JP2017127897A - Au-Ge based solder alloy - Google Patents

Au-Ge based solder alloy Download PDF

Info

Publication number
JP2017127897A
JP2017127897A JP2016009984A JP2016009984A JP2017127897A JP 2017127897 A JP2017127897 A JP 2017127897A JP 2016009984 A JP2016009984 A JP 2016009984A JP 2016009984 A JP2016009984 A JP 2016009984A JP 2017127897 A JP2017127897 A JP 2017127897A
Authority
JP
Japan
Prior art keywords
ppm
less
solder
content
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016009984A
Other languages
Japanese (ja)
Inventor
井関 隆士
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016009984A priority Critical patent/JP2017127897A/en
Publication of JP2017127897A publication Critical patent/JP2017127897A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Au-Ge based solder alloy for high temperature excellent in various properties usable as the sealing and joining uses of electronic components required for high reliability.SOLUTION: An Au-Ge based solder alloy contains 13.0 mass% or more and 23.0 mass% or less of Ge, further one or more kinds among Bi, In, Sb, Mg, Ni, Si and Cu and the balance Au except inevitable elements. In respective contents based on mass,: Bi is 1 ppm or more and 1,000 ppm or less when contained; In is 1 ppm or more and 1,000 ppm or less when contained; Sb is 1 ppm or more and less than 100 ppm when contained; Mg is 1 ppm or more and less than 100 ppm when contained; Ni is 1 ppm or more and less than 100 ppm when contained; Si is 1 ppm or more and less than 1,000 ppm when contained; and Cu is 1 ppm or more and less than 100 ppm when contained.SELECTED DRAWING: None

Description

本発明は、Au及びGeを主成分とする高温用のPbフリーはんだ合金に関し、特に水晶デバイス、SAWフィルター、MEMS等の非常に高い信頼性が要求される電子部品の封止用や接合用として使用可能な安価な高温用のAu−Ge系はんだ合金に関する。   The present invention relates to a high-temperature Pb-free solder alloy mainly composed of Au and Ge, and particularly for sealing and joining electronic components that require extremely high reliability such as crystal devices, SAW filters, and MEMS. The present invention relates to an inexpensive high-temperature Au-Ge solder alloy that can be used.

近年、環境に有害な化学物質に対する規制がますます厳しくなってきており、この規制は電子部品などを基板に接合する目的で使用するはんだ材料に対しても例外ではない。はんだ材料には古くから鉛(Pb)が主成分として使われ続けてきたが、既にRoHS指令などで鉛は規制対象物質になっている。このため、鉛を含まないはんだ(以降、鉛フリーはんだ又は無鉛はんだと称する)の開発が盛んに行われている。   In recent years, regulations on chemical substances harmful to the environment have become stricter, and this regulation is no exception for solder materials used for the purpose of joining electronic components to a substrate. Lead (Pb) has long been used as a main component in solder materials, but lead has already been a regulated substance under the RoHS directive and the like. For this reason, development of solder containing no lead (hereinafter referred to as lead-free solder or lead-free solder) has been actively conducted.

電子部品を基板に接合する際に使用するはんだは、その使用限界温度によって高温用(約260〜400℃)と中低温用(約140〜230℃)とに大別され、それらのうち中低温用はんだに関してはSnを主成分とするもので鉛フリーはんだが実用化されている。例えば、特許文献1にはSnを主成分とし、Agを1.0〜4.0重量%、Cuを2.0重量%以下、Niを0.5重量%以下、Pを0.2重量%以下含有する無鉛はんだ合金組成が記載されており、特許文献2にはAgを0.5〜3.5重量%、Cuを0.5〜2.0重量%含有し、残部がSnからなる合金組成の無鉛はんだが記載されている。   Solders used when bonding electronic components to a substrate are roughly classified into high temperature (about 260 to 400 ° C.) and medium and low temperature (about 140 to 230 ° C.) depending on the use limit temperature. Regarding solder for solder, lead-free solder has been put into practical use with Sn as a main component. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0% by weight, Cu is 2.0% by weight or less, Ni is 0.5% by weight or less, and P is 0.2% by weight. The following lead-free solder alloy composition is described. Patent Document 2 contains 0.5 to 3.5% by weight of Ag, 0.5 to 2.0% by weight of Cu, and the balance is Sn. A lead-free solder of composition is described.

一方、高温用のPbフリーはんだに関しても、様々な機関で研究開発が行われている。例えば、特許文献3には、Biを30〜80質量%含み、溶融温度が350〜500℃のBi/Agロウ材が開示されている。また、特許文献4には、Biを含む共晶合金に2元共晶合金を加え、さらに添加元素を加えたはんだ合金が開示されており、このはんだ合金は4元系以上の多元系はんだではあるものの、液相線温度の調整とばらつきの減少が可能となることが示されている。   On the other hand, research and development is being conducted in various organizations for high-temperature Pb-free solder. For example, Patent Document 3 discloses a Bi / Ag brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. Patent Document 4 discloses a solder alloy in which a binary eutectic alloy is added to a eutectic alloy containing Bi and an additive element is further added. This solder alloy is a multi-component solder of a quaternary system or higher. However, it has been shown that the liquidus temperature can be adjusted and variations can be reduced.

高温用のPbフリーはんだ材料のうち高価なAu系はんだ合金では既にAu−Sn合金やAu−Ge合金などが水晶デバイス、SAWフィルター、MEMS(微小電子機械システム)等で使用されている。例えば、特許文献5にはAu−Ge合金、Au−Sb合金又はAu−Si合金を板状にしてなる低融点Au合金ロウ材を予熱した後、加熱保温部を設けたプレス金型に順次送って100〜350℃の温度範囲でプレス加工を行うことを特徴とする板状低融点Au合金ロウ材のプレス加工方法について記載されている。   Among the high-temperature Pb-free solder materials, Au—Sn alloys and Au—Ge alloys are already used in crystal devices, SAW filters, MEMS (microelectromechanical systems) and the like as expensive Au-based solder alloys. For example, in Patent Document 5, a low-melting point Au alloy brazing material made of Au—Ge alloy, Au—Sb alloy or Au—Si alloy is preheated, and then sequentially sent to a press die provided with a heat insulation section. The press working method of the plate-like low melting point Au alloy brazing material is characterized in that the press working is performed in a temperature range of 100 to 350 ° C.

また、特許文献6には、電子部品の外部リードのロウ付けに用いられるロウ材であって、Agを10〜35wt%、In、Ge及びGaのうちの少なくとも1種を合計で3〜15wt%含有し、残部がAuからなるAu合金が開示されている。このロウ材はAuを主成分とすることで耐エレクトロマイグレーション性を向上させることができ、よってエレクトロマイグレーションテストにおいて短絡するまでの時間を1.5時間以上にすることができると記載されている。また、添加元素としてAgを10〜35wt%加えるのはロウ付け強度を得るためであり、In、Ge及びGaのうち少なくとも1種類を合計で3〜15wt%加えるのは融点を下げるためであると記載されている。   Patent Document 6 discloses a brazing material used for brazing external leads of electronic components, and Ag is 10 to 35 wt%, and at least one of In, Ge, and Ga is 3 to 15 wt% in total. An Au alloy is disclosed which contains and the balance is Au. It is described that the brazing material can be improved in electromigration resistance by containing Au as a main component, and therefore the time until short-circuiting in the electromigration test can be 1.5 hours or more. Further, the addition of 10 to 35 wt% of Ag as an additive element is for obtaining brazing strength, and the addition of 3 to 15 wt% of at least one of In, Ge and Ga in total is for lowering the melting point. Have been described.

さらに特許文献7には、Au−Ge合金を含む3元合金のロウ材であり、液相が発生し始める温度をTs、完全に液相になる温度をTlとした場合に、Tl−Ts<50℃であることを特徴とするロウ材について記載されている。そして、この特許文献7によれば、鉛フリーを実現しつつリフロー温度で溶融せず、接合のための温度が高すぎないので接着剤や部品自体に損傷を与えることがない、電気・電子部品の接合に好適なロウ材を提供できると記載されている。   Further, Patent Document 7 discloses a ternary alloy brazing material including an Au—Ge alloy, where Ts is a temperature at which a liquid phase starts to be generated and Tl is a temperature at which a liquid phase is completely formed. It describes a brazing material characterized by a temperature of 50 ° C. And according to this patent document 7, it does not melt at the reflow temperature while realizing lead-free, and the temperature for bonding is not too high, so that the adhesive and the component itself are not damaged. It is described that it is possible to provide a brazing material suitable for bonding of the above.

特開平11−077366号公報Japanese Patent Application Laid-Open No. 11-077366 特開平8−215880号公報JP-A-8-215880 特開2002−160089号公報JP 2002-160089 A 特開2008−161913号公報JP 2008-161913 特開平03−204191号公報Japanese Patent Laid-Open No. 03-204191 特開平03−138096号公報Japanese Patent Laid-Open No. 03-138096 特開2007−160340号公報JP 2007-160340 A

高温用のPbフリーはんだ材料に関しては、上記特許文献以外にも様々な報告や提案がなされているが、未だ低コストで汎用性のあるはんだ材料は見つかっていないのが実状である。即ち、一般的に電子部品や基板には熱可塑性樹脂や熱硬化性樹脂などの比較的耐熱温度の低い材料が多用されているため、接合時の作業温度は400℃未満、望ましくは370℃以下にすることが望ましい。しかしながら、例えば特許文献3に開示されているBi/Agロウ材では、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される電子部品や基板の耐熱温度を超えてしまうことになる。   Regarding Pb-free solder materials for high temperatures, various reports and proposals have been made in addition to the above-mentioned patent documents, but in reality, no low-cost and versatile solder materials have yet been found. That is, since electronic parts and substrates generally use materials having a relatively low heat resistance such as thermoplastic resins and thermosetting resins, the working temperature during bonding is less than 400 ° C., preferably 370 ° C. or less. It is desirable to make it. However, for example, in the Bi / Ag brazing material disclosed in Patent Document 3, since the liquidus temperature is as high as 400 to 700 ° C., it is estimated that the working temperature at the time of joining is 400 to 700 ° C. or more, and joining is performed. It will exceed the heat resistance temperature of electronic parts and substrates.

また、高価なAu系はんだではAu−Sn系はんだやAu−Ge系はんだが実用化されているものの、Au系はんだは極めて高価なAuを多量に使用するため、汎用のPb系はんだやSn系はんだなどに比べて非常に高価である。そのため、もっぱら水晶デバイス、SAWフィルター、MEMSなどの特に高い信頼性を必要とする箇所のはんだ付けに使用されているにすぎない。   Moreover, although Au—Sn solder and Au—Ge solder have been put to practical use as expensive Au solder, since Au solder uses a large amount of extremely expensive Au, general-purpose Pb solder and Sn solder are used. It is very expensive compared to solder. For this reason, it is only used for soldering in places that require particularly high reliability, such as quartz devices, SAW filters, and MEMS.

加えて、Au系はんだは、非常に硬くて加工し難いため、例えば、シート形状に圧延加工する際に時間がかかる上、圧延ロールには疵のつき難い特殊な材質のものを用いなければならないため、余分なコストがかかる。また、プレス成形時においてもAu系はんだの硬くて脆い性質のためクラックやバリが発生し易く、他のはんだに比べて収率が格段に低い。ワイヤ形状に加工する場合にも同様の深刻な問題があり、非常に圧力の高い押出機を使用しても硬いため押出速度を速くできず、Pb系はんだの数100分の1程度の生産性しかない。   In addition, since Au-based solder is very hard and difficult to process, for example, it takes time when rolling into a sheet shape, and the rolling roll must be made of a special material that does not easily wrinkle. Therefore, extra costs are incurred. Further, even during press molding, the Au-based solder is hard and brittle, so that cracks and burrs are likely to occur, and the yield is much lower than other solders. When processing into a wire shape, there is a similar serious problem. Even if an extruder with very high pressure is used, the extrusion speed cannot be increased due to its hardness, and the productivity is about one hundredth of Pb solder. There is only.

特許文献5や特許文献6には以上のようなAu系はんだの様々な問題に対処する技術が提案されているが、特許文献5や特許文献6は以下に示すような問題を抱えている。すなわちAu−Ge合金、Au−Sb合金、Au−Si合金等からなる板状(シート状)の低融点Au合金ロウ材は、室温においてガラス板のような脆性を示し、また、素材特性に方向性があるため、一般に長手方向では僅かな曲げに対しても破断し易く、亀裂の伝播も進み易いという欠点がある。   Patent Documents 5 and 6 propose techniques for dealing with the various problems of Au-based solder as described above. However, Patent Documents 5 and 6 have the following problems. In other words, a plate-like (sheet-like) low melting point Au alloy brazing material made of Au—Ge alloy, Au—Sb alloy, Au—Si alloy, etc. exhibits brittleness like a glass plate at room temperature, and has a direction toward material properties. Therefore, in general, there is a drawback that in the longitudinal direction, even a slight bending is easy to break and the propagation of cracks is easy to proceed.

そこで、従来は所謂コンパウンド金型を用いてプレス加工を行っており、このコンパウンド金型技術が抱える金型精度の問題や金型寿命の問題に対処するため、特許文献5では前述したように加熱保温部を設けたプレス金型に材料を順次送って100〜350℃の温度範囲で温間プレス加工を行っている。しかし、温間プレス加工でははんだ合金の酸化が進行するため、Auを多く含有するはんだであっても、その他に例えばGe、Sb、Snなどの金属元素を含んでいるAu系はんだではこれら元素の酸化進行を防ぐことができず、常温より高い温度でプレスしたとき表面が酸化して濡れ性が大きく低下してしまう。さらに、高温では常温に比べてはんだが膨張するため、工夫をしても常温でのプレスに比べて形状の精度が出しにくい上、柔らかくなったはんだは金型に張り付き易くなり、はんだが撓んだり歪んだりした状態でプレスすることになるため、バリや欠けが発生しやすくなる。   Therefore, conventionally, so-called compound molds are used for press working, and in order to cope with the problems of mold accuracy and mold life that this compound mold technology has, heating is performed as described above in Patent Document 5. The materials are sequentially sent to a press die provided with a heat retaining part, and warm pressing is performed in a temperature range of 100 to 350 ° C. However, since the oxidation of the solder alloy proceeds in warm press processing, even if the solder contains a large amount of Au, other elements such as Ge, Sb, Sn, etc. Oxidation cannot be prevented, and when pressed at a temperature higher than room temperature, the surface is oxidized and wettability is greatly reduced. In addition, since solder expands at high temperatures compared to room temperature, even if it is devised, the accuracy of the shape is difficult to obtain compared to the press at room temperature, and the softened solder is more likely to stick to the mold and the solder bends. Since the pressing is performed in a state of being distorted or distorted, burrs and chips are likely to occur.

一方、特許文献6に記載のAu合金は、Ag−28wt%CuやAg−15wt%CuのAg系ロウ材との比較において、エレクトロマイグレーションの発生を防止でき、強固で安定したロウ付け強度が得られるロウ材として開発されたものである。そのため、Agの含有量が比較的多く、融点が下がって使い難いはんだ材料になり易い上、従来のAu−Ge合金などのAu系合金に比べて強度やエレクトロマイグレーション防止効果が十分であるとはいえない。   On the other hand, the Au alloy described in Patent Document 6 can prevent the occurrence of electromigration and obtain a strong and stable brazing strength in comparison with an Ag-based brazing material of Ag-28 wt% Cu or Ag-15 wt% Cu. It was developed as a brazing material. Therefore, the content of Ag is relatively high, the melting point is lowered, and it is easy to become a solder material that is difficult to use, and the strength and the electromigration prevention effect are sufficient as compared with a conventional Au-based alloy such as an Au-Ge alloy. I can't say that.

特許文献7に記載のAu−Geを含む3元合金のロウ材は、液相線温度と固相線温度の差が約50℃まで許容されるため極めて広い組成範囲を含むものであるが、このような広い組成範囲において同じ効果や特性を有するロウ材が得られるとは考えにくい。最も分かり易い例として、上記組成範囲内に属するAu−12.5質量%Ge合金(共晶点の組成)とAu−20質量%Sn合金(共晶点の組成)とを比較した場合、その特性は明らかに異なっている。   The ternary alloy brazing material containing Au-Ge described in Patent Document 7 includes a very wide composition range because the difference between the liquidus temperature and the solidus temperature is allowed to about 50 ° C. It is unlikely that a brazing material having the same effects and characteristics can be obtained in a wide composition range. As an easy-to-understand example, when an Au-12.5 mass% Ge alloy (eutectic point composition) and an Au-20 mass% Sn alloy (eutectic point composition) belonging to the above composition range are compared, The characteristics are clearly different.

具体的にはGeは半金属であるため、Au−12.5質量%Ge合金はAu−20質量%Sn合金に比べて明らかに加工性が劣っており、例えば圧延加工の際はクラック等の発生によりAu−12.5質量%Geの方が収率が低くなる。当然、これらに各々少量の第三元素を含有させても該第三元素が固溶することで元々の特性が大きく変わらない組成範囲が存在するため、例えばAu−12.5質量%Ge−Sn合金とAu−20質量%Sn−Ge合金の特性は大きく異なっている。さらにGe−Sn合金について考えた場合、その固相線温度が231℃であるため、高温用はんだとしては融点が低すぎる。このGe−Sn合金に少量のAuが固溶した場合でも特許文献7に規定された液相線温度と固相線温度の差が50℃未満の領域は存在するが、高温用はんだとしては融点が低すぎることに変わりはない。   Specifically, since Ge is a metalloid, the Au-12.5 mass% Ge alloy is clearly inferior to the Au-20 mass% Sn alloy. Due to the generation, Au-12.5 mass% Ge has a lower yield. Naturally, even if a small amount of the third element is contained in each of them, there is a composition range in which the original characteristics do not change greatly due to the solid solution of the third element. For example, Au-12.5 mass% Ge-Sn The properties of the alloy and the Au-20 mass% Sn-Ge alloy are greatly different. Further, when considering the Ge—Sn alloy, since the solidus temperature is 231 ° C., the melting point is too low as a high-temperature solder. Even when a small amount of Au is dissolved in this Ge-Sn alloy, there is a region where the difference between the liquidus temperature and the solidus temperature defined in Patent Document 7 is less than 50 ° C. Is still too low.

本発明は、上記したAu系はんだが抱える様々な課題に鑑みてなされたものであり、水晶デバイス、SAWフィルター、MEMS等の非常に高い信頼性が要求される電子部品の封止用や接合用として使用可能な各種特性に優れた高温用のAu−Ge系はんだ合金をより安価に提供することを目的としている。   The present invention has been made in view of the various problems of the above-described Au-based solder, and is used for sealing and joining electronic components that require extremely high reliability such as crystal devices, SAW filters, and MEMS. It is an object of the present invention to provide a high-temperature Au—Ge solder alloy excellent in various properties that can be used as a low-cost product.

上記目的を達成するため、本発明が提供するAu−Ge系はんだ合金は、Geを13.0質量%以上23.0質量%以下含有し、Bi、In、Sb、Mg、Ni、Si、及びCuからなる群のうちの1種以上をさらに含有し、残部が製造上不可避的に含まれる元素を除きAuからなるAu−Ge系はんだ合金であって、質量基準において、Biを含有する場合はその含有量が1ppm以上1000ppm以下、Inを含有する場合はその含有量が1ppm以上1000ppm以下、Sbを含有する場合はその含有量が1ppm以上100ppm未満、Mgを含有する場合はその含有量が1ppm以上100ppm未満、Niを含有する場合はその含有量が1ppm以上100ppm未満、Siを含有する場合はその含有量が1ppm以上1000ppm未満、Cuを含有する場合はその含有量が1ppm以上100ppm未満であることを特徴としている。   In order to achieve the above object, the Au—Ge based solder alloy provided by the present invention contains 13.0% by mass to 23.0% by mass of Ge, Bi, In, Sb, Mg, Ni, Si, and In the case where it further contains at least one element selected from the group consisting of Cu and the remainder is an Au—Ge solder alloy made of Au except for elements inevitably included in production, and contains Bi on a mass basis When the content is 1 ppm or more and 1000 ppm or less, In is contained, the content is 1 ppm or more and 1000 ppm or less, when Sb is contained, the content is 1 ppm or more and less than 100 ppm, and when Mg is contained, the content is 1 ppm. More than 100 ppm, when Ni is contained, the content is 1 ppm or more and less than 100 ppm, and when Si is contained, the content is 1 ppm or more and 100 Less than ppm, when containing Cu is characterized by its content of less than 100ppm than 1 ppm.

本発明によれば、従来のAu系はんだに比べて同等以上の濡れ広がり性、接合性、及び接合信頼性等を確保しつつより低コストのAu−Ge系はんだ合金を提供することができる。   According to the present invention, it is possible to provide a lower cost Au—Ge solder alloy while ensuring the same or better wet spreadability, bondability, bonding reliability, and the like compared to conventional Au solder.

Niめっき層を有するCu基板の上にはんだ合金が接合された接合体を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the joined body by which the solder alloy was joined on Cu board | substrate which has Ni plating layer. 図1の接合体のNiめっき層上に濡れ広がったはんだ合金を模式的に示す平面図である。It is a top view which shows typically the solder alloy which spreads wet on the Ni plating layer of the joined body of FIG. Niめっき層を有するCu基板とSiチップとをはんだ合金試料ではんだ付けしてなる接合体の模式的な縦断面図である。It is a typical longitudinal section of a joined body formed by soldering a Cu substrate having a Ni plating layer and a Si chip with a solder alloy sample.

まず、本発明の第1の実施形態のAu−Ge系はんだ合金について説明する。この本発明の第1の実施形態のAu−Ge系はんだ合金は、Au及びGeの2つを主成分として構成されるものであり、Geを13.0質量%以上23.0質量%以下含有し、Bi、In、Sb、Mg、Ni、Si、及びCuからなる群のうちの1種以上をさらに含有し、残部が製造上不可避的に含まれる元素を除きAuからなる。   First, the Au—Ge solder alloy according to the first embodiment of the present invention will be described. The Au—Ge solder alloy according to the first embodiment of the present invention is composed mainly of two of Au and Ge, and contains 13.0% by mass to 23.0% by mass of Ge. And it further contains one or more members selected from the group consisting of Bi, In, Sb, Mg, Ni, Si, and Cu, and the balance is made of Au except for elements that are inevitably included in production.

上記組成のAu−Ge系はんだ合金であれば、従来のAu系はんだ合金に比べて同等以上の濡れ広がり性や接合信頼性等が得られる上、Au含有量を下げることができるので、低コストを実現できる。よって水晶デバイス、SAWフィルター、MEMSなどを有する電子機器のように極めて高い信頼性が要求される電子機器や該電子機器を搭載する電子装置の接合用や封止用のはんだ合金を従来のAu系はんだよりも安価に提供することができる。   The Au—Ge solder alloy having the above composition can provide the same or better wetting spreadability and bonding reliability as compared with the conventional Au solder alloy, and can reduce the Au content. Can be realized. Therefore, conventional Au-based solder alloys for joining and sealing electronic devices that require extremely high reliability, such as electronic devices having crystal devices, SAW filters, MEMS, etc., and electronic devices in which the electronic devices are mounted are used. It can be provided at a lower cost than solder.

具体的に説明すると、Auは非常に酸化されにくいため、高い信頼性が要求される電子部品類用のはんだとして、濡れ性に代表される特性面においては最も適している。そのため、水晶デバイスやSAWフィルター等の高い信頼性が要求される電子部品類の接合用又は封止用としてAu系はんだが多用されている。しかし、このように高い信頼性が要求される電子部品類では接合信頼性のため、はんだとこれにより接合される接合部の接合面とが均質な金属間化合物を生成した状態で接合されることが望ましい。そこで、はんだが先ず接合面に均一に濡れ広がってから均一な金属間化合物を生成することがはんだ接合時の望ましい条件となる。また、Au系はんだはAuを主成分とするため非常に高価であり、その低コスト化が常に要望されている。しかし上記した良好な濡れ性や接合性、及び低コスト化を同時に実現するのは技術的に非常に難しく、従来のはんだ合金では実現が困難であった。   Specifically, since Au is very difficult to oxidize, it is most suitable as a solder for electronic components that require high reliability in terms of characteristics typified by wettability. For this reason, Au-based solder is frequently used for joining or sealing electronic components such as crystal devices and SAW filters that require high reliability. However, in such electronic components that require high reliability, the solder and the joint surface of the joint part to be joined together are joined in a state in which a homogeneous intermetallic compound is generated for the joint reliability. Is desirable. Therefore, it is a desirable condition at the time of solder joining that the solder first uniformly spreads on the joint surface and then generates a uniform intermetallic compound. In addition, Au-based solder is very expensive because it contains Au as a main component, and there is a constant demand for cost reduction. However, it is technically very difficult to simultaneously realize the above-described good wettability, bondability, and cost reduction, and it has been difficult to achieve with conventional solder alloys.

本発明はこのような市場の要望に応えるかたちでなされたものであり、所定量のGeを有するAu−Ge系はんだ合金に、Bi、In、Sb、Mg、Ni、Si、及びCuからなる群のうちの1種以上を少量含有させることを特徴としており、これにより、上記した優れた濡れ性や接合性に加えてはんだ材料の加工性や柔軟性を格段に向上させることができ、さらにAu−12.5質量%Geの共晶点の組成よりGe含有量を増加させることでAu含有量を低減させることができるので、低コスト化を実現することができる。本発明のAu−Ge系はんだ合金は上記した加工性を向上させるべく共晶点の組成からAu含有量を低減させているため、Geの含有量は共晶点の組成よりGeリッチ側の13.0質量%以上23.0質量%以下となる。   The present invention has been made in response to such market demands, and a group consisting of Bi, In, Sb, Mg, Ni, Si, and Cu is added to an Au—Ge solder alloy having a predetermined amount of Ge. In addition to the above-described excellent wettability and bondability, the workability and flexibility of the solder material can be remarkably improved. Since the Au content can be reduced by increasing the Ge content from the composition of the eutectic point of −12.5 mass% Ge, cost reduction can be realized. Since the Au-Ge solder alloy of the present invention has the Au content reduced from the eutectic point composition to improve the workability described above, the Ge content is 13 on the Ge rich side from the eutectic point composition. It is 0.0 mass% or more and 23.0 mass% or less.

本発明のはんだ合金においては上記したBi等の添加元素の添加量を少量にすることでAu含有量を低減しながらもAu−Ge合金の共晶点に比較的近い組成にしている。その理由は、Au−Ge合金の共晶点からGe含有量を適度に多くした範囲では固相線温度が356℃となり、例えばAu−12.5量%Geはんだ合金から本組成のはんだ合金に代替しても接合条件等の取り扱い条件を大きく変更する必要がないので非常に使いやすい合金といえる。   The solder alloy of the present invention has a composition relatively close to the eutectic point of the Au—Ge alloy while reducing the Au content by reducing the amount of additive elements such as Bi described above. The reason for this is that the solidus temperature becomes 356 ° C. in the range where the Ge content is moderately increased from the eutectic point of the Au—Ge alloy. For example, from the Au-12.5% by weight Ge solder alloy to the solder alloy of this composition. Even if it is replaced, it is not necessary to greatly change the handling conditions such as the joining conditions, so it can be said that the alloy is very easy to use.

Ge含有量を多くしていけば、当然、液相線温度が上がっていくわけであるが、Au−Ge系合金において共晶点の組成よりGeリッチな範囲でも使用されている。この場合、Geが共晶点の組成の12.5質量%程度より多くすることで生じる問題は接合時や接合後に生じる問題ではなく、所望の形状に加工する際に脆くて加工しにくくなるというものである。本発明はこのような共晶点よりもGe含有量を多くすることで生ずる加工性の問題に対して上記した添加元素を少量含有させることで解決したものであり、上記のBi等を少量添加することで固相線温度をほとんど変えることなく加工性や柔軟性を格段に向上させ、かつ低コストを実現している。   As the Ge content is increased, the liquidus temperature naturally increases. However, Au—Ge alloys are also used in a range richer in Ge than the composition of eutectic points. In this case, the problem that occurs when Ge is more than about 12.5% by mass of the composition of the eutectic point is not a problem that occurs at the time of bonding or after bonding, but it is fragile and difficult to process when processed into a desired shape. Is. The present invention solves the problem of workability caused by increasing the Ge content above the eutectic point by adding a small amount of the above-described additive elements, and adding a small amount of the above Bi or the like. By doing so, the workability and flexibility are greatly improved and the cost is reduced with almost no change in the solidus temperature.

本発明ではAu−Ge合金に含有させる元素はBi、In、Sb、Mg、Ni、Si、及びCuから選ばれる。これらの元素の果たす役割は加工性や柔軟性の向上とAu含有量を少なくして材料コストを下げることにあるが、加工性や柔軟性を向上するメカニズムは異なっており、大別して以下の3つの部類に分けることができる。   In the present invention, the element contained in the Au—Ge alloy is selected from Bi, In, Sb, Mg, Ni, Si, and Cu. The role of these elements is to improve the workability and flexibility and to reduce the material cost by reducing the Au content. However, the mechanisms for improving the workability and flexibility are different. It can be divided into two categories.

<Bi、In、Mg、Sb>
Bi、In、Mg、Sbは本発明のAu−Ge合金に添加される添加元素群のうちの第1部類であり、これら4つの元素のうち1種類以上を含有させることによって得られる効果は加工性や柔軟性の向上にあり、その効果が発生する原理は固溶強化のように格子をひずませることで転位移動を抑制するものである。
<Bi, In, Mg, Sb>
Bi, In, Mg, and Sb are the first class of additive elements added to the Au—Ge alloy of the present invention, and the effects obtained by including one or more of these four elements are processed. The principle of the effect is to suppress dislocation movement by distorting the lattice like solid solution strengthening.

具体的には、BiはAuにもGeにも僅かにしか固溶しない。このため、Au−Ge合金にごく微量含有させることによって固溶強化により強度が向上し、加工性等も向上する。Biの含有量は質量基準で1ppm以上1000ppm以下である。Biの含有量が1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。逆に、1000ppmを超えて含有させると格子のひずみが大きくなり過ぎて、はんだ合金が硬く、脆くなり過ぎてしまう。Biの含有量は10ppm以上800ppm以下であると含有させた効果がより一層現れるので好ましい。   Specifically, Bi is only slightly dissolved in both Au and Ge. For this reason, when a very small amount is contained in the Au—Ge alloy, the strength is improved by solid solution strengthening, and the workability and the like are also improved. The Bi content is 1 ppm or more and 1000 ppm or less on a mass basis. If the Bi content is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. On the other hand, if the content exceeds 1000 ppm, the lattice distortion becomes too large, and the solder alloy becomes too hard and too brittle. The Bi content is preferably not less than 10 ppm and not more than 800 ppm because the effect of inclusion is further enhanced.

InはAuに4質量%程度に固溶し、Geにはほとんど固溶しない。InもBiと同様に僅かな量を含有させた場合は加工性向上の効果が得られる。しかし、過剰に入れると固溶限が大きい分、必要以上に硬化してしまい逆に加工性の低下に繋がってしまう。Inの含有量は質量基準で1ppm以上1000ppm以下である。1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。逆に1000ppmを超えて含有させると加工性や柔軟性が極端に低下してしまう。Inの含有量は10ppm以上800ppm以下であると含有させた効果がより一層現れるので好ましい。   In is solid-dissolved in Au at about 4% by mass, and is hardly dissolved in Ge. The effect of improving workability can be obtained when In is contained in a small amount as well as Bi. However, if it is added excessively, the solid solubility limit is large, so that it hardens more than necessary and conversely leads to a decrease in workability. The content of In is 1 ppm or more and 1000 ppm or less on a mass basis. If it is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. On the other hand, if it exceeds 1000 ppm, processability and flexibility are extremely lowered. It is preferable that the content of In is 10 ppm or more and 800 ppm or less because the effect of inclusion is further exhibited.

MgはAuに数質量%固溶し、Geにほとんど固溶せずGeMg金属間化合物を生成する。MgもBiなどと同様に固溶強化により加工性等を向上させる。Mgの含有量は質量基準で1ppm以上100ppm未満である。1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。Mgはごくわずかな量をはんだ合金に含有させるだけでも非常に硬い金属間化合物を生成してしまうため、100ppm以上は含有してはならない。Mgの含有量は10ppm以上80ppm以下であると含有させた効果がより一層現れるので好ましい。 Mg forms a solid solution of several mass% in Au, and hardly forms a solid solution in Ge to form a GeMg 2 intermetallic compound. Mg improves workability and the like by solid solution strengthening as well as Bi. The Mg content is 1 ppm or more and less than 100 ppm on a mass basis. If it is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. Even if Mg is contained in a very small amount in the solder alloy, a very hard intermetallic compound is generated. Therefore, Mg should not be contained in an amount of 100 ppm or more. The Mg content is preferably not less than 10 ppm and not more than 80 ppm because the effect of inclusion is further enhanced.

SbはAuに僅かに固溶し、Geにほとんど固溶しない。SbはBiと似通った性質を持っており、Au−Ge合金に含有させた場合もほぼ同様の挙動を示す。Sbの含有量は質量基準で1ppm以上100ppm未満である。1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。逆に100ppm以上含有させると格子のひずみが大きくなり過ぎて、はんだ合金が硬く、脆くなり過ぎてしまう。Sbの含有量は10ppm以上80ppm以下であると含有させた効果がより一層現れるので好ましい。   Sb is slightly dissolved in Au and hardly dissolved in Ge. Sb has properties similar to Bi, and exhibits almost the same behavior when incorporated in an Au-Ge alloy. The Sb content is 1 ppm or more and less than 100 ppm by mass. If it is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. On the other hand, if the content is 100 ppm or more, the strain of the lattice becomes too large, and the solder alloy becomes too hard and too brittle. The Sb content is preferably not less than 10 ppm and not more than 80 ppm because the effect of inclusion is further enhanced.

<Ni、Si>
Ni、Siは本発明のAu−Ge合金に添加される添加元素群のうちの第2部類であり、これら2つの元素のうち少なくとも一方を含有させることによって得られる効果は加工性や柔軟性の向上にあり、その効果が発生する原理は結晶の微細化に起因する。具体的には、Niの融点は1455℃、Siの融点は1414℃であり、いずれも非常に高い。このため、はんだ接合時に溶融してから固化する際、まず、融点の高いNiやSiが固化して核となり結晶が生成していく。このようにはんだ中にNiやSiが分散して核となるため結晶が微細化する。微細化したはんだ合金は熱応力等が加わってもクラックの発生や進展が起こりにくく、よって加工性や柔軟性が向上する。このように加工性等が向上したはんだ合金は共晶点の組成からある程度ずれても所望の形状に加工しやすくなる。
<Ni, Si>
Ni and Si are a second class of additive elements added to the Au-Ge alloy of the present invention, and the effect obtained by containing at least one of these two elements is workability and flexibility. The principle of the improvement and its effect is due to the refinement of the crystal. Specifically, Ni has a melting point of 1455 ° C. and Si has a melting point of 1414 ° C., both of which are very high. For this reason, when solidifying after melting at the time of soldering, first, Ni or Si having a high melting point is solidified and becomes a nucleus to generate crystals. In this way, Ni and Si are dispersed in the solder and become nuclei, so that the crystal becomes finer. The refined solder alloy is less prone to crack generation and progress even when thermal stress is applied, thereby improving workability and flexibility. Thus, the solder alloy with improved workability and the like can be easily processed into a desired shape even if it deviates to some extent from the composition of the eutectic point.

Niの含有量は質量基準で1ppm以上100ppm未満である。1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。逆に100ppm以上含有させると核が多くなり過ぎて逆に結晶が粗大化したり、はんだ合金が硬く、脆くなり過ぎてしまう。Niの含有量は10ppm以上80ppm以下であると含有させた効果がより一層現れるので好ましい。   The Ni content is 1 ppm or more and less than 100 ppm on a mass basis. If it is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. On the other hand, if it is contained in an amount of 100 ppm or more, the number of nuclei is excessive and the crystal is coarsened, or the solder alloy is too hard and brittle. The Ni content is preferably not less than 10 ppm and not more than 80 ppm because the effect of inclusion is further enhanced.

一方、Siの含有量は質量基準で1ppm以上1000ppm未満である。1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。逆に1000ppm以上含有させるとSiが偏析して加工性を低下させたり、接合時に溶け別れ現象などが生じて好ましくない。Niの含有量は10ppm以上800ppm以下であると含有させた効果がより一層現れるので好ましい。   On the other hand, the Si content is 1 ppm or more and less than 1000 ppm on a mass basis. If it is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. On the other hand, if it is contained in an amount of 1000 ppm or more, Si is segregated and workability is lowered, or a melting phenomenon occurs at the time of joining, which is not preferable. The content of Ni is preferably 10 ppm or more and 800 ppm or less because the effect of inclusion is further exhibited.

<Cu>
Cuは本発明のAu−Ge合金に添加される添加元素群のうちの第3部類であり、この元素を含有させることによって得られる効果は加工性や柔軟性の向上にあり、その効果が発生する原理は接合面との合金化に起因する。具体的にはCuはNiやSiと同様に核生成により加工性等を向上させる上、接合部の接合面で合金化しやすく強固な接合が可能になる。すなわち、一般的にはんだ接合する際の接合部の最上面はAuやAgが多いが、その下地にはNiやCuが存在する。従ってAu−Ge系はんだにCuを少量含有させることにより、この下地のNiやCuとの良好な接合が可能になる。
<Cu>
Cu is the third class of additive elements added to the Au-Ge alloy of the present invention, and the effect obtained by containing this element is to improve workability and flexibility, and the effect is generated. This principle is due to alloying with the joint surface. Specifically, Cu, like Ni and Si, improves workability and the like by nucleation, and is easy to be alloyed at the joint surface of the joint portion and enables strong joining. That is, in general, the uppermost surface of the joint when soldering is abundant with Au or Ag, but Ni or Cu is present underneath. Therefore, when a small amount of Cu is contained in the Au—Ge solder, good bonding with the underlying Ni or Cu becomes possible.

このような効果を発揮するCuの含有量は質量基準で1ppm以上100ppm未満である。1ppm未満では含有量が少なすぎて含有させた効果が実質的に現れない。逆に100ppm以上含有させると接合界面における化合物層が厚くなり過ぎたり、硬くなり過ぎたりして接合信頼性を低下させてしまう。Cuの含有量は10ppm以上80ppm以下であると含有させた効果がより一層現れるので好ましい。   Content of Cu which exhibits such an effect is 1 ppm or more and less than 100 ppm on a mass basis. If it is less than 1 ppm, the content is too small and the effect of inclusion is not substantially exhibited. On the other hand, if it is contained in an amount of 100 ppm or more, the compound layer at the joint interface becomes too thick or too hard and the joint reliability is lowered. The Cu content is preferably not less than 10 ppm and not more than 80 ppm since the effect of inclusion is further enhanced.

原料として、それぞれ純度99.99質量%以上のAu、Ge、Bi、In、Sb、Mg、Ni、Si、及びCuを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく、均一になるように留意しながら、切断及び粉砕などにより3mm以下の大きさに細かくした。次に、これら原料から所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   Au, Ge, Bi, In, Sb, Mg, Ni, Si, and Cu, each having a purity of 99.99% by mass or more, were prepared as raw materials. Large flakes and bulk-shaped raw materials were reduced to a size of 3 mm or less by cutting and crushing while paying attention to ensure that the alloy after melting did not vary in composition depending on the sampling location. Next, a predetermined amount of these raw materials was weighed and put into a graphite crucible for a high-frequency melting furnace.

上記各原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。原料が溶融し始めたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混合した。十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。   The crucible containing the raw materials was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 liter / min or more per kg of the raw materials in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the raw material started to melt, it was thoroughly stirred with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy.

鋳型には、打抜き品を製造するために幅45mm×厚さ5mm×長さ250mmの鋳型を用いて平板状のはんだ母合金を作製した。このようにして、上記各原料の混合比率を変えた試料1〜45のAu−Ge系はんだ母合金を作製した。得られた試料1〜45のはんだ母合金の各々の組成を、ICP発光分光分析器(SHIMAZU S−8100)を用いて組成分析した。得られた組成分析結果を下記表1及び表2に示す。   As a mold, a flat solder mother alloy was prepared using a mold having a width of 45 mm, a thickness of 5 mm, and a length of 250 mm in order to produce a punched product. In this manner, Au—Ge solder mother alloys of Samples 1 to 45 in which the mixing ratios of the respective raw materials were changed were produced. The composition of each of the obtained solder mother alloys of Samples 1 to 45 was subjected to composition analysis using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The obtained composition analysis results are shown in Tables 1 and 2 below.

Figure 2017127897
Figure 2017127897

Figure 2017127897
Figure 2017127897

<リボン形状への加工と加工性の評価1>
次に、試料1〜45の打抜き品製造用の上記板状はんだ母合金(厚さ5mmの板状インゴット)に対して、圧延機を用いて厚さ50μmのリボン状になるまで圧延した。圧延加工の際は以下の点に注意を払った。まず、試料がロールに貼り付かないように必要に応じて潤滑油を適量かけながら圧延した。このようにロールとリボン及びリボンとリボンの間に油膜を作ることによって、ロールとリボン又はリボン同士が貼り付くことを抑えることができる。
<Ribbon shape processing and workability evaluation 1>
Next, it rolled until it formed into the ribbon shape of thickness 50 micrometers using the rolling machine with respect to the said plate-shaped solder mother alloy (plate-shaped ingot of thickness 5mm) for punching goods manufacture of the samples 1-45. At the time of rolling, attention was paid to the following points. First, rolling was performed while applying an appropriate amount of lubricating oil as required so that the sample did not stick to the roll. Thus, by making an oil film between a roll, a ribbon, and a ribbon, a ribbon, it can suppress that a roll, a ribbon, or ribbons adhere.

また、試料の送り速度にも配慮が必要であり、送り速度が速すぎるとリボン同士が貼り付きやすくなったり、張力がかかりすぎて切れてしまったりする。逆に送り速度が遅すぎると撓みが発生して巻きずれを起こしたり、均一な厚みのリボンが得られなかったりする。このように各板状はんだ母合金をリボン状に加工した際、リボン10m当たりクラックやキズが5箇所以上発生した場合を「×」、1〜4箇所発生した場合を「△」、全く発生しなかった場合を「○」と評価し、加工性の評価1とした。   In addition, it is necessary to consider the feeding speed of the sample. If the feeding speed is too high, the ribbons are easily stuck together, or the tension is too high and the ribbon is cut off. On the other hand, if the feeding speed is too slow, bending may occur and winding may be lost, or a ribbon having a uniform thickness may not be obtained. Thus, when each plate-like solder mother alloy is processed into a ribbon shape, “X” indicates that five or more cracks or scratches per 10 m of the ribbon occur, and “△” indicates that one to four cracks occur. The case where there was no evaluation was evaluated as “◯”, and the evaluation was made as workability evaluation 1.

<円板状と四角形状の打抜き品の製造と加工性の評価2、3>
得られた各リボンをプレス機を用いて打抜き品に加工した。具体的にはリボンをプレス機にセットした後、潤滑油を供給しながら直径10.0mmの円板状(以下、φ10mm品とも称する)と、8.0mm×8.0mmの四角形状(以下、□8mm品とも称する)に打抜いた。得られた打抜き品を有機溶剤の入った容器に回収し、該有機溶剤によって洗浄した。その後、真空乾燥機で真空引きしながら2時間乾燥し、評価用の試料を得た。
<Manufacture of disk-shaped and rectangular punched products and evaluation of workability 2, 3>
Each ribbon obtained was processed into a punched product using a press. Specifically, after the ribbon is set in a press machine, while supplying lubricating oil, a disc shape having a diameter of 10.0 mm (hereinafter also referred to as a φ10 mm product) and a square shape having a size of 8.0 mm × 8.0 mm (hereinafter, referred to as “φ10 mm”). □ 8mm product). The punched product obtained was collected in a container containing an organic solvent and washed with the organic solvent. Then, it dried for 2 hours, drawing a vacuum with a vacuum dryer, and obtained the sample for evaluation.

上記のようにしてφ10mm品及び□8mm品を各試料1000個ずつ打ち抜き、それらのうち欠けやクラックなどが発生せず、きれいに打ち抜きできた打抜き品を良品と判断して良品率を算出した。そしてφ10mm品の良品率を加工性の評価2、□8mm品の良品率を加工性の評価3とした。さらにφ10mm品は濡れ広がり性の評価、□8mm品は接合性評価、保管性評価、及び信頼性評価に用いた。   As described above, a φ10 mm product and a □ 8 mm product were punched in 1000 samples, and a punched product that did not cause chipping or cracking and was punched cleanly was judged as a good product, and a yield rate was calculated. Then, the yield rate of φ10 mm product was defined as processability evaluation 2, and the □ 8 mm product yield rate was defined as processability evaluation 3. Further, a φ10 mm product was used for wettability evaluation, and a □ 8 mm product was used for bondability evaluation, storage property evaluation, and reliability evaluation.

<濡れ広がり性の評価(縦横比の測定)>
濡れ広がり性を評価するため、円板状試料を用いて基板との接合体を作り、その接合面を垂直方向から見て濡れ広がったはんだの縦横比を測定した。具体的には、まず濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12L/分の流量で流しながらヒーターの設定温度を各試料の融点より50℃高い温度にして加熱した。
<Evaluation of wettability (measurement of aspect ratio)>
In order to evaluate the wetting and spreading property, a disc-shaped sample was used to make a joined body with the substrate, and the aspect ratio of the solder that spread out when the joining surface was seen from the vertical direction was measured. Specifically, first, a wettability tester (device name: atmosphere control type wettability tester) is started, a double cover is applied to the heater part to be heated, and nitrogen gas is supplied from four locations around the heater part to 12 L / L. While flowing at a flow rate of minutes, the heater was heated to a set temperature of 50 ° C. higher than the melting point of each sample.

ヒーターが設定温度で安定した後、上面にNiめっき層(膜厚:3.0μm)を有するCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次にφ10mm品のはんだ試料をCu基板上に載せて25秒加熱した。はんだ試料の加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦置いて十分に冷却させてから大気中に取り出した。   After the heater has stabilized at the set temperature, a Cu substrate (thickness: 0.3 mm) with a Ni plating layer (film thickness: 3.0 μm) on the upper surface is set in the heater section and heated for 25 seconds, then φ10 mm product The solder sample was placed on a Cu substrate and heated for 25 seconds. After the heating of the solder sample was completed, the Cu substrate was picked up from the heater part, placed in a place where the nitrogen atmosphere next to the Cu substrate was kept, allowed to cool sufficiently, and then taken out into the atmosphere.

得られた図1に示すようなCu基板1のNiめっき層2にはんだ合金試料3が接合された接合体に対して濡れ広がったはんだ合金試料3の縦横比を求めた。具体的には、図2に示すように最大のはんだ濡れ広がり長さである長径(X1)と、最小のはんだ濡れ広がり長さである短径(X2)とを測定し、下記計算式1により縦横比を算出した。   The aspect ratio of the solder alloy sample 3 that spreads wet with respect to the joined body in which the solder alloy sample 3 was joined to the Ni plating layer 2 of the Cu substrate 1 as shown in FIG. 1 was determined. Specifically, as shown in FIG. 2, the major axis (X1) which is the maximum solder wetting spread length and the minor axis (X2) which is the minimum solder wetting spreading length are measured, and the following formula 1 is used. The aspect ratio was calculated.

[計算式1]
縦横比=長径÷短径
[Calculation Formula 1]
Aspect ratio = major axis / minor axis

この縦横比が1に近いほどCu基板1上により真円状に濡れ広がっていることになるので濡れ広がり性がよいと判断できる。逆に、縦横比が1より大きくなるに従い、濡れ広がり形状が真円からずれていき、溶融はんだの接合面方向の移動距離にバラつきがでて反応が不均一になり、合金層の厚みがバラついたり成分がバラついたりして均一で良好な接合ができなくなってしまう。さらに接合面のうちある方向にのみ多くのはんだが流れるように広がるのではんだ量が過剰な箇所と不足する箇所とができ、接合不良や場合よっては接合できない箇所が発生する。   As this aspect ratio is closer to 1, it is understood that the wetting and spreading property is better because the wetting and spreading is more circular on the Cu substrate 1. On the other hand, as the aspect ratio becomes larger than 1, the wetting and spreading shape deviates from a perfect circle, the movement distance of the molten solder in the joining surface direction varies, the reaction becomes uneven, and the thickness of the alloy layer varies. Or the components vary, and uniform and good bonding cannot be performed. Furthermore, since a large amount of solder flows so as to flow only in a certain direction on the joint surface, there are places where the amount of solder is excessive and insufficient, and there are poor joints and, in some cases, parts that cannot be joined.

<接合性の評価(ボイド率の測定)>
接合性を評価するため、Siチップと基板とを□8mm品のはんだ試料で接合した接合体を作製し、そのボイド率を測定した。具体的にはまずダイボンダー(ウェストボンド社製、MODEL:7327C)を起動し、加熱するヒーター部分にカバーをしてヒーター部の周囲から窒素を流しながら(窒素流量:合計8L/分)、ヒーターの設定温度を各試料の融点より50℃高い温度にして加熱した。
<Evaluation of bondability (measurement of void fraction)>
In order to evaluate the bondability, a bonded body in which the Si chip and the substrate were bonded with a □ 8 mm solder sample was produced, and the void ratio was measured. Specifically, first, a die bonder (made by West Bond, MODEL: 7327C) is started, the heater part to be heated is covered and nitrogen is allowed to flow from the periphery of the heater part (nitrogen flow rate: 8 L / min in total). Heating was performed at a preset temperature that was 50 ° C. higher than the melting point of each sample.

ヒーターが設定温度で安定した後、上面にNiめっき層(膜厚:3.0μm)を有するCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次に□8mm品のはんだ合金試料をCu基板上に載せて25秒加熱し、さらにSiチップを載せて2秒間スクラブし、10秒放置した。10秒経過後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦置いて十分に冷却させてから大気中に取り出した。   After the heater has stabilized at the set temperature, a Cu substrate (plate thickness: 0.3 mm) having a Ni plating layer (film thickness: 3.0 μm) on the upper surface is set in the heater section and heated for 25 seconds, and then □ 8 mm A sample solder alloy sample was placed on a Cu substrate and heated for 25 seconds, and a Si chip was placed on it, scrubbed for 2 seconds, and left for 10 seconds. After 10 seconds, the Cu substrate was picked up from the heater part, placed in a place where the nitrogen atmosphere next to the Cu substrate was kept, allowed to cool sufficiently, and then taken out into the atmosphere.

このようにして得た図3に示すような接合体の接合性を確認するため、接合体のボイド率をX線透過装置(株式会社 東芝製 TOSMICRON−6125)を用いて測定した。具体的には、Niめっき層2を有するCu基板1とSiチップ4とがはんだ合金試料3で接合された接合体の接合面に対してSiチップ4側から垂直にX線を透過し、下記計算式2を用いてボイド率(%)を算出した。   In order to confirm the bondability of the bonded body as shown in FIG. 3 thus obtained, the void ratio of the bonded body was measured using an X-ray transmission device (TOSMICRON-6125 manufactured by Toshiba Corporation). Specifically, X-rays are transmitted perpendicularly from the Si chip 4 side to the joint surface of the joined body in which the Cu substrate 1 having the Ni plating layer 2 and the Si chip 4 are joined by the solder alloy sample 3, and Using the calculation formula 2, the void ratio (%) was calculated.

[計算式2]
ボイド率(%)=ボイド面積÷(ボイド面積+はんだとCu基板の接合面積)×100
[Calculation Formula 2]
Void ratio (%) = void area / (void area + joint area of solder and Cu substrate) × 100

<保管性の評価>
はんだ試料を長期間保管した場合、はんだ表面が腐食したり酸化したりして表面状態が変化すると濡れ性や接合性が低下してしまい、良好な接合ができなくなるおそれがある。さらに、はんだ表面が経時変化すると接合状態にバラつきを生じるおそれがある。従って、はんだ表面が環境によって変化しないことが良好な接合を得るために好ましい。この保管性を評価するため、各□8mm品を恒温恒湿槽(ヤマト科学株式会社製、型式:IW242)に入れ、温度85℃、湿度85%RHの高温恒湿条件下で1000時間の試験を行った。
<Evaluation of storage>
When the solder sample is stored for a long period of time, if the surface of the solder changes due to corrosion or oxidation, the wettability and bondability may decrease, and good bonding may not be possible. Furthermore, when the solder surface changes with time, the joining state may vary. Therefore, it is preferable for obtaining a good joint that the solder surface does not change depending on the environment. In order to evaluate this storability, each □ 8 mm product is placed in a constant temperature and humidity chamber (manufactured by Yamato Scientific Co., Ltd., model: IW242) and tested for 1000 hours under a high temperature and humidity condition of 85 ° C. and 85% humidity. Went.

そして、試料1の恒温恒湿試験前の酸化膜の膜厚を100として、各試料の恒温恒湿試験開始前と開始してから100時間後及び1000時間後の酸化膜の膜厚とを相対評価した。ここで酸化膜の膜厚は、はんだ合金表面付近の最高酸化濃度を100%として、はんだ表面から深さ方向に酸素濃度を測定していったときに酸素濃度が50%まで減少したときのはんだ表面からの深さ(距離)と定義した。なお、はんだ合金の酸素濃度の測定は電界放射型オージェ電子分光装置(ULVAC−PHI製、型式:SAM−4300)により行った。   Then, assuming that the film thickness of the oxide film before the constant temperature and humidity test of sample 1 is 100, the film thickness of the oxide film after 100 hours and 1000 hours after the start of the constant temperature and humidity test of each sample is relative. evaluated. Here, the thickness of the oxide film is the solder when the oxygen concentration is reduced to 50% when the oxygen concentration is measured in the depth direction from the solder surface with the maximum oxidation concentration near the solder alloy surface being 100%. It was defined as the depth (distance) from the surface. The oxygen concentration of the solder alloy was measured with a field emission Auger electron spectrometer (manufactured by ULVAC-PHI, model: SAM-4300).

<信頼性の評価(ヒートサイクル試験)>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。この試験は、上記した接合性の評価と同様にはんだ合金試料を用いて作製したCu基板とSiチップとの接合体を各試料2個ずつ用意し、それらのうちの一方に対して、−40℃の冷却と+150℃の加熱とを1サイクルとするヒートサイクルを途中確認のため500サイクルまで繰り返し、もう一方に対して、同様のヒートサイクルを1000サイクルまで繰り返した。
<Reliability evaluation (heat cycle test)>
A heat cycle test was conducted to evaluate the reliability of solder joints. In this test, two samples of a Cu substrate / Si chip assembly prepared using a solder alloy sample were prepared in the same manner as in the evaluation of the bondability described above, and one of them was prepared at −40 A heat cycle with one cycle of cooling at 0 ° C. and heating at + 150 ° C. was repeated up to 500 cycles for intermediate confirmation, and the same heat cycle was repeated up to 1000 cycles for the other.

その後、これら500サイクル及び1000サイクルのヒートサイクルが施された試料を樹脂に埋め込み、断面研磨を行い、SEM(装置名:HITACHI S−4800)により接合面の観察を行った。この観察の結果、接合面に剥がれが生じるか又ははんだにクラックが入った場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。これら信頼性の評価結果を上記の加工性の評価1〜3、濡れ広がり性評価、接合性評価及び保管性評価と共に下記表3及び表4に示す。   Thereafter, the samples subjected to 500 cycles and 1000 cycles of heat cycle were embedded in the resin, subjected to cross-sectional polishing, and the bonded surface was observed by SEM (device name: HITACHI S-4800). As a result of this observation, the case where the joint surface peeled or the solder cracked was indicated as “X”, and the case where there was no such defect and the same joint surface as in the initial state was indicated as “◯”. . These reliability evaluation results are shown in the following Tables 3 and 4 together with the above-described workability evaluations 1 to 3, wettability evaluation, bondability evaluation, and storability evaluation.

Figure 2017127897
Figure 2017127897

Figure 2017127897
Figure 2017127897

上記表3及び表4から分るように、本発明の要件を満たす試料1〜29のAu−Ge系はんだ合金試料は、いずれも加工性、濡れ広がり性、接合性、保管性、及び信頼性の全ての評価項目において良好な特性を示している。即ち、加工性の評価では全ての試料においてリボンにクラック等は発生せず、打抜き品の良品率はφ10mm品、□8mm品ともに100%であった。そして濡れ広がり性の評価では、縦横比が1.02以下であり、接合性評価ではボイド率が0.2%以下であり、均一な濡れ広がりと非常に優れた接合性とを有していることが分かった。さらに保管性の評価では試験前後ではんだ合金表面の酸化膜厚がほとんど変化しておらず、非常に優れた保管性を有していることが分かった。また、信頼性評価では1000回のヒートサイクルを繰り返しても不良は一切発生しなかった。このように優れた結果が得られた理由ははんだ合金組成が本発明の要件の範囲内にあるためと考えられる。   As can be seen from Tables 3 and 4 above, all of the Au-Ge solder alloy samples 1 to 29 satisfying the requirements of the present invention are workability, wettability, bondability, storability, and reliability. In all the evaluation items, good characteristics are shown. That is, in the evaluation of workability, no cracks or the like occurred in the ribbons in all the samples, and the yield rate of punched products was 100% for both φ10 mm products and □ 8 mm products. In the evaluation of wettability, the aspect ratio is 1.02 or less, and in the bondability evaluation, the void ratio is 0.2% or less, and it has uniform wetness spread and very good bondability. I understood that. Furthermore, in the evaluation of the storage property, it was found that the oxide film thickness on the surface of the solder alloy hardly changed before and after the test, and the storage property was excellent. In the reliability evaluation, no defect occurred even after 1000 heat cycles were repeated. The reason why such an excellent result was obtained is considered that the solder alloy composition is within the range of the requirements of the present invention.

一方、本発明の比較例である試料30〜45のはんだ合金は、本発明の要件を満たしていないため、少なくともいずれかの評価項目で好ましくない結果となった。すなわち、加工性の評価では試料44を除いてクラック等が発生し、打ち抜き品の良品率は高くても97%程度であった。さらに濡れ広がり性評価では試料30、31、44、45を除いて縦横比が1.3〜1.5程度であり、接合性の評価では試料30、31、44、45を除いてボイド率が10%以上であった。保管性の評価では試験前の酸化膜の膜厚が相対比較で試料1の104%以上ありほとんどの試料は110〜150%程度であった。さらに試験後で全て115%倍以上に厚くなっていた。そして、信頼性評価では試料30、31、44、45を除く全ての試料で500サイクルまでに不良が発生した。   On the other hand, since the solder alloys of Samples 30 to 45, which are comparative examples of the present invention, do not satisfy the requirements of the present invention, unfavorable results were obtained in at least one of the evaluation items. That is, in the evaluation of workability, cracks and the like were generated except for the sample 44, and the yield rate of the punched product was about 97% at the highest. Furthermore, in the wettability evaluation, the aspect ratio is about 1.3 to 1.5 excluding samples 30, 31, 44, and 45, and in the evaluation of bondability, the void ratio is excluding samples 30, 31, 44, and 45. It was 10% or more. In the evaluation of storability, the film thickness of the oxide film before the test was 104% or more of the sample 1 by relative comparison, and most of the samples were about 110 to 150%. Furthermore, after the test, all of them were thicker than 115%. In the reliability evaluation, all samples except samples 30, 31, 44, and 45 were defective by 500 cycles.

1 Cu基板
2 Niめっき層
3 はんだ合金試料
4 Siチップ
1 Cu substrate 2 Ni plating layer 3 Solder alloy sample 4 Si chip

Claims (6)

Geを13.0質量%以上23.0質量%以下含有し、Bi、In、Sb、Mg、Ni、Si、及びCuからなる群のうちの1種以上をさらに含有し、残部が製造上不可避的に含まれる元素を除きAuからなるAu−Ge系はんだ合金であって、質量基準において、Biを含有する場合はその含有量が1ppm以上1000ppm以下、Inを含有する場合はその含有量が1ppm以上1000ppm以下、Sbを含有する場合はその含有量が1ppm以上100ppm未満、Mgを含有する場合はその含有量が1ppm以上100ppm未満、Niを含有する場合はその含有量が1ppm以上100ppm未満、Siを含有する場合はその含有量が1ppm以上1000ppm未満、Cuを含有する場合はその含有量が1ppm以上100ppm未満であることを特徴とするAu−Ge系はんだ合金。   It contains 13.0% by mass or more and 23.0% by mass or less of Ge, further contains one or more members selected from the group consisting of Bi, In, Sb, Mg, Ni, Si, and Cu, and the remainder is inevitable in production. An Au—Ge solder alloy composed of Au excluding the elements contained in the composition, on a mass basis, when Bi is contained, its content is 1 ppm or more and 1000 ppm or less, and when it contains In, its content is 1 ppm. 1000 ppm or less, when Sb is contained, the content is 1 ppm or more and less than 100 ppm, when Mg is contained, the content is 1 ppm or more and less than 100 ppm, and when Ni is contained, the content is 1 ppm or more and less than 100 ppm, Si When the content is 1 ppm or more and less than 1000 ppm, when Cu is contained, the content is 1 ppm or more and 100 p. Au-Ge-based solder alloy and less than m. Geを13.5質量%以上21.0質量%以下含有し、質量基準において、Biを含有する場合はその含有量が10ppm以上800ppm以下、Inを含有する場合はその含有量が10ppm以上800ppm以下、Sbを含有する場合はその含有量が10ppm以上80ppm以下、Mgを含有する場合はその含有量が10ppm以上80ppm以下、Niを含有する場合はその含有量が10ppm以上80ppm以下、Siを含有する場合はその含有量が10ppm以上800ppm以下、Cuを含有する場合はその含有量が10ppm以上80ppm以下であることを特徴とする、請求項1に記載のAu−Ge系はんだ合金。   When Ge is contained, the content is 10 ppm or more and 800 ppm or less when Bi is contained, and when In is contained, the content is 10 ppm or more and 800 ppm or less. When containing Sb, the content is 10 ppm or more and 80 ppm or less, when containing Mg, the content is 10 ppm or more and 80 ppm or less, and when containing Ni, the content is 10 ppm or more and 80 ppm or less and contains Si 2. The Au—Ge solder alloy according to claim 1, wherein the content is 10 ppm or more and 800 ppm or less when Cu is contained, and the content thereof is 10 ppm or more and 80 ppm or less when Cu is contained. 請求項1又は2に記載のAu−Ge系はんだ合金を用いて封止されていることを特徴とする水晶デバイス。   A quartz crystal device sealed with the Au—Ge solder alloy according to claim 1. 請求項1又は2に記載のAu−Ge系はんだ合金を用いて封止されていることを特徴とするSAWフィルター。   A SAW filter sealed with the Au—Ge solder alloy according to claim 1. 請求項1又は2に記載のAu−Ge系はんだ合金を用いて接合されている電子部品を含むことを特徴とする電子機器。   An electronic device comprising an electronic component joined using the Au—Ge solder alloy according to claim 1. 請求項5に記載の電子機器を搭載していることを特徴とする半導体装置。   A semiconductor device comprising the electronic device according to claim 5.
JP2016009984A 2016-01-21 2016-01-21 Au-Ge based solder alloy Pending JP2017127897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009984A JP2017127897A (en) 2016-01-21 2016-01-21 Au-Ge based solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009984A JP2017127897A (en) 2016-01-21 2016-01-21 Au-Ge based solder alloy

Publications (1)

Publication Number Publication Date
JP2017127897A true JP2017127897A (en) 2017-07-27

Family

ID=59395880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009984A Pending JP2017127897A (en) 2016-01-21 2016-01-21 Au-Ge based solder alloy

Country Status (1)

Country Link
JP (1) JP2017127897A (en)

Similar Documents

Publication Publication Date Title
JP5206779B2 (en) Pb-free solder alloy based on Zn
WO2015087588A1 (en) Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP5861559B2 (en) Pb-free In solder alloy
JP5633816B2 (en) Au-Sn alloy solder
JP6036202B2 (en) Au-Ag-Ge solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP5212573B2 (en) Bi-Al-Zn Pb-free solder alloy
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP2016059943A (en) BALL-SHAPED Au-Ge-Sn-BASED SOLDER ALLOY AND ELECTRONIC COMPONENT USING THE SOLDER ALLOY
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP5633815B2 (en) Au-Sn alloy solder
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP2017196647A (en) Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL
JP5765109B2 (en) Lead-free In-based solder alloy for CPU for server and its manufacturing method
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP2017127897A (en) Au-Ge based solder alloy
JP2016087681A (en) Au-Sn-Ag-BASED SOLDER ALLOY AND SOLDER MATERIAL, SEALED ELECTRONIC COMPONENT USING THE SOLDER ALLOY OR SOLDER MATERIAL AND ELECTRONIC COMPONENT MOUNTING DEVICE
JP5633812B2 (en) Au-Sn alloy solder
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP2015020189A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE