JP2017125090A - Method for producing copolymer of maleimide monomer, and viscosity index improver, and method for producing lubricant composition - Google Patents

Method for producing copolymer of maleimide monomer, and viscosity index improver, and method for producing lubricant composition Download PDF

Info

Publication number
JP2017125090A
JP2017125090A JP2016003500A JP2016003500A JP2017125090A JP 2017125090 A JP2017125090 A JP 2017125090A JP 2016003500 A JP2016003500 A JP 2016003500A JP 2016003500 A JP2016003500 A JP 2016003500A JP 2017125090 A JP2017125090 A JP 2017125090A
Authority
JP
Japan
Prior art keywords
mass
meth
acrylate
parts
viscosity index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016003500A
Other languages
Japanese (ja)
Other versions
JP6676381B2 (en
Inventor
洋平 今泉
Yohei IMAIZUMI
洋平 今泉
宇賀村 忠慶
Tadayoshi Ukamura
忠慶 宇賀村
啓子 泉
Keiko Izumi
啓子 泉
和成 安村
Kazunari Yasumura
和成 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016003500A priority Critical patent/JP6676381B2/en
Publication of JP2017125090A publication Critical patent/JP2017125090A/en
Application granted granted Critical
Publication of JP6676381B2 publication Critical patent/JP6676381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a maleimide copolymer having a high viscosity index and excellent shear stability and showing sufficient solubility to a lubricant base oil, at a high polymer rate and in a small number of steps.SOLUTION: A method for producing a copolymer has the step for polymerization of a monomer comprising a maleimide monomer as an essential component in a lubricant base oil.SELECTED DRAWING: None

Description

本発明は、特定の構造を有する共重合体の製造方法、並びにこれを含有する粘度指数向上剤の製造方法に関する。特に、高い粘度指数と良好なせん断安定性を有し、かつ、潤滑油に対して十分な溶解性を示す粘度指数向上剤の製造方法に関する。   The present invention relates to a method for producing a copolymer having a specific structure, and a method for producing a viscosity index improver containing the copolymer. In particular, the present invention relates to a method for producing a viscosity index improver having a high viscosity index and good shear stability, and exhibiting sufficient solubility in a lubricating oil.

近年、内燃機関用潤滑油は省燃費特性の向上が強く求められており、1つの手段として潤滑油の低粘度化による粘性抵抗の低減が挙げられている。しかし、単なる低粘度化では液漏れや焼きつきという問題が生じるため、高温での粘度を高く保持しながら低温での粘度を低く保つ効果を有する粘度指数向上剤の添加が有効である。   In recent years, lubricating oil for internal combustion engines has been strongly required to improve fuel-saving characteristics, and one means is to reduce viscosity resistance by reducing the viscosity of the lubricating oil. However, simply reducing the viscosity causes problems such as liquid leakage and seizure. Therefore, it is effective to add a viscosity index improver having an effect of keeping the viscosity at a low temperature while keeping the viscosity at a high temperature high.

粘度指数向上剤には重合体を含有するものが知られており、さまざまな種類がある。なかでも、アルキル(メタ)アクリレート重合体からなる粘度指数向上剤は、高い粘度指数向上効果を示す。一方で、アルキル(メタ)アクリレート重合体からなる粘度指数向上剤は、せん断安定性が悪いため、長期使用時に省燃費特性が低下する(ロングライフ性が悪い)という問題があった
せん断安定性を改善する手段としては、例えば、粘度指数向上剤の分子量を小さくすることが挙げられる。一般に、低分子量ほどせん断の影響を受けにくく分子量低下幅が小さくなるため、低分子量の粘度指数向上剤を用いることで、せん断後の粘度低下を抑制することが可能である(特許文献1および非特許文献1)。
Viscosity index improvers are known to contain polymers, and there are various types. Especially, the viscosity index improver which consists of an alkyl (meth) acrylate polymer shows a high viscosity index improvement effect. On the other hand, the viscosity index improver made of alkyl (meth) acrylate polymer has poor shear stability, so there is a problem that the fuel-saving property is lowered during long-term use (long life property is poor). Examples of means for improving include reducing the molecular weight of the viscosity index improver. In general, the lower the molecular weight, the less the influence of shearing, and the lower the molecular weight reduction range. Therefore, by using a low molecular weight viscosity index improver, it is possible to suppress the viscosity reduction after shearing (Patent Document 1 and Non-Patent Document 1). Patent Document 1).

また、せん断安定性と熱安定性を改善する観点から、ポリメタクリレート系粘度指数向上剤の主鎖骨格に特定量のマレイミド単量体を導入する方法が提案されている(特許文献2)。   From the viewpoint of improving shear stability and thermal stability, a method of introducing a specific amount of maleimide monomer into the main chain skeleton of a polymethacrylate viscosity index improver has been proposed (Patent Document 2).

特開2013−104032号公報JP 2013-104032 A 特開2015−86314号公報JP2015-86314A 特開2001−233919号公報JP 2001-233919 A 三洋化成ニュース 2013 新春号 No.476Sanyo Chemical News 2013 New Year No. 476

本発明は、高い粘度指数と良好なせん断安定性を有し、かつ、潤滑油基油に対して十分な溶解性を示すマレイミド系共重合体を、高い重合率、かつ、少ない工程数で提供することを目的とする。   The present invention provides a maleimide copolymer having a high viscosity index and good shear stability and sufficient solubility in a lubricating base oil with a high polymerization rate and a small number of steps. The purpose is to do.

上述のように、ポリメタクリレート系粘度指数向上剤は、高分子であるが故にせん断による分子量低下を受け、潤滑油組成物の粘度が低下し省燃費性が低下するため、低分子量化によりせん断安定性は改善する。一方で、一般に低分子量であるほど粘度指数向上効果は低い傾向があるため、低分子量の粘度指数向上剤を用いた場合は、粘度指数は低くなるという課題が発生する。さらに、所望の粘度に調整するためには、粘度指数向上剤の使用量を増やす必要があり、コスト面で不利となりやすい。   As described above, the polymethacrylate viscosity index improver is a polymer and therefore undergoes a decrease in molecular weight due to shearing, resulting in a decrease in the viscosity of the lubricating oil composition and a reduction in fuel economy. Sex improves. On the other hand, generally, the lower the molecular weight, the lower the viscosity index improving effect tends to be low. Therefore, when a low molecular weight viscosity index improver is used, there arises a problem that the viscosity index decreases. Furthermore, in order to adjust to a desired viscosity, it is necessary to increase the usage-amount of a viscosity index improver, and it tends to be disadvantageous in cost.

また、主鎖骨格に特定量のマレイミド系単量体を導入したポリメタクリレート系粘度指数向上剤は、高い粘度指数と良好なせん断安定性を有する。マレイミド共重合体の重合において、マレイミド系単量体の重合率向上には酸成分の添加が有効であることが知られている(特許文献3)。ただし、上記の手法を用いた場合は製造時に酸成分由来の臭気が発生する恐れがあり、作業性に問題がある。また、酸成分による装置腐食の懸念もあった。   In addition, a polymethacrylate viscosity index improver in which a specific amount of maleimide monomer is introduced into the main chain skeleton has a high viscosity index and good shear stability. In the polymerization of maleimide copolymers, it is known that the addition of an acid component is effective for improving the polymerization rate of maleimide monomers (Patent Document 3). However, when the above method is used, an odor derived from an acid component may be generated at the time of production, which causes a problem in workability. There was also concern about corrosion of the equipment due to acid components.

前記共重合体は、例えば、バルク重合、溶液重合、懸濁重合、乳化重合などの方法により得られる。溶媒を用いる場合に、潤滑油基油に不溶な溶媒を使用すると、重合後の溶媒置換が必要となり、工程数が増えるといった課題があった。   The copolymer can be obtained by a method such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization. When a solvent is used, if a solvent that is insoluble in the lubricating base oil is used, solvent replacement after polymerization is required, which increases the number of steps.

本発明者らは、鋭意検討した結果、マレイミド系単量体を含む単量体を潤滑油基油中で共重合することを見いだし本発明に至った。   As a result of intensive studies, the present inventors have found that a monomer containing a maleimide monomer is copolymerized in a lubricating base oil, and have reached the present invention.

すなわち本発明は、マレイミド系単量体(以下、「(a)成分」と称する)を必須成分として含む単量体を潤滑油基油中で重合する工程を有することを特徴とする共重合体の製造方法である。   That is, the present invention comprises a step of polymerizing a monomer containing a maleimide monomer (hereinafter referred to as “component (a)”) as an essential component in a lubricating base oil. It is a manufacturing method.

前記単量体は前記(a)成分に加え、(b)炭素数が1〜5の脂肪族炭化水素基を有するアルキル(メタ)アクリレート(以下、「(b)成分」と称する)、(c)炭素数が6〜40の脂肪族炭化水素基を有するアルキル(メタ)アクリレート(以下、「(c)成分」と称する)を含む単量体であることが好ましい。
前記共重合体は3官能以上の多価メルカプタンおよび/または3官能以上の多官能開始剤の存在下に前記単量体を潤滑油基油中で重合する工程で得られることが好ましい。
本発明は前記製造方法で得られる共重合体を含有する粘度指数向上剤の製造方法でもある。
本発明は、前記粘度指数向上剤を含有する潤滑油組成物の製造方法でもある。
In addition to the component (a), the monomer includes (b) an alkyl (meth) acrylate having an aliphatic hydrocarbon group having 1 to 5 carbon atoms (hereinafter referred to as “component (b)”), (c) It is preferably a monomer containing an alkyl (meth) acrylate having an aliphatic hydrocarbon group having 6 to 40 carbon atoms (hereinafter referred to as “component (c)”).
The copolymer is preferably obtained in a step of polymerizing the monomer in a lubricating base oil in the presence of a trifunctional or higher polyvalent mercaptan and / or a trifunctional or higher polyfunctional initiator.
This invention is also a manufacturing method of the viscosity index improver containing the copolymer obtained by the said manufacturing method.
The present invention is also a method for producing a lubricating oil composition containing the viscosity index improver.

本発明の製造方法を用いることで、酸成分を用いることなくマレイミド系単量体の重合率を向上でき、粘度指数向上剤として適したせん断安定性、高い粘度指数を示す共重合体、及び、溶媒置換の工程無しで、潤滑油組成物を得ることが出来る。   By using the production method of the present invention, the polymerization rate of the maleimide monomer can be improved without using an acid component, shear stability suitable as a viscosity index improver, a copolymer exhibiting a high viscosity index, and A lubricating oil composition can be obtained without a solvent replacement step.

以下に本発明を詳述する。これ以降の説明において特に記載がない限り、「部」は「質量部」、「%」は「質量%」をそれぞれ意味する。また、範囲を示す「A〜B」は、A以上B以下であることを示す。
本発明は、単量体(a)成分を必須成分として含む単量体を潤滑油基油中で重合する工程を有することを特徴とする共重合体の製造方法である。
The present invention is described in detail below. In the following description, “part” means “part by mass” and “%” means “mass%” unless otherwise specified. In addition, “A to B” indicating a range indicates that the range is A or more and B or less.
This invention is a manufacturing method of the copolymer characterized by having the process of superposing | polymerizing the monomer which contains a monomer (a) component as an essential component in lubricating oil base oil.

本発明において使用する単量体(a)成分は、下記一般式(1)で示されるマレイミド系単量体である。   The monomer (a) component used in the present invention is a maleimide monomer represented by the following general formula (1).

Figure 2017125090
Figure 2017125090

(式中、R 及びR はそれぞれ独立に、水素原子またはアルキル基であり、Xは水素原子、直鎖状、分岐状、環状のアルキル基、置換アルキル基、アリール基もしくは置換アリール基である。)
単量体(a)成分として、上記Xの内、分岐状のアルキル基は芳香環を有するアルキル基を有していてもよい。環状のアルキル基としては、ベンジル基などの芳香環を有するアルキル基、シクロヘキシル基などのシクロアルキル基が好ましい。アリール基としては、フェニル基、ナフチル基や芳香環の水素が置換されたアリール基が好ましい。
(Wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group, and X is a hydrogen atom, a linear, branched or cyclic alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group. is there.)
As the monomer (a) component, among the above X, the branched alkyl group may have an alkyl group having an aromatic ring. The cyclic alkyl group is preferably an alkyl group having an aromatic ring such as a benzyl group or a cycloalkyl group such as a cyclohexyl group. The aryl group is preferably a phenyl group, a naphthyl group, or an aryl group substituted with an aromatic ring hydrogen.

単量体(a)成分の具体例としては、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−イソプロピルマレイミド、N−ブチルマレイミド、N−イソブチルマレイミド、N−ターシャリブチルマレイミド、N−シクロヘキシルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミド、N−フェニルマレイミド、N−ベンジルマレイミド、N−クロロフェニルマレイミド、N−メチルフェニルマレイミド、N−ナフチルマレイミド、N−ヒドロキシルエチルマレイミド、N−ヒドロキシルフェニルマレイミド、N−メトキシフェニルマレイミド、N−カルボキシフェニルマレイミド、N−ニトロフェニルマレイミド、N−トリブロモフェニルマレイミドなどが挙げられ、これらの化合物が1種または2種以上用いられる。これらの中でも入手性や経済性の観点および基油への溶解性が高いことから、N−フェニルマレイミド、N−シクロヘキシルマレイミド、N−イソプロピルマレイミド、N−ベンジルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミドが好ましく、N−フェニルマレイミド、N−シクロヘキシルマレイミド、N−ベンジルマレイミドがより好ましく、N−シクロヘキシルマレイミドがさらに好ましい。なお、上記単量体(a)は単独で使用してもよいし、2種以上を併用してもよい。
単量体(a)成分の含量は、全単量体成分の合計100質量部に対して、0.5質量部以上35質量部以下であり、好ましくは2質量部以上35質量部以下、より好ましくは5質量部以上35質量部以下、特に好ましくは5質量部以上30質量部以下である。上記数値範囲の単量体(a)成分を用いた重合体を含有する粘度指数向上剤は、基油への溶解性を確保したまま、せん断安定性を高めることができる。さらには、スラッジ等の清浄分散性の向上や、金属表面の磨耗抑制等の効果が期待される。
Specific examples of the monomer (a) component include maleimide, N-methylmaleimide, N-ethylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-isobutylmaleimide, N-tertiarybutylmaleimide, N-cyclohexyl Maleimide, N-laurylmaleimide, N-stearylmaleimide, N-phenylmaleimide, N-benzylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxylethylmaleimide, N-hydroxylphenylmaleimide, N-methoxyphenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, N-tribromophenylmaleimide and the like can be mentioned, and one or more of these compounds are used. . Of these, N-phenylmaleimide, N-cyclohexylmaleimide, N-isopropylmaleimide, N-benzylmaleimide, N-laurylmaleimide, N-stearyl are highly available and economical and have high solubility in base oils. Maleimide is preferable, N-phenylmaleimide, N-cyclohexylmaleimide, and N-benzylmaleimide are more preferable, and N-cyclohexylmaleimide is further preferable. In addition, the said monomer (a) may be used independently and may use 2 or more types together.
The content of the monomer (a) component is 0.5 to 35 parts by mass, preferably 2 to 35 parts by mass, based on 100 parts by mass of all monomer components. Preferably they are 5 mass parts or more and 35 mass parts or less, Especially preferably, they are 5 mass parts or more and 30 mass parts or less. The viscosity index improver containing the polymer using the monomer (a) component in the above numerical range can enhance the shear stability while ensuring the solubility in the base oil. Furthermore, effects such as improvement in clean dispersibility of sludge and the like and suppression of wear on the metal surface are expected.

本発明に用いる単量体は前記(a)成分に加え、(b)炭素数が1〜5の脂肪族炭化水素基を有するアルキル(メタ)アクリレート(以下、「(b)成分」と称する)、(c)炭素数が6〜40の脂肪族炭化水素基を有するアルキル(メタ)アクリレート(以下、「(c)成分」と称する)を含む単量体であることが好ましい。   In addition to the component (a), the monomer used in the present invention is (b) an alkyl (meth) acrylate having an aliphatic hydrocarbon group having 1 to 5 carbon atoms (hereinafter referred to as “component (b)”). (C) A monomer containing an alkyl (meth) acrylate having an aliphatic hydrocarbon group having 6 to 40 carbon atoms (hereinafter referred to as “component (c)”) is preferable.

(b)成分としては、具体的には、以下の下記一般式(2)で表される構造を有し、かつ、式中のRが水素原子又はメチル基であり、Rが炭素数1〜5の脂肪族炭化水素基である(メタ)アクリレート類が挙げられる。なお、R は直鎖状、環状、分岐状のいずれであっても良く、置換基を有していても良い。 As the component (b), specifically, it has a structure represented by the following general formula (2), R 3 in the formula is a hydrogen atom or a methyl group, and R 4 is the number of carbon atoms. (Meth) acrylates which are 1 to 5 aliphatic hydrocarbon groups. R 4 may be linear, cyclic or branched, and may have a substituent.

Figure 2017125090
Figure 2017125090

単量体(b)成分は、R及びRがそれぞれ単一の単量体であってもよく、R及び/又はRが異なる2種以上の単量体の混合物であってもよい。反応性の点から、Rは水素原子又はメチル基であることが好ましい。また、粘度指数向上の点から、Rは直鎖状または分岐状であることが好ましい。 The monomer (b) component may be such that R 3 and R 4 are each a single monomer, or a mixture of two or more monomers in which R 3 and / or R 4 are different. Good. From the viewpoint of reactivity, R 3 is preferably a hydrogen atom or a methyl group. In view of improving the viscosity index, R 4 is preferably linear or branched.

単量体(b)成分の具体例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、iso−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−アミル(メタ)アクリレート、iso−アミル(メタ)アクリレート、t−アミル(メタ)アクリレート、ネオペンチル(メタ)アクリレート等が挙げられる。中でも、単量体(b)成分として、少なくともメチル(メタ)アクリレートを含むことが好ましい。(b)成分がメチル(メタ)アクリレートを含有することにより、粘度指数向上効果が大きく、耐熱性およびせん断安定性が高い粘度指数向上剤となる。なお、上記単量体(b)は単独で使用してもよいし、2種以上を併用してもよい。   Specific examples of the monomer (b) component include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, and n-butyl (meth) acrylate. , Iso-butyl (meth) acrylate, t-butyl (meth) acrylate, n-amyl (meth) acrylate, iso-amyl (meth) acrylate, t-amyl (meth) acrylate, neopentyl (meth) acrylate, and the like. . Among these, it is preferable that at least methyl (meth) acrylate is included as the monomer (b) component. When the component (b) contains methyl (meth) acrylate, the viscosity index improving effect is large, and the viscosity index improver has high heat resistance and high shear stability. In addition, the said monomer (b) may be used independently and may use 2 or more types together.

単量体(b)成分の含量は、全単量体成分の合計100質量部に対して、好ましくは2質量部以上40質量部以下、さらに好ましくは5質量部以上35質量部以下、特に好ましくは5質量部以上30質量部以下である。単量体(b)成分の含量が上記範囲において、他の成分との共重合性が良く、重合速度も良好で重合率も高く生産性が良い。また、共重合して得られる粘度指数向上剤のせん断安定性や基油溶解性がより良好となる。     The content of the monomer (b) component is preferably 2 to 40 parts by mass, more preferably 5 to 35 parts by mass, particularly preferably 100 parts by mass in total of all monomer components. Is 5 parts by mass or more and 30 parts by mass or less. When the content of the monomer (b) component is in the above range, the copolymerization with other components is good, the polymerization rate is good, the polymerization rate is high, and the productivity is good. Moreover, the shear stability and base oil solubility of the viscosity index improver obtained by copolymerization become better.

本発明において使用する単量体(c)成分としては、下記一般式(3)で表される構造を有し、かつ、式中のRが水素原子又はメチル基であり、Rが炭素数6〜40のアルキル基、好ましくは6〜24のアルキル基、特に好ましくは12〜24のアルキル基である(メタ)アクリレート類が挙げられる。また、R は直鎖状、環状、分岐状のいずれであっても良く、置換基を有していても良い。 The monomer (c) component used in the present invention has a structure represented by the following general formula (3), and R 5 in the formula is a hydrogen atom or a methyl group, and R 6 is carbon. Examples thereof include (meth) acrylates having an alkyl group of 6 to 40, preferably 6 to 24, particularly preferably 12 to 24. R 6 may be linear, cyclic or branched, and may have a substituent.

Figure 2017125090
Figure 2017125090

単量体(c)成分は、R及びRがそれぞれ単一の単量体であってもよく、R及び/又はRが異なる2種以上の単量体の混合物であってもよい。反応性の点から、Rは水素原子又はメチル基であることが好ましい。
単量体(c)成分の具体例としては、n−ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート、テトラコシル(メタ)アクリレート、2−デシルテトラデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート等が挙げられる。中でも、入手性や経済性の観点および基油への溶解性が高いことから、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート、テトラコシル(メタ)アクリレート、2−デシルテトラデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートが好ましい。なお、上記単量体(b)は単独で使用してもよいし、2種以上を併用してもよい。
Monomer component (c) may be a mixture of R 5 and R 6 each may be a single monomer, R 5 and / or R 6 are different 2 or more monomers Good. From the viewpoint of reactivity, R 5 is preferably a hydrogen atom or a methyl group.
Specific examples of the monomer (c) component include n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (Meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) ) Acrylate, nonadecyl (meth) acrylate, eicosyl (meth) acrylate, behenyl (meth) acrylate, tetracosyl (meth) acrylate, 2-decyltetradecyl (meth) acrylate, Hexyl (meth) acrylate, menthyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate. Among these, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, eicosyl (meta) from the viewpoint of availability and economy and high solubility in base oils. ) Acrylate, behenyl (meth) acrylate, tetracosyl (meth) acrylate, 2-decyltetradecyl (meth) acrylate, and cyclohexyl (meth) acrylate are preferred. In addition, the said monomer (b) may be used independently and may use 2 or more types together.

単量体(c)成分の含量は、全単量体成分の合計100質量部に対して、好ましくは20質量部以上95質量部未満、さらに好ましくは25質量部以上85質量部以下、特に好ましくは30質量部以上75質量部以下である。上記数値範囲の単量体(c)成分を用いた重合体を含む粘度指数向上剤は、種々の組成の基油への溶解性が良好なものとなる。   The content of the monomer (c) component is preferably 20 parts by mass or more and less than 95 parts by mass, more preferably 25 parts by mass or more and 85 parts by mass or less, particularly preferably 100 parts by mass of the total monomer components. Is 30 parts by mass or more and 75 parts by mass or less. A viscosity index improver containing a polymer using the monomer (c) component in the above numerical range has good solubility in base oils of various compositions.

極性の低い長鎖アルキル基を有する(c)成分を用いることで油溶性が高い重合体となり得る。また、該重合体100質量部に対して、上記(a)成分は好ましくは2質量部以上、より好ましくは5質量部以上である。上限は好ましくは33質量部以下、特に好ましくは30質量部以下である。(a)成分が0.5質量部未満であると、(a)成分導入の効果が十分に得られず、せん断安定性が十分に向上しない。さらには、(a)成分の高極性構造に由来するスラッジ等の清浄分散性が低下したり金属表面の磨耗や疲労寿命の低下を引き起こしたりする場合がある。35質量部を超えると潤滑油基油への溶解性が低下したり粘度指数が低下したりする傾向がある。また、重量平均分子量が20万に満たない場合、潤滑油組成物の粘度指数が低くなるだけでなく、所望の粘度に調整するために粘度指数向上剤の使用量を増やす必要があり、コスト面で不利となる。   By using the component (c) having a long-chain alkyl group with low polarity, a polymer having high oil solubility can be obtained. The component (a) is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, relative to 100 parts by mass of the polymer. The upper limit is preferably 33 parts by mass or less, particularly preferably 30 parts by mass or less. When the component (a) is less than 0.5 parts by mass, the effect of introducing the component (a) is not sufficiently obtained, and the shear stability is not sufficiently improved. Furthermore, the clean dispersibility of sludge or the like derived from the highly polar structure of the component (a) may be reduced, or the metal surface may be worn or the fatigue life may be reduced. If it exceeds 35 parts by mass, the solubility in the lubricating base oil tends to be reduced or the viscosity index tends to be reduced. In addition, when the weight average molecular weight is less than 200,000, not only the viscosity index of the lubricating oil composition is lowered, but it is necessary to increase the amount of the viscosity index improver used to adjust to a desired viscosity. Is disadvantageous.

また、本発明の重合体を合成する単量体成分として、必須成分である(a)、(b)、(c)成分以外のラジカル重合性単量体(d)を含有することができる。上記単量体(d)は、ラジカル重合性基を同一分子内に1個有する単官能単量体と、ラジカル重合性基を同一分子内に2個以上有する多官能単量体とに分類できる。   Moreover, as a monomer component which synthesize | combines the polymer of this invention, radically polymerizable monomers (d) other than an essential component (a), (b), (c) component can be contained. The monomer (d) can be classified into a monofunctional monomer having one radical polymerizable group in the same molecule and a polyfunctional monomer having two or more radical polymerizable groups in the same molecule. .

単官能単量体の例としては、(b)、(c)成分以外の(メタ)アクリレート、不飽和モノまたはジカルボン酸エステル、不飽和カルボン酸類、ビニル芳香族、ビニルエステル、ビニルエーテル、オレフィン類、シアン化ビニル、N−ビニル化合物、(メタ)アクリルアミド等が挙げられる。これらの単官能単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。   Examples of monofunctional monomers include (b), (meth) acrylates other than components (c), unsaturated mono- or dicarboxylic esters, unsaturated carboxylic acids, vinyl aromatics, vinyl esters, vinyl ethers, olefins, Examples include vinyl cyanide, N-vinyl compound, (meth) acrylamide, and the like. These monofunctional monomers may be used alone or in combination of two or more.

(b)、(c)成分以外の(メタ)アクリレートとしては、例えば、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、モルフォリノアルキレン(メタ)アクリレート、α―ヒドロキシメチルアクリル酸メチル、ポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。   Examples of (meth) acrylates other than the components (b) and (c) include benzyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3 -Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meta ) Acrylate, 2-phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, morpholinoalkylene (meth) acrylate, α-hydroxymethylacrylic Methyl, polyethylene glycol mono (meth) acrylate.

不飽和モノまたはジカルボン酸エステルとしては、例えば、ブチルクロトネート、オクチルクロトネート、ドデシルクロトネート、ジブチルマレエート、ジラウリルマレエート、ジオクチルフマレート、ジステアリルフマレート、ジラウリルイタコネート等が挙げられる。   Examples of unsaturated mono- or dicarboxylic acid esters include butyl crotonate, octyl crotonate, dodecyl crotonate, dibutyl maleate, dilauryl maleate, dioctyl fumarate, distearyl fumarate, dilauryl itaconate and the like. .

不飽和カルボン酸類としては、例えば、(メタ)アクリル酸、クロトン酸、けい皮酸、ビニル安息香酸、マレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水イタコン酸等が挙げられる。   Examples of unsaturated carboxylic acids include (meth) acrylic acid, crotonic acid, cinnamic acid, vinyl benzoic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride, itaconic anhydride, and the like.

ビニル芳香族化合物としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、メトキシスチレン等のスチレン系単量体、2−ビニルピリジン、4−ビニルピリジン等が挙げられる。   Examples of the vinyl aromatic compound include styrene monomers such as styrene, α-methylstyrene, vinyltoluene, and methoxystyrene, 2-vinylpyridine, 4-vinylpyridine, and the like.

ビニルエステルとしては、例えば、酢酸ビニル、プロピオン酸ビニル、オクチル酸ビニル等が挙げられる。   Examples of the vinyl ester include vinyl acetate, vinyl propionate, vinyl octylate and the like.

ビニルエーテルとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、ドデシルビニルエーテル、オクタデシルビニルエーテル等が挙げられる。   Examples of the vinyl ether include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, dodecyl vinyl ether, octadecyl vinyl ether and the like.

オレフィン類としては、エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−デセン、1−テトラデセン、1−オクタデセン、ジイソブテン等が挙げられる。   Examples of olefins include ethylene, propylene, 1-butene, isobutene, 1-hexene, 1-decene, 1-tetradecene, 1-octadecene, diisobutene and the like.

シアン化ビニルとしては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。   Examples of vinyl cyanide include acrylonitrile and methacrylonitrile.

N−ビニル化合物としては、例えば、N−ビニルピロリドン、N−ビニルカプロラクタム、N−ビニルイミダゾール、N−ビニルモルフォリン、N−ビニルアセトアミド等が挙げられる。   Examples of the N-vinyl compound include N-vinyl pyrrolidone, N-vinyl caprolactam, N-vinyl imidazole, N-vinyl morpholine, N-vinyl acetamide and the like.

(メタ)アクリルアミドとしては、例えば、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N,N−ジプロピル(メタ)アクリルアミド、N,N−ジブチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、アクリロイルモルフォリン等が挙げられる。
これらの単官能単量体のうち、2−ヒドロキシエチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、α―ヒドロキシメチルアクリル酸メチル、N−ビニルピロリドン、N,N−ジメチル(メタ)アクリルアミド、アクリロイルモルフォリンが好ましい。
Examples of (meth) acrylamide include N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) acrylamide, N, N-dibutyl (meth) acrylamide, N -Methylol (meth) acrylamide, acryloyl morpholine, etc. are mentioned.
Among these monofunctional monomers, 2-hydroxyethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, methyl α-hydroxymethyl acrylate, N-vinylpyrrolidone, N, N-dimethyl ( Meth) acrylamide and acryloylmorpholine are preferred.

必須成分である(a)、(b)、(c)成分以外のラジカル重合性単量体(d)に含まれる単官能単量体由来の単位は、重合体100質量部に対し0質量部以上30質量部以下であり、好ましくは0質量部以上25質量部以下であり、さらに好ましくは0質量部以上20質量部以下である。   The unit derived from the monofunctional monomer contained in the radical polymerizable monomer (d) other than the essential components (a), (b) and (c) is 0 part by mass with respect to 100 parts by mass of the polymer. It is 30 parts by mass or less, preferably 0 parts by mass or more and 25 parts by mass or less, and more preferably 0 parts by mass or more and 20 parts by mass or less.

ただしスチレン系単量体を使用する場合は、重合体100質量部に対しスチレン系単量体由来の単位が2質量部以下であり、1質量部以下であることがより好ましい。スチレン系単量体由来の単位が2質量部を超えると、該重合体を含有する粘度指数向上剤の基油への溶解度および粘度指数が低下する傾向がある。   However, when using a styrene-type monomer, the unit derived from a styrene-type monomer is 2 mass parts or less with respect to 100 mass parts of polymers, and it is more preferable that it is 1 mass part or less. If the unit derived from the styrene monomer exceeds 2 parts by mass, the solubility and viscosity index of the viscosity index improver containing the polymer in the base oil tend to decrease.

単量体としてオレフィン類を使用する場合は、重合体100質量部に対しオレフィン類由来の単位が5質量部以下であることが好ましく、3質量部以下であることがより好ましい。オレフィン類由来の単位が5質量部を超えると、該重合体を含有する粘度指数向上剤の粘度指数が低下する傾向がある。   When using olefin as a monomer, it is preferable that the unit derived from olefin is 5 mass parts or less with respect to 100 mass parts of polymers, and it is more preferable that it is 3 mass parts or less. When the unit derived from olefins exceeds 5 parts by mass, the viscosity index of the viscosity index improver containing the polymer tends to decrease.

多官能単量体の例としては、多官能(メタ)アクリレート、ビニルエーテル基含有(メタ)アクリレート、アリル基含有(メタ)アクリレート、多官能(メタ)アクリロイル基含有イソシアヌレート、多官能ウレタン(メタ)アクリレートなどの多官能(メタ)アクリル系化合物、多官能マレイミド系化合物、多官能ビニルエーテル、多官能アリル系化合物、多官能芳香族ビニルなどが挙げられる。なお、上記多官能単量体は単独で使用してもよいし、2種以上を併用してもよい。   Examples of polyfunctional monomers include polyfunctional (meth) acrylates, vinyl ether group-containing (meth) acrylates, allyl group-containing (meth) acrylates, polyfunctional (meth) acryloyl group-containing isocyanurates, polyfunctional urethanes (meth). Examples include polyfunctional (meth) acrylic compounds such as acrylates, polyfunctional maleimide compounds, polyfunctional vinyl ethers, polyfunctional allyl compounds, polyfunctional aromatic vinyls, and the like. In addition, the said polyfunctional monomer may be used independently and may use 2 or more types together.

多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、ビスフェノールFアルキレンオキシドジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2’−〔オキシビス(メチレン)〕ビスアクリレート、ジアルキル−2,2’−〔オキシビス(メチレン)〕ビス−2−プロペノエートなどが挙げられる。   Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, Hexanediol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, bisphenol A alkylene oxide di (meth) acrylate, bisphenol F alkylene oxide di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (Meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaeryth Tall penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2,2 ′-[oxybis (methylene)] bisacrylate, dialkyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, etc. Can be mentioned.

ビニルエーテル基含有(メタ)アクリレートとしては、例えば、2−ビニロキシエチル(メタ)アクリレート、4−ビニロキシブチル(メタ)アクリレート、4−ビニロキシシクロヘキシル(メタ)アクリレート、2−(ビニロキシエトキシ)エチル(メタ)アクリレート、2−(ビニロキシエトキシエトキシエトキシ)エチル(メタ)アクリレートなどが挙げられる。   Examples of the vinyl ether group-containing (meth) acrylate include 2-vinyloxyethyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 4-vinyloxycyclohexyl (meth) acrylate, and 2- (vinyloxyethoxy) ethyl (meth) acrylate. , 2- (vinyloxyethoxyethoxyethoxy) ethyl (meth) acrylate and the like.

アリル基含有(メタ)アクリレートとしては、例えば、アリル(メタ)アクリレート、メチル―α―アリルオキシメチル(メタ)アクリレート、ステアリル―α−アリルオキシメチル(メタ)アクリレート、2−デシルテトラデシル―α−アリルオキシメチル(メタ)アクリレートなどが挙げられる。   Examples of the allyl group-containing (meth) acrylate include allyl (meth) acrylate, methyl-α-allyloxymethyl (meth) acrylate, stearyl-α-allyloxymethyl (meth) acrylate, 2-decyltetradecyl-α- And allyloxymethyl (meth) acrylate.

多官能(メタ)アクリロイル基含有イソシアヌレートとしては、例えば、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレートなどが挙げられる。   Examples of the polyfunctional (meth) acryloyl group-containing isocyanurate include tri (acryloyloxyethyl) isocyanurate, tri (methacryloyloxyethyl) isocyanurate, and the like.

多官能ウレタン(メタ)アクリレートとしては、例えば、トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネートなどの多官能イソシアネートと2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレートとの反応で得られる多官能ウレタン(メタ)アクリレートなどが挙げられる。   Examples of the polyfunctional urethane (meth) acrylate include polyfunctional isocyanates such as tolylene diisocyanate, isophorone diisocyanate, and xylylene diisocyanate, and hydroxyl groups such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate ( Polyfunctional urethane (meth) acrylate obtained by reaction with (meth) acrylate, etc. are mentioned.

多官能マレイミド系化合物としては、例えば、4,4’−ジフェニルメタンビスマレイミド、m−フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサンなどが挙げられる。   Examples of the polyfunctional maleimide compound include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-. Examples include diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, and the like.

多官能ビニルエーテルとしては、例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテルなどが挙げられる。   Examples of the polyfunctional vinyl ether include ethylene glycol divinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether. , Trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, and the like.

多官能アリル系化合物としては、例えば、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、ビスフェノールFアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテルなどの多官能アリルエーテル;トリアリルイソシアヌレートなどの多官能アリル基含有イソシアヌレート;フタル酸ジアリル、ジフェン酸ジアリルなどの多官能アリルエステル;ビスアリルナジイミド化合物など;ビスアリルナジイミド化合物などが挙げられる。   Examples of polyfunctional allyl compounds include ethylene glycol diallyl ether, diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, and bisphenol F alkylene oxide. Polyfunctional allyl ethers such as diallyl ether, trimethylolpropane triallyl ether, ditrimethylolpropane tetraallyl ether, glyceryl triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether; triallyl Isocyanurate Polyfunctional allyl group-containing isocyanurate; diallyl phthalate, polyfunctional allyl ester such as diphenic diallyl like; bis-allyl-nadi-imide compound; bis-allyl-nadi-imide compound and the like.

多官能芳香族ビニルとしては、例えば、ジビニルベンゼンなどが挙げられる。
必須成分である(a)、(b)、(c)成分以外のラジカル重合性単量体(d)に含まれる多官能単量体由来の単位は、重合体100質量部に対し0質量部以上5質量部以下であることが好ましく、より好ましくは0質量部以上3質量部以下であり、さらに好ましくは0質量部以上2質量部以下である。この場合、重合体が星型構造や架橋構造をとることにより、基油への溶解性を大きく損ねることなく、該重合体を含有する粘度指数向上剤のせん断安定性を改善することができる。
Examples of the polyfunctional aromatic vinyl include divinylbenzene.
The unit derived from the polyfunctional monomer contained in the radical polymerizable monomer (d) other than the essential components (a), (b) and (c) is 0 part by mass with respect to 100 parts by mass of the polymer. It is preferably 5 parts by mass or less, more preferably 0 parts by mass or more and 3 parts by mass or less, and still more preferably 0 parts by mass or more and 2 parts by mass or less. In this case, when the polymer has a star structure or a crosslinked structure, the shear stability of the viscosity index improver containing the polymer can be improved without significantly impairing the solubility in the base oil.

ただし、2,2’−〔オキシビス(メチレン)〕ビスアクリル酸、ジアルキル−2,2’−〔オキシビス(メチレン)〕ビス−2−プロペノエート、α―アリルオキシメチルアクリル酸メチル、α−アリルオキシメチルアクリル酸ステアリル、α−アリルオキシメチルアクリル酸2−デシルテトラデシルのように、環化しながら重合が進行する多官能単量体の場合は、重合体100質量部に対し0質量部以上30質量部以下であることが好ましく、より好ましくは0質量部以上25質量部以下であり、さらに好ましくは0質量部以上20質量部以下である。この場合、主鎖に導入される環構造の効果により、該重合体を含有する粘度指数向上剤の耐熱性が向上するとともに、せん断安定性を改善することができる。   However, 2,2 ′-[oxybis (methylene)] bisacrylic acid, dialkyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, methyl α-allyloxymethyl acrylate, α-allyloxymethyl In the case of a polyfunctional monomer in which polymerization proceeds while cyclizing, such as stearyl acrylate and α-allyloxymethyl acrylate 2-decyltetradecyl, 0 to 30 parts by mass with respect to 100 parts by mass of the polymer It is preferable that it is below, More preferably, it is 0 to 25 mass parts, More preferably, it is 0 to 20 mass parts. In this case, due to the effect of the ring structure introduced into the main chain, the heat resistance of the viscosity index improver containing the polymer is improved, and the shear stability can be improved.

多官能単量体由来の単位が上記範囲を超えると、重合時にゲル化が進行したり、該重合体を含有する粘度指数向上剤の基油への溶解度が低下したりする場合がある。   If the unit derived from the polyfunctional monomer exceeds the above range, gelation may proceed during polymerization, or the solubility of the viscosity index improver containing the polymer in the base oil may decrease.

上記単量体成分をラジカル重合機構により重合する場合、ラジカル重合開始剤を併用するのが工業的に有利で好ましい。ラジカル重合開始剤としては、加熱により重合開始ラジカルを発生する熱ラジカル重合開始剤と、活性エネルギー線の照射により重合開始ラジカルを発生する光ラジカル重合開始剤とがあり、従来公知のものを1種または2種以上使用できる。また、必要に応じて従来公知の熱ラジカル重合促進剤、光増感剤、光ラジカル重合促進剤等を1種または2種以上添加することも好ましい。   When the monomer component is polymerized by a radical polymerization mechanism, it is industrially advantageous to use a radical polymerization initiator in combination. The radical polymerization initiator includes a thermal radical polymerization initiator that generates a polymerization initiating radical by heating and a photo radical polymerization initiator that generates a polymerization initiating radical by irradiation with an active energy ray. Or 2 or more types can be used. It is also preferable to add one or more conventionally known thermal radical polymerization accelerators, photosensitizers, photoradical polymerization accelerators, and the like as necessary.

上記熱ラジカル重合開始剤としては、具体的には、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、1,1−ビス(t−ブチルパーオキシ)ブタン、p−メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、イソブチリルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m−トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ−2−エトキシヘキシルパーオキシジカーボネート、ジ−3−メトキシブチルパーオキシジカーボネート、ジ−s−ブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、α,α’−ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサノエート、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−m−トルイルベンゾエート、t−ブチルパーオキシベンゾエート、ビス(t−ブチルパーオキシ)イソフタレート、2,5−ジメチル−2,5−ビス(m−トルイルパーオキシ)ヘキサン、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアリルモノカーボネート、t−ブチルトリメチルシリルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、t−アミルパーオキシイソナノエート、t−アミルパーオキシ−2−エチルヘキサノエート、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等の過酸化物系開始剤;2−フェニルアゾ−4−メトキシ−2,4−ジメチルバレロニトリル、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド、2,2’−アゾビス(2−メチル−N−フェニルプロピオンアミジン)ジヒドロクロリド、2,2’−アゾビス[N−(4−クロロフェニル)−2−メチルプロピオンアミジン]ジヒドロクロリド、2,2’−アゾビス[N−(4−ヒドロフェニル)−2−メチルプロピオンアミジン]ジヒドロクロリド、2,2’−アゾビス[2−メチル−N−(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’−アゾビス[2−メチル−N−(2−プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’−アゾビス[N−(2−ヒドロキシエチル)−2−メチルプロピオンアミジン]ジヒドロクロリド、2,2’−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス[2−(4,5,6,7−テトラヒドロ−1H−1,3−ジアゼピン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス[2−(3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス[2−(5−ヒドロキシ−3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}ジヒドロクロリド、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)エチル]プロピオンアミド}、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2’−アゾビス(2−メチルプロピオンアミド)、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2,2’−アゾビス(2−メチルプロパン)、ジメチル−2,2−アゾビス(2−メチルプロピオネート)、4,4’−アゾビス(4−シアノペンタン酸)、2,2’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等のアゾ系開始剤、2,3−ジメチル−2,3−ジフェニルブタン等が挙げられる。   Specific examples of the thermal radical polymerization initiator include methyl ethyl ketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, methyl acetoacetate peroxide, acetyl acetate peroxide, 1,1-bis (t-hexyl peroxide). Oxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1, 1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (T-Butylperoxy) butane, p-menthan high Loperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide, α, α'-bis (T-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide Oxide, sc Acid peroxide, m-toluoylbenzoyl peroxide, benzoyl peroxide, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2 -Ethoxyethyl peroxydicarbonate, di-2-ethoxyhexyl peroxydicarbonate, di-3-methoxybutyl peroxydicarbonate, di-s-butyl peroxydicarbonate, di (3-methyl-3-methoxybutyl ) Peroxydicarbonate, α, α′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 -Cyclohexyl-1- Tylethyl peroxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxypivalate, 1,1,3 , 3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexanoate, 1-cyclohexyl-1-methylethylperoxy-2 -Ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropylmonocarbonate, t-butylperoxyisobutyrate, t-butyl peroxymalate, t-butyl peroxy-3,5,5-tri Tylhexanoate, t-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyacetate, t-butyl peroxy-m-toluyl Benzoate, t-butylperoxybenzoate, bis (t-butylperoxy) isophthalate, 2,5-dimethyl-2,5-bis (m-toluylperoxy) hexane, t-hexylperoxybenzoate, 2,5 -Dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyallyl monocarbonate, t-butyltrimethylsilyl peroxide, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) Propane, 3,3 ', 4,4'-teto La (t-butylperoxycarbonyl) benzophenone, t-amylperoxyisonanoate, t-amylperoxy-2-ethylhexanoate, sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide, etc. Oxide-based initiator; 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane-1- Carbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2 '-Azobis (2,4-dimethyl-4-methoxyvaleronitrile), 2,2'-azobis (2-methylpropionamidine) dihydride Chloride, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] dihydrochloride, 2,2 ′ -Azobis [N- (4-hydrophenyl) -2-methylpropionamidine] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2'-azobis [2-Methyl-N- (2-propenyl) propionamidine] dihydrochloride, 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [ 2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2, '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2- Yl) propane] dihydrochloride, 2,2′-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (5-hydroxy) -3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} Dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) ) -2-Hydroxyethyl] propionamide}, 2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide}, 2,2′-azobis [2-methyl -N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-methylpropionamide), 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), dimethyl-2,2-azobis (2-methylpropionate), 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis [2- (hydroxymethyl) Azo initiators such as propionitrile], 2,3-dimethyl-2,3-diphenylbutane, and the like.

上記熱ラジカル重合開始剤とともに使用できる熱ラジカル重合促進剤としては、コバルト、銅、錫、亜鉛、マンガン、鉄、ジルコニウム、クロム、バナジウム、カルシウム、カリウム等の金属石鹸;1級、2級、3級のアミン化合物;4級アンモニウム塩;チオ尿素化合物;ケトン化合物等が挙げられ、具体的には、例えば、オクチル酸コバルト、ナフテン酸コバルト、オクチル酸銅、ナフテン酸銅、オクチル酸マンガン、ナフテン酸マンガン、ジメチルアニリン、トリエタノールアミン、トリエチルベンジルアンモニウムクロライド、ジ(2−ヒドロキシエチル)p−トルイジン、エチレンチオ尿素、アセチルアセトン、アセト酢酸メチル等が挙げられる。   Examples of the thermal radical polymerization accelerator that can be used together with the thermal radical polymerization initiator include metal soaps such as cobalt, copper, tin, zinc, manganese, iron, zirconium, chromium, vanadium, calcium, and potassium; Quaternary ammonium salts; thiourea compounds; ketone compounds, etc., specifically, for example, cobalt octylate, cobalt naphthenate, copper octylate, copper naphthenate, manganese octylate, naphthenic acid Manganese, dimethylaniline, triethanolamine, triethylbenzylammonium chloride, di (2-hydroxyethyl) p-toluidine, ethylenethiourea, acetylacetone, methyl acetoacetate and the like can be mentioned.

上記光ラジカル重合開始剤としては、具体的には、例えば、2,2−ジエトキシアセトフェノン、2,2−ジメトキシー2−フェニルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−〔4−(2−ヒドロキシエトキシ)フェニル〕−2−ヒドロキシー2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−{4−〔4−(2−ヒドロキシ−2−メチルプロピオニル)ベンジル〕フェニル}−2−メチルプロパン−1−オン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−(ジメチルアミノ)−2−〔(4−メチルフェニル)メチル〕−1−〔4−(4−モルホリニル)フェニル〕−1−ブタノン等のアルキルフェノン系化合物;ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、2−カルボキシベンゾフェノン等のベンゾフェノン系化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテ等のベンゾイン系化合物;チオキサントン、2−エチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン等のチオキサントン系化合物;2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−メトキシナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−エトキシナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−エトキシカルボキニルナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン等のハロメチル化トリアジン系化合物;2−トリクロロメチル−5−(2’−ベンゾフリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−〔β−(2’−ベンゾフリル)ビニル〕−1,3,4−オキサジアゾール、4−オキサジアゾール、2−トリクロロメチル−5−フリル−1,3,4−オキサジアゾール等のハロメチル化オキサジアゾール系化合物;2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’ −テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’ −テトラフェニル−1,2’−ビイミダゾール等のビイミダゾール系化合物;1,2−オクタンジオン,1−〔4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)〕、エタノン,1−〔9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル〕−,1−(O−アセチルオキシム)等のオキシムエステル系化合物;ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム等のチタノセン系化合物;p−ジメチルアミノ安息香酸、p−ジエチルアミノ安息香酸等の安息香酸エステル系化合物;9−フェニルアクリジン等のアクリジン系化合物;等を挙げることができる。   Specific examples of the radical photopolymerization initiator include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1 -Phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- ( 2-hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2 -Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methyl Alkylphenone compounds such as phenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; benzophenones such as benzophenone, 4,4′-bis (dimethylamino) benzophenone and 2-carboxybenzophenone Compound: Benzoin compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Thioxanthone compounds such as diethylthioxanthone; 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4,6 Bis (trichloromethyl) -s-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-ethoxycarboquinylnaphthyl) -4,6-bis ( Halomethylated triazine compounds such as trichloromethyl) -s-triazine; 2-trichloromethyl-5- (2′-benzofuryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- [β- ( 2'-benzofuryl) vinyl] -1,3,4-oxadiazole, 4-oxadiazole, 2-trichloromethyl-5-furyl-1,3,4-oxadiazole and the like halomethylated oxadiazoles Compound; 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2 4-dichlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5 Biimidazole compounds such as 5′-tetraphenyl-1,2′-biimidazole; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1 Oxime ester compounds such as [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime); bis (η5-2,4-cyclopentadiene -1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium compounds such as titanium; p-dimethylaminobenzoic acid, p-diethylamino Benzoic acid ester compounds such as benzoic acid; acridine compounds such as 9-phenyl acridine; and the like.

上記単量体成分をラジカル重合機構により重合する場合、必要に応じて、公知の連鎖移動剤を使用してもよく、ラジカル重合開始剤と併用するのがより好ましい。このような連鎖移動剤としては、具体的には、例えば、メルカプト酢酸、3−メルカプトプロピオン酸等のメルカプトカルボン酸類;メルカプト酢酸メチル、3−メルカプトプロピオン酸メチル、3−メルカプトプロピオン酸2−エチルヘキシル、3−メルカプトプロピオン酸n−オクチル、3−メルカプトプロピオン酸メトキシブチル、3−メルカプトプロピオン酸ステアリル、トリメチロールプロパントリス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)等のメルカプトカルボン酸エステル類;エチルメルカプタン、t−ブチルメルカプタン、n−ドデシルメルカプタン、1,2−ジメルカプトエタン等のアルキルメルカプタン類;2−メルカプトエタノール、4−メルカプト−1−ブタノール等のメルカプトアルコール類;ベンゼンチオール、m−トルエンチオール、p−トルエンチオール、2−ナフタレンチオール等の芳香族メルカプタン類;トリス〔(3−メルカプトプロピオニロキシ)−エチル〕イソシアヌレート等のメルカプトイソシアヌレート類;2−ヒドロキシエチルジスルフィド、テトラエチルチウラムジスルフィド等のジスルフィド類;ベンジルジエチルジチオカルバメート等のジチオカルバメート類;α−メチルスチレンダイマー等の単量体ダイマー類;四臭化炭素等のハロゲン化アルキル類などが挙げられる。これらの中では、入手性、架橋防止能、重合速度低下の度合いが小さいなどの点で、メルカプトカルボン酸類、メルカプトカルボン酸エステル類、アルキルメルカプタン類、メルカプトアルコール類、芳香族メルカプタン類;メルカプトイソシアヌレート類などのメルカプト基を有する化合物が好ましい。これらは単独で用いても、2種以上を併用してもよい。   When the monomer component is polymerized by a radical polymerization mechanism, a known chain transfer agent may be used as necessary, and it is more preferable to use in combination with a radical polymerization initiator. Specific examples of such chain transfer agents include mercaptocarboxylic acids such as mercaptoacetic acid and 3-mercaptopropionic acid; methyl mercaptoacetate, methyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, N-octyl 3-mercaptopropionate, methoxybutyl 3-mercaptopropionate, stearyl 3-mercaptopropionate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), di Mercaptocarboxylic esters such as pentaerythritol hexakis (3-mercaptopropionate); ethyl mercaptan, t-butyl mercaptan, n-dodecyl mercaptan, 1,2-dimercaptoethane, etc. Alkyl mercaptans; mercaptoalcohols such as 2-mercaptoethanol and 4-mercapto-1-butanol; aromatic mercaptans such as benzenethiol, m-toluenethiol, p-toluenethiol and 2-naphthalenethiol; tris [(3 -Mercaptopropionyloxy) -ethyl] mercaptoisocyanurates such as isocyanurate; disulfides such as 2-hydroxyethyl disulfide and tetraethylthiuram disulfide; dithiocarbamates such as benzyldiethyldithiocarbamate; simple units such as α-methylstyrene dimer Monomeric dimers; alkyl halides such as carbon tetrabromide; Among these, mercaptocarboxylic acids, mercaptocarboxylic esters, alkyl mercaptans, mercaptoalcohols, aromatic mercaptans; mercaptoisocyanurates in terms of availability, ability to prevent crosslinking, and low degree of polymerization rate reduction. Compounds having a mercapto group, such as catechol, are preferred. These may be used alone or in combination of two or more.

上記単量体成分をラジカル重合機構により重合する場合、3官能以上の多価メルカプタンおよび/または3官能以上の多官能開始剤の存在下にてラジカル重合を行うことがより好ましい。   When the monomer component is polymerized by a radical polymerization mechanism, it is more preferable to perform radical polymerization in the presence of a trifunctional or higher polyvalent mercaptan and / or a trifunctional or higher polyfunctional initiator.

3官能以上の多価メルカプタンとしては、例えば、トリメチロールプロパントリメルカプトアセテート、トリメチロールプロパントリ(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキスメルカプトアセテート、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ジペンタエリスリトールヘキサキスメルカプトアセテート、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)など、水酸基を3個以上有する化合物とカルボキシル基含有メルカプタン類のポリエステル化合物、トリアジン多価チオール類、多価エポキシ化合物の複数のエポキシ基に硫化水素を付加させて1分子当たり3個以上のメルカプト基を導入してなる化合物、多価カルボン酸の複数のカルボキシル基とメルカプトエタノールをエステル化してなる1分子当たり3個以上のメルカプト基を有する化合物などが挙げることができる。3官能以上の多価メルカプタンは、1種類以上を単独または組み合わせて(例えば、混合して)使用することができる。   Examples of the trifunctional or higher polyvalent mercaptan include trimethylolpropane trimercaptoacetate, trimethylolpropane tri (3-mercaptopropionate), pentaerythritol tetrakismercaptoacetate, pentaerythritol tetrakis (3-mercaptopropionate), Dipentaerythritol hexakis mercaptoacetate, dipentaerythritol hexakis (3-mercaptopropionate) and other compounds having three or more hydroxyl groups and carboxyl group-containing mercaptans polyester compounds, triazine polyvalent thiols, polyvalent epoxy compounds A compound obtained by adding hydrogen sulfide to a plurality of epoxy groups and introducing three or more mercapto groups per molecule, a plurality of carboxyl groups and mercapto of polyvalent carboxylic acid Ethanol to can be such compounds include having esterified three or more mercapto groups per molecule comprising. The trifunctional or higher polyvalent mercaptan can be used alone or in combination (for example, mixed).

上記3官能以上の多価メルカプタンの使用量(添加量総量)は、使用する単量体の種類や量、重合温度、重合濃度等の重合条件、目標とする重合体の分子量等に応じて適宜設定すればよく、特に限定されない。なお、基油溶解性が高い重量平均分子量が10万以上の重合体を含有する粘度指数向上剤を得る点から、3官能以上の多価メルカプタンの使用量は、単量体成分100質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、また5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下がさらに好ましい。この範囲とすることで、分子量分布が狭くなり、せん断安定性を向上できる。   The amount (total amount added) of the trifunctional or higher polyvalent mercaptan is appropriately determined according to the type and amount of the monomer used, the polymerization conditions such as polymerization temperature and polymerization concentration, the molecular weight of the target polymer, and the like. What is necessary is just to set, and it does not specifically limit. From the viewpoint of obtaining a viscosity index improver containing a polymer having a high base oil solubility and a weight average molecular weight of 100,000 or more, the amount of trifunctional or higher polyvalent mercaptan used is 100 parts by mass of the monomer component. On the other hand, 0.01 mass part or more is preferable, 0.05 mass part or more is more preferable, 5 mass part or less is preferable, 3 mass part or less is more preferable, and 2 mass part or less is further more preferable. By setting it as this range, molecular weight distribution becomes narrow and shear stability can be improved.

3官能以上の多官能開始剤としては、例えば、2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパン、トリス(t−ブチルパーオキシ)トリアジン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノンなどの3官能以上の有機過酸化物などが挙げられるが、特に限定されない。   Examples of the trifunctional or higher polyfunctional initiator include 2,2-bis (4,4-t-butylperoxycyclohexyl) propane, tris (t-butylperoxy) triazine, 3,3 ′, 4,4. Trifunctional or higher functional organic peroxides such as' -tetra (t-butylperoxycarbonyl) benzophenone are exemplified, but not particularly limited.

上記3官能以上の多官能開始剤の使用量(添加量総量)は、目的、用途に応じて適宜設定すればよく、特に限定されない。なお、重合性、分解物の悪影響、経済性のバランスを考慮し、さらに粘度指数と基油溶解性が高い重量平均分子量が10万以上の重合体を含有する粘度指数向上剤を得る点から、3官能以上の多官能開始剤の使用量は、単量体成分100質量部に対して、0.01質量部以上が好ましく、0.02質量部以上がより好ましく、0.05質量部以上がさらに好ましく、また10質量部以下が好ましく、5質量部以下がより好ましく、2質量部以下がさらに好ましい。   The usage amount (addition amount total amount) of the trifunctional or higher polyfunctional initiator is not particularly limited, and may be appropriately set according to the purpose and application. From the viewpoint of obtaining a viscosity index improver containing a polymer having a weight average molecular weight of 100,000 or more, which has high viscosity index and base oil solubility, taking into consideration the balance between polymerizability, adverse effects of degradation products, and economic efficiency. The amount of the trifunctional or higher polyfunctional initiator is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and 0.05 parts by mass or more with respect to 100 parts by mass of the monomer component. More preferably, it is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and further preferably 2 parts by mass or less.

3官能以上の多価メルカプタンおよび/または3官能以上の多官能開始剤の存在下にて、単量体成分をラジカル重合することによって得られた重合体は、中心から高分子鎖が枝分かれした構造を有するものとなる。つまり、本発明の粘度指数向上剤に含まれる重合体は、3官能以上の多価メルカプタン由来の分岐単位および/または3官能以上の多官能開始剤由来の分岐単位を有するものとなる。粘度指数向上剤に含まれる重合体がこのような構造を有することにより、基油への溶解性を大きく損ねることなく、該重合体を含有する粘度指数向上剤のせん断安定性を改善することができる。   A polymer obtained by radical polymerization of a monomer component in the presence of a trifunctional or higher polyvalent mercaptan and / or a trifunctional or higher polyfunctional initiator has a structure in which a polymer chain is branched from the center. It will have. That is, the polymer contained in the viscosity index improver of the present invention has a branch unit derived from a trifunctional or higher polyvalent mercaptan and / or a branch unit derived from a trifunctional or higher polyfunctional initiator. When the polymer contained in the viscosity index improver has such a structure, the shear stability of the viscosity index improver containing the polymer can be improved without greatly impairing the solubility in the base oil. it can.

粘度指数向上剤に含まれる重合体が3官能以上の多価メルカプタン由来の分岐単位を有する場合、該重合体は、下記式(4)で示される分岐単位(連鎖移動剤残基)を有することが好ましい。下記式(4)において、Lはm価の有機残基を表し、mは0以上の数を表す。mは、好ましくは0〜5である。 When the polymer contained in the viscosity index improver has a branched unit derived from a trifunctional or higher polyvalent mercaptan, the polymer has a branched unit (chain transfer agent residue) represented by the following formula (4). Is preferred. In the following formula (4), L T represents an m-valent organic residue, m represents a number of 0 or more. m is preferably 0-5.

Figure 2017125090
Figure 2017125090

粘度指数向上剤に含まれる重合体が3官能以上の多官能開始剤由来の分岐単位を有する場合、該重合体は、3官能以上の過酸化物由来の分岐単位を有することが好ましく、具体的には、下記式(5)で示される分岐単位を有することが好ましい。下記式(5)において、Lはn価の有機残基(開始剤残基)を表し、nは0以上の数を表す。nは、好ましくは0〜5である。 When the polymer contained in the viscosity index improver has a branch unit derived from a trifunctional or higher polyfunctional initiator, the polymer preferably has a branch unit derived from a trifunctional or higher functional peroxide. Preferably has a branch unit represented by the following formula (5). In the following formula (5), L S represents an n-valent organic residue (initiator residue), and n represents a number of 0 or more. n is preferably 0 to 5.

Figure 2017125090
Figure 2017125090

粘度指数向上剤に含まれる重合体は、3官能以上の多価メルカプタン由来の分岐単位と3官能以上の多官能開始剤由来の分岐単位のどちらか一方のみ含んでいてもよく、両方含んでいてもよい。3官能以上の多価メルカプタン由来の分岐単位は、1種のみ含まれていてもよく、2種以上含まれていてもよい。3官能以上の多官能開始剤由来の分岐単位も、1種のみ含まれていてもよく、2種以上含まれていてもよい。   The polymer contained in the viscosity index improver may contain only one or both of a branched unit derived from a polyfunctional mercaptan having a functionality of 3 or more and a branched unit derived from a polyfunctional initiator having a functionality of 3 or more. Also good. Only one type of trifunctional or higher polyvalent mercaptan-derived branch unit may be contained, or two or more types may be contained. Only one type of branch unit derived from a trifunctional or higher polyfunctional initiator may be contained, or two or more types may be contained.

重合体中の3官能以上の多価メルカプタン由来の分岐単位の含有量は、重合体100質量部に対し、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、また5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下がさらに好ましい。この範囲とすることで、重合体の分子量分布が狭くなり、せん断安定性を向上できる。3官能以上の多価メルカプタン由来の分岐単位の含有量は、3官能以上の多価メルカプタンの使用量を重合体質量で除することにより求める。   The content of the trifunctional or higher polyfunctional mercaptan-derived branch unit in the polymer is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and 5 parts by mass with respect to 100 parts by mass of the polymer. Part or less, preferably 3 parts by weight or less, more preferably 2 parts by weight or less. By setting it as this range, the molecular weight distribution of the polymer becomes narrow, and the shear stability can be improved. The content of the branch unit derived from the trifunctional or higher polyvalent mercaptan is obtained by dividing the amount of the trifunctional or higher polyvalent mercaptan used by the polymer mass.

重合体中の3官能以上の多官能開始剤由来の分岐単位の含有量は、粘度指数と基油溶解性が高い重量平均分子量が10万以上の重合体を含有する粘度指数向上剤を得る点から、重合体100質量部に対し、0.01質量部以上が好ましく、0.02質量部以上がより好ましく、0.05質量部以上がさらに好ましく、また10質量部以下が好ましく、5質量部以下がより好ましく、2質量部以下がさらに好ましい。3官能以上の多官能開始剤由来の分岐単位の含有量は、3官能以上の多官能開始剤の使用量を重合体質量で除することにより求める。   The content of the branch unit derived from the trifunctional or higher polyfunctional initiator in the polymer is a viscosity index and a viscosity index improver containing a polymer having a high base oil solubility and a weight average molecular weight of 100,000 or more. From 100 parts by mass of the polymer, 0.01 parts by mass or more is preferable, 0.02 parts by mass or more is more preferable, 0.05 parts by mass or more is more preferable, and 10 parts by mass or less is preferable, and 5 parts by mass is preferable. The following is more preferable, and 2 parts by mass or less is more preferable. The content of the branch unit derived from the trifunctional or higher polyfunctional initiator is obtained by dividing the amount of the trifunctional or higher polyfunctional initiator used by the polymer mass.

重合工程で3官能以上の多価メルカプタンおよび/または3官能以上の多官能開始剤を用いる場合、それらの種類や使用量等の好適条件は、上記に説明した通りである。重合の際、3官能以上の多価メルカプタンおよび/または3官能以上の多官能開始剤は、一括添加してもよく、分割添加してもよい。また、2官能以下のメルカプタンや2官能以下の開始剤を併用してもよい。   In the case of using a trifunctional or higher polyvalent mercaptan and / or a trifunctional or higher polyfunctional initiator in the polymerization step, suitable conditions such as the type and amount of use thereof are as described above. In the polymerization, the trifunctional or higher polyvalent mercaptan and / or the trifunctional or higher polyfunctional initiator may be added all at once or in divided portions. Further, a bifunctional or lower functional mercaptan or a bifunctional or lower functional initiator may be used in combination.

本発明により得られる共重合体の分子量分布を狭くすることは、粘度指数の改善やせん断安定性改善の観点から非常に有利であるため、重合方法としてはLiving Radical Polymerizationも使用できる。具体的な方法としては、RAFT法やNMP法、ATRP法などが有名である。詳細については、Aldrich Material Matters Volume5,Number1,2010に概説されている。使用例としては、例えばRAFT法の場合、特開2012−197399号において、重合開始剤として2,2‘−アゾビスイソブチロニトリル、重合触媒として、ジチオ安息香酸クミルが用いられている。
上記単量体成分を重合する際の重合温度としては、重合機構、使用する単量体の種類や量、重合開始剤・重合触媒の種類や量等に応じて適宜設定すればよく、特に限定されないが、0℃以上200℃以下が好ましく、25℃〜150℃が特に好ましい。重合温度が0℃未満であると、重合反応が非常に遅くなり、200℃を超えると反応が激しく制御が困難となるため、いずれも好ましくない。
Since narrowing the molecular weight distribution of the copolymer obtained by the present invention is very advantageous from the viewpoint of improving the viscosity index and improving the shear stability, Living Radical Polymerization can also be used as a polymerization method. As specific methods, RAFT method, NMP method, ATRP method and the like are well known. Details are outlined in Aldrich Material Matters Volume 5, Number 1, 2010. For example, in the case of the RAFT method, 2,2′-azobisisobutyronitrile is used as a polymerization initiator and cumyl dithiobenzoate is used as a polymerization catalyst in JP2012-197399A.
The polymerization temperature at the time of polymerizing the monomer component may be appropriately set according to the polymerization mechanism, the type and amount of the monomer used, the type and amount of the polymerization initiator / polymerization catalyst, and the like. Although it is not, 0 to 200 degreeC is preferable and 25 to 150 degreeC is especially preferable. If the polymerization temperature is less than 0 ° C., the polymerization reaction is very slow, and if it exceeds 200 ° C., the reaction is so intense that it is difficult to control.

上記単量体成分は、溶液重合法により重合される。重合に使用する溶媒は、潤滑油基油である。   The monomer component is polymerized by a solution polymerization method. The solvent used for the polymerization is a lubricating base oil.

潤滑油基油としては、公知の潤滑油基油を特に制限なく用いることができ、鉱油系基油や合成系基油を好適に挙げることができる。鉱油系基油としては、パラフィン系やナフテン系等の基油が挙げられる。鉱物系基油には、原料基油を溶剤精製、水素化分解または水素化異性化処理したものも含まれる。合成系基油としては、炭化水素系、エステル系、エーテル系、シリコン系、フッ素系等の基油が挙げられる。潤滑油基油は、上述したように重合体の重合反応溶媒として用いる。     As the lubricating base oil, known lubricating base oils can be used without particular limitation, and mineral oil base oils and synthetic base oils can be preferably mentioned. Examples of the mineral oil base oil include paraffinic and naphthenic base oils. Mineral base oils include those obtained by subjecting raw material base oils to solvent refining, hydrocracking or hydroisomerization. Examples of synthetic base oils include hydrocarbon, ester, ether, silicon, and fluorine base oils. As described above, the lubricating base oil is used as a polymerization reaction solvent for the polymer.

鉱油系基油の好ましい具体例としては、以下に示す基油(1)〜(7)を原料とし、この原料油及び/又はこの原料油から回収された潤滑油留分を、所定の精製方法によって精製し、潤滑油留分を回収することによって得られる基油を挙げることができる。また(1)〜(7)から選ばれる基油又は当該基油から回収された潤滑油留分について所定の処理を行うことにより得られる下記基油(8)または(9)が特に好ましい。
(1)パラフィン基系原油および/または混合基系原油の常圧蒸留残渣油の減圧蒸留による留出油(WVGO)
(2)潤滑油脱ろう工程により得られるワックス(スラックワックス等)および/またはガストゥリキッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス、GTLワックス等)
(3)基油(1)〜(2)から選ばれる1種または2種以上の混合油および/または当該混合油のマイルドハイドロクラッキング処理油
(4)基油(1)〜(3)から選ばれる2種以上の混合油
(5)基油(1)〜(4)のいずれかの脱れき油(DAO)
(6)基油(5)のマイルドハイドロクラッキング処理油(MHC)
(7)基油(1)〜(6)から選ばれる2種以上の混合油。
(8)上記基油(1)〜(7)から選ばれる基油又は当該基油から回収された潤滑油留分を水素化分解し、その生成物又はその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、又は当該脱ろう処理をした後に蒸留することによって得られる水素化分解鉱油。
(9)上記基油(1)〜(7)から選ばれる基油又は当該基油から回収された潤滑油留分を水素化異性化し、その生成物又はその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、又は、当該脱ろう処理をしたあとに蒸留することによって得られる水素化異性化鉱油。
また、合成系基油としては、具体的には、ポリα−オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート等)、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられ、なかでもポリα−オレフィンが好ましい。ポリα−オレフィンとしては、典型的には、炭素数2〜32、好ましくは6〜16のα−オレフィンのオリゴマー又はコオリゴマー(1−オクテンオリゴマー、デセンオリゴマー、エチレン−プロピレンコオリゴマー等)及びそれらの水素化物が挙げられる。合成系基油の100℃における動粘度は、1〜20mm/秒であることが好ましい。

本発明により得られる共重合体を粘度指数向上剤として用い、潤滑油組成物とする際に配合する潤滑油基油としては、上記基油(1)〜(7)から選ばれる基油又は当該基油から回収された潤滑油留分について、上述の処理を行うことにより得られる基油(8)または(9)が特に好ましい。また、米国石油協会(API)による分類に基づくグループIIIに属する基油を用いることも好ましい。潤滑油組成物に配合する潤滑油基油としては、上述の合成系基油を用いてもよい。
本発明に用いる潤滑油基油は、潤滑油基油100質量部の内、パラフィンの含有量が60質量部以上90質量部以下であることが好ましく、より好ましくは65質量部以上85質量部以下であり、70質量部以上80質量部以下であることが特に好ましい。また、潤滑油基油100質量部の内、ナフテンの含有量が15質量部以上40質量部以下であることが好ましく、より好ましくは20質量部以上35質量部以下、さらには25質量部以上30質量部以下であることが特に好ましい。潤滑油基油の組成がこれらの範囲である時、熱安定性、光安定性に優れるだけでなく、所望の粘度への調整が容易である。また、潤滑油基油の粘度指数と低温特性のバランスが良好となる。
As a preferred specific example of the mineral oil base oil, the following base oils (1) to (7) are used as raw materials, and the raw oil and / or a lubricating oil fraction recovered from the raw oil is used as a predetermined refining method. And base oils obtained by recovering the lubricating oil fraction. Further, the following base oil (8) or (9) obtained by performing a predetermined treatment on a base oil selected from (1) to (7) or a lubricating oil fraction recovered from the base oil is particularly preferable.
(1) Distilled oil (WVGO) by distillation under reduced pressure of paraffin base crude oil and / or mixed base crude oil at atmospheric distillation residue
(2) Wax (such as slack wax) obtained by the lubricant dewaxing process and / or synthetic wax (Fischer-Tropsch wax, GTL wax, etc.) obtained by the gas-liquid (GTL) process, etc.
(3) One or two or more mixed oils selected from base oils (1) to (2) and / or mild hydrocracked oils of the mixed oils (4) selected from base oils (1) to (3) 2 or more kinds of mixed oils (5) Base oils (1) to (4)
(6) Mild hydrocracking treatment oil (MHC) of base oil (5)
(7) Two or more mixed oils selected from base oils (1) to (6).
(8) Hydrocracking a base oil selected from the base oils (1) to (7) or a lubricating oil fraction recovered from the base oil, and recovering the product or the product by distillation or the like Hydrocracked mineral oil obtained by performing dewaxing treatment such as solvent dewaxing or catalytic dewaxing on the lubricating oil fraction, or by performing distillation after the dewaxing treatment.
(9) A base oil selected from the base oils (1) to (7) or a lubricating oil fraction recovered from the base oil is hydroisomerized and recovered from the product or the product by distillation or the like. Hydroisomerized mineral oil obtained by subjecting a lubricating oil fraction to dewaxing treatment such as solvent dewaxing or catalytic dewaxing, or distillation after the dewaxing treatment.
Specific examples of synthetic base oils include poly α-olefins or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (ditridecyl glutarate, di-2-ethylhexyl adipate). , Diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.), polyol ester (trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), poly Examples thereof include oxyalkylene glycol, dialkyl diphenyl ether, polyphenyl ether, and the like, and poly α-olefin is particularly preferable. As the poly α-olefin, typically, an oligomer or co-oligomer (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.) having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, and those. Of the hydrides. The kinematic viscosity at 100 ° C. of the synthetic base oil is preferably 1 to 20 mm 2 / sec.

The base oil selected from the above base oils (1) to (7) or the above base oil (1) to (7) is used as a lubricating base oil to be blended when the copolymer obtained by the present invention is used as a viscosity index improver. The base oil (8) or (9) obtained by performing the above-described treatment on the lubricating oil fraction recovered from the base oil is particularly preferred. It is also preferred to use a base oil belonging to Group III based on classification by the American Petroleum Institute (API). As the lubricating base oil blended in the lubricating oil composition, the above-described synthetic base oil may be used.
The lubricating base oil used in the present invention preferably has a paraffin content of 60 to 90 parts by mass, more preferably 65 to 85 parts by mass, out of 100 parts by mass of the lubricating base oil. It is particularly preferable that it is 70 parts by weight or more and 80 parts by weight or less. Moreover, it is preferable that content of naphthene is 15 to 40 mass parts among 100 mass parts of lubricating base oil, More preferably, it is 20 to 35 mass parts, More preferably, it is 25 to 30 mass parts. It is particularly preferable that the amount is not more than part by mass. When the composition of the lubricating base oil is within these ranges, not only is it excellent in thermal stability and light stability, but also adjustment to a desired viscosity is easy. Further, the balance between the viscosity index and the low temperature characteristics of the lubricating base oil is good.

本発明により得られる潤滑油組成物においては、上記の潤滑油基油を単独で用いてもよく、また他の基油の1種又は2種以上と併用してもよい。なお、潤滑油基油と他の基油とを併用して混合基油とする場合、当該混合基油は上記潤滑油基油(8)または(9)を少なくとも含むことが好ましい。混合基油中の上記潤滑油基油(8)または(9)の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。   In the lubricating oil composition obtained by the present invention, the above lubricating base oil may be used alone, or may be used in combination with one or more other base oils. In addition, when using together lubricating base oil and another base oil, it is preferable that the said mixed base oil contains the said lubricating base oil (8) or (9) at least. The ratio of the lubricating base oil (8) or (9) in the mixed base oil is preferably 30% by mass or more, more preferably 50% by mass or more, and 70% by mass or more. Further preferred.

潤滑油基油の粘度指数は、100以上であることが好ましく、120以上がより好ましく、また160以下が好ましい。粘度指数が100未満であると、粘度−温度特性及び熱・酸化安定性、揮発防止性が悪化するだけでなく、摩擦係数が上昇する傾向にあり、また、摩耗防止性が低下する傾向にある。また、粘度指数が160を超えると、低温粘度特性が低下する傾向にある。なお、本発明でいう粘度指数とは、JIS K 2283に準拠して測定された粘度指数を意味する。   The viscosity index of the lubricating base oil is preferably 100 or more, more preferably 120 or more, and preferably 160 or less. When the viscosity index is less than 100, not only the viscosity-temperature characteristics, thermal / oxidative stability, and volatilization prevention properties deteriorate, but also the friction coefficient tends to increase, and the wear prevention properties tend to decrease. . On the other hand, when the viscosity index exceeds 160, the low-temperature viscosity characteristics tend to deteriorate. In addition, the viscosity index as used in the field of this invention means the viscosity index measured based on JISK2283.

潤滑油基油の流動点は、0℃以下が好ましく、−5℃以下がより好ましく、−10℃以下がより好ましい。なお、本発明でいう流動点とは、JIS K 2269に準拠して測定された粘度指数を意味する。   The pour point of the lubricating base oil is preferably 0 ° C. or lower, more preferably −5 ° C. or lower, and more preferably −10 ° C. or lower. In addition, the pour point as used in the field of this invention means the viscosity index measured based on JISK2269.

本発明により得られる重合体の重量平均分子量(Mw)は10万以上が好ましく、より好ましくは20万以上60万以下であり、より好ましくは25万を超えて60万以下であり、さらに好ましくは27万以上55万以下である。重合体の重量平均分子量が上記下限値に満たない場合は、潤滑油組成物の粘度指数が低くなるだけでなく、所望の粘度に調整するために粘度指数向上剤の使用量を増やす必要があり、コスト面で不利となる。重合体の重量平均分子量が過度に大きい場合は、粘度指数向上剤の基油への溶解性が不足したり潤滑油組成物のせん断安定性が低下したりする傾向がある。また、本発明により得られる重合体の分子量分布は、粘度指数やせん断安定性改善の観点から、4.0以下が好ましく、3.0以下がより好ましく、2.8以下であることがより好ましい。なお、本発明における重量平均分子量、及び分子量分布(Mw/Mn)は、後述の実施例に記載の方法にて測定した値である。   The polymer obtained by the present invention preferably has a weight average molecular weight (Mw) of 100,000 or more, more preferably 200,000 or more and 600,000 or less, more preferably more than 250,000 and 600,000 or less, and still more preferably. 270,000 to 550,000. When the weight average molecular weight of the polymer is less than the above lower limit, not only the viscosity index of the lubricating oil composition is lowered, but it is necessary to increase the amount of the viscosity index improver used to adjust to the desired viscosity. This is disadvantageous in terms of cost. When the weight average molecular weight of the polymer is excessively large, the solubility of the viscosity index improver in the base oil tends to be insufficient or the shear stability of the lubricating oil composition tends to decrease. Further, the molecular weight distribution of the polymer obtained by the present invention is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.8 or less from the viewpoint of improving the viscosity index and shear stability. . In addition, the weight average molecular weight in this invention and molecular weight distribution (Mw / Mn) are the values measured by the method as described in the below-mentioned Example.

本発明により得られる重合体の分岐度は1.0以上が好ましく、より好ましくは1.4以上であり、また10.0以下が好ましく、6.0以下がより好ましく、4.0以下がさらに好ましい。分岐度が1.0よりも小さい場合には、重合体の分岐構造が十分ではなく、せん断安定性の改善が期待できない。なお、本発明における分岐度は、重合体1分子あたりの分岐点の数の平均に相当し、論理的には、例えば、分岐のない直鎖の重合体の分岐度は0となり、唯一の分岐点から3本のポリマー鎖が伸びている重合体の分岐度は1となり、4本のポリマー鎖が伸びている重合体の分岐度は2となり、5本のポリマー鎖が伸びている重合体の分岐度は3となる。   The degree of branching of the polymer obtained by the present invention is preferably 1.0 or more, more preferably 1.4 or more, and preferably 10.0 or less, more preferably 6.0 or less, and further preferably 4.0 or less. preferable. When the degree of branching is less than 1.0, the branched structure of the polymer is not sufficient, and improvement in shear stability cannot be expected. The degree of branching in the present invention corresponds to the average number of branch points per molecule of the polymer, and logically, for example, the degree of branching of a straight-chain polymer without branching is 0, and the only branching From the point, the degree of branching of the polymer in which three polymer chains are extended is 1, the degree of branching of the polymer in which four polymer chains are extended is 2, and the degree of branching of the polymer in which five polymer chains are extended The degree of branching is 3.

本発明により得られる重合体のSP値(溶解度パラメーター)は、8.8以上が好ましく、8.9以上がより好ましく、9.0以上がさらに好ましく、また9.6以下が好ましく、9.5以下がより好ましく、9.4以下がさらに好ましい。基油のSP値は一般に8.0〜8.5程度の値を示すが、重合体のSP値が8.8以上であれば潤滑油組成物の粘度指数を高めやすくなり、重合体のSP値が9.6以下であれば粘度指数向上剤の基油への溶解性を確保しやすくなる。SP値は、公知の方法を用いて測定することができる。   The SP value (solubility parameter) of the polymer obtained by the present invention is preferably 8.8 or more, more preferably 8.9 or more, further preferably 9.0 or more, and more preferably 9.6 or less, 9.5 The following is more preferable, and 9.4 or less is more preferable. The SP value of the base oil generally shows a value of about 8.0 to 8.5. However, if the SP value of the polymer is 8.8 or more, the viscosity index of the lubricating oil composition is easily increased, and the SP of the polymer is increased. If the value is 9.6 or less, it becomes easy to ensure the solubility of the viscosity index improver in the base oil. The SP value can be measured using a known method.

本発明により得られる共重合体は、粘度指数向上効果とせん断安定性を高いレベルで両立できる。せん断安定性の具体的数値としてPSSI(パーマネントシアスタビリティインデックス:ASTM D 6022)や分解開始温度が指標となる。本実施形態に係る粘度指数向上剤は、上述した重合体を主成分として含み、好ましくは本発明の粘度指数向上剤に対して70質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは99質量%以上、100質量%以下として含有する。この粘度指数向上剤のPSSIは、50以下であることが好ましく、より好ましくは45以下であり、特に好ましくは40以下である。また、上記PSSIは、0.1以上であることが好ましく、より好ましくは0.5以上であり、さらに好ましくは2以上であり、特に好ましくは5以上である。PSSIが0.1未満の場合には粘度指数向上効果が小さくコストが上昇するおそれがあり、PSSIが50を超える場合にはせん断安定性や貯蔵安定性が悪くなるおそれがある。なお、本発明におけるPSSIは、後述の実施例に記載の方法にて測定した値である。   The copolymer obtained by the present invention can achieve both a high viscosity index improvement effect and shear stability at a high level. As specific numerical values of shear stability, PSSI (Permanent Cystability Index: ASTM D 6022) or decomposition start temperature is an index. The viscosity index improver according to this embodiment contains the above-mentioned polymer as a main component, preferably 70% by mass or more, more preferably 90% by mass or more, particularly preferably 95%, based on the viscosity index improver of the present invention. It is contained as a mass% or more, most preferably 99 mass% or more and 100 mass% or less. The PSSI of this viscosity index improver is preferably 50 or less, more preferably 45 or less, and particularly preferably 40 or less. The PSSI is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 2 or more, and particularly preferably 5 or more. When PSSI is less than 0.1, the effect of improving the viscosity index is small and the cost may increase. When PSSI exceeds 50, the shear stability and storage stability may be deteriorated. In addition, PSSI in this invention is the value measured by the method as described in the below-mentioned Example.

本発明に係る粘度指数向上剤は、上述した重合体を主成分として含み、好ましくは粘度指数向上剤100質量%中、重合体を70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上、100質量%以下含有する。   The viscosity index improver according to the present invention contains the above-mentioned polymer as a main component, and preferably, in 100% by mass of the viscosity index improver, the polymer is 70% by mass or more, more preferably 90% by mass or more, and further preferably. The content is 95% by mass or more, particularly preferably 99% by mass or more and 100% by mass or less.

本発明は、上記により得られる粘度指数向上剤を含む、潤滑油組成物の製造方法でもある。本発明の潤滑油組成物は、本発明の粘度指数向上剤に上記潤滑油基油や、以下に記載の添加剤などを添加することで得ることができる。本発明により得られる潤滑油組成物の粘度指数は、200以上400以下であることが好ましく、230以上300以下であることがより好ましい。粘度指数が上記の範囲内であれば、省燃費性と熱・酸化安定性、貯蔵安定性に優れる。   This invention is also a manufacturing method of a lubricating oil composition containing the viscosity index improver obtained by the above. The lubricating oil composition of the present invention can be obtained by adding the above-mentioned lubricating base oil or the additives described below to the viscosity index improver of the present invention. The viscosity index of the lubricating oil composition obtained according to the present invention is preferably 200 or more and 400 or less, and more preferably 230 or more and 300 or less. When the viscosity index is within the above range, the fuel economy, heat / oxidation stability, and storage stability are excellent.

本実施形態に係る潤滑油組成物において、上述した本発明の粘度指数向上剤の含有量は、潤滑油組成物の全量を基準として、好ましくは0.01質量%以上20質量%以下、より好ましくは0.1質量%以上15質量%以下、さらに好ましくは0.5質量%以上10質量%以下である。   In the lubricating oil composition according to the present embodiment, the content of the viscosity index improver of the present invention described above is preferably 0.01% by mass or more and 20% by mass or less, more preferably, based on the total amount of the lubricating oil composition. Is 0.1 mass% or more and 15 mass% or less, More preferably, it is 0.5 mass% or more and 10 mass% or less.

本発明により得られる潤滑油組成物は、上述した本発明により得られる共重合体を必須成分として含有する。さらに好ましくは流動点降下剤、摩耗防止剤、金属系清浄分散剤、無灰清浄分散剤、酸化防止剤、腐食防止剤、泡消剤及び摩擦調整剤から選ばれる少なくとも1種の添加剤を含有することが好ましい。   The lubricating oil composition obtained by the present invention contains the above-described copolymer obtained by the present invention as an essential component. More preferably, it contains at least one additive selected from a pour point depressant, an antiwear agent, a metal-based detergent dispersant, an ashless detergent dispersant, an antioxidant, a corrosion inhibitor, a defoamer, and a friction modifier. It is preferable to do.

流動点降下剤としては、潤滑油に用いられる任意の流動点降下剤が使用できる。例えば、ポリメタクリレート類、ナフタレン−塩素化パラフィン縮合生成物、フェノール−塩素化パラフィン縮合生成物などが挙げられる。これらの中ではポリメタクリレート類の添加が好ましい。   As the pour point depressant, any pour point depressant used for lubricating oil can be used. Examples include polymethacrylates, naphthalene-chlorinated paraffin condensation products, phenol-chlorinated paraffin condensation products, and the like. Among these, addition of polymethacrylates is preferable.

摩耗防止剤(又は極圧剤)としては、潤滑油に用いられる任意の摩耗防止剤・極圧剤が使用できる。例えば、硫黄系、リン系、硫黄−リン系の極圧剤等が使用でき、具体的には、ジアルキルジチオリン酸亜鉛(ZnDTP)、亜リン酸エステル類、チオ亜リン酸エステル類、ジチオ亜リン酸エステル類、トリチオ亜リン酸エステル類、リン酸エステル類、チオリン酸エステル類、ジチオリン酸エステル類、トリチオリン酸エステル類、これらのアミン塩、これらの金属塩、これらの誘導体、ジチオカーバメート、亜鉛ジチオカーバメート、MoDTC、ジサルファイド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類等が挙げられる。これらの中では硫黄系極圧剤の添加が好ましく、特に硫化油脂が好ましい。   As the antiwear agent (or extreme pressure agent), any antiwear agent / extreme pressure agent used for lubricating oil can be used. For example, sulfur-based, phosphorus-based, sulfur-phosphorus extreme pressure agents and the like can be used. Specifically, zinc dialkyldithiophosphate (ZnDTP), phosphites, thiophosphites, dithiophosphites Acid esters, trithiophosphites, phosphate esters, thiophosphate esters, dithiophosphate esters, trithiophosphate esters, amine salts thereof, metal salts thereof, derivatives thereof, dithiocarbamate, zinc dithio Carbamate, MoDTC, disulfides, polysulfides, sulfurized olefins, sulfurized fats and oils, and the like can be given. Among these, addition of a sulfur-based extreme pressure agent is preferable, and sulfurized fats and oils are particularly preferable.

金属系清浄分散剤としては、アルカリ金属/アルカリ土類金属スルホネート、アルカリ金属/アルカリ土類金属フェネート、及びアルカリ金属/アルカリ土類金属サリシレート等の正塩又は塩基性塩を挙げることができる。アルカリ金属としてはナトリウム、カリウム等、アルカリ土類金属としてはマグネシウム、カルシウム、バリウム等が挙げられるが、マグネシウム又はカルシウムが好ましく、特にカルシウムがより好ましい。   Examples of the metal detergent / dispersant include normal salts or basic salts such as alkali metal / alkaline earth metal sulfonate, alkali metal / alkaline earth metal phenate, and alkali metal / alkaline earth metal salicylate. Examples of the alkali metal include sodium and potassium, and examples of the alkaline earth metal include magnesium, calcium and barium. Magnesium or calcium is preferable, and calcium is more preferable.

無灰清浄分散剤としては、潤滑油に用いられる任意の無灰清浄分散剤が使用でき、例えば、炭素数40〜400の直鎖もしくは分枝状のアルキル基又はアルケニル基を分子中に少なくとも1個有するモノ又はビスコハク酸イミド、炭素数40〜400のアルキル基又はアルケニル基を分子中に少なくとも1個有するベンジルアミン、あるいは炭素数40〜400のアルキル基又はアルケニル基を分子中に少なくとも1個有するポリアミン、あるいはこれらのホウ素化合物、カルボン酸、リン酸等による変成品等が挙げられる。使用に際してはこれらの中から任意に選ばれる1種類あるいは2種類以上を配合することができる。   As the ashless detergent / dispersant, any ashless detergent / dispersant used in lubricating oils can be used. For example, at least one linear or branched alkyl group or alkenyl group having 40 to 400 carbon atoms is contained in the molecule. Mono- or bissuccinimide having one, benzylamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule Examples include polyamines or modified products of these boron compounds, carboxylic acids, phosphoric acids, and the like. In use, one kind or two or more kinds arbitrarily selected from these can be blended.

酸化防止剤としては、フェノール系、アミン系等の無灰酸化防止剤、銅系、モリブデン系等の金属系酸化防止剤が挙げられる。具体的には、例えば、フェノール系無灰酸化防止剤としては、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2,6−ジ−tert−ブチルフェノール)等が、アミン系無灰酸化防止剤としては、フェニル−α−ナフチルアミン、アルキルフェニル−α−ナフチルアミン、ジアルキルジフェニルアミン等が挙げられる。   Examples of the antioxidant include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum. Specifically, for example, as a phenol-based ashless antioxidant, 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert- Butylphenol) and the like are amine-based ashless antioxidants such as phenyl-α-naphthylamine, alkylphenyl-α-naphthylamine, and dialkyldiphenylamine.

腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、又はイミダゾール系化合物等が挙げられる。   Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, or imidazole compounds.

泡消剤としては、例えば、25℃における動粘度が1000〜10万mm2/sのシリコーンオイル、フルオロシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸のエステル、メチルサリチレートとo−ヒドロキシベンジルアルコール等が挙げられる。   Examples of the defoaming agent include silicone oil, fluorosilicone oil, alkenyl succinic acid derivative having a kinematic viscosity at 25 ° C. of 1000 to 100,000 mm 2 / s, ester of polyhydroxy aliphatic alcohol and long chain fatty acid, methyl salicylate And o-hydroxybenzyl alcohol.

摩擦調整剤としては、モリブデンジチオカーバメートやモリブデンジチオフォスフェートなどのコハク酸イミドモリブデン錯体や有機モリブデン酸のアミン塩等の有機モリブデン化合物のほか、基本構造として炭素数8以上30以下の直鎖アルキルと金属に吸着できる極性基を同じ分子内にもつ構造のものが挙げられる。極性基としては、アミンやポリアミン、アミドや、これらを同時に分子内に持つ、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ウレア系化合物、ヒドラジド系化合物等尿素やアルケニルコハク酸イミドタイプ、エステル、アルコールやジオール、あるいはエステルと水酸基を同時にもつ、例えばモノアルキルグリセリンエステルなどが挙げられる。そのほかアミンと水酸基とを同じ分子内に持つ、たとえばアルキルアミンアフコシキアルコール等など様々である。   As friction modifiers, in addition to organic molybdenum compounds such as succinimide molybdenum complexes such as molybdenum dithiocarbamate and molybdenum dithiophosphate, and amine salts of organic molybdic acid, linear alkyl and metal having 8 to 30 carbon atoms as a basic structure. And having a polar group that can be adsorbed on the same molecule in the same molecule. Examples of polar groups include amines, polyamines, amides, urea compounds and alkenyls such as amine compounds, fatty acid esters, fatty acid amides, fatty acids, fatty alcohols, aliphatic ethers, urea compounds, hydrazide compounds having these simultaneously in the molecule. Examples thereof include succinimide type, ester, alcohol and diol, or monoalkyl glycerol ester having ester and hydroxyl group at the same time. In addition, there are various types such as an alkylamine afucosyl alcohol having an amine and a hydroxyl group in the same molecule.

本実施形態に係る潤滑油組成物が流動点降下剤、摩耗防止剤、金属系清浄分散剤、無灰清浄分散剤、酸化防止剤、腐食防止剤、泡消剤及び摩擦調整剤の1種又は2種以上を含有する場合、それぞれの含有量は、潤滑油組成物の全量を基準として、0.01質量%以上10質量%以下であることが好ましい。また、本実施形態に係る潤滑油組成物が消泡剤を含有する場合、その含有量は、好ましくは0.0001質量%以上0.01質量%以下である。   The lubricating oil composition according to the present embodiment is a pour point depressant, an antiwear agent, a metallic detergent / dispersant, an ashless detergent / dispersant, an antioxidant, a corrosion inhibitor, a defoamer, and a friction modifier, or When it contains 2 or more types, it is preferable that each content is 0.01 mass% or more and 10 mass% or less on the basis of the whole quantity of a lubricating oil composition. Moreover, when the lubricating oil composition according to the present embodiment contains an antifoaming agent, the content is preferably 0.0001% by mass or more and 0.01% by mass or less.

また、本実施形態に係る潤滑油組成物は、上記の成分に加えて、本発明の重合体以外の粘度指数向上剤、さび止め剤、抗乳化剤、金属不活性化剤等をさらに含有することができる。   The lubricating oil composition according to the present embodiment further contains a viscosity index improver, rust inhibitor, demulsifier, metal deactivator, etc. other than the polymer of the present invention, in addition to the above components. Can do.

先の実施形態に係る本発明の重合体以外の粘度指数向上剤は、具体的には非分散型又は分散型エステル基含有粘度指数向上剤であり、例として非分散型又は分散型ポリ(メタ)アクリレート系粘度指数向上剤、非分散型又は分散型オレフィン−(メタ)アクリレート共重合体系粘度指数向上剤、スチレン−無水マレイン酸エステル共重合体系粘度指数向上剤及びこれらの混合物等が挙げられ、これらの中でも非分散型又は分散型ポリ(メタ)アクリレート系粘度指数向上剤であることが好ましい。特に非分散型又は分散型ポリメタクリレート系粘度指数向上剤であることが好ましい。その他に、非分散型又は分散型エチレン−α−オレフィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン−ジエン水素化共重合体及びポリアルキルスチレン等を挙げることができる。   The viscosity index improver other than the polymer of the present invention according to the previous embodiment is specifically a non-dispersed or dispersed ester group-containing viscosity index improver, for example, a non-dispersed or dispersed poly (meta ) Acrylic viscosity index improver, non-dispersed or dispersed olefin- (meth) acrylate copolymer viscosity index improver, styrene-maleic anhydride copolymer viscosity index improver, and mixtures thereof. Among these, non-dispersed or dispersed poly (meth) acrylate viscosity index improvers are preferable. A non-dispersed or dispersed polymethacrylate viscosity index improver is particularly preferable. In addition, a non-dispersed or dispersed ethylene-α-olefin copolymer or a hydrogenated product thereof, polyisobutylene or a hydrogenated product thereof, a styrene-diene hydrogenated copolymer, a polyalkylstyrene, and the like can be given.

さび止め剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、又は多価アルコールエステル等が挙げられる。   Examples of the rust inhibitor include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.

抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、又はポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。   Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, or polyoxyethylene alkyl naphthyl ether.

金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール又はその誘導体、1,3,4−チアジアゾールポリスルフィド、1,3,4−チアジアゾリル−2,5−ビスジアルキルジチオカーバメート、2−(アルキルジチオ)ベンゾイミダゾール、又はβ−(o−カルボキシベンジルチオ)プロピオンニトリル等が挙げられる。   Examples of metal deactivators include imidazoline, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis. Examples thereof include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, and β- (o-carboxybenzylthio) propiononitrile.

以下に実施例により本発明を詳細に説明するが、本発明はこれに限定されるものではない。なお、実施例、比較例中の%および部は質量%および質量部を表す。
重合体に関する分析および評価を、以下の方法で行った。
(マレイミド系単量体重合率)
重合率の測定には、ガスクロマトグラフィー(島津製作所製、GC2010)を用いた。測定条件は以下のとおりである。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. In addition,% and part in an Example and a comparative example represent the mass% and a mass part.
Analysis and evaluation on the polymer were performed by the following methods.
(Maleimide monomer polymerization rate)
For the measurement of the polymerization rate, gas chromatography (manufactured by Shimadzu Corporation, GC2010) was used. The measurement conditions are as follows.

カラム:Inert CapR 1(内径0.25mm、長さ30m)
温度:
注入口温度:200℃
検出器温度:350℃
キャリアガス:ヘリウム(カラム流量1.39mL/分)
注入量:0.5μL
内部標準試料:トリデカン
希釈溶剤:p−キシレン
具体的には、予め、重合に用いる各単量体とトリデカンとをp−キシレンに溶解させた検量線溶液を作製し、当該溶液を上記測定条件のガスクロマトグラフィーで測定して得たピーク面積から検量線を作成した。次に、測定対象物である重合液とトリデカンとをp−キシレンに溶解させた測定試料を作製し、当該試料を上記測定条件のガスクロマトグラフィーで測定して、作成した検量線を用いた内部標準法により、重合液中の残存単量体の含有率を求め、重合開始前の単量体量含有率との比によって重合率を算出した。
(重量平均分子量)
システム:東ソー製GPCシステム HLC−8220
測定側カラム構成:
・ガードカラム:東ソー製、TSKguardcolumn SuperHZ−L
・分離カラム:東ソー製、TSKgel SuperHZM−M
リファレンス側カラム構成
・リファレンスカラム:東ソー製、TSKgel SuperH−RC
展開溶媒:クロロホルム(和光純薬工業製、特級)
展開溶媒の流量:0.6mL/分
標準試料:TSK標準ポリスチレン(東ソー製、PS−オリゴマーキット)
カラム温度:40℃
(粘度指数)
100℃における動粘度が7.0mm/sとなるように、基油(SK製 YUBASE 4)に重合体を希釈し、JIS K2283の方法で測定した。
(せん断安定性)
100℃における動粘度が7.0mm/sとなるように、基油(SK製 YUBASE 4)に重合体を希釈し、以下の条件で超音波を照射した。
装置:Hielscher Ultrasonics製 UP400S
設定:Amplitude=70%、Cycle=1
時間:5分
温度:100℃
せん断前後および基油の100℃における動粘度を測定し、SSI={1−(せん断後の動粘度−基油の動粘度)/(せん断前の動粘度−基油の動粘度)}*100の式で計算した。
(臭気)
重合終了後の液10gを100mlスクリュー管に取り、蓋をして120℃で1時間加熱した後、蓋をとって臭気を確認し、酸成分由来の臭気がした場合を×、臭気がしなかった場合を○とした。
(SP値)
重合体のSP値(溶解度パラメーター)を、アクセルリス社製のMaterials Studio(登録商標) Ver.6.1 MS−Synthiaモジュールを用いて計算した。まず、モノマー構造を作成し、繰り返し構造を定義した。定義したモノマー構造を用いてMS−Synthiaモジュールで高分子物性(溶解度パラメーター等)を計算した。MS−Synthiaモジュールは定量的構造物性相関(QSPR:Quantitave Structure Property Relationships)を用いることにより高分子の物性を計算できるソフトウェアであり、グラフ理論から得られる結合性指数を用いてモノマー構造から高分子の物性を計算することができる。詳細な理論は次の文献に記載されており、当該記載が本願に参考のため援用される:Jozef Bicerano、「Prediction of Polymer Properties,3rd Edition」、Marcel Dekker社発刊。今回は、MS−Synthiaで計算できるBiceranoが改良したFedors法とvan Krevelen法のSP値(溶解度パラメーター)のうち、Fedors法の値を使用した。
(実施例1)
撹拌装置、温度センサー、冷却管、窒素導入管、および滴下ロートを備えた反応容器に、メチルメタクリレート(MMA)20質量部、ステアリルメタクリレート(StMA)30質量部、N−フェニルマレイミド(PMI)10質量部、ラウリルメタクリレート/トリデシルメタクリレート=54/46(質量比)の混合物(SLMA)40質量部、基油(SK製 YUBASE 4)143.6質量部、ペンタエリスリトールテトラキス(メルカプトアセテート)0.05質量部を仕込み、これに窒素ガスを導入しつつ内容物を105℃まで昇温させた。重合開始剤として0.0774質量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)と基油(SK製 YUBASE 4)1.38質量部を混合した溶液を添加するとともに、前記重合開始剤0.034質量部を基油(SK製 YUBASE 4)3.40質量部に溶解させた溶液を2時間かけて滴下しながら溶液重合を進行させ、さらに4時間の熟成を行った。
Column: Inert CapR 1 (inner diameter 0.25 mm, length 30 m)
temperature:
Inlet temperature: 200 ° C
Detector temperature: 350 ° C
Carrier gas: helium (column flow rate 1.39 mL / min)
Injection volume: 0.5 μL
Internal standard sample: tridecane Diluent solvent: p-xylene Specifically, a calibration curve solution in which each monomer used for polymerization and tridecane were dissolved in p-xylene in advance was prepared, and the solution was subjected to the above measurement conditions. A calibration curve was prepared from the peak area obtained by measurement by gas chromatography. Next, a measurement sample is prepared by dissolving a polymerization solution, which is a measurement object, and tridecane in p-xylene, the sample is measured by gas chromatography under the above measurement conditions, and an internal calibration curve using the prepared calibration curve is used. The content ratio of the residual monomer in the polymerization solution was determined by a standard method, and the polymerization ratio was calculated from the ratio to the monomer content ratio before the start of polymerization.
(Weight average molecular weight)
System: Tosoh GPC system HLC-8220
Measurement side column configuration:
Guard column: manufactured by Tosoh Corporation, TSK guard column Super HZ-L
Separation column: Tosoh TSKgel SuperHZM-M
Reference side column configuration and reference column: Tosoh TSKgel SuperH-RC
Developing solvent: Chloroform (Wako Pure Chemical Industries, special grade)
Flow rate of developing solvent: 0.6 mL / min Standard sample: TSK standard polystyrene (manufactured by Tosoh, PS-oligomer kit)
Column temperature: 40 ° C
(Viscosity index)
The polymer was diluted with a base oil (YUBASE 4 manufactured by SK) so that the kinematic viscosity at 100 ° C. was 7.0 mm 2 / s, and measured by the method of JIS K2283.
(Shear stability)
The polymer was diluted in a base oil (YUBASE 4 manufactured by SK) so that the kinematic viscosity at 100 ° C. was 7.0 mm 2 / s, and ultrasonic waves were irradiated under the following conditions.
Equipment: UP400S manufactured by Hielscher Ultrasonics
Setting: Amplitude = 70%, Cycle = 1
Time: 5 minutes Temperature: 100 ° C
The kinematic viscosity before and after shearing and at 100 ° C. of the base oil was measured, and SSI = {1− (kinematic viscosity after shearing−kinematic viscosity of base oil) / (kinematic viscosity before shearing−dynamic viscosity of base oil)} * 100 It was calculated by the following formula.
(Odor)
Take 10g of the liquid after completion of polymerization in a 100ml screw tube, cover and heat at 120 ° C for 1 hour, check the odor by removing the lid, and if there is an odor derived from the acid component, no odor The case was marked with ○.
(SP value)
The SP value (solubility parameter) of the polymer was measured using Materials Studio (registered trademark) Ver. 6.1 Calculated using the MS-Synthia module. First, a monomer structure was created and a repeating structure was defined. Polymer physical properties (solubility parameters, etc.) were calculated with the MS-Synthia module using the defined monomer structure. The MS-Synthia module is a software that can calculate the physical properties of polymers by using Quantitative Structure Property Relationships (QSPR). Physical properties can be calculated. The detailed theory is described in the following literature, which is incorporated herein by reference: Published by Josef Bicerano, “Prediction of Polymer Properties, 3rd Edition”, published by Marcel Dekker. This time, the value of the Fedors method was used among SP values (solubility parameters) of the Fedors method and van Krevelen method improved by Bicerano, which can be calculated by MS-Synthia.
Example 1
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe, and a dropping funnel, 20 parts by mass of methyl methacrylate (MMA), 30 parts by mass of stearyl methacrylate (StMA), 10 parts by mass of N-phenylmaleimide (PMI) Part, mixture of lauryl methacrylate / tridecyl methacrylate = 54/46 (mass ratio) (SLMA) 40 parts by mass, base oil (YUBASE 4 made by SK) 143.6 parts by mass, pentaerythritol tetrakis (mercaptoacetate) 0.05 mass The contents were heated to 105 ° C. while introducing nitrogen gas. A solution obtained by mixing 0.0774 parts by mass of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi, Luperox (registered trademark) 570) and 1.38 parts by mass of a base oil (YUBASE 4 manufactured by SK) as a polymerization initiator. While adding, a solution prepared by dissolving 0.034 parts by mass of the polymerization initiator in 3.40 parts by mass of base oil (YUBASE 4 manufactured by SK) was added dropwise over 2 hours, and the solution polymerization proceeded for another 4 hours. Aged.

続いて、冷却管を冷却管および溜出液受器につなげたトの字管に取替え、基油(SK製 YUBASE 4)83.3質量部を反応容器に投入した。バス温を150℃まで昇温した後、真空ポンプを用いて徐々に減圧し、揮発成分を除去した。内温が142℃に到達してから30分後に解圧・冷却し、重合体の基油溶液(重合体濃度30質量%)を得た。結果を表1に示す。   Subsequently, the cooling pipe was replaced with a U-shaped pipe connected to the cooling pipe and a distillate receiver, and 83.3 parts by mass of base oil (YUBASE 4 manufactured by SK) was charged into the reaction vessel. After raising the bath temperature to 150 ° C., the pressure was gradually reduced using a vacuum pump to remove volatile components. 30 minutes after the internal temperature reached 142 ° C., the pressure was released and cooled to obtain a polymer base oil solution (polymer concentration 30% by mass). The results are shown in Table 1.

(実施例2)
実施例1において、PMI10質量部をシクロヘキシルマレイミド(CHMI)10質量部に、MMAを25質量部に、SLMAを35質量部に変更した以外は同様の操作を行い、重合体の基油溶液(重合体濃度30質量%)を得た。結果を表1に示す。
(実施例3)
撹拌装置、温度センサー、冷却管、窒素導入管、および滴下ロートを備えた反応容器に、MMA20質量部、StMA30質量部、PMI10質量部、SLMA40質量部、基油(SK製 YUBASE 4)61.2質量部、ペンタエリスリトールテトラキス(メルカプトアセテート)0.05質量部を仕込み、これに窒素ガスを導入しつつ内容物を105℃まで昇温させた。重合開始剤として0.0258質量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)と基油(SK製 YUBASE 4)0.46質量部を混合した溶液を添加するとともに、前記重合開始剤0.205質量部を基油10.3質量部に溶解させた溶液を4時間かけて滴下しながら溶液重合を進行させ、さらに4時間の熟成を行った。
(Example 2)
In Example 1, the same operation was carried out except that 10 parts by mass of PMI was changed to 10 parts by mass of cyclohexylmaleimide (CHMI), 25 parts by mass of MMA, and 35 parts by mass of SLMA. A coalescence concentration of 30% by mass was obtained. The results are shown in Table 1.
(Example 3)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe, and a dropping funnel, 20 parts by mass of MMA, 30 parts by mass of StMA, 10 parts by mass of PMI, 40 parts by mass of SLMA, base oil (YUBASE 4 manufactured by SK) 61.2 Part by mass and 0.05 part by mass of pentaerythritol tetrakis (mercaptoacetate) were charged, and the content was heated to 105 ° C. while introducing nitrogen gas. A solution obtained by mixing 0.0258 parts by mass of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi, Luperox (registered trademark) 570) and 0.46 parts by mass of a base oil (YUBASE 4 manufactured by SK) as a polymerization initiator. While adding, a solution in which 0.205 parts by mass of the polymerization initiator was dissolved in 10.3 parts by mass of the base oil was dropped over 4 hours, and the solution polymerization was allowed to proceed, followed by aging for 4 hours.

続いて、冷却管を冷却管および溜出液受器につなげたトの字管に取替え、基油(SK製 YUBASE 4)166.6質量部を反応容器に投入した。バス温を150℃まで昇温した後、真空ポンプを用いて徐々に減圧し、揮発成分を除去した。内温が142℃に到達してから30分後に解圧・冷却し、重合体の基油溶液(重合体濃度30質量%)を得た。結果を表1に示す。   Subsequently, the cooling pipe was replaced with a U-shaped pipe connected to the cooling pipe and a distillate receiver, and 166.6 parts by mass of base oil (YUBASE 4 manufactured by SK) was charged into the reaction vessel. After raising the bath temperature to 150 ° C., the pressure was gradually reduced using a vacuum pump to remove volatile components. 30 minutes after the internal temperature reached 142 ° C., the pressure was released and cooled to obtain a polymer base oil solution (polymer concentration 30% by mass). The results are shown in Table 1.

(比較例1)
撹拌装置、温度センサー、冷却管、窒素導入管、および滴下ロートを備えた反応容器に、MMA20質量部、StMA30質量部、PMI10質量部、SLMA40質量部、酸化防止剤(アデカスタブ(登録商標)2112、ADEKA社製)0.05質量部、無水酢酸0.40質量部、ペンタエリスリトールテトラキス(メルカプトアセテート)0.05質量部、およびトルエン60.8質量部を仕込み、これに窒素ガスを導入しつつ、内容物を105℃まで昇温させた。重合開始剤として0.0258質量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)とトルエン0.46質量部を混合した溶液を添加するとともに、前記重合開始剤0.205質量部をトルエン20.5質量部に溶解させた溶液を4時間かけて滴下しながら溶液重合を進行させ、さらに4時間の熟成を行った。
(Comparative Example 1)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe, and a dropping funnel, 20 parts by mass of MMA, 30 parts by mass of StMA, 10 parts by mass of PMI, 40 parts by mass of SLMA, an antioxidant (ADK STAB (registered trademark) 2112, ADEKA) 0.05 parts by weight, acetic anhydride 0.40 parts by weight, pentaerythritol tetrakis (mercaptoacetate) 0.05 parts by weight, and toluene 60.8 parts by weight, while introducing nitrogen gas into this, The contents were heated to 105 ° C. As a polymerization initiator, a solution prepared by mixing 0.0258 parts by mass of t-amylperoxyisononanoate (manufactured by Arkema Yoshitomi Corp., Luperox (registered trademark) 570) and 0.46 parts by mass of toluene was added, and the polymerization was started. The solution polymerization was advanced while dropping a solution prepared by dissolving 0.205 parts by mass of the agent in 20.5 parts by mass of toluene over 4 hours, and further aging was performed for 4 hours.

続いて、冷却管を冷却管および溜出液受器につなげたトの字管に取替え、基油(SK製 YUBASE 4)233質量部を反応容器に投入した。バス温を150℃まで昇温した後、真空ポンプを用いて徐々に減圧し、トルエンを除去した。内温が142℃に到達してから30分後に解圧・冷却し、重合体の基油溶液(重合体濃度30質量%)を得た。結果を表1に示す。   Subsequently, the cooling pipe was replaced with a U-shaped pipe connected to the cooling pipe and the distillate receiver, and 233 parts by mass of base oil (YUBASE 4 manufactured by SK) was charged into the reaction vessel. After raising the bath temperature to 150 ° C., the pressure was gradually reduced using a vacuum pump to remove toluene. 30 minutes after the internal temperature reached 142 ° C., the pressure was released and cooled to obtain a polymer base oil solution (polymer concentration 30% by mass). The results are shown in Table 1.

(比較例2)
撹拌装置、温度センサー、冷却管、窒素導入管、および滴下ロートを備えた反応容器に、MMA25質量部、StMA40質量部、PMI10質量部、SLMA25質量部、酸化防止剤(アデカスタブ(登録商標)2112、ADEKA社製)0.05質量部、無水酢酸0.40質量部、n−ドデシルメルカプタン0.05質量部、およびトルエン27.4質量部を仕込み、これに窒素ガスを導入しつつ、内容物を105℃まで昇温させた。重合開始剤として0.0258質量部のt−アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)とトルエン0.46質量部を混合した溶液を添加するとともに、前記重合開始剤0.103質量部をトルエン10.3質量部に溶解させた溶液を4時間かけて滴下しながら溶液重合を進行させ、さらに4時間の熟成を行った。
(Comparative Example 2)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe, and a dropping funnel, MMA 25 parts by mass, StMA 40 parts by mass, PMI 10 parts by mass, SLMA 25 parts by mass, antioxidant (ADK STAB (registered trademark) 2112, ADEKA)) 0.05 parts by mass, acetic anhydride 0.40 parts by mass, n-dodecyl mercaptan 0.05 parts by mass, and toluene 27.4 parts by mass, while introducing nitrogen gas to the contents, The temperature was raised to 105 ° C. As a polymerization initiator, a solution prepared by mixing 0.0258 parts by mass of t-amylperoxyisononanoate (manufactured by Arkema Yoshitomi Corp., Luperox (registered trademark) 570) and 0.46 parts by mass of toluene was added, and the polymerization was started. The solution polymerization was allowed to proceed while dropwise adding a solution prepared by dissolving 0.103 parts by mass of the agent in 10.3 parts by mass of toluene over 4 hours, followed by further aging for 4 hours.

続いて、冷却管を冷却管および溜出液受器につなげたトの字管に取替え、基油(SK製 YUBASE 4)233質量部を反応容器に投入した。バス温を150℃まで昇温した後、真空ポンプを用いて徐々に減圧し、トルエンを除去した。内温が142℃に到達してから30分後に解圧・冷却し、重合体の基油溶液(重合体濃度30質量%)を得た。結果を表1に示す。   Subsequently, the cooling pipe was replaced with a U-shaped pipe connected to the cooling pipe and the distillate receiver, and 233 parts by mass of base oil (YUBASE 4 manufactured by SK) was charged into the reaction vessel. After raising the bath temperature to 150 ° C., the pressure was gradually reduced using a vacuum pump to remove toluene. 30 minutes after the internal temperature reached 142 ° C., the pressure was released and cooled to obtain a polymer base oil solution (polymer concentration 30% by mass). The results are shown in Table 1.

(比較例3)
比較例2において、無水酢酸を添加しない以外は同様の操作を行い、重合体の基油溶液(重合体濃度30質量%)を得た。結果を表1に示す。
(Comparative Example 3)
In Comparative Example 2, the same operation was performed except that acetic anhydride was not added to obtain a polymer base oil solution (polymer concentration: 30% by mass). The results are shown in Table 1.

Figure 2017125090
Figure 2017125090

実施例で重合を行った場合は、酸成分を用いなくとも高い重合率を示しており、得られた共重合体を粘度指数向上剤として用いた場合に、高い粘度指数と十分なせん断安定性を示した。   When polymerization was carried out in the examples, it showed a high polymerization rate without using an acid component, and when the obtained copolymer was used as a viscosity index improver, a high viscosity index and sufficient shear stability. showed that.

本発明の製造方法を用いれば、臭気、腐食の懸念なく高い重合率でマレイミド系共重合体を得ることができる。得られた共重合体を含有する粘度指数向上剤を使用した潤滑油組成物は、高い粘度指数と十分なせん断安定性を示し、今後の自動車の省燃費性およびロングライフ性の要求に対応できるため、駆動系潤滑油、作動油、エンジン油に好適に用いることができる。   By using the production method of the present invention, a maleimide copolymer can be obtained at a high polymerization rate without fear of odor and corrosion. The lubricating oil composition using the obtained viscosity index improver containing the copolymer exhibits a high viscosity index and sufficient shear stability, and can meet the future demands for fuel economy and long life of automobiles. Therefore, it can be suitably used for drive system lubricating oil, hydraulic oil, and engine oil.

Claims (5)

マレイミド系単量体(以下、「(a)成分」と称する)を必須成分として含む単量体を潤滑油基油中で重合する工程を有することを特徴とする共重合体の製造方法。 A method for producing a copolymer, comprising a step of polymerizing a monomer containing a maleimide monomer (hereinafter referred to as “component (a)”) as an essential component in a lubricating base oil. 前記(a)成分に加え、(b)炭素数が1〜5の脂肪族炭化水素基を有するアルキル(メタ)アクリレート、(c)炭素数が6〜40の脂肪族炭化水素基を有するアルキル(メタ)アクリレートを含む単量体を潤滑油基油中で重合する工程を有することを特徴とする共重合体の製造方法。 In addition to the component (a), (b) an alkyl (meth) acrylate having an aliphatic hydrocarbon group having 1 to 5 carbon atoms, (c) an alkyl having an aliphatic hydrocarbon group having 6 to 40 carbon atoms ( The manufacturing method of the copolymer characterized by having the process of superposing | polymerizing the monomer containing a meth) acrylate in lubricating oil base oil. 3官能以上の多価メルカプタンおよび/または3官能以上の多官能開始剤の存在下に前記単量体を潤滑油基油中で重合する工程を有することを特徴とする請求項1または2に記載の共重合体の製造方法。 3. The method according to claim 1, further comprising a step of polymerizing the monomer in a lubricating base oil in the presence of a trifunctional or higher polyvalent mercaptan and / or a trifunctional or higher polyfunctional initiator. A method for producing a copolymer of 請求項1〜3のいずれかに記載の製造方法で得られる共重合体を含有する粘度指数向上剤の製造方法。 The manufacturing method of the viscosity index improver containing the copolymer obtained by the manufacturing method in any one of Claims 1-3. 請求項4に記載の粘度指数向上剤を含有する潤滑油組成物の製造方法。 The manufacturing method of the lubricating oil composition containing the viscosity index improver of Claim 4.
JP2016003500A 2016-01-12 2016-01-12 Method for producing maleimide-based monomer copolymer, viscosity index improver, and method for producing lubricating oil composition Expired - Fee Related JP6676381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016003500A JP6676381B2 (en) 2016-01-12 2016-01-12 Method for producing maleimide-based monomer copolymer, viscosity index improver, and method for producing lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003500A JP6676381B2 (en) 2016-01-12 2016-01-12 Method for producing maleimide-based monomer copolymer, viscosity index improver, and method for producing lubricating oil composition

Publications (2)

Publication Number Publication Date
JP2017125090A true JP2017125090A (en) 2017-07-20
JP6676381B2 JP6676381B2 (en) 2020-04-08

Family

ID=59364732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003500A Expired - Fee Related JP6676381B2 (en) 2016-01-12 2016-01-12 Method for producing maleimide-based monomer copolymer, viscosity index improver, and method for producing lubricating oil composition

Country Status (1)

Country Link
JP (1) JP6676381B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052223A (en) * 2017-09-13 2019-04-04 株式会社日本触媒 An ashless detergent dispersant and a lubricant composition
US10351792B2 (en) 2017-05-09 2019-07-16 Afton Chemical Corporation Poly (meth)acrylate with improved viscosity index for lubricant additive application
JP2019131803A (en) * 2018-02-02 2019-08-08 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Poly(meth)acrylate star polymers for lubricant additive applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351792B2 (en) 2017-05-09 2019-07-16 Afton Chemical Corporation Poly (meth)acrylate with improved viscosity index for lubricant additive application
JP2019052223A (en) * 2017-09-13 2019-04-04 株式会社日本触媒 An ashless detergent dispersant and a lubricant composition
JP2019131803A (en) * 2018-02-02 2019-08-08 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Poly(meth)acrylate star polymers for lubricant additive applications

Also Published As

Publication number Publication date
JP6676381B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6342502B2 (en) Viscosity index improver, method for producing the same, and lubricating oil composition
JP6228809B2 (en) Novel polymer, viscosity index improver, and lubricating oil composition
JP6498084B2 (en) Viscosity index improver and lubricating oil composition
JP2019014802A (en) A viscosity index improver and a lubricant composition
JP6676381B2 (en) Method for producing maleimide-based monomer copolymer, viscosity index improver, and method for producing lubricating oil composition
JP5525478B2 (en) Viscosity index improver and lubricating oil composition
US10982167B2 (en) Viscosity index improver and lubricating oil composition
JP7014552B2 (en) Viscosity index improver and lubricating oil composition
JP6781098B2 (en) Lubricating oil additive manufacturing method
JP2016069446A (en) Viscosity index improver, and lubrication oil composition
CN113543866A (en) Lubricating oil composition, defoaming method for lubricating oil, and defoaming agent composition
JP2019151766A (en) Manufacturing method of lubricant additive
JPWO2017122721A1 (en) Lubricating oil composition
JP2017106016A (en) Viscosity index improver and lubricant composition
JP6682302B2 (en) Viscosity index improver and lubricating oil composition
JP6742829B2 (en) Viscosity index improver and lubricating oil composition
JP7281426B2 (en) lubricating oil composition
JP2020050754A (en) Pour-point depressant and lubricant composition containing the same
JP2018115304A (en) Method for producing (meth) acrylate copolymer, method for producing viscosity index improver, method for producing lubricant composition, and viscosity index improver and lubricant composition
JP2019157047A (en) Method for producing (meth) acrylate polymer and viscosity index improver
JP2017145304A (en) Viscosity index improver and method for producing the same, and lubricant composition
JP2015212340A (en) Resin for lubricant, and lubricant oil composition
JP2019194284A (en) Viscosity index improver and production method thereof
JP7467491B2 (en) Viscosity index improver composition and lubricating oil composition
JP2018162433A (en) Viscosity index-improving agent and lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees