JP2017124961A - Molybdenum-based lower oxide particle, dispersion using the same, and method for producing molybdenum-based lower oxide particles - Google Patents

Molybdenum-based lower oxide particle, dispersion using the same, and method for producing molybdenum-based lower oxide particles Download PDF

Info

Publication number
JP2017124961A
JP2017124961A JP2016191225A JP2016191225A JP2017124961A JP 2017124961 A JP2017124961 A JP 2017124961A JP 2016191225 A JP2016191225 A JP 2016191225A JP 2016191225 A JP2016191225 A JP 2016191225A JP 2017124961 A JP2017124961 A JP 2017124961A
Authority
JP
Japan
Prior art keywords
molybdenum
wavelength
transmittance
visible light
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016191225A
Other languages
Japanese (ja)
Inventor
洋利 梅田
Hirotoshi Umeda
洋利 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Electronic Chemicals Co Ltd
Priority to PCT/JP2016/089025 priority Critical patent/WO2017119379A1/en
Publication of JP2017124961A publication Critical patent/JP2017124961A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve infrared (in particular, near-infrared) absorption performance while securing high visible light transmission.SOLUTION: A particle of a molybdenum-based lower oxide represented by general formula XMoO, where X represents an alkali metal element, a satisfies 0.27≤a≤0.37, and b satisfies 2.62≤b≤2.85.SELECTED DRAWING: None

Description

本発明は、可視光線を透過しかつ近赤外線を吸収する特性を有するモリブデン系低次酸化物粒子と、この粒子を用いた分散体と、上記モリブデン系低次酸化物粒子を製造する方法に関するものである。   The present invention relates to molybdenum-based low-order oxide particles having the characteristics of transmitting visible light and absorbing near-infrared rays, a dispersion using the particles, and a method for producing the molybdenum-based low-order oxide particles. It is.

従来、赤外線遮蔽材料微粒子が媒体中に分散してなる赤外線遮蔽材料微粒子分散体であって、赤外線遮蔽材料微粒子は、一般式:MXY(1-Y)3で表記される複合酸化物微粒子を含有する赤外線遮蔽材料微粒子分散体が開示されている(例えば、特許文献1参照。)。この赤外線遮蔽材料微粒子分散体では、上記一般式中のM元素はアルカリ金属のうちから選択される1種類以上の元素であり、A元素はMo、Nb、Taのうちから選択される1種類以上の元素である。また、上記一般式中のWはタングステンであり、Oは酸素である。更に、Xは0.33≦X≦0.8を満たし、Yは0.05≦Y≦1を満たす。 Conventionally, an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium, and the infrared shielding material fine particles are a composite represented by a general formula: M X A Y W (1-Y) O 3 An infrared shielding material fine particle dispersion containing oxide fine particles is disclosed (for example, see Patent Document 1). In this infrared shielding material fine particle dispersion, the M element in the above general formula is one or more elements selected from alkali metals, and the A element is one or more selected from Mo, Nb, and Ta. Elements. In the above general formula, W is tungsten, and O is oxygen. Furthermore, X satisfies 0.33 ≦ X ≦ 0.8, and Y satisfies 0.05 ≦ Y ≦ 1.

このように構成された赤外線遮蔽材料微粒子分散体では、赤外線遮蔽材料微粒子が、一般式:MXY(1-Y)3で表記される複合酸化物微粒子を含有しているので、複合酸化物中の自由電子量が増加し、スパッタリング法、蒸着法、イオンプレーティング法及び化学気相法(CVD法)などの真空成膜法等の乾式法で作製した膜や、スプレー法で作製した膜と比較しても、太陽光線、特に近赤外線領域の光をより効率良く吸収して遮蔽し、同時に可視光領域の透過率を保持できる。 In the infrared shielding material fine particle dispersion configured as described above, the infrared shielding material fine particles contain the composite oxide fine particles represented by the general formula: M X A Y W (1-Y) O 3 . The amount of free electrons in the complex oxide increases, and it can be produced by a dry process such as sputtering, vapor deposition, ion plating, and chemical vapor deposition (CVD). Compared with the produced film, it can more efficiently absorb and shield sunlight rays, particularly light in the near infrared region, and at the same time maintain the transmittance in the visible light region.

例えば、目的組成のK0.33MoO3となるように、原料K2CO3と、MoO3・H2Oとを乳鉢で混合し、この混合物を水素:窒素=3:7(体積比)の雰囲気(フロー)で550℃で1時間還元し、その後、N2雰囲気で800℃で1時間熱処理して、K0.33MoO3の粒子を得る。そして、この粒子を分散し成膜して赤外線遮蔽膜を得る。この赤外線遮蔽膜は、透明性が極めて高く内部の状況が外部からもはっきり確認でき、また透過色調は、美しい青色になる。また、上記赤外線遮蔽膜では、波長400nm〜700nmの領域における可視光線の透過率及び透過率ピークはそれぞれ78.6%及び79.1%であり、可視光線領域の光を十分に透過している。更に、上記赤外線遮蔽膜では、波長700nm〜2600nmの領域の赤外線領域の透過率ボトムが11.7%と低く、日射透過率が45.1%と低いため、近赤外線遮蔽性能が高くなる。 For example, the raw material K 2 CO 3 and MoO 3 .H 2 O are mixed in a mortar so that the target composition is K 0.33 MoO 3, and the mixture is an atmosphere of hydrogen: nitrogen = 3: 7 (volume ratio). (Flow) at 550 ° C. for 1 hour, followed by heat treatment at 800 ° C. for 1 hour in an N 2 atmosphere to obtain K 0.33 MoO 3 particles. Then, the particles are dispersed and formed into an infrared shielding film. This infrared shielding film is extremely transparent and the internal situation can be clearly seen from the outside, and the transmitted color tone is a beautiful blue color. Moreover, in the said infrared shielding film, the transmittance | permeability and the transmittance | permeability peak of visible light in the wavelength range of 400 nm to 700 nm are 78.6% and 79.1%, respectively, and sufficiently transmit light in the visible light region. . Further, in the infrared shielding film, the near-infrared shielding performance is improved because the transmittance bottom of the infrared region in the wavelength region of 700 nm to 2600 nm is as low as 11.7% and the solar radiation transmittance is as low as 45.1%.

特許第4904714号公報(請求項1、段落[0035]、[0074]、[0085])Japanese Patent No. 4904714 (Claim 1, paragraphs [0035], [0074], [0085])

しかし、上記従来の特許文献1に示された赤外線遮蔽材料微粒子分散体では、波長400nm〜700nmの領域における可視光線の透過率を%Tvとし、日射透過率を%Tsとするとき、(%Tv)/(%Ts)の比が78.6/45.1、即ち1.74と未だ小さく、近赤外線の遮蔽性能(吸収性能)が未だ低い不具合があった。これは、赤外線遮蔽材料微粒子分散体中の微粒子の組成比:K0.33MoO3のO(酸素)の価数が3に固定されているため、即ち酸化モリブデン(VI)(MoO3)が酸化された状態であり、自由電子が乏しいため、近赤外線の吸収性能を期待できないことに起因する。 However, in the infrared shielding material fine particle dispersion shown in the above-mentioned conventional patent document 1, when the visible light transmittance in the region of wavelength 400 nm to 700 nm is% Tv and the solar radiation transmittance is% Ts, (% Tv ) / (% Ts) ratio is 78.6 / 45.1, that is, 1.74, which is still small and the near infrared shielding performance (absorption performance) is still low. This composition ratio of the fine particles of infrared-shielding material microparticle dispersion: To valence of O of K 0.33 MoO 3 (oxygen) is fixed to 3, i.e. molybdenum oxide (VI) (MoO 3) is oxidized This is because the near-infrared absorption performance cannot be expected due to the lack of free electrons.

本発明の目的は、赤外線(特に近赤外線)の吸収性能を向上できるとともに、可視光線の高い透過性を確保できる、モリブデン系低次酸化物粒子及びこれを用いた分散体並びにモリブデン系低次酸化物粒子の製造方法を提供することにある。   The object of the present invention is to improve the absorption performance of infrared rays (particularly near-infrared rays) and ensure high visible light permeability, molybdenum-based low-order oxide particles, dispersions using the same, and molybdenum-based low-order oxidation It is providing the manufacturing method of a thing particle.

本発明の第1の観点は、一般式:XaMoObで示されるモリブデン系低次酸化物粒子からなり、上記一般式中のXがアルカリ金属元素であり、aが0.27≦a≦0.37を満たし、かつbが2.62≦b≦2.85を満たす、モリブデン系低次酸化物粒子である。 A first aspect of the present invention comprises molybdenum-based low-order oxide particles represented by the general formula: X a MoO b , wherein X is an alkali metal element, and a is 0.27 ≦ a ≦ Molybdenum-based low-order oxide particles satisfying 0.37 and b satisfying 2.62 ≦ b ≦ 2.85.

本発明の第2の観点は、第1の観点に基づく発明であって、更にアルカリ金属元素が、カリウム、ナトリウム、セシウム又はルビジウムのいずれか1種の元素であることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the alkali metal element is any one element of potassium, sodium, cesium or rubidium.

本発明の第3の観点は、第1又は第2の観点に記載のモリブデン系低次酸化物粒子が分散媒に分散され、波長380nm〜780nmの可視光線透過率(%Tv)が70%以上であり、波長300nm〜2600nmの日射透過率(%Ts)が50%以下であり、かつ(%Tv)/(%Ts)の比が1.8以上であり、更に波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が75%以上であり、かつ波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が10%以下である分散体である。   According to a third aspect of the present invention, the molybdenum-based low-order oxide particles described in the first or second aspect are dispersed in a dispersion medium, and the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is 70% or more. The solar transmittance (% Ts) at a wavelength of 300 nm to 2600 nm is 50% or less, the ratio of (% Tv) / (% Ts) is 1.8 or more, and visible light with a wavelength of 380 nm to 780 nm The dispersion has a maximum transmittance (% Vr) in the region of 75% or more and a minimum transmittance (% Ir) in the infrared region having a wavelength of 780 nm to 2600 nm of 10% or less.

本発明の第4の観点は、第3の観点に基づく発明であって、更にヘーズが1.0%以下であることを特徴とする。   A fourth aspect of the present invention is an invention based on the third aspect, further characterized in that the haze is 1.0% or less.

本発明の第5の観点は、モリブデン酸塩とアルカリ金属塩の混合水溶液を調製する工程と、この混合水溶液に酸及び還元剤を添加することにより水中でアルカリ金属元素を酸化モリブデン結晶構造中に侵入させて複合化する還元を行って析出物を析出させる工程とこの、析出物を水洗し濾過し乾燥する工程と、この乾燥した析出物を窒素雰囲気中で450〜650℃の温度で焼成することにより本発明の第1又は第2の観点のモリブデン系低次酸化物粒子を得る工程とを含むモリブデン系低次酸化物粒子の製造方法である。   The fifth aspect of the present invention is a step of preparing a mixed aqueous solution of molybdate and alkali metal salt, and adding an acid and a reducing agent to the mixed aqueous solution to convert the alkali metal element into the molybdenum oxide crystal structure in water. A step of reducing by intrusion and complexing to precipitate, a step of washing the precipitate with water, filtering and drying, and baking the dried precipitate at a temperature of 450 to 650 ° C. in a nitrogen atmosphere. And obtaining the molybdenum-based low-order oxide particles according to the first or second aspect of the present invention.

本発明の第1の観点のモリブデン系低次酸化物粒子では、一般式:XaMoObで示されるモリブデン系低次酸化物粒子からなり、上記一般式中のXがアルカリ金属元素であり、aが0.27≦a≦0.37を満たし、かつbが2.62≦b≦2.85を満たすモリブデン系低次酸化物粒子であるので、このモリブデン系低次酸化物粒子を用いた分散体又はこの分散体を塗布して形成された膜の赤外線(特に近赤外線)の吸収性能を向上できるとともに、可視光線の高い透過性を確保できる。即ち、一般式:XaMoObのbが2.62≦b≦2.85を満たすと、モリブデン系低次酸化物粒子中に5価と6価の酸化モリブデン構造体が構築されることにより、自由電子が発生するため、赤外線(特に近赤外線)の吸収性能が向上し、可視光線の高い透過性を確保できる。 The molybdenum-based low-order oxide particles according to the first aspect of the present invention include molybdenum-based low-order oxide particles represented by the general formula: X a MoO b , wherein X in the general formula is an alkali metal element, Since molybdenum is a low-order oxide particle satisfying 0.27 ≦ a ≦ 0.37 and b is satisfying 2.62 ≦ b ≦ 2.85, the molybdenum-based low-order oxide particle is used. In addition to improving the absorption performance of infrared rays (particularly near infrared rays) of the dispersion or a film formed by applying this dispersion, high transparency of visible light can be secured. That is, when b in the general formula: X a MoO b satisfies 2.62 ≦ b ≦ 2.85, pentavalent and hexavalent molybdenum oxide structures are constructed in the molybdenum-based low-order oxide particles. Since free electrons are generated, the absorption performance of infrared rays (particularly near infrared rays) is improved, and high transparency of visible light can be secured.

本発明の第2の観点のモリブデン系低次酸化物粒子では、アルカリ金属元素が、カリウム、ナトリウム、セシウム又はルビジウムのいずれか1種の元素であるので、酸化モリブデン構造体の一部を6価から5価に還元した状態を安定に維持することが可能になる。   In the molybdenum-based low-order oxide particles according to the second aspect of the present invention, since the alkali metal element is any one element of potassium, sodium, cesium, or rubidium, a part of the molybdenum oxide structure is hexavalent. Thus, it is possible to stably maintain the state reduced to pentavalent.

本発明の第3の観点のモリブデン系低次酸化物粒子を用いた分散体では、波長380nm〜780nmの可視光線透過率(%Tv)が70%以上であり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が75%以上であるので、可視光線領域の光を十分に透過できる。また、波長300nm〜2600nmの日射透過率(%Ts)が50%以下であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が10%以下であり、(%Tv)/(%Ts)の比が1.8以上であるので、赤外線(特に近赤外線)の吸収性能が高くなる。   In the dispersion using the molybdenum-based low-order oxide particles according to the third aspect of the present invention, the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is 70% or more, and the visible light region at a wavelength of 380 nm to 780 nm. Since the maximum value (% Vr) of the transmittance at 75 is 75% or more, light in the visible light region can be sufficiently transmitted. Further, the solar radiation transmittance (% Ts) at a wavelength of 300 nm to 2600 nm is 50% or less, the minimum transmittance (% Ir) in the infrared region at a wavelength of 780 nm to 2600 nm is 10% or less, and (% Tv) / Since the ratio of (% Ts) is 1.8 or more, the absorption performance of infrared rays (particularly near infrared rays) is improved.

本発明の第4の観点のモリブデン系低次酸化物粒子を用いた分散体では、ヘーズが1.0%以下であるので、可視光線の高い透過性を確保することができる。   In the dispersion using the molybdenum-based low-order oxide particles according to the fourth aspect of the present invention, the haze is 1.0% or less, so that a high visible light transmittance can be secured.

本発明の第5の観点のモリブデン系低次酸化物粒子の製造方法では、モリブデン酸塩とアルカリ金属塩の混合水溶液を調製し、この混合水溶液に酸及び還元剤を添加することにより水中でアルカリ金属元素を酸化モリブデン結晶構造中に侵入させて複合化させる還元を行って析出物を析出させ、この析出物を水洗し濾過し乾燥し、更にこの乾燥した析出物を窒素雰囲気中で450〜650℃の温度で焼成することにより本発明の第1の観点のモリブデン系低次酸化物粒子を得たので、このモリブデン系低次酸化物粒子を用いた分散体又はこの分散体を塗布して形成された膜は、赤外線(特に近赤外線)の吸収性能が高く、かつ可視光線の高い透過性を確保できる。   In the method for producing molybdenum-based low-order oxide particles according to the fifth aspect of the present invention, a mixed aqueous solution of molybdate and an alkali metal salt is prepared, and an acid and a reducing agent are added to the mixed aqueous solution to add an alkali in water. The metal element is reduced to penetrate into the molybdenum oxide crystal structure to form a composite, thereby depositing the precipitate. The precipitate is washed with water, filtered and dried, and the dried precipitate is further subjected to 450 to 650 in a nitrogen atmosphere. Since the molybdenum-based low-order oxide particles according to the first aspect of the present invention were obtained by firing at a temperature of ° C, the dispersion using the molybdenum-based low-order oxide particles or the dispersion was applied and formed. The film thus formed has a high absorption performance of infrared rays (particularly near-infrared rays), and can ensure high transparency of visible light.

次に本発明を実施するための形態を説明する。この実施の形態のモリブデン系低次酸化物粒子の組成比は、一般式:XaMoObで示される。この一般式中のXはアルカリ金属元素である。このため、モリブデン系低次酸化物粒子は、酸化モリブデンの結晶構造中にアルカリ金属元素が侵入して複合化した構造を呈する。また、一般式中のaは0.27≦a≦0.37を満たし、かつbは2.62≦b≦2.85を満たす。ここで、一般式中のaを0.27≦a≦0.37の範囲内に限定したのは、0.27未満では酸化モリブデンの結晶構造中に侵入するアルカリ金属元素が乏しく、酸化モリブデンから電子を引抜く元素が不十分であるため、酸化モリブデンの還元が不十分になり、良好な赤外線(特に近赤外線)の吸収性能が得られず、0.37を超えると酸化モリブデンの結晶構造中に全てのアルカリ金属元素が侵入できずに余り、この余ったアルカリ金属元素の化合物が不純物として混在することにより、赤外線(特に近赤外線)の吸収性能が低下するからである。また、一般式中のbを2.62≦b≦2.85の範囲内に限定したのは、2.62未満では酸化モリブデン(IV)(MoO2)が多く存在するため、可視光線透過率が大幅に下がって、透明性が著しく低下する、即ち酸化モリブデン(IV)(MoO2)は黒色の粒子であり、光の吸収帯が可視光線領域まで及ぶため、酸化モリブデン(IV)(MoO2)が多く存在すると、著しく透明性が損なわれるからであり、2.85を超えると酸化モリブデンの還元性が弱く、赤外線吸収性能が著しく低下する、即ち酸化モリブデン(VI)(MoO3)が酸化された状態では自由電子が乏しいため、赤外線吸収性能を期待できないからである。 Next, the form for implementing this invention is demonstrated. The composition ratio of the molybdenum-based low-order oxide particles of this embodiment is represented by the general formula: X a MoO b . X in this general formula is an alkali metal element. Therefore, the molybdenum-based low-order oxide particles have a structure in which an alkali metal element penetrates into the crystal structure of molybdenum oxide to form a composite. In the general formula, a satisfies 0.27 ≦ a ≦ 0.37, and b satisfies 2.62 ≦ b ≦ 2.85. Here, the reason why a in the general formula is limited to the range of 0.27 ≦ a ≦ 0.37 is that when less than 0.27, the alkali metal element that penetrates into the crystal structure of molybdenum oxide is scarce and Insufficient element to extract electrons, resulting in insufficient reduction of molybdenum oxide, and good infrared (particularly near infrared) absorption performance cannot be obtained. This is because not all of the alkali metal elements can penetrate and the compound of the remaining alkali metal elements is mixed as an impurity, so that the absorption performance of infrared rays (particularly near infrared rays) is lowered. The reason why b in the general formula is limited to the range of 2.62 ≦ b ≦ 2.85 is that when less than 2.62, there is a large amount of molybdenum oxide (IV) (MoO 2 ), and thus the visible light transmittance. Is greatly reduced, and the transparency is remarkably reduced, that is, molybdenum (IV) (MoO 2 ) is a black particle, and the light absorption band extends to the visible light region. Therefore, molybdenum (IV) (MoO 2 ) ) Is present, the transparency is remarkably impaired. If it exceeds 2.85, the reductivity of molybdenum oxide is weak and the infrared absorption performance is remarkably reduced, that is, molybdenum (VI) (MoO 3 ) is oxidized. This is because, in this state, since there are few free electrons, it is not possible to expect infrared absorption performance.

このように構成されたモリブデン系低次酸化物粒子を分散媒に分散することにより、分散体が調製される。分散媒は、高分子分散剤と溶剤とを含む。高分子分散剤としては、ソルスパース20000(アビシア社製)、ソルスパース41000(アビシア社製)、ニューフロンティアS510(第一工業製薬社製)、ハイテノールLA-12(第一工業製薬社製)等が挙げられ、溶剤としては、イソプロパノール、エタノール、トルエン、メチルイソブチルケトン、メチルエチルケトン等が挙げられる。上記分散体は、波長380nm〜780nmの可視光線透過率(%Tv)が70%以上、好ましくは75%以上であり、波長300nm〜2600nmの日射透過率(%Ts)が50%以下、好ましくは40%以下であり、かつ(%Tv)/(%Ts)の比が1.8以上、好ましくは2.0以上である。また、上記分散体は、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が75%以上、好ましくは80%以上であり、かつ波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が10%以下、好ましくは5%以下である。更に、ヘーズは1.0%以下、好ましくは0.6%以下である。ここで、(%Tv)、(%Ts)、(%Tv)/(%Ts)の比、(%Vr)及び(%Ir)を上記範囲にそれぞれ限定したのは、分散体又はこの分散体を塗布して形成された膜の赤外線(特に近赤外線)の吸収性能を向上して遮熱効果を高め、可視光線の高い透過性を確保して十分な透明性を得るためである。また、ヘーズ(曇り度)を1.0%以下に限定したのは、可視光線の高い透過性を確保して十分な透明性を得るためである。   A dispersion is prepared by dispersing the molybdenum-based low-order oxide particles thus configured in a dispersion medium. The dispersion medium includes a polymer dispersant and a solvent. Polymer dispersants include Solsperse 20000 (Avisia), Solsperse 41000 (Abyssia), New Frontier S510 (Daiichi Kogyo Seiyaku), Hightenol LA-12 (Daiichi Kogyo Seiyaku), etc. Examples of the solvent include isopropanol, ethanol, toluene, methyl isobutyl ketone, and methyl ethyl ketone. The dispersion has a visible light transmittance (% Tv) of 380 nm to 780 nm of 70% or more, preferably 75% or more, and a solar radiation transmittance (% Ts) of a wavelength of 300 nm to 2600 nm of 50% or less, preferably It is 40% or less, and the ratio (% Tv) / (% Ts) is 1.8 or more, preferably 2.0 or more. Further, the dispersion has a maximum transmittance (% Vr) in the visible light region having a wavelength of 380 nm to 780 nm of 75% or more, preferably 80% or more, and the transmittance in the infrared region having a wavelength of 780 nm to 2600 nm. The minimum value (% Ir) is 10% or less, preferably 5% or less. Further, the haze is 1.0% or less, preferably 0.6% or less. Here, the ratio of (% Tv), (% Ts), (% Tv) / (% Ts), (% Vr), and (% Ir) were limited to the above ranges, respectively. This is to improve the infrared ray absorption performance (especially near infrared ray) of the film formed by coating the film to enhance the heat shielding effect, to ensure high transparency of visible light and to obtain sufficient transparency. Moreover, the reason why the haze (cloudiness) is limited to 1.0% or less is to ensure high transparency of visible light and to obtain sufficient transparency.

このモリブデン系低次酸化物粒子を用いた分散体又はこの分散体を塗布して形成された膜では、赤外線(特に近赤外線)の吸収性能を向上できるとともに、可視光線の高い透過性を確保できる。即ち、一般式:XaMoObのbが2.62≦b≦2.85を満たすと、モリブデン系低次酸化物粒子中に5価と6価の酸化モリブデン構造体が構築されることにより、自由電子が発生するため、赤外線(特に近赤外線)の吸収性能が向上し、可視光線の高い透過性を確保できる。 A dispersion using this molybdenum-based low-order oxide particle or a film formed by applying this dispersion can improve the absorption performance of infrared rays (particularly near infrared rays) and can ensure high transparency of visible light. . That is, when b in the general formula: X a MoO b satisfies 2.62 ≦ b ≦ 2.85, pentavalent and hexavalent molybdenum oxide structures are constructed in the molybdenum-based low-order oxide particles. Since free electrons are generated, the absorption performance of infrared rays (particularly near infrared rays) is improved, and high transparency of visible light can be secured.

一方、上記モリブデン系低次酸化物粒子を製造する方法を説明する。先ず、モリブデン酸塩とアルカリ金属塩の混合水溶液を調製する。ここで、モリブデン酸塩としては、モリブデン酸、モリブデン酸アンモニウム等が挙げられ、アルカリ金属塩としては、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸ルビジウム等が挙げられる。モリブデン酸塩としてモリブデン酸を用いた場合、イオン交換水にモリブデン酸を加え、更にアンモニア水を添加することにより、モリブデン酸を溶解して第1の溶液を調製することが好ましく、この第1の溶液のpHは7〜9であることが好ましい。また、アルカリ金属塩として水酸化カリウムを用いた場合、上記第1の溶液に水酸化カリウムを加え溶解させて混合水溶液である第2の溶液を調製することが好ましい。   Meanwhile, a method for producing the molybdenum-based low-order oxide particles will be described. First, a mixed aqueous solution of molybdate and alkali metal salt is prepared. Here, examples of the molybdate include molybdic acid and ammonium molybdate, and examples of the alkali metal salt include potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, cesium carbonate, and rubidium carbonate. When molybdic acid is used as the molybdate, it is preferable to prepare the first solution by dissolving molybdic acid by adding molybdic acid to ion exchange water and further adding aqueous ammonia. The pH of the solution is preferably 7-9. When potassium hydroxide is used as the alkali metal salt, it is preferable to prepare a second solution which is a mixed aqueous solution by adding potassium hydroxide to the first solution and dissolving it.

次いで、混合水溶液(第2の溶液)に酸及び還元剤を添加することにより水中でアルカリ金属元素を酸化モリブデン結晶構造中に侵入させて複合化させる還元を行って析出物を析出させる。ここで、酸としては、硝酸、塩酸、酢酸等が挙げられ、還元剤としては、水素化ホウ素ナトリウム、ヒドラジン、ギ酸、シュウ酸等が挙げられる。酸として硝酸を用いた場合、第2の溶液を撹拌しながら第2の溶液に硝酸を徐々に添加して、pHが1.5〜3.5に調整された第3の溶液を調製することが好ましい。また、還元剤として水素化ホウ素ナトリウムを用いた場合、上記第3の溶液に、水素化ホウ素ナトリウムをイオン交換水に溶解した水溶液を添加して第4の溶液を調製し、この第4の溶液を撹拌することにより、アルカリ金属元素が酸化モリブデン結晶構造中に侵入して複合化された析出物が得られる。なお、上記還元剤は、酸化モリブデンの価数を変化させる機能、即ち通常6価の酸化モリブデンの一部を5価に変え、酸化モリブデンを5価及び6価の混合原子価化合物とすることで自由電子を生み出す機能を有する。また、酸は、酸化モリブデンを縮合させる機能を有する。そして、酸及び還元剤を添加した混合水溶液を撹拌することにより、粒子(酸化モリブデン結晶構造中にアルカリ金属元素が侵入して複合化した化合物)が成長して析出物が析出する。   Next, by adding an acid and a reducing agent to the mixed aqueous solution (second solution), a reduction is performed by allowing the alkali metal element to penetrate into the molybdenum oxide crystal structure in water to form a composite, thereby depositing the precipitate. Here, examples of the acid include nitric acid, hydrochloric acid, and acetic acid, and examples of the reducing agent include sodium borohydride, hydrazine, formic acid, oxalic acid, and the like. When nitric acid is used as the acid, nitric acid is gradually added to the second solution while stirring the second solution to prepare a third solution having a pH adjusted to 1.5 to 3.5. Is preferred. When sodium borohydride is used as the reducing agent, an aqueous solution in which sodium borohydride is dissolved in ion-exchanged water is added to the third solution to prepare a fourth solution. This fourth solution , A precipitate in which an alkali metal element enters the molybdenum oxide crystal structure and is compounded is obtained. The reducing agent has a function of changing the valence of molybdenum oxide, that is, by changing a part of hexavalent molybdenum oxide to pentavalent, and making molybdenum oxide a pentavalent and hexavalent mixed valence compound. Has the ability to generate free electrons. The acid has a function of condensing molybdenum oxide. Then, by stirring the mixed aqueous solution to which the acid and the reducing agent are added, particles (compounds in which an alkali metal element has intruded into the molybdenum oxide crystal structure and complexed) grow and precipitates are deposited.

次に、上記析出物を水洗し濾過し乾燥する。具体的には、上記析出物を、イオン交換水で洗浄して副生成塩等の不純物を除去し、固液分離した後に乾燥することにより、乾燥粒子が得られる。更に、この乾燥粒子を窒素雰囲気中で450〜650℃、好ましくは500〜600℃の温度で焼成する。これにより、一般式:XaMoObで示され、この一般式中のXがアルカリ金属元素であり、一般式中のaが0.27≦a≦0.37を満たし、かつbが2.62≦b≦2.85を満たすモリブデン系低次酸化物粒子が得られる。焼成時間は30分〜2時間であることが好ましい。ここで、乾燥粒子の焼成温度を450〜650℃の範囲内に限定したのは、450℃未満では粒子の結晶化が不十分になり、良好な赤外線吸収性能が得られず、650℃を超えると焼結が促進されることで粒子が粗大になり、可視光線透過率が低くなって透明性が損なわれ、更に酸化モリブデンが昇華してしまうからである。また、乾燥粒子の好ましい焼成時間を30分〜2時間の範囲内に限定したのは、30分未満では粒子の結晶化が不十分であり、2時間を超えると焼結が促進され、得られる粒子が粗大化してしまうからである。 Next, the precipitate is washed with water, filtered and dried. Specifically, the precipitate is washed with ion-exchanged water to remove impurities such as by-product salts, solid-liquid separated, and dried to obtain dry particles. Further, the dried particles are fired in a nitrogen atmosphere at a temperature of 450 to 650 ° C, preferably 500 to 600 ° C. Thereby, it is represented by the general formula: X a MoO b , X in this general formula is an alkali metal element, a in the general formula satisfies 0.27 ≦ a ≦ 0.37, and b is 2. Molybdenum-based low-order oxide particles satisfying 62 ≦ b ≦ 2.85 are obtained. The firing time is preferably 30 minutes to 2 hours. Here, the firing temperature of the dried particles is limited to the range of 450 to 650 ° C. If the temperature is lower than 450 ° C., the crystallization of the particles becomes insufficient, and good infrared absorption performance cannot be obtained, which exceeds 650 ° C. When the sintering is promoted, the particles become coarse, the visible light transmittance is lowered, transparency is impaired, and molybdenum oxide is further sublimated. Further, the preferable firing time of the dry particles is limited to the range of 30 minutes to 2 hours because the crystallization of the particles is insufficient if less than 30 minutes, and the sintering is promoted and obtained if it exceeds 2 hours. This is because the particles become coarse.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、35℃のイオン交換水350ミリリットルに、一般式:XaMoObのMoの原料として80%のモリブデン酸30gを加え、アンモニア水を添加することにより、モリブデン酸を溶解して第1の溶液を調製した。ここで、80%のモリブデン酸とは、MoO3換算で、80%のモリブデン酸になることを意味する。この第1の溶液のpHは8.5であった。次いで、上記第1の溶液を35℃に維持した状態で、第1の溶液に、一般式:XaMoObのXの原料として85%水酸化カリウム11gを加え溶解させて第2の溶液を調製した後に、この第2の溶液を撹拌しながら第2の溶液に60%の硝酸を、pHが2.0になるまで約10分かけて徐々に添加して第3の溶液を調製した。上記85%水酸化カリウムは、KOHの含有率が85%である水和物(KOH・nH2O)である。このときの第3の溶液は僅かに黄色味がかった透明であった。次に、上記第3の溶液に、還元剤として水素化ホウ素ナトリウム0.3gをイオン交換水5ミリリットルに溶解した水溶液を添加して第4の溶液を調製した。この第4の溶液は濃青色を呈した。その後、第4の溶液を35℃で30分間撹拌することにより濃青色の析出物を得た。この析出物を、イオン交換水で洗浄して副生成塩等の不純物を除去し、固液分離した後に105℃で乾燥することにより、青色の乾燥粒子を得た。この青色の乾燥粒子を窒素雰囲気中で600℃に2時間保持して焼成することにより、青黒色のモリブデン系低次酸化物粒子を得た。このモリブデン系低次酸化物粒子を蛍光X線分析装置(パーキンエルマー社製:Optima−4300DV)で組成比率を分析したところ、K0.34Mo02.73で構成されたカリウムモリブデン酸化物であった。更に、上記モリブデン系低次酸化物粒子1.20g(10質量%)と、分散媒の高分子分散剤としてソルスパース20000を0.12g(1質量%)と、分散媒の溶剤としてイソプロパノールを10.68g(89質量%)とを50ミリリットルのガラス瓶に入れ、直径0.3mmのジルコニアビーズ50gを用いてペイントシェーカにて24時間分散した。これにより透明性の高い鮮やかな青色の分散体を得た。この分散体を実施例1とした。
<Example 1>
First, 30 g of 80% molybdic acid is added as a raw material of Mo of general formula: X a MoO b to 350 ml of ion-exchanged water at 35 ° C., and aqueous ammonia is added to dissolve the molybdic acid to obtain the first A solution was prepared. Here, 80% molybdic acid means 80% molybdic acid in terms of MoO 3 . The pH of this first solution was 8.5. Next, with the first solution maintained at 35 ° C., 11 g of 85% potassium hydroxide is added to the first solution as a raw material for X of the general formula: X a MoO b and dissolved to obtain the second solution. After the preparation, while stirring the second solution, 60% nitric acid was gradually added to the second solution over about 10 minutes until the pH reached 2.0 to prepare a third solution. The 85% potassium hydroxide is a hydrate (KOH.nH 2 O) having a KOH content of 85%. The third solution at this time was clear and slightly yellowish. Next, an aqueous solution in which 0.3 g of sodium borohydride as a reducing agent was dissolved in 5 ml of ion exchange water was added to the third solution to prepare a fourth solution. This fourth solution had a deep blue color. Thereafter, the fourth solution was stirred at 35 ° C. for 30 minutes to obtain a dark blue precipitate. The precipitate was washed with ion-exchanged water to remove impurities such as by-product salts, separated into solid and liquid, and dried at 105 ° C. to obtain blue dry particles. The blue dry particles were calcined in a nitrogen atmosphere at 600 ° C. for 2 hours to obtain blue black molybdenum-based low-order oxide particles. When the composition ratio of the molybdenum-based low-order oxide particles was analyzed using a fluorescent X-ray analyzer (manufactured by Perkin Elmer: Optima-4300DV), it was a potassium molybdenum oxide composed of K 0.34 Mo0 2.73 . Further, 1.20 g (10% by mass) of the molybdenum-based low-order oxide particles, 0.12 g (1% by mass) of Solsperse 20000 as a polymer dispersant of the dispersion medium, and 10.1 of isopropanol as a solvent of the dispersion medium. 68 g (89% by mass) was placed in a 50 ml glass bottle and dispersed in a paint shaker for 24 hours using 50 g of zirconia beads having a diameter of 0.3 mm. As a result, a bright blue dispersion with high transparency was obtained. This dispersion was designated as Example 1.

<実施例2〜14及び比較例1〜8>
実施例2〜14及び比較例1〜8の分散体に分散されるモリブデン系低次酸化物粒子は、実施例1のモリブデン系低次酸化物粒子を作製するための原料や条件等と、次の表1及び表2に示す項目(一般式:XaMoObのXの原料の種類及び添加量、第3の溶液のpH、水素化ホウ素ナトリウムの添加量、焼成温度)の一部を変更してそれぞれ作製した。なお、表1及び表2に示した項目以外の原料や条件等を、実施例1の原料や条件等と同一にしてモリブデン系低次酸化物粒子をそれぞれ得た。そして、これらのモリブデン系低次酸化物粒子を用い、実施例1と同様にして、分散体をそれぞれ調製した。これらの分散体を実施例2〜14及び比較例1〜8とした。なお、表1及び表2には、モリブデン系低次酸化物粒子の組成比及び色も示した。また、実施例2及び8の一般式:XaMoObのXの原料の種類に記載した『NaOH』は95%水酸化ナトリウムであった。この95%水酸化ナトリウムは、NaOHの含有率が95%である水和物(NaOH・nH2O)である。更に、比較例3のモリブデン系低次酸化物粒子は分散媒に分散できなかった。
<Examples 2-14 and Comparative Examples 1-8>
The molybdenum-based low-order oxide particles dispersed in the dispersions of Examples 2 to 14 and Comparative Examples 1 to 8 are the raw materials and conditions for producing the molybdenum-based low-order oxide particles of Example 1, and the following. Part of the items shown in Table 1 and Table 2 (general formula: X a MoO b X raw material type and amount added, pH of the third solution, amount of sodium borohydride added, firing temperature) Respectively. Molybdenum-based low-order oxide particles were obtained with the raw materials and conditions other than those shown in Tables 1 and 2 being the same as the raw materials and conditions of Example 1. Then, using these molybdenum-based low-order oxide particles, dispersions were respectively prepared in the same manner as in Example 1. These dispersions were designated as Examples 2 to 14 and Comparative Examples 1 to 8. Tables 1 and 2 also show the composition ratio and color of the molybdenum-based low-order oxide particles. In addition, “NaOH” described in the type of raw material of X in the general formula: X a MoO b in Examples 2 and 8 was 95% sodium hydroxide. This 95% sodium hydroxide is a hydrate (NaOH · nH 2 O) having a NaOH content of 95%. Furthermore, the molybdenum-based low-order oxide particles of Comparative Example 3 could not be dispersed in the dispersion medium.

Figure 2017124961
Figure 2017124961

Figure 2017124961
Figure 2017124961

<比較試験1>
実施例1〜14、比較例1、比較例2及び比較例4〜8の分散体をイソプロパノールで粒子の濃度が0.17%になるまで希釈し、希釈分散体を調製した。この希釈した分散体を光路長1mmのガラスセルに入れ、分光光度計(日立ハイテク社製:UH4150)を用い、JIS規格(JIS R 3216-1998)に従って、波長380nm〜780nmの可視光線透過率(%Tv)と、波長300nm〜2600nmの日射透過率(%Ts)とをそれぞれ測定するとともに、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)と、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)とをそれぞれ測定した。また、(%Tv)/(%Ts)の比を算出した。更に、上記希釈分散体を、光路長1mmのガラスセルに入れ、ヘーズコンピュータ(スガ試験機社製:HZ-2)を用い、JIS規格(JIS K 7136)に従って、ヘーズを測定した。ここで、上記希釈分散体を入れたガラスセルのヘーズは0.10%であった。これらの結果をモリブデン系低次酸化物粒子の組成比とともに表3及び表4に示す。なお、表4の比較例3にデータが記載されていないのは、比較例3のモリブデン系低次酸化物粒子を分散媒に分散できず、分散体が得られなかったためである。また、表3及び表4中のヘーズは、ガラスセルのヘーズ0.10%を差し引いた希釈分散体のみのヘーズである。
<Comparison test 1>
The dispersions of Examples 1 to 14, Comparative Example 1, Comparative Example 2, and Comparative Examples 4 to 8 were diluted with isopropanol until the particle concentration became 0.17% to prepare a diluted dispersion. This diluted dispersion is put into a glass cell having an optical path length of 1 mm, and using a spectrophotometer (manufactured by Hitachi High-Tech: UH4150), visible light transmittance (wavelength 380 nm to 780 nm) according to JIS standard (JIS R 3216-1998) ( % Tv) and solar radiation transmittance (% Ts) at a wavelength of 300 nm to 2600 nm, respectively, and the maximum transmittance (% Vr) in the visible light region at a wavelength of 380 nm to 780 nm and an infrared ray at a wavelength of 780 nm to 2600 nm The minimum transmittance (% Ir) in the region was measured. In addition, the ratio (% Tv) / (% Ts) was calculated. Further, the diluted dispersion was put into a glass cell having an optical path length of 1 mm, and haze was measured according to JIS standard (JIS K 7136) using a haze computer (manufactured by Suga Test Instruments Co., Ltd .: HZ-2). Here, the haze of the glass cell containing the diluted dispersion was 0.10%. These results are shown in Tables 3 and 4 together with the composition ratio of the molybdenum-based low-order oxide particles. The reason why no data is described in Comparative Example 3 in Table 4 is that the molybdenum-based low-order oxide particles of Comparative Example 3 could not be dispersed in the dispersion medium, and a dispersion could not be obtained. Moreover, the haze in Table 3 and Table 4 is a haze only for the diluted dispersion obtained by subtracting 0.10% of the haze of the glass cell.

Figure 2017124961
Figure 2017124961

Figure 2017124961
Figure 2017124961

<評価>
表1〜表4から明らかなように、モリブデン系低次酸化物粒子を示す一般式:XaMoObのbが2.17と適正範囲(2.62≦b≦2.85)より小さい比較例2では、波長380nm〜780nmの可視光線透過率(%Tv)が37.87%と適正範囲(70%以上)より小さくなり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が40.08%と適正範囲(75%以上)より小さくなったため、可視光線領域の光を十分に透過できず、また波長300nm〜2600nmの日射透過率(%Ts)が21.99%と適正範囲(50%以下)内であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が9.55%と適正範囲(10%以下)内であったけれども、(%Tv)/(%Ts)の比が1.72と適正範囲(1.8以上)より小さくなったため、赤外線(特に近赤外線)の吸収性能が低く、更にヘーズが4.58%と適正範囲(1.0%以下)より大きくなったため、可視光線の透過性が低下した。
<Evaluation>
Table 1 As is clear from Table 4, the general formula shows a molybdenum-based low-order oxide particles: X a b 2.17 a proper range (2.62 ≦ b ≦ 2.85) of MoO b smaller compared In Example 2, the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is 37.87%, which is smaller than the appropriate range (70% or more), and the maximum transmittance (%) in the visible light region at a wavelength of 380 nm to 780 nm. Vr) is 40.08%, which is smaller than the appropriate range (75% or more), so that the light in the visible light region cannot be sufficiently transmitted, and the solar radiation transmittance (% Ts) at a wavelength of 300 nm to 2600 nm is 29.99%. Although it was within the appropriate range (50% or less) and the minimum value (% Ir) of the transmittance in the infrared region with a wavelength of 780 nm to 2600 nm was 9.55% and within the proper range (10% or less), (% The ratio of (Tv) / (% Ts) is 1.72. Since it is smaller than the appropriate range (1.8 or more), the absorption performance of infrared rays (particularly near infrared rays) is low, and the haze is 4.58%, which is larger than the appropriate range (1.0% or less). Permeability decreased.

また、モリブデン系低次酸化物粒子を示す一般式:XaMoObのbが2.88〜2.98と適正範囲(2.62≦b≦2.85)より大きい比較例1及び4〜6では、波長380nm〜780nmの可視光線透過率(%Tv)が47.16%(比較例6)と適正範囲(70%以上)より小さいものがあり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が52.12%(比較例6)と適正範囲(75%以上)より小さくなったため、可視光線領域の光を十分に透過できないものがあり、また波長300nm〜2600nmの日射透過率(%Ts)が51.74%(比較例5)と適正範囲(50%以下)より大きいものがあり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が11.54〜36.11%と適正範囲(10%以下)より全て大きくなり、(%Tv)/(%Ts)の比が1.03〜1.70と適正範囲(1.8以上)より全て小さくなったため、赤外線(特に近赤外線)の吸収性能が殆ど全て低くなり、更にヘーズが4.58%及び3.93%と適正範囲(1.0%以下)より大きかったため、可視光線の透過性が低下したものがあった。 Moreover, the general formula shows a molybdenum-based low-order oxide particles: X a b a proper range as 2.88 to 2.98 of MoO b (2.62 ≦ b ≦ 2.85 ) is greater than Comparative Example 1 and 4 6 has a visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm of 47.16% (Comparative Example 6), which is smaller than an appropriate range (70% or more), and transmission in a visible light region of a wavelength of 380 nm to 780 nm. Since the maximum value (% Vr) of the rate is 52.12% (Comparative Example 6), which is smaller than the appropriate range (75% or more), there are some that cannot sufficiently transmit light in the visible light region, and have a wavelength of 300 nm to 2600 nm. Solar transmittance (% Ts) is 51.74% (Comparative Example 5), which is larger than the appropriate range (50% or less), and the minimum transmittance (% Ir) in the infrared region with a wavelength of 780 nm to 2600 nm is 11.54-36. 1%, which is all larger than the appropriate range (10% or less), and the ratio of (% Tv) / (% Ts) is 1.03-1.70, which is all smaller than the appropriate range (1.8 or more). The absorption performance of (especially near-infrared rays) is almost all low, and the haze is 4.58% and 3.93%, which is larger than the appropriate range (1.0% or less). there were.

これらに対し、モリブデン系低次酸化物粒子を示す一般式:XaMoObのbが2.62〜2.84と適正範囲(2.62≦b≦2.85)内にある実施例1〜12では、波長380nm〜780nmの可視光線透過率(%Tv)が70.08〜85.75%と適正範囲(70%以上)内であり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が77.58〜87.03%と適正範囲(75%以上)内であったため、可視光線領域の光を十分に透過でき、また波長300nm〜2600nmの日射透過率(%Ts)が33.54〜46.84%と適正範囲(50%以下)内であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が2.60〜7.95%と適正範囲(10%以下)内であり、(%Tv)/(%Ts)の比が1.80〜2.09と適正範囲(1.8以上)内であったため、赤外線(特に近赤外線)の吸収性能が向上し、更にヘーズが0.40〜0.92%と適正範囲(1.0%以下)内であったため、可視光線の高い透過性を確保できた。 On the other hand, Example 1 in which b of the general formula: X a MoO b indicating molybdenum-based low-order oxide particles is within a proper range (2.62 ≦ b ≦ 2.85) of 2.62 to 2.84. ˜12, the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is within an appropriate range (70% or more) of 70.08 to 85.75%, and the transmittance in the visible light region at a wavelength of 380 nm to 780 nm is Since the maximum value (% Vr) was within the proper range (75% or more) of 77.58 to 87.03%, it was possible to sufficiently transmit light in the visible light region, and the solar radiation transmittance (%) at a wavelength of 300 nm to 2600 nm. Ts) is within the appropriate range (50% or less) of 33.54 to 46.84%, and the minimum transmittance (% Ir) in the infrared region with a wavelength of 780 nm to 2600 nm is 2.60 to 7.95%. Within the appropriate range (10% or less), (% Tv) / ( % Ts) is within the appropriate range (1.8 or more) of 1.80 to 2.09, so that the absorption performance of infrared rays (particularly near infrared rays) is improved, and the haze is 0.40 to 0.92. % And within an appropriate range (1.0% or less), it was possible to secure a high visible light transmittance.

一方、焼成温度が700℃と適正範囲(450〜650℃)より高い比較例3では、モリブデン系低次酸化物粒子を分散媒に分散できなかったため、分散体が得られず、また焼成温度が350℃と適正範囲(450〜650℃)より低い比較例4では、波長380nm〜780nmの可視光線透過率(%Tv)が74.32%と適正範囲(70%以上)内であり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が75.34%と適正範囲(75%以上)内であったため、可視光線領域の光を十分に透過でき、またヘーズが0.43%と適正範囲(1.0%以下)内であったため、可視光線の高い透過性を確保できたけれども、波長300nm〜2600nmの日射透過率(%Ts)が43.83%と適正範囲(50%以下)内であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が11.54%と適正範囲(10%以下)より大きくなり、(%Tv)/(%Ts)の比が1.70と適正範囲(1.8以上)より小さくなったため、赤外線(特に近赤外線)の吸収性能が低くなった。   On the other hand, in Comparative Example 3 in which the firing temperature is 700 ° C. and higher than the appropriate range (450 to 650 ° C.), the molybdenum-based low-order oxide particles could not be dispersed in the dispersion medium, so that no dispersion was obtained, and the firing temperature was In Comparative Example 4, which is 350 ° C. and lower than the appropriate range (450 to 650 ° C.), the visible light transmittance (% Tv) at the wavelength of 380 nm to 780 nm is 74.32%, which is within the appropriate range (70% or more), and the wavelength of 380 nm. Since the maximum value (% Vr) of the transmittance in the visible light region of ˜780 nm was 75.34% within the appropriate range (75% or more), the light in the visible light region can be sufficiently transmitted, and the haze is 0. Although it was within 43% and within the appropriate range (1.0% or less), high transmittance of visible light was secured, but the solar radiation transmittance (% Ts) at the wavelength of 300 nm to 2600 nm was 43.83% and the appropriate range ( 50% or less) The minimum transmittance (% Ir) in the infrared region with a wavelength of 780 nm to 2600 nm is 11.54%, which is larger than the appropriate range (10% or less), and the ratio (% Tv) / (% Ts) is 1. .70 and smaller than the appropriate range (1.8 or more), the absorption performance of infrared rays (particularly near infrared rays) was lowered.

これらに対し、焼成温度が450℃及び650℃と適正範囲(450〜650℃)内の下限値及び上限値である実施例11及び12では、波長380nm〜780nmの可視光線透過率(%Tv)が85.75%及び70.11%と適正範囲(70%以上)内であり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が87.03%及び78.21%と適正範囲(75%以上)内であったため、可視光線領域の光を十分に透過でき、またヘーズが0.44%及び0.90%と適正範囲(1.0%以下)内であったため、可視光線の高い透過性を確保でき、更に波長300nm〜2600nmの日射透過率(%Ts)が46.84%及び35.39%と適正範囲(50%以下)内であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が7.83%及び3.58%と適正範囲(10%以下)内であり、(%Tv)/(%Ts)の比が1.83及び1.98と適正範囲(1.8以上)内であったため、赤外線(特に近赤外線)の吸収性能が向上した。   On the other hand, in Examples 11 and 12 where the firing temperatures are 450 ° C. and 650 ° C. and the lower and upper limits within the appropriate range (450 to 650 ° C.), the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm Is within the appropriate range (70% or more) of 85.75% and 70.11%, and the maximum transmittance (% Vr) in the visible light region with a wavelength of 380 nm to 780 nm is 87.03% and 78.21%. Because it was within the appropriate range (75% or more), it was possible to sufficiently transmit light in the visible light region, and haze was within the appropriate range (1.0% or less) at 0.44% and 0.90%. High transmittance of visible light can be secured, and the solar transmittance (% Ts) at wavelengths of 300 nm to 2600 nm is within an appropriate range (50% or less) of 46.84% and 35.39%, and wavelengths of 780 nm to 2600 nm. Infrared The minimum transmittance (% Ir) in the region is 7.83% and 3.58% and within the appropriate range (10% or less), and the ratio of (% Tv) / (% Ts) is 1.83 and 1 Since it was within the appropriate range (1.8 or more) of .98, the absorption performance of infrared rays (particularly near infrared rays) was improved.

一方、表1〜表4から明らかなように、モリブデン系低次酸化物粒子を示す一般式:XaMoObのうち、XがCsであり、bが2.99と適正範囲(2.62≦b≦2.85)より大きい比較例7では、波長380nm〜780nmの可視光線透過率(%Tv)が49.56%と適正範囲(70%以上)より小さくなり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が60.17%と適正範囲(75%以上)より小さくなったため、可視光線領域の光を十分に透過できず、また波長300nm〜2600nmの日射透過率(%Ts)が42.33%と適正範囲(50%以下)内にあったけれども、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が34.34%と適正範囲(10%以下)より大きくなり、(%Tv)/(%Ts)の比が1.17と適正範囲(1.8以上)より小さくなったため、赤外線(特に近赤外線)の吸収性能が低くなり、更にヘーズが1.23%と適正範囲(1.0%以下)より大きくなったため、可視光線の透過性が低下した。 On the other hand, as apparent from Table 1 to Table 4, the general formula shows a molybdenum-based low-order oxide particles: among X a MoO b, X is Cs, b is 2.99 and the appropriate range (2.62 In Comparative Example 7, which is larger than ≦ b ≦ 2.85), the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is 49.56%, which is smaller than an appropriate range (70% or more), and the visible light having a wavelength of 380 nm to 780 nm is visible. Since the maximum value (% Vr) of the transmittance in the light ray region is 60.17%, which is smaller than the appropriate range (75% or more), the light in the visible light region cannot be sufficiently transmitted, and the solar radiation with a wavelength of 300 nm to 2600 nm is transmitted. Although the rate (% Ts) was within the appropriate range (50% or less) of 42.33%, the minimum value (% Ir) of the transmittance in the infrared region with a wavelength of 780 nm to 2600 nm was 34.34% and the appropriate range ( Greater than 10%) Since the ratio of (% Tv) / (% Ts) is 1.17, which is smaller than the appropriate range (1.8 or more), the absorption performance of infrared rays (especially near infrared rays) is lowered, and the haze is 1. Since it became 23% and larger than an appropriate range (1.0% or less), the transmittance of visible light was lowered.

これに対し、モリブデン系低次酸化物粒子を示す一般式:XaMoObのうち、XがCsであり、bが2.80と適正範囲(2.62≦b≦2.85)内にあった実施例13では、波長380nm〜780nmの可視光線透過率(%Tv)が79.52%と適正範囲(70%以上)内にあり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が82.89%と適正範囲(75%以上)内にあったため、可視光線領域の光を十分に透過でき、また波長300nm〜2600nmの日射透過率(%Ts)が41.22%と適正範囲(50%以下)内であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が7.03%と適正範囲(10%以下)内にあり、(%Tv)/(%Ts)の比が1.93と適正範囲(1.8以上)内にあったため、赤外線(特に近赤外線)の吸収性能が向上し、更にヘーズが0.88%と適正範囲(1.0%以下)内にあったため、可視光線の透過性が向上した。 In contrast, the formula shows a molybdenum-based low-order oxide particles: among X a MoO b, X is Cs, the b proper range and 2.80 (2.62 ≦ b ≦ 2.85) in In Example 13, the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is within an appropriate range (70% or more) of 79.52%, and the maximum transmittance in the visible light region at a wavelength of 380 nm to 780 nm is present. Since the value (% Vr) was within an appropriate range (75% or more) of 82.89%, the light in the visible light region could be sufficiently transmitted, and the solar radiation transmittance (% Ts) at a wavelength of 300 nm to 2600 nm was 41.89. 22% and within the appropriate range (50% or less), and the minimum transmittance (% Ir) in the infrared region with a wavelength of 780 nm to 2600 nm is 7.03% and within the appropriate range (10% or less) (% The ratio of (Tv) / (% Ts) is 1.93, which is an appropriate range (1.8 or less). The absorption performance of infrared rays (especially near-infrared rays) was improved, and the haze was within an appropriate range (1.0% or less) of 0.88%, so that visible light transmission was improved. .

一方、表1〜表4から明らかなように、モリブデン系低次酸化物粒子を示す一般式:XaMoObのうち、XがRbであり、bが2.98と適正範囲(2.62≦b≦2.85)より大きい比較例8では、波長380nm〜780nmの可視光線透過率(%Tv)が54.38%と適正範囲(70%以上)より小さくなり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が60.42%と適正範囲(75%以上)より小さくなったため、可視光線領域の光を十分に透過できず、また波長300nm〜2600nmの日射透過率(%Ts)が40.94%と適正範囲(50%以下)内にあったけれども、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が30.56%と適正範囲(10%以下)より大きくなり、(%Tv)/(%Ts)の比が1.33と適正範囲(1.8以上)より小さくなったため、赤外線(特に近赤外線)の吸収性能が低くなり、更にヘーズが1.43%と適正範囲(1.0%以下)より大きくなったため、可視光線の透過性が低下した。 On the other hand, as apparent from Table 1 to Table 4, the general formula shows a molybdenum-based low-order oxide particles: among X a MoO b, X is Rb, b is 2.98 and the appropriate range (2.62 In Comparative Example 8, which is larger than ≦ b ≦ 2.85), the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is 54.38%, which is smaller than an appropriate range (70% or more), and a visible light having a wavelength of 380 nm to 780 nm is visible. Since the maximum value (% Vr) of the transmittance in the light ray region is 60.42%, which is smaller than the appropriate range (75% or more), the light in the visible light region cannot be sufficiently transmitted, and the solar radiation with a wavelength of 300 to 2600 nm is transmitted. Although the rate (% Ts) was in the appropriate range (50% or less) of 40.94%, the minimum value (% Ir) of the transmittance in the infrared region with a wavelength of 780 nm to 2600 nm was 30.56% and the appropriate range ( Greater than 10%) Since the ratio of (% Tv) / (% Ts) is 1.33, which is smaller than the appropriate range (1.8 or more), the absorption performance of infrared rays (especially near infrared rays) is lowered, and the haze is 1. Since it became 43% and larger than an appropriate range (1.0% or less), the transmittance of visible light was lowered.

これに対し、モリブデン系低次酸化物粒子を示す一般式:XaMoObのうち、XがRbであり、bが2.85と適正範囲(2.62≦b≦2.85)内にあった実施例14では、波長380nm〜780nmの可視光線透過率(%Tv)が79.88%と適正範囲(70%以上)内にあり、波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が81.55%と適正範囲(75%以上)内にあったため、可視光線領域の光を十分に透過でき、また波長300nm〜2600nmの日射透過率(%Ts)が39.43%と適正範囲(50%以下)内であり、波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が9.41%と適正範囲(10%以下)内にあり、(%Tv)/(%Ts)の比が2.02と適正範囲(1.8以上)内にあったため、赤外線(特に近赤外線)の吸収性能が向上し、更にヘーズが0.85%と適正範囲(1.0%以下)内にあったため、可視光線の透過性が向上した。 In contrast, the formula shows a molybdenum-based low-order oxide particles: among X a MoO b, X is Rb, the b 2.85 a proper range (2.62 ≦ b ≦ 2.85) in In Example 14, the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is within an appropriate range (70% or more) of 79.88%, and the maximum transmittance in the visible light region at a wavelength of 380 nm to 780 nm is present. Since the value (% Vr) was 81.55% and within the appropriate range (75% or more), the light in the visible light region could be sufficiently transmitted, and the solar radiation transmittance (% Ts) at a wavelength of 300 nm to 2600 nm was 39. 43% is within the appropriate range (50% or less), and the minimum transmittance (% Ir) in the infrared range of 780 nm to 2600 nm is 9.41% within the appropriate range (10% or less), (% The ratio of (Tv) / (% Ts) is 2.02 and the appropriate range (1.8 or less The absorption performance of infrared rays (especially near infrared rays) was improved, and the haze was within an appropriate range (1.0% or less) of 0.85%, so that the visible light transmission was improved. .

本発明のモリブデン系低次酸化物粒子を用いた分散体は、建物や車両の窓ガラス等の板材に塗布し乾燥して膜を形成することにより、可視光線を透過しかつ近赤外線を吸収する透明な遮熱材として利用できる。   The dispersion using the molybdenum-based low-order oxide particles of the present invention is applied to a plate material such as a window glass of a building or a vehicle and dried to form a film, thereby transmitting visible light and absorbing near infrared light. It can be used as a transparent heat shield.

Claims (5)

一般式:XaMoObで示されるモリブデン系低次酸化物粒子からなり、前記一般式中のXがアルカリ金属元素であり、aが0.27≦a≦0.37を満たし、かつbが2.62≦b≦2.85を満たす、モリブデン系低次酸化物粒子。 It consists of molybdenum-based low-order oxide particles represented by the general formula: X a MoO b, where X is an alkali metal element, a satisfies 0.27 ≦ a ≦ 0.37, and b is Molybdenum-based low-order oxide particles satisfying 2.62 ≦ b ≦ 2.85. 前記アルカリ金属元素が、カリウム、ナトリウム、セシウム又はルビジウムのいずれか1種の元素である請求項1記載のモリブデン系低次酸化物粒子。   The molybdenum-based low-order oxide particle according to claim 1, wherein the alkali metal element is any one element of potassium, sodium, cesium, or rubidium. 請求項1又は2に記載のモリブデン系低次酸化物粒子が分散媒に分散され、波長380nm〜780nmの可視光線透過率(%Tv)が70%以上であり、波長300nm〜2600nmの日射透過率(%Ts)が50%以下であり、かつ(%Tv)/(%Ts)の比が1.8以上であり、更に波長380nm〜780nmの可視光線領域における透過率の最大値(%Vr)が75%以上であり、かつ波長780nm〜2600nmの赤外線領域における透過率の最小値(%Ir)が10%以下である分散体。   The molybdenum-based low-order oxide particles according to claim 1 or 2 are dispersed in a dispersion medium, the visible light transmittance (% Tv) at a wavelength of 380 nm to 780 nm is 70% or more, and the solar radiation transmittance at a wavelength of 300 nm to 2600 nm. (% Ts) is 50% or less, the ratio (% Tv) / (% Ts) is 1.8 or more, and the maximum transmittance (% Vr) in the visible light region with a wavelength of 380 nm to 780 nm Is a dispersion having a minimum transmittance (% Ir) of 10% or less in an infrared region having a wavelength of 780 nm to 2600 nm. ヘーズが1.0%以下である請求項3記載の分散体。   The dispersion according to claim 3, wherein the haze is 1.0% or less. モリブデン酸塩とアルカリ金属塩の混合水溶液を調製する工程と、
前記混合水溶液に酸及び還元剤を添加することにより水中でアルカリ金属元素を酸化モリブデン結晶構造中に侵入させて複合化する還元を行って析出物を析出させる工程と、
この析出物を水洗し濾過し乾燥する工程と、
前記乾燥した析出物を窒素雰囲気中で450〜650℃の温度で焼成することにより請求項1又は2に記載のモリブデン系低次酸化物粒子を得る工程と
を含むモリブデン系低次酸化物粒子の製造方法。
Preparing a mixed aqueous solution of molybdate and alkali metal salt;
Adding an acid and a reducing agent to the mixed aqueous solution to cause the alkali metal element to penetrate into the molybdenum oxide crystal structure in water to form a composite, thereby depositing precipitates;
Washing the precipitate with water, filtering and drying;
Obtaining the molybdenum-based low-order oxide particles according to claim 1 or 2 by firing the dried precipitate in a nitrogen atmosphere at a temperature of 450 to 650 ° C. Production method.
JP2016191225A 2016-01-08 2016-09-29 Molybdenum-based lower oxide particle, dispersion using the same, and method for producing molybdenum-based lower oxide particles Pending JP2017124961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/089025 WO2017119379A1 (en) 2016-01-08 2016-12-28 Molybdenum-based lower oxide particle, dispersion using same and method for producing molybdenum-based lower oxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016002140 2016-01-08
JP2016002140 2016-01-08

Publications (1)

Publication Number Publication Date
JP2017124961A true JP2017124961A (en) 2017-07-20

Family

ID=59364576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191225A Pending JP2017124961A (en) 2016-01-08 2016-09-29 Molybdenum-based lower oxide particle, dispersion using the same, and method for producing molybdenum-based lower oxide particles

Country Status (1)

Country Link
JP (1) JP2017124961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216719A1 (en) * 2018-05-11 2019-11-14 엘지전자 주식회사 Method for manufacture of transition metal oxide fine particles
WO2021172698A1 (en) * 2018-05-11 2021-09-02 엘지전자 주식회사 Method for producing transition metal oxide fine particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216719A1 (en) * 2018-05-11 2019-11-14 엘지전자 주식회사 Method for manufacture of transition metal oxide fine particles
WO2021172698A1 (en) * 2018-05-11 2021-09-02 엘지전자 주식회사 Method for producing transition metal oxide fine particles
US11420258B2 (en) 2018-05-11 2022-08-23 Lg Electronics Inc. Method for manufacture of transition metal oxide fine particles
CN115151511A (en) * 2018-05-11 2022-10-04 Lg电子株式会社 Method for producing transition metal oxide fine particles

Similar Documents

Publication Publication Date Title
KR102371492B1 (en) Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion
JP5597268B2 (en) Transparent heat shielding material and method for producing the same
TWI640479B (en) Mathod for manufacturing composite-tungsten-oxide nanoparticles
JP4096205B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
US10647912B2 (en) Carbon-coated vanadium dioxide particles
JP5835860B2 (en) Heat ray shielding composition and method for producing the same
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP6187540B2 (en) Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield
JP6086261B2 (en) Near infrared absorption filter and imaging device
JP2011063739A (en) Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body
JP2017124961A (en) Molybdenum-based lower oxide particle, dispersion using the same, and method for producing molybdenum-based lower oxide particles
CN102643563B (en) Transparent thermal insulation material and preparation method thereof
JP2011063493A (en) Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion
WO2017119379A1 (en) Molybdenum-based lower oxide particle, dispersion using same and method for producing molybdenum-based lower oxide particles
JP2017128485A (en) Manufacturing method of boride fine particles
JP2017145164A (en) Boride particles, boride particle production method, and boride particle dispersion
JP2011063484A (en) Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body
JP4375531B2 (en) Method for producing boride fine particles
JP2017145163A (en) Method for selecting substituted element of boride particle and manufacturing method of boride particle
JP2021130599A (en) Method for producing near-infrared shielding fine particles
TW201834972A (en) Infrared shielding body and infrared absorption material thereof
JP7318483B2 (en) Method for producing near-infrared shielding material
JP5486752B2 (en) Heat ray shielding composition containing rod-shaped indium tin oxide powder and method for producing the same
TWI409222B (en) Near infrared absorbing agent and near infrared absorbing film