%以上含む接合部雰囲気で、接合面に5〜50MPa の応力を加えながら加熱し、接合面の温度が前記インサートメタルの融点以上の拡散接合温度に到達した後に、直ちに接合部への応力を5MPa 以下として2〜10秒間保持し、次いで応力を5〜50MPa として1〜5秒間保持した後、応力を1〜10MPa として接合終了まで少なくとも30秒間保持することを特徴とする酸化雰囲気中液相拡散接合方法。
【0014】
【発明の実施の形態】
本発明者らは、この溶融複合酸化物の高温液体金属中における挙動を詳細に解析した結果、多くの場合、溶融複合酸化物の残留は、インサートメタルと被接合材料が反応して生成した液体金属に接合応力を負荷する際に、接合温度に加熱された開先面が急激に加圧されることに原因があることを突き止めた。被接合材料表面あるいは接合金属の等温凝固最終位置に残留する複合酸化物は、瞬間的な接合時の加圧によって開先面の凹凸が十分に溶融平滑化されないまま押し付けられるため、開先面の凹凸の間隙に残留することが原因であることが判明した。
【0015】
すなわち、溶融したインサートメタルが開先面の凹凸を化学反応で溶融平滑化し、溶融複合酸化物が泳動排出できる時間的余裕を与えてやればよい。従って、接合温度に達した接合部に直ちに必要な接合応力を負荷するのではなく、一度開先を保持するのに十分な、接合応力よりも低い応力を負荷し、十分に開先面を溶融平滑化した後に必要な接合応力を負荷すればよい。
【0016】
先ず、液相拡散接合に用いる接合箔の成分について述べる。
以下の説明で表示する化学成分量は全て質量%である。
Vは、酸化雰囲気中であっても液相拡散接合を達成するのに必要な元素であって、接合温度において被接合材料表面に生成した酸化皮膜と溶融複合酸化物を生成し、拡散元素の被接合材料への拡散を達成する。0.1%未満では効果がなく、5.0%を超える場合には、酸化雰囲気中での接合自体は可能となるものの、開先での溶融酸化物量が増大し、本発明に記載の接合方法をもってしても完全に密集したあるいは帯状の開先間残留を防止できない。また、インサートメタルの融点を上昇させて液相拡散接合用合金箔としての接合性能を低下させるため、上限を5.0%とした。
【0017】
Siはアモルファス生成能を向上させ、箔の融点を低下させて接合性能を向上する元素で、1.0%未満では効果がなく、8.0%を超えて添加すると、逆に箔の製造特性(主に鋳造性)を低下させるため、1.0〜8.0%の範囲とした。
【0018】
B及びPは被接合材料中に拡散する元素で、等温凝固実現にも欠かせない元素である。両元素とも0.5%未満ではインサートメタルの融点が高すぎて実質的な接合温度が母材の融点に近付くため、液相拡散接合が不可能となる。5.0%を超えて添加すると、箔の構造が不安定となり、粗大な硼化物あるいは燐化物を生成して非晶質構造の箔を生成できないため、それぞれ0.5〜5.0%の範囲とした。
【0019】
以上の組成からなる合金は、通常の溶解−鋳造方法では偏析が激しく製造不可能であり、急冷凝固法などの製造手段を用いて、液体状態での構造をそのまま凍結した構造を有するアモルファス構造が不可欠である。また、箔の厚みを100μm以下とすることで60%以上が完全な非晶質となることが実験的に判明しており、かつ5μm未満の厚みでは、実際の開先加工精度に対応できない場合があるため、本発明の適用対象厚みは5〜100μmとした。
【0020】
勿論、この箔を2枚以上重ね合わせて被接合材料の開先間に使用することは可能であり、実質的な接合のための箔の厚みは任意に設定でき、このことは箔を接合材料として用いる場合の利点である。
Vを添加した箔の効果は、雰囲気の酸素含有量が0.1%以上の場合に有効であることが実験的に判明しており、これを本発明の接合部雰囲気とした。
【0021】
次に、接合時の応力負荷の時期と、その値を規定した理由を以下に述べる。 接合継手の温度は、最低でもインサートメタルの融点以上となることが必要であって、液相拡散接合では不可避の条件となる。その融点はPを含有するインサートメタルでは概略800℃以上で、Bのみ含有する箔では約950℃以上となる。接合温度の上限は、被接合材料の融点以下でなければならないから、合金鋼も含めて、約1400℃以下とするのが一般的である。
【0022】
この接合温度に開先を加熱する場合、加熱方法によらず、材料の熱膨脹によって開先は変形するが、接合の加熱前から開先を突き合わせ、開先先端が互いに密着するように応力をかけて、インサートメタルの溶融時に両開先が溶融金属と濡れる必要がある。
【0023】
そのために必要な応力は5MPa 以上であって、これ未満の応力では、開先のみが集中的に例えば誘導加熱コイルなどによって加熱され、この加熱域からの材料の拘束を受けて開先が変形する場合、例えば鋼管の管端同士の突合わせ接合等では開先が局部的に拡管して、開先が低温での突合わせ状態を保てなくなる。いわゆるI型開先がV型開先に変形してしまう場合がある。このような高温での熱膨脹に起因する変形による開先の不整合を抑制するために、接合温度に達するまでには最低5MPa を負荷する必要がある。
一方、50MPa を超えて負荷する場合、通常の構造用炭素鋼では高温での強度が不足し、短時間のうちに圧壊してしまい、開先の突合わせが不可能となるので、上限を50MPa とした。
【0024】
更に、この応力をBあるいはPの拡散を伴う等温凝固過程の間保持し続ける場合には、短時間のうちに開先間が接近して余剰の溶融金属を開先間から排除する際に、開先の面粗さがインサートメタルの厚みに対して粗い場合、具体的には凹凸の状態を表面粗さの示度の一つであるRmax で表す場合、Rmax の値が開先間に介在させるインサートメタルの厚みを超える場合に、溶融金属が凹凸の窪みに残留し、密集するかあるいは最終凝固位置に帯状に残留する。
【0025】
この現象を回避するために、高応力を負荷し続けて急激な余剰溶融金属排出がおきないように、一時接合応力を5MPa 以下で1MPa 以上に低下させ、一定時間保持して十分に複合酸化物を被接合材料表面で生成させて球状化し、剥離泳動させる時間を与えることが必要である。この場合の保持時間は2秒間未満では短く、効果がない。しかし10秒間を超えると、溶融金属中に雰囲気からの酸素の固溶が生じ、必要以上に大量の酸化物を開先間に介在させて、かえって接合部の強度・靭性を損なうことがあるため、これを2〜10秒間に限定した。
【0026】
続いて、高温で開先を完全に密着させ、等温凝固を完遂させるために5〜50MPa の応力を負荷する。応力の値が5MPa 未満では、開先間の多少の不整合を補って塑性変形させ密着させるためには不十分であり、50MPa 超の応力では、直ちに炭素鋼あるいは合金鋼が圧壊して開先の突合わせが不可能となることから、その応力範囲を5〜50MPa とした。なお、この保持時間は材料の熱間変形能によって制御しなければならないが、5秒間超の保持では全ての材料がクリープ変形し、開先面の突合わせ不可能となり、1秒間未満では熱間変形が十分でなく、開先の密着が生起しないため、保持時間は1〜5秒の間とした。
【0027】
以上の接合応力負荷の変化の時間では、十分な液相拡散接合のための等温凝固過程が終了せず、継手の強度が低下するため、継手の開先を拡散等温凝固のために必要な応力である1〜10MPa で固定して、30秒間以上の保持を行うこととした。開先固定のための応力は1MPa 未満では等温凝固のための拡散促進に効果がなく、10MPa 超では鋼材のクリープ変形によって開先が変形圧壊してしまうため、応力範囲を1〜10MPa とした。
【0028】
なお、被接合材料として用いる炭素鋼あるいは合金鋼の形状は特に制限がなく、開先の形状は5〜100μmのアモルファス箔を介在させることのできる形状であり、突き合わせる面同士の間にインサートメタルの厚み以上の間隙がないことが必要である。従って、開先面は単一の面のみからなるものでなくとも良く、傾斜した複数の面からなることも、曲面であることも可能である。これに適合した傾斜面を有する箔あるいは曲面に鋳造された箔を用いることも有効であり、本発明の接合方法を適用できる可能性は接合開先面の形状によらない。
【0029】
また、開先を加熱する手段は特に制限がなく、高周波誘導加熱、抵抗加熱、通電加熱、照射加熱など非接触あるいは接触式の様々な加熱方法を適用でき、本発明の効果を十分に発揮させる上で有効である。また、局部加熱に起因する管体拘束などの問題点を解決するために、被接合体全体を酸化雰囲気中の炉に保持して全体を均一に加熱することも可能である。接合後の継手の冷却にも特に制限がない。
【0030】
【実施例】
表1に示すように、本発明の組成を有する合金約100gを単ロール法(Cu合金製300mm径)にて急冷し、板幅2〜215mm、板厚50.0μmの箔とした。急冷箔の鋳造は、ロール周速を5.0〜15.0/sの間に保持して行った。得られた箔は板幅と板厚をそれぞれ5点測定して、上記の寸法が得られていることを確認した後に、DTA(示差熱分析装置)で融点を測定した。融点は表1に示した通りである。
【0031】
次に化学分析で成分を同定した。表1はその分析結果で、単位は質量%である。各箔は何れもNiを基材としており、各成分の和と100%との差がNiと不可避の不純物の合計濃度を意味する。各箔の結晶構造は上記の製造条件においては非晶質、結晶質、及び部分的に結晶質と非晶質の混じった構造の何れかになるが、何れの構造をとるかはその組成で決定される。
【0032】
表2に、本発明合金箔に対する比較合金箔の成分とその特性を示す。
続いて表1の本発明を満足するインサートメタル及び表2の比較インサートメタル(従来型インサートメタルを含む)を用いて液相拡散接合を実施した。表2の箔の製造方法も表1の本発明箔の場合と全く同様である。試験片形状としては鋼管、角鋼管、鉄筋、H形鋼あるいは種々の厚みの厚板を用い、それぞれ管端、端部、エッジ部を突き合わせての接合試験に供した。
【0033】
図1に鋼管試験片の接合例を模式的に示す。すなわち、管軸方向1に対して垂直な面を1面有する開先を管端に整形し、この直径500mm、肉厚20mm、長さ2000mmの鋼管試験体2を2本突き合わせて試験対となし、試験対のI型開先の間に、鋼管の接合端面と完全に同一のリング状に加工された表3に掲載の化学成分を有する接合非晶質箔3を1枚挟み込んだ。管端開先面4の粗さはRmax 値で100μmであり、今回使用した非晶質箔の厚み50μmよりも大きい。従って、従来の技術をもって接合する場合、酸化雰囲気中での接合は困難と考えられる。
【0034】
続いて、図2の模式図に示すように、突き合わせた鋼管試験対5の接合部が最高加熱温度となるように円形の高周波誘導加熱コイル6で加熱した。加熱に先立って、鋼管試験対5には鋼管の両端から油圧式プレス装置7によって管軸方向と平行に応力S1を負荷した。高周波誘導加熱には発振装置を用いて鋼管の肉厚、外径に応じて1分で実施例の実験の接合温度である1200℃に加熱できるよう電力を供給した。表4には接合に用いた鋼管の化学成分を示す。
【0035】
鋼管が接合温度である1200℃に達すると同時に開先への負荷応力はS2に減じ、t1秒間保持した後、再び接合応力を増してS3とし、t2秒間保持後、接合応力を減じて継手保持応力S4とし、その後t3秒で加熱を中断して放冷した。接合継手の健全性は試験後に継手を管軸方向と平行方向に切断し、JIS12Cのサブサイズ弧状引張試験片により、室温で引張試験を実施して、引張強さを母材と比較して判断した。引張試験片は各継手から1本採取した。
【0036】
表5に、接合条件である開先面の負荷応力S1,S2,S3,S4,t1,t2,t3と継手の引張強さの評価結果を同時に示した。引張強さが360MPa を下回る場合、被接合材料の母材強度である450MPa の80%にあたり、これを継手特性のしきい値とし、継手特性を判断した。継手の表面は接合ままであるため、この強度がそのまま真の継手の材料科学的な接合強度評価にはならないが、実用上の判断基準としては妥当であると考えられる。
【0037】
表5に示した本発明の接合方法による継手は、何れも接合部の接合強度が母材並であり、接合強度が高いことが明らかである。表6は本発明の接合方法を適用しない場合の比較例であり、接合部の強度は何れも母材の80%以下であり、接合継手強度が著しく劣化することが判る。なお、試験的に市販のVを含有しない非酸化雰囲気接合用の箔を用いた接合実験を行った。表中ではインサートメタル種類としてVを含有しない箔を用いた実験を区別して記載した。
【0038】
【表1】

Figure 0003626593
【0039】
【表2】
Figure 0003626593
【表3】
Figure 0003626593
【表4】
Figure 0003626593
【0040】
【表5】
Figure 0003626593
【0041】
【表6】
Figure 0003626593
【0042】
以上の結果は、試験体として角鋼管、鉄筋、形鋼あるいは厚板を用いた場合においてもほぼ同様であった。
表6の比較例中、第15継手は初期負荷応力S1が60MPa と高かったために、接合温度に達すると同時に鋼管が圧壊して開先の突合わせが不十分となり、継手強度が低下した例である。第16継手は接合温度に加熱後、接合応力を10MPa のまま変化させなかったため、接合金属中に複合酸化物が残留して継手強度が低下した例である。第17継手は接合温度に加熱後、接合応力を10MPa から20MPa へと上昇させ、しかもt1を15秒と長時間保持したために開先が圧壊して突合わせ不良となり、継手強度が低下した例である。
【0043】
第18継手は接合温度に加熱後、開先面平滑化のための反応時間は十分とれたものの、開先密着のための負荷応力S3が70MPa と高く、開先が圧壊して突合わせ不良となり、継手強度が低下した例である。第19継手は開先密着のための負荷応力S3が2MPa と低く、開先が熱膨脹によって開口したままとなり、突合わせ不良となり、継手強度が低下した例である。第20継手は開先面平滑化時の応力S2が0.2MPa と低く、開先面が鋼管同士で接触しない部分が発生し、従ってインサートメタルとは濡れないまま、未接合の継手となってしまった例である。第21継手は開先密着の高応力負荷時の時間が40秒と長く、開先が圧壊して突合わせ不良となり、継手強度が低下した例である。
【0044】
第22継手は拡散と等温凝固のための鋼管保持時の応力S4が20MPa と高かったために、開先が圧壊して突合わせ不良となり、継手強度が低下した例である。第23継手は拡散と等温凝固のための鋼管保持時間t3が5秒と不足したために、液相拡散接合は完全に達成できず、ろう付け継手部分が生成してしまい、継手強度が低下した例である。第24継手は使用したインサートメタルが非酸化雰囲気での接合に使用するものであり、Vを成分として含有していないために大気雰囲気での液相拡散接合が実現できず、継手強度が低下した例である。第25継手は初期負荷応力S1が低く、続く開先面平滑化のための保持の応力S2が高く、そのまま保持を続け、等温凝固のための保持応力、時間は正しかったが、結果として開先が圧壊して突合わせ不良となり、継手強度が低下した例である。
【0045】
【発明の効果】
以上のように本発明は、酸化雰囲気中においても液相拡散接合が可能であり、かつ破断強度が母材並みの、鋼材の液相拡散接合継手が得られる液相拡散接合方法を実現するものであって、産業の発展に寄与するところ極めて大なるものがある。
【図面の簡単な説明】
【図1】鋼管試験体間に接合用非晶質インサートメタルを配置した状況を示す模式図。
【図2】本発明の実施例で説明した液相拡散接合実験の鋼管の軸方向の断面を示す模式図。
【符号の説明】
1:鋼管試験体軸方向
2:鋼管試験体
3:接合用非晶質箔(インサートメタル)
4:鋼管管体の接合開先面
5:鋼管試験対
6:高周波誘導加熱コイル(断面)
7:油圧式開先面応力負荷装置(プレス装置)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to liquid phase diffusion bonding of metallic materials, and is particularly useful for liquid phase diffusion bonding of carbon steel and alloy steel, or liquid phase diffusion bonding of these alloy steel and carbon steel, and in an oxidizing atmosphere. And a liquid phase diffusion bonding method that can obtain a joint excellent in joint strength and toughness.
[0002]
[Prior art]
In liquid phase diffusion bonding, an alloy having an eutectic composition having a melting point lower than that of the material to be bonded is interposed between the materials to be bonded in the form of foil, powder, plating, or the like, and then pressed. This is a joining method in which the joint is melted and isothermally solidified by heating to a temperature just above the liquidus line (referred to as a metal), and is considered a kind of solid-phase joining method.
Since liquid phase diffusion bonding can be performed with relatively low pressure, it is used for bonding where residual stress due to bonding and deformation must be avoided as much as possible, and at the same time, bonding of high alloy steels and heat resistant steels that are difficult to weld. Technology.
[0003]
Materials to be joined by liquid phase diffusion joining often contain 0.50% or more of Cr as an alloy composition. The Cr-containing material is characterized by excellent oxidation resistance and corrosion resistance in order to form a dense oxide Cr (in many cases Cr 2 O 3 ) film on the surface. Accordingly, an oxide film is naturally formed on the bonding surface even by heating at the time of bonding, so that wetting of the molten insert metal is hindered, and the diffusion of atoms necessary for bonding is significantly hindered.
Therefore, conventionally, as can be seen in JP-A-53-81458, JP-A-62-34685, and JP-A-62-227595, the atmosphere is reduced to a vacuum, no vacuum. It must be kept active or reducible, leading to a significant increase in bonding costs.
[0004]
As a result of repeated studies, the present inventors have found that an insert metal containing V as a component can be subjected to liquid phase diffusion bonding even in an oxidizing atmosphere. Moreover, although V is an element that raises the melting point of the insert metal, it can be seen that an insert metal having excellent bondability can be obtained by appropriately adjusting other elements (in the present invention, exclusively Si). I started.
[0005]
An alloy foil for liquid phase diffusion bonding containing V and increasing the amount of Si has almost no precedent. U.S. Pat. No. 3,856,513 discloses an alloy having the composition M a Y b Z c . In the formula, M is a metal selected from the group consisting of Fe, Ni, Co, V, and Cr, Y is an element selected from the group consisting of P, B, and C, and Z is Al, Si, Sn, Ge, An element selected from the group consisting of In, Sb, and Be, wherein a is in the range of about 60 to 90 atomic percent, b is in the range of about 10 to 30 atomic percent, and c is about 0.1 to 15 atomic percent % Range. Such materials are industrially manufactured and put into practical use by rapid cooling from the melt using currently known processing techniques.
[0006]
However, in this case, V is intended to be used as a substrate and to make the alloy amorphous, and is not disclosed as an alloy foil for bonding. Moreover, since the Si content is low and the melting point of the foil is considerably higher than that of the present invention, it is very difficult to realize liquid phase diffusion bonding. In addition, the B content is completely different from that of the present invention, and since the content is high, coarse precipitates are generated near the joint Mo or Cr-containing alloy, so that the bonding strength of the foil of the present invention is used. Thus, it is quite low compared to the joint obtained.
Japanese Patent Laid-Open No. 53-81458 provides an alloy of US Pat. No. 3,856,513 in the form of a foil. In this case, since V is not contained as a component, the liquid in an oxidizing atmosphere is used. Phase diffusion bonding is not possible at all.
[0007]
In the present invention, the term “oxidizing atmosphere” means that the bonding atmosphere contains 0.1% or more by volume oxygen gas and the oxygen partial pressure is 10 −3 or more, that is, a reducing gas such as H 2 , even when it contains H 2 S, water vapor and the like, it means an atmosphere having an oxidizing power of 0.1% or more corresponding to the oxygen concentration.
The term “melting point” means a solidus on the phase diagram of a binary or higher alloy unless otherwise specified.
[0008]
Based on the above knowledge, the present inventors have already used an insert metal containing 0.1 to 20.0 atomic% of V and increasing Si when performing liquid phase diffusion bonding in an oxidizing atmosphere. Japanese Patent Publication No. 6-9748 discloses a technique relating to an alloy foil for liquid phase diffusion bonding that has been found to be able to be bonded and can be bonded in an oxidizing atmosphere.
That is, the gist thereof includes B: 0.5 to less than 10.0% in atomic percent, Si: 15.0 to 30.0%, V: 0.1 to 20.0%, or further (A) Cr: 0.1 to 20.0%, Fe: 0.1 to 20.0%, Mo: 0.1 to 20.0%, or two and / or (B) W: 0.1 to 10.0%, Co: 0.1 to 10.0% of one or two kinds, the balance has a composition substantially consisting of Ni and inevitable impurities, thickness Is an alloy foil for liquid phase diffusion bonding capable of bonding in an oxidizing atmosphere, or in addition, a liquid characterized by being substantially glassy This is an alloy foil for phase diffusion bonding.
[0009]
However, when liquid phase diffusion bonding is performed using a foil containing V as described above, the added V surely generates an oxide film and a composite oxide generated on the surface of the material to be bonded. Even if it is not smooth, even if the load stress at the time of joining (referred to as “joining stress” for convenience) is increased to a necessary value so as to come into contact with the liquid metal, the molten oxide is not sufficiently dispersed in the molten metal, It is observed that it may remain densely at the interface between the material to be joined and the molten metal, or it may not be discharged from the groove together with the excess molten metal, and may remain in the final solidification position of isothermal solidification and remain in a band shape. I started. If the remaining composite oxide is finely dispersed, the joint strength can be increased. However, if the composite oxide is densely combined, the joint strength and toughness may be significantly reduced, which is a problem.
[0010]
This molten composite oxide always contains V 2 O 5 that enables bonding in an oxidizing atmosphere, and contains a component of an oxide film formed on the surface of the material to be bonded, and has a melting point of about 600 to 850 ° C. It is an oxide and is a product unique to liquid phase diffusion bonding in an oxidizing atmosphere. Without this product, liquid phase diffusion bonding in an oxidizing atmosphere is difficult. Moreover, the deterioration of the joint characteristics due to the residual molten composite oxide is inherent to the V-containing foil that can be joined in an oxidizing atmosphere, and no solution has been found.
[0011]
From the viewpoint of simply improving the characteristics of the joint of liquid phase diffusion bonding, JP-A-5-318143 discloses a technique for prescribing the temperature, pressure and time at the time of joining as a joining method with excellent fatigue strength of steel materials. Although disclosed, it is not premised on bonding in an oxidizing atmosphere, and there is no description about the V addition technique in the bonding foil. Therefore, there is no description about the low melting point composite oxide containing V 2 O 5 as a matter of course. Japanese Patent No. 2541061 discloses a technique relating to a method for joining steel materials, and there is a description relating to the control of the joining temperature and cooling rate, but this is also not a technique relating to joining in an oxidizing atmosphere, and it is a low melting point composite. There is no description about oxides. None of these techniques can solve the aforementioned problems.
[0012]
In order to prevent deterioration of the joint characteristics due to this low melting point composite oxide, the joint groove surface is smoothed by processing it into irregularities smaller than the thickness of the insert metal, and these molten oxides are uniformly dispersed or from the groove surface. A method of promoting discharge by upset is conceivable. However, when the thickness of the insert metal is thin, precision machining of the groove surface is technically difficult and expensive, leading to an increase in bonding construction costs. Issues to be addressed remain.
[0013]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
It contains at least V: 0.1 to 5.0%, Si: 1.0 to 8.0%, and B: 0.5 to 5.0%, P: 0.5 to 5% by mass 0.05% amorphous insert metal containing 5% to 100 μm in thickness, containing 1% or 2% of the remainder, the balance being Ni and inevitable impurities, and 60% or more of the crystal structure being amorphous In the liquid phase diffusion bonding used as a diffusion bonding, heating is performed while applying a stress of 5 to 50 MPa to the bonding surface in a bonding portion atmosphere containing 0.1 vol% or more of oxygen, and the bonding surface temperature is equal to or higher than the melting point of the insert metal. Immediately after reaching the temperature, the stress on the joint is kept at 5 MPa or less for 2 to 10 seconds, then the stress is kept at 5 to 50 MPa for 1 to 5 seconds, then the stress is kept at 1 to 10 MPa for at least 30 seconds until the end of joining. Retention A liquid phase diffusion bonding method in an oxidizing atmosphere.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a result of detailed analysis of the behavior of the molten composite oxide in a high-temperature liquid metal, in many cases, the residual of the molten composite oxide is a liquid produced by a reaction between the insert metal and the material to be joined. It was found that the groove surface heated to the bonding temperature was rapidly pressed when the bonding stress was applied to the metal. The complex oxide remaining on the surface of the material to be joined or the isothermal solidification final position of the joining metal is pressed without the unevenness of the groove surface being sufficiently melted and smoothed by the instantaneous pressurization. It was found that this was caused by remaining in the gaps between the irregularities.
[0015]
That is, the melted insert metal may be melted and smoothed by the chemical reaction on the groove surface to provide the time allowance for migration and discharge of the molten composite oxide. Therefore, instead of immediately applying the necessary joint stress to the joint that has reached the joint temperature, load a stress lower than the joint stress enough to hold the groove once and melt the groove surface sufficiently. What is necessary is just to apply a required joining stress after smoothing.
[0016]
First, the components of the bonding foil used for liquid phase diffusion bonding will be described.
The amounts of chemical components displayed in the following description are all mass%.
V is an element necessary for achieving liquid phase diffusion bonding even in an oxidizing atmosphere, and forms an oxide film and a molten composite oxide formed on the surface of the material to be bonded at the bonding temperature. Achieve diffusion to the material to be joined. If it is less than 0.1%, there is no effect, and if it exceeds 5.0%, bonding in an oxidizing atmosphere is possible, but the amount of molten oxide at the groove increases, and the bonding described in the present invention Even with this method, it is not possible to prevent completely dense or belt-like gaps remaining. Moreover, in order to raise melting | fusing point of insert metal and to reduce the joining performance as alloy foil for liquid phase diffusion joining, the upper limit was made 5.0%.
[0017]
Si is an element that improves the ability to form amorphous and lowers the melting point of the foil to improve the bonding performance. If it is added in excess of 8.0%, it is ineffective. In order to reduce (mainly castability), the range of 1.0 to 8.0% was set.
[0018]
B and P are elements that diffuse into the material to be joined and are indispensable for realizing isothermal solidification. If both elements are less than 0.5%, the melting point of the insert metal is too high, and the substantial bonding temperature approaches the melting point of the base material, so that liquid phase diffusion bonding becomes impossible. If added over 5.0%, the structure of the foil becomes unstable, and a coarse boride or phosphide cannot be produced to produce a foil having an amorphous structure. The range.
[0019]
An alloy having the above composition cannot be manufactured due to severe segregation by a normal melting-casting method, and an amorphous structure having a structure in which the structure in a liquid state is frozen as it is by using a manufacturing means such as a rapid solidification method. It is essential. Also, it has been experimentally found that when the thickness of the foil is 100 μm or less, 60% or more becomes completely amorphous, and if the thickness is less than 5 μm, the actual groove processing accuracy cannot be accommodated. Therefore, the application target thickness of the present invention is set to 5 to 100 μm.
[0020]
Of course, it is possible to use two or more of these foils overlapped and used between the grooves of the material to be joined, and the thickness of the foil for substantial joining can be arbitrarily set. It is an advantage when using as.
It has been experimentally found that the effect of the foil to which V is added is effective when the oxygen content of the atmosphere is 0.1% or more, and this was used as the bonding portion atmosphere of the present invention.
[0021]
Next, the timing of stress loading at the time of joining and the reason for defining the value will be described below. The temperature of the joint joint must be at least the melting point of the insert metal, which is an unavoidable condition for liquid phase diffusion bonding. The melting point is approximately 800 ° C. or higher for the insert metal containing P, and about 950 ° C. or higher for the foil containing only B. Since the upper limit of the joining temperature must be equal to or lower than the melting point of the materials to be joined, it is generally set to about 1400 ° C. or less including alloy steel.
[0022]
When heating the groove to this bonding temperature, the groove is deformed by the thermal expansion of the material regardless of the heating method, but stress is applied so that the groove is abutted before the bonding is heated and the groove tips are in close contact with each other. Thus, both the grooves need to get wet with the molten metal when the insert metal is melted.
[0023]
The stress required for this is 5 MPa or more. When the stress is less than this, only the groove is intensively heated by, for example, an induction heating coil, and the groove is deformed under the restraint of the material from this heating region. In this case, for example, in the butt joint between the pipe ends of the steel pipe, the groove is locally expanded, and the groove cannot maintain the butt state at a low temperature. A so-called I-type groove may be transformed into a V-type groove. In order to suppress misalignment of the groove due to deformation caused by thermal expansion at such a high temperature, it is necessary to load at least 5 MPa until the joining temperature is reached.
On the other hand, when a load exceeding 50 MPa is applied, normal structural carbon steel lacks the strength at high temperature and collapses in a short time, making it impossible to butt the groove. It was.
[0024]
Furthermore, when this stress is continuously maintained during the isothermal solidification process involving the diffusion of B or P, when the gaps approach in a short time to remove excess molten metal from the gaps, When the surface roughness of the groove is rough with respect to the thickness of the insert metal, specifically, when the uneven state is represented by Rmax which is one of the indications of the surface roughness, the value of Rmax is interposed between the grooves. When the thickness of the insert metal to be made is exceeded, the molten metal remains in the concave and convex recesses and is concentrated or remains in a band shape at the final solidification position.
[0025]
In order to avoid this phenomenon, the temporary bonding stress is reduced to 5 MPa or less to 1 MPa or more and kept for a certain period of time so as not to cause a sudden discharge of excessive molten metal by continuously applying a high stress and sufficiently maintaining the composite oxide. It is necessary to generate time on the surface of the material to be joined, spheroidize, and give time for separation migration. The holding time in this case is short and less effective if it is less than 2 seconds. However, if it exceeds 10 seconds, solid solution of oxygen from the atmosphere will occur in the molten metal, and an excessive amount of oxide may be interposed between the grooves, which may adversely affect the strength and toughness of the joint. This was limited to 2-10 seconds.
[0026]
Subsequently, a stress of 5 to 50 MPa is applied in order to bring the groove into close contact at a high temperature and complete isothermal solidification. If the stress value is less than 5 MPa, it is insufficient to compensate for some mismatch between the grooves and cause plastic deformation and adhesion, and if the stress exceeds 50 MPa, the carbon steel or alloy steel immediately collapses and the groove Therefore, the stress range is set to 5 to 50 MPa. Note that this holding time must be controlled by the hot deformability of the material. However, if the holding time exceeds 5 seconds, all materials will creep, making it impossible to butt the groove surface. Since the deformation was not sufficient and the groove contact was not caused, the holding time was set to 1 to 5 seconds.
[0027]
In the above change time of the joint stress load, since the isothermal solidification process for sufficient liquid phase diffusion bonding does not end and the strength of the joint decreases, the stress required for diffusion isothermal solidification of the joint groove is reduced. The pressure was fixed at 1 to 10 MPa and the holding was performed for 30 seconds or more. If the stress for groove fixing is less than 1 MPa, the effect of promoting diffusion for isothermal solidification is not effective, and if it exceeds 10 MPa, the groove is deformed and collapsed due to creep deformation of the steel material, so the stress range is set to 1 to 10 MPa.
[0028]
In addition, the shape of carbon steel or alloy steel used as a material to be joined is not particularly limited, and the shape of the groove is a shape in which an amorphous foil of 5 to 100 μm can be interposed, and the insert metal is between the surfaces to be abutted. It is necessary that there is no gap more than the thickness of the film. Therefore, the groove surface does not have to be a single surface, and can be a plurality of inclined surfaces or a curved surface. It is also effective to use a foil having an inclined surface suitable for this or a foil cast into a curved surface, and the possibility of applying the joining method of the present invention does not depend on the shape of the joining groove face.
[0029]
Further, the means for heating the groove is not particularly limited, and various non-contact or contact heating methods such as high-frequency induction heating, resistance heating, energization heating, and irradiation heating can be applied, and the effects of the present invention can be sufficiently exerted. Effective above. Further, in order to solve problems such as tube restraint caused by local heating, it is also possible to uniformly heat the whole by holding the whole assembly in a furnace in an oxidizing atmosphere. There is no particular limitation on the cooling of the joint after joining.
[0030]
【Example】
As shown in Table 1, about 100 g of the alloy having the composition of the present invention was rapidly cooled by a single roll method (300 mm diameter made of Cu alloy) to obtain a foil having a plate width of 2 to 215 mm and a plate thickness of 50.0 μm. The casting of the quenched foil was performed while maintaining the roll peripheral speed between 5.0 and 15.0 / s. The obtained foil was measured for the plate width and the plate thickness at 5 points, respectively, and after confirming that the above dimensions were obtained, the melting point was measured with a DTA (differential thermal analyzer). The melting point is as shown in Table 1.
[0031]
Next, components were identified by chemical analysis. Table 1 shows the analysis results, and the unit is mass%. Each foil is based on Ni, and the difference between the sum of each component and 100% means the total concentration of Ni and inevitable impurities. The crystal structure of each foil is either amorphous, crystalline, or partially mixed with crystalline and amorphous under the above manufacturing conditions. It is determined.
[0032]
Table 2 shows the components and characteristics of the comparative alloy foil with respect to the alloy foil of the present invention.
Subsequently, liquid phase diffusion bonding was performed using the insert metal satisfying the present invention in Table 1 and the comparative insert metal (including conventional insert metal) in Table 2. The manufacturing method of the foil of Table 2 is exactly the same as that of the foil of the present invention of Table 1. As test specimen shapes, steel pipes, square steel pipes, reinforcing bars, H-shaped steels, or thick plates having various thicknesses were used, and subjected to a joining test in which pipe ends, end portions, and edge portions were brought into contact with each other.
[0033]
FIG. 1 schematically shows an example of joining steel pipe test pieces. That is, a groove having one surface perpendicular to the tube axis direction 1 is shaped into a tube end, and two steel tube specimens 2 having a diameter of 500 mm, a wall thickness of 20 mm, and a length of 2000 mm are butted to form a test pair. Between the test pair I-shaped grooves, one bonded amorphous foil 3 having the chemical components listed in Table 3 and processed into a ring shape completely identical to the bonded end surface of the steel pipe was sandwiched. The roughness of the tube end groove surface 4 is 100 μm in Rmax value, which is larger than the thickness of the amorphous foil used this time of 50 μm. Therefore, when joining with the conventional technique, joining in an oxidizing atmosphere is considered difficult.
[0034]
Then, as shown in the schematic diagram of FIG. 2, it heated with the circular high frequency induction heating coil 6 so that the junction part of the matched steel pipe test pair 5 might become the highest heating temperature. Prior to heating, a stress S1 was applied to the steel pipe test pair 5 from both ends of the steel pipe by a hydraulic press device 7 in parallel with the pipe axis direction. For high-frequency induction heating, an oscillation device was used to supply electric power so that it could be heated to 1200 ° C., which is the bonding temperature of the experiment of the example, in 1 minute depending on the thickness and outer diameter of the steel pipe. Table 4 shows the chemical composition of the steel pipe used for joining.
[0035]
As soon as the steel pipe reaches the joining temperature of 1200 ° C, the load stress on the groove decreases to S2, and after holding for t1 seconds, the joining stress is increased again to S3, and after holding for t2 seconds, the joint stress is reduced to hold the joint. The stress was set to S4, and then the heating was interrupted at t3 seconds and allowed to cool. The soundness of the joint is determined by cutting the joint in the direction parallel to the pipe axis direction after the test, conducting a tensile test at room temperature using a JIS12C sub-size arc specimen, and comparing the tensile strength with the base metal. did. One tensile test piece was taken from each joint.
[0036]
Table 5 shows simultaneously the evaluation results of the load stresses S1, S2, S3, S4, t1, t2, and t3 of the groove surface, which are joining conditions, and the tensile strength of the joint. When the tensile strength was less than 360 MPa, it was 80% of 450 MPa which is the base material strength of the material to be joined, and this was used as a threshold for joint characteristics, and the joint characteristics were judged. Since the surface of the joint remains bonded, this strength does not directly evaluate the material joint strength of the true joint, but it is considered to be appropriate as a practical criterion.
[0037]
It is clear that all of the joints produced by the joining method of the present invention shown in Table 5 have a joint strength equal to that of the base material and a high joint strength. Table 6 is a comparative example when the joining method of the present invention is not applied, and the joint strength is 80% or less of the base material, and it can be seen that the joint strength is significantly deteriorated. In addition, as a test, a joining experiment was performed using a commercially available foil for non-oxidizing atmosphere joining that does not contain V. In the table, experiments using a foil containing no V as an insert metal type are distinguished and described.
[0038]
[Table 1]
Figure 0003626593
[0039]
[Table 2]
Figure 0003626593
[Table 3]
Figure 0003626593
[Table 4]
Figure 0003626593
[0040]
[Table 5]
Figure 0003626593
[0041]
[Table 6]
Figure 0003626593
[0042]
The above results were almost the same when a square steel pipe, a reinforcing bar, a shaped steel, or a thick plate was used as a specimen.
Among the comparative examples in Table 6, the 15th joint had an initial load stress S1 as high as 60 MPa, so the steel pipe collapsed at the same time as the joining temperature was reached, and the butt of the groove became insufficient and the joint strength decreased. is there. The sixteenth joint is an example in which the joint strength was lowered because the composite oxide remained in the joint metal because the joint stress was not changed to 10 MPa after heating to the joint temperature. In the 17th joint, after heating to the joining temperature, the joining stress was increased from 10 MPa to 20 MPa, and since t1 was held for 15 seconds for a long time, the groove was crushed, resulting in a butt failure, and the joint strength decreased. is there.
[0043]
Although the reaction time for smoothing the groove surface was sufficient after the 18th joint was heated to the joining temperature, the load stress S3 for close contact with the groove was as high as 70 MPa, and the groove was crushed, resulting in poor butt contact. This is an example in which the joint strength is reduced. The nineteenth joint is an example in which the load stress S3 for close contact with the groove is as low as 2 MPa, and the groove remains open due to thermal expansion, resulting in poor butt contact and reduced joint strength. In the twentieth joint, the stress S2 at the time of smoothing the groove surface is as low as 0.2 MPa, and a portion where the groove surface does not come into contact with each other is generated, so that it becomes an unjoined joint without getting wet with the insert metal. This is an example. The 21st joint is an example in which the time during high stress load with close contact with the groove is as long as 40 seconds, the groove is crushed, resulting in a butt failure, and the joint strength is reduced.
[0044]
The 22nd joint is an example in which the stress at the time of holding the steel pipe for diffusion and isothermal solidification was as high as 20 MPa, so that the groove was crushed, resulting in a butt failure, and the joint strength decreased. An example in which the 23rd joint has a short steel pipe holding time t3 for diffusion and isothermal solidification of 5 seconds, so that liquid phase diffusion bonding cannot be achieved completely and a brazed joint portion is generated, resulting in a decrease in joint strength. It is. The 24th joint is used for joining in the non-oxidizing atmosphere of the insert metal used. Since V is not contained as a component, liquid phase diffusion joining in the air atmosphere cannot be realized, and the joint strength is reduced. It is an example. The 25th joint had a low initial load stress S1, a high holding stress S2 for smoothing the groove surface, and continued to hold it as it was, and the holding stress and time for isothermal solidification were correct. Is an example in which the joint strength is reduced due to crushing and the joint strength is reduced.
[0045]
【The invention's effect】
As described above, the present invention realizes a liquid phase diffusion bonding method capable of liquid phase diffusion bonding even in an oxidizing atmosphere and capable of obtaining a liquid phase diffusion bonding joint of steel having a fracture strength comparable to that of a base material. However, there are extremely large areas that contribute to industrial development.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a state in which an amorphous insert metal for bonding is arranged between steel pipe specimens.
FIG. 2 is a schematic view showing a cross section in the axial direction of a steel pipe in a liquid phase diffusion bonding experiment described in the embodiment of the present invention.
[Explanation of symbols]
1: Steel pipe specimen axial direction 2: Steel pipe specimen 3: Bonding amorphous foil (insert metal)
4: Joined groove surface of steel pipe body 5: Steel pipe test pair 6: High frequency induction heating coil (cross section)
7: Hydraulic groove face stress load device (press device)

Claims (1)

質量%で、少なくとも
V :0.1〜5.0%、
Si:1.0〜8.0%、を含有し、
さらに
B :0.5〜5.0%、
P :0.5〜5.0%、
の1種または2種を含有し、残部がNiおよび不可避的不純物からなり、その結晶構造のうち60%以上が非晶質である、5〜100μm厚さのアモルファスインサートメタルを接合箔として用いる液相拡散接合において、酸素を0.1vol %以上含む接合部雰囲気で、接合面に5〜50MPa の応力を加えながら加熱し、接合面の温度が前記インサートメタルの融点以上の拡散接合温度に到達した後に、直ちに接合部への応力を5MPa 以下として2〜10秒間保持し、次いで応力を5〜50MPa として1〜5秒間保持した後、応力を1〜10MPa として接合終了まで少なくとも30秒間保持することを特徴とする酸化雰囲気中液相拡散接合方法。
% By mass, at least V: 0.1-5.0%,
Si: 1.0 to 8.0%,
Furthermore, B: 0.5 to 5.0%,
P: 0.5 to 5.0%
A liquid using an amorphous insert metal having a thickness of 5 to 100 μm as a bonding foil, containing one or two of the following, the balance being Ni and inevitable impurities, and 60% or more of the crystal structure being amorphous In the phase diffusion bonding, heating was performed while applying a stress of 5 to 50 MPa to the bonding surface in a bonding portion atmosphere containing 0.1 vol% or more of oxygen, and the temperature of the bonding surface reached a diffusion bonding temperature equal to or higher than the melting point of the insert metal. Later, the stress on the joint is immediately held at 2 MPa for 5 to 10 MPa, then held for 1 to 5 seconds at 5 to 50 MPa, and then held for at least 30 seconds until the end of joining at 1 to 10 MPa. A liquid phase diffusion bonding method in an oxidizing atmosphere.
JP09023898A 1998-04-02 1998-04-02 Liquid phase diffusion bonding method in oxidizing atmosphere Expired - Fee Related JP3626593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09023898A JP3626593B2 (en) 1998-04-02 1998-04-02 Liquid phase diffusion bonding method in oxidizing atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09023898A JP3626593B2 (en) 1998-04-02 1998-04-02 Liquid phase diffusion bonding method in oxidizing atmosphere

Publications (2)

Publication Number Publication Date
JPH11285860A JPH11285860A (en) 1999-10-19
JP3626593B2 true JP3626593B2 (en) 2005-03-09

Family

ID=13992924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09023898A Expired - Fee Related JP3626593B2 (en) 1998-04-02 1998-04-02 Liquid phase diffusion bonding method in oxidizing atmosphere

Country Status (1)

Country Link
JP (1) JP3626593B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087531A1 (en) * 2000-05-18 2001-11-22 Fukuju Industry Corporation Ltd Liquid phase diffusion welded metal-made precision machine component and production method thereof
JP4540392B2 (en) 2003-06-02 2010-09-08 新日本製鐵株式会社 Liquid phase diffusion bonding method for metal machine parts
JP4854754B2 (en) * 2009-03-09 2012-01-18 新日本製鐵株式会社 Liquid phase diffusion bonding method for machine parts

Also Published As

Publication number Publication date
JPH11285860A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
Binesh Diffusion brazing of IN718/AISI 316L dissimilar joint: Microstructure evolution and mechanical properties
JP3168927B2 (en) Method for manufacturing duplex stainless steel joint
JP6739854B2 (en) Friction welding method
JP2733016B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
EP0757111A1 (en) Liquid-phase diffusion bonding alloy foil for heat-resistant material which is joinable in oxidizing atmosphere
KR20180119636A (en) Method and apparatus for friction stir welding of structural steel
KR20180119635A (en) Method and apparatus for friction stir welding of structural steel
JP3626593B2 (en) Liquid phase diffusion bonding method in oxidizing atmosphere
Ghorbel et al. Experimental analysis of temperature field and distortions in multi-pass welding of stainless cladded steel
Gan et al. Microstructure–fracture toughness relationship of vanadium alloy/stainless steel brazed joints
JP3419994B2 (en) Joint for liquid phase diffusion joining of steel pipe with high joining strength
JPS60106691A (en) Alloy for brazing
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JPH02185940A (en) Alloy foil for liquid-phase diffusion joining capable of joining in oxidizing atmosphere
JPH02151377A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JPH09262684A (en) Diffusion welding method for metallic material
JPH0275478A (en) Method for joining bar materials
JP3798219B2 (en) Joined body and joining method of iron-based alloy members
Smith et al. Metallurgical bonding development of V–4Cr–4Ti alloy for the DIII-D radiative divertor program
JPH02151378A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JPH0813428B2 (en) Clad steel pipe joining method
JP2675951B2 (en) Downward arc welding method
KR102310275B1 (en) Brazing assembly and method for preventing surface oxidation
JP2520245B2 (en) Joining method for dissimilar metal materials
WO2023058463A1 (en) Stainless steel and copper joint, manufacturing method therefor, and stainless steel and copper joining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees