JP2017123222A - Aqueous solution-based storage battery - Google Patents

Aqueous solution-based storage battery Download PDF

Info

Publication number
JP2017123222A
JP2017123222A JP2016000326A JP2016000326A JP2017123222A JP 2017123222 A JP2017123222 A JP 2017123222A JP 2016000326 A JP2016000326 A JP 2016000326A JP 2016000326 A JP2016000326 A JP 2016000326A JP 2017123222 A JP2017123222 A JP 2017123222A
Authority
JP
Japan
Prior art keywords
storage battery
positive electrode
negative electrode
active material
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016000326A
Other languages
Japanese (ja)
Inventor
杉政 昌俊
Masatoshi Sugimasa
昌俊 杉政
安藤 正彦
Masahiko Ando
正彦 安藤
尚起 吉本
Naoki Yoshimoto
尚起 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016000326A priority Critical patent/JP2017123222A/en
Publication of JP2017123222A publication Critical patent/JP2017123222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact aqueous solution-based storage battery of a large output type, which is high in battery voltage and suitable for large storage of electric power originating from a recyclable energy.SOLUTION: An aqueous solution-based storage battery comprises a structure in which a positive electrode and a negative electrode are separated from each other by a diaphragm. In the aqueous solution-based storage battery, hydroxyl ions contribute to a redox reaction of each or one of a positive electrode active material and a negative electrode active material; the diaphragm is composed of an ion-selective cation exchange membrane; and a negative electrode electrolyte is higher than a positive electrode electrolyte in pH.SELECTED DRAWING: Figure 1

Description

本発明は、水溶液系蓄電池に関するものである。   The present invention relates to an aqueous storage battery.

近年、地球において資源の枯渇と環境破壊は大きな問題とされており、再生可能エネルギーによるゼロエミッション型社会の構築が求められている。しかしながら、再生可能エネルギーは出力が不安定であり、電力需要に応じた供給が出来ない点が問題として挙げられている。そこで、大規模に電力を貯蔵できる蓄電池が注目されている。   In recent years, depletion of resources and destruction of the environment are regarded as major problems on the earth, and there is a demand for the construction of a zero-emission society using renewable energy. However, the problem is that renewable energy has an unstable output and cannot be supplied according to power demand. Therefore, a storage battery capable of storing electric power on a large scale has attracted attention.

電力貯蔵用の蓄電池に関しては、鉛蓄電池、リチウムイオン二次電池、NAS電池、レドックスフロー電池など構成部材や運転方法の異なる様々な種類の蓄電池が開発されている。   Regarding storage batteries for power storage, various types of storage batteries having different components and operation methods such as lead storage batteries, lithium ion secondary batteries, NAS batteries, and redox flow batteries have been developed.

例えば、NAS電池は大容量で長寿命とされており、ウインドファームやメガソーラーなど大規模な再生可能エネルギー発電所にメガワット単位で導入し、系統連携用の平準化用途に利用するシステムが提案されている。リチウムイオン二次電池は重量当たりの蓄電容量に優れ、充放電効率が高く、高出力化が可能であることから、家庭用のバックアップ用システムとして、特に東日本大震災を契機に各社から様々な容量の装置が市販化されている。鉛蓄電池は信頼性が高く、蓄電容量あたりのコストが低いことから、家庭用や事業所用のロードレベリングや再生可能エネルギー発電所用の平準化など幅広い用途に提案されている。レドックスフロー電池は、活物質は液体としてタンクに貯蔵することから、大容量化が容易であるため、事業所用のロードレベリング用途や再生可能エネルギー発電所における平準化用途に適している。   For example, NAS batteries have a large capacity and a long life, and a system has been proposed that can be installed in megawatt units in large-scale renewable energy power plants such as wind farms and mega solars, and used for leveling applications for system linkage. ing. Lithium-ion secondary batteries have excellent power storage capacity per weight, high charge / discharge efficiency, and high output capability.As a backup system for home use, various capacities of various capacities have been obtained from various companies, especially in the wake of the Great East Japan Earthquake. Equipment is commercially available. Lead storage batteries are highly reliable and have a low cost per storage capacity, so they have been proposed for a wide range of applications such as load leveling for households and offices and leveling for renewable energy power plants. Since the redox flow battery stores the active material in a tank as a liquid and can easily increase its capacity, it is suitable for use in load leveling for offices and leveling in renewable energy power plants.

レドックスフロー電池の負極活物質として亜鉛(Zn)とした場合、正極活物質としてはハロゲンを用いるものが検討されている。   In the case where zinc (Zn) is used as the negative electrode active material of the redox flow battery, the use of halogen as the positive electrode active material has been studied.

特許文献1には、負極活物質として亜鉛を用い、正極活物質としてハロゲンである臭素、ヨウ素等を用い、負極用及び正極用の電解液の貯蔵タンクを有するレドックスフロー電池の構成を有する蓄電装置が開示されている。   Patent Document 1 discloses a power storage device having a configuration of a redox flow battery using zinc as a negative electrode active material, bromine, iodine, or the like as a halogen as a positive electrode active material, and having storage tanks for negative electrode and positive electrode electrolytes. Is disclosed.

特開2014−10999号公報JP 2014-10999 A

上述したように、今後見込まれる再生可能エネルギー電力の大量導入には、大規模な電力貯蔵に適したNAS電池やレドックスフロー電池の利用が好ましい。しかしながら、NAS電池やLi塩を利用した有機溶媒レドックスフロー電池は、燃焼の危険があるため、外気を完全に遮断する必要がある。   As described above, for the large-scale introduction of renewable energy power expected in the future, it is preferable to use a NAS battery or a redox flow battery suitable for large-scale power storage. However, an organic solvent redox flow battery using a NAS battery or a Li salt has a risk of combustion, and therefore it is necessary to completely block outside air.

また、従来の金属イオンを用いた水溶液系のレドックスフロー電池は安全性に優れるが、単位当たりの電気容量が低い。このため、広大な設置面積が必要となり、電池システムの組み立てに必要な施工費の割合が高くなる。また、電池電圧が低く、大出力化に多数のセルが必要となる。これらの問題は装置コストの上昇要因となり、電力貯蔵の大容量化を抑制する。   In addition, an aqueous redox flow battery using a conventional metal ion is excellent in safety, but has a low electric capacity per unit. For this reason, a vast installation area is required, and the ratio of construction costs required for assembling the battery system increases. In addition, the battery voltage is low, and a large number of cells are required to increase the output. These problems increase the cost of the apparatus and suppress the increase in capacity of power storage.

一方、風力発電設備や太陽光発電設備は大規模化が進んでおり、また世界的に再生可能エネルギー由来の電力導入割合を増やす傾向にあり、電力の需給ギャップを調整するための蓄電設備の大容量化に対する需要は今後急増すると考えられる。   On the other hand, wind power generation facilities and solar power generation facilities are becoming larger in scale, and there is a tendency to increase the rate of introduction of renewable energy-derived electricity worldwide, and there is a large amount of power storage facilities for adjusting the power supply-demand gap. The demand for capacity is expected to increase rapidly in the future.

このように、再生可能エネルギー由来の電力を大規模に貯蔵する蓄電システムのニーズとして、安全性の高い水溶液系でありながら、重量および体積エネルギー密度が高く、電池電圧が高く、大容量蓄電が容易な構成が求められている。   In this way, as a need for a power storage system that stores electricity derived from renewable energy on a large scale, it is a highly safe aqueous solution system, but has a high weight and volume energy density, high battery voltage, and easy large-capacity power storage. Is required.

本発明の目的は、再生可能エネルギー由来の電力の大規模貯蔵に適したコンパクトでかつ電池電圧の高い大出力型の水溶液系蓄電池を提供することにある。   An object of the present invention is to provide a large-power aqueous solution storage battery that is compact and suitable for large-scale storage of electric power derived from renewable energy and has a high battery voltage.

上記課題を解決するため、本発明の要旨は以下である。   In order to solve the above problems, the gist of the present invention is as follows.

正極と負極を隔膜で分離した構成を備えた水溶液系蓄電池であり、正極活物質および負極活物質のいずれか、もしくは双方の酸化還元反応に水酸化物イオンが寄与しており、前記隔膜がイオン選択性のカチオン交換膜であり、正極電解液のpHより負極電解液のpHが高いことを特徴とする。   An aqueous storage battery having a structure in which a positive electrode and a negative electrode are separated by a diaphragm, and hydroxide ions contribute to the oxidation-reduction reaction of one or both of the positive electrode active material and the negative electrode active material. It is a selective cation exchange membrane and is characterized in that the pH of the negative electrode electrolyte is higher than the pH of the positive electrode electrolyte.

本発明によれば、再生可能エネルギー由来の電力の大規模貯蔵に適したコンパクトでかつ電池電圧の高い大出力型の水溶液系蓄電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the large output type aqueous solution type | system | group storage battery suitable for the large-scale storage of the electric power derived from renewable energy and a high battery voltage can be provided.

本実施例による蓄電池の構成モデル図の一例。An example of a structural model figure of a storage battery by a present Example. 本発明による蓄電池の動作原理イメージ図。The operation principle image figure of the storage battery by this invention. 本実施例による負極をZn、正極をヨウ化物イオンとした特性評価結果の一例。An example of the characteristic evaluation result which made the negative electrode by a present Example Zn and the positive electrode made the iodide ion. 本実施例による1液型フロー電池の構成モデル図の一例。1 is an example of a configuration model diagram of a one-pack type flow battery according to the present embodiment.

本発明は水溶液系の蓄電池に関するものであり、正極と負極を隔膜で分離した構成を備えた水溶液系蓄電池であり、正極活物質および負極活物質のいずれか、もしくは双方の酸化還元反応に水酸化物イオンが寄与しており、前記隔膜がイオン選択性のカチオン交換膜であり、正極電解液のpHより負極電解液のpHが高いことを特徴とする。本発明に係る水溶液系蓄電池の基本構成の一例を図1に示す。水溶液系蓄電池100は、負極電解液貯蔵部1と、正極電解液貯蔵部2と、隔壁3と、負極4と、正極5とを含むものである。隔壁3はイオン交換膜である。また、正極電解液と負極電解液は水溶液である。水溶液系蓄電池100は、電源6から電力の供給を受け、充電される。そして、外部負荷7に電力を供給し、放電する。なお、図示していないが、レドックスフロー電池として、負極電解液貯蔵部1および正極電解液貯蔵部2の少なくとも一方に外部のタンクに貯蔵された電解液を循環させる構成としてもよい。この場合、水溶液蓄電池100は、所定の条件で電解液を循環させるためのポンプのオン・オフの指令を発する制御回路を有する。   The present invention relates to an aqueous storage battery, which is an aqueous storage battery having a structure in which a positive electrode and a negative electrode are separated by a diaphragm, and is used for the oxidation-reduction reaction of either or both of the positive electrode active material and the negative electrode active material. Product ions contribute, the diaphragm is an ion-selective cation exchange membrane, and the pH of the negative electrode electrolyte is higher than that of the positive electrode electrolyte. An example of the basic configuration of the aqueous solution storage battery according to the present invention is shown in FIG. The aqueous solution storage battery 100 includes a negative electrode electrolyte storage unit 1, a positive electrode electrolyte storage unit 2, a partition wall 3, a negative electrode 4, and a positive electrode 5. The partition 3 is an ion exchange membrane. The positive electrode electrolyte and the negative electrode electrolyte are aqueous solutions. The aqueous storage battery 100 is supplied with electric power from the power source 6 and charged. Then, electric power is supplied to the external load 7 and discharged. Although not shown, the redox flow battery may have a configuration in which an electrolyte stored in an external tank is circulated in at least one of the negative electrode electrolyte storage unit 1 and the positive electrode electrolyte storage unit 2. In this case, the aqueous solution storage battery 100 has a control circuit that issues a pump on / off command for circulating the electrolyte under a predetermined condition.

本発明の1つの特徴としては、正極活物質および負極活物質のいずれか、もしくは双方の酸化還元反応に水酸化物イオンが寄与しており、正極と負極にpHの異なる水溶液電解液を利用していることにある。図2に本発明による蓄電池の動作原理を示す。電池電圧は高くなるほど高出力、大容量を実現できるため、高電圧化は重要である。しかしながら、一般的な水溶液系蓄電池は水の電気分解によるガス発生の恐れがあるため、電池電圧は1.2V程度に制限される。この課題に対して、本発明では水酸化物イオンが酸化還元反応に寄与する構成とし、かつ、正極電解液のpHより負極電解液のpHが高い構成を採用することで高電圧化を実現することができる。ここで、水酸化物イオンが酸化還元反応に寄与する反応としては、金属と金属水酸化物との反応による酸化還元が挙げられる。この構成によって、高電圧化が実現できる理由は以下の通りである。酸化還元反応に水酸化物イオンを用いる場合、式1の化学平衡と酸化還元電位の式に示すようにpHが変動すると酸化還元電位Eが変動する。具体的には、pHが大きくなるとEは低電位側にシフトする。   One feature of the present invention is that hydroxide ions contribute to the oxidation-reduction reaction of either or both of the positive electrode active material and the negative electrode active material, and aqueous electrolytes having different pH are used for the positive electrode and the negative electrode. There is in being. FIG. 2 shows the operating principle of the storage battery according to the present invention. Higher voltage is important because higher power and higher capacity can be achieved as the battery voltage increases. However, since a general aqueous battery is likely to generate gas due to electrolysis of water, the battery voltage is limited to about 1.2V. In response to this problem, the present invention achieves higher voltage by adopting a configuration in which hydroxide ions contribute to the oxidation-reduction reaction and the pH of the negative electrode electrolyte is higher than that of the positive electrode electrolyte. be able to. Here, examples of the reaction in which hydroxide ions contribute to the oxidation-reduction reaction include oxidation-reduction by a reaction between a metal and a metal hydroxide. The reason why high voltage can be realized by this configuration is as follows. When hydroxide ions are used in the oxidation-reduction reaction, the oxidation-reduction potential E varies as the pH varies as shown in the equation of chemical equilibrium and oxidation-reduction potential of Formula 1. Specifically, E shifts to the low potential side as the pH increases.

E=E0-RT/nF(pH)・・・式1
ここで、E0は標準酸化還元電位、Rは気体定数、Tは絶対温度、nは反応に関与する電子の数、Fはファラデー定数である。
E = E 0 -RT / nF (pH) ・ ・ ・ Formula 1
Here, E 0 is a standard redox potential, R is a gas constant, T is an absolute temperature, n is the number of electrons involved in the reaction, and F is a Faraday constant.

式1のpHとEの関係を図式化したものが図1となる。酸化還元反応に水酸化物イオンが寄与する場合、pHによってEが変動する。例えば正極側のpHを低く、負極側のpHを高くすることで、同じpHの場合に比べて高電圧化が可能となる。   A diagram showing the relationship between pH and E in Equation 1 is shown in FIG. When hydroxide ions contribute to the oxidation-reduction reaction, E varies depending on pH. For example, by lowering the pH on the positive electrode side and increasing the pH on the negative electrode side, it becomes possible to increase the voltage compared to the case of the same pH.

ただし、pHの異なる電解液、すなわちプロトンと水酸化物イオンの濃度がそれぞれ異なる電解液を混合すると、プロトンと水酸化物イオンが反応し、中和して水となる。この中和反応によって正負極の電解液のpHは等しくなる。このように中和反応が起こると高電圧化を図ることはできないので、隔膜で正負極の電解液の混合を防ぐ必要がある。   However, when electrolytes having different pHs, that is, electrolytes having different concentrations of protons and hydroxide ions, are mixed, protons and hydroxide ions react and neutralize to become water. By this neutralization reaction, the pH of the positive and negative electrode electrolytes becomes equal. Thus, since the voltage cannot be increased when the neutralization reaction occurs, it is necessary to prevent the positive and negative electrolytes from being mixed by the diaphragm.

一方、電池反応の進行に伴なって正負極のイオンバランスが変化する。そこで正負極のイオンバランスを維持するために隔膜内部をイオンが移動する必要がある。このとき、水酸化物イオンが隔膜内部を移動してしまうと上述の通り中和反応が進行する。そこで、隔膜内部を移動するイオンは水酸化物イオン以外である必要である。隔膜内部を移動するイオン種を水酸化物以外のイオンに選択するためには、隔膜はイオン選択性のあるイオン交換膜である必要があり、カチオン交換膜を用いる。隔膜中を移動して正負極のイオンバランスを維持するイオンとしては、アルカリ金属イオン、アルカリ土類金属イオンが挙げられる。反応に関与する金属イオンでもよい。   On the other hand, as the battery reaction proceeds, the ion balance of the positive and negative electrodes changes. Therefore, in order to maintain the positive and negative ion balance, ions need to move inside the diaphragm. At this time, if hydroxide ions move inside the diaphragm, the neutralization reaction proceeds as described above. Therefore, ions moving inside the diaphragm need to be other than hydroxide ions. In order to select an ion species that moves inside the diaphragm as an ion other than hydroxide, the diaphragm needs to be an ion exchange membrane having ion selectivity, and a cation exchange membrane is used. Examples of ions that move through the diaphragm and maintain the positive and negative ion balance include alkali metal ions and alkaline earth metal ions. It may be a metal ion involved in the reaction.

活物質材料に関しては、安全性の高い水溶液中で扱うことができれば特に制限はない。正極活物質として望ましい材料としては、ヨウ化物イオン、臭化物イオン、塩化物イオンなどのハロゲン化物イオンが挙げられる。ハロゲン化物イオンは水溶液への溶解度が高く、体積エネルギー密度が高くなるため活物質として優位である。特にハロゲン化物イオンの中でもヨウ化物イオンおよび臭化物イオンは酸化種、還元種が共に水溶性のイオンであるため、フロー電池として扱うことができる。大規模電力貯蔵としての用途を想定した場合、電解液の増量だけで大容量化を図ることのできるフロー電池が好ましい。   The active material is not particularly limited as long as it can be handled in a highly safe aqueous solution. Materials desirable as the positive electrode active material include halide ions such as iodide ions, bromide ions, and chloride ions. Halide ions are superior as an active material because of their high solubility in aqueous solutions and high volume energy density. In particular, among the halide ions, iodide ions and bromide ions can be handled as a flow battery because both oxidized species and reduced species are water-soluble ions. When a use as large-scale power storage is assumed, a flow battery capable of increasing the capacity only by increasing the amount of the electrolyte is preferable.

負極活物質として望ましい材料としては、亜鉛が挙げられる。亜鉛および酸化亜鉛は一次電池でも利用されており、亜鉛の標準酸化還元電位が−0.72V、酸化亜鉛の標準酸化還元電位が−1.22Vと水溶液中で酸化還元できる反応系としては最も低い部類に属する。このため、負極活物質としては亜鉛および酸化亜鉛が好適である。   A desirable material for the negative electrode active material is zinc. Zinc and zinc oxide are also used in primary batteries. The standard oxidation-reduction potential of zinc is -0.72V, and the standard oxidation-reduction potential of zinc oxide is -1.22V. It belongs to a category. For this reason, zinc and zinc oxide are suitable as the negative electrode active material.

また、負極活物質の亜鉛はスラリー状の電解液を用いることでフロー電池として扱うことができる。また、亜鉛の理論エネルギー密度は水溶液系として最も高いため、正極活物質のみフローさせ、負極側を固体電解質とした1液系のフロー電池としてもよい。1液系フロー電池は、タンク体積が半減し、タンク、ポンプ、配管などの補器類を減らすことができる。そのため、負極電解液と正極電解液の両者とも循環させる2液系のフロー電池と比較して設置面積・コストの観点で有利である。   Moreover, zinc of a negative electrode active material can be handled as a flow battery by using a slurry-like electrolyte solution. Moreover, since the theoretical energy density of zinc is the highest in an aqueous solution system, only a positive electrode active material is allowed to flow, and a one-component flow battery in which the negative electrode side is a solid electrolyte may be used. The one-component flow battery can reduce the tank volume by half and reduce auxiliary equipment such as tanks, pumps, and piping. Therefore, it is advantageous in terms of installation area and cost as compared with a two-component flow battery in which both the negative electrode electrolyte and the positive electrode electrolyte are circulated.

亜鉛を負極活物質とした場合、亜鉛イオンの濃度は高ければ高いほど好ましく、拡散律速にならない2M/L以上であることが必要である。ただし、濃度が高くなると電解液の導電度が低下するため、電池としては3〜15M/L程度であることが好ましい。また酸化亜鉛を活物質とした場合も、反応物質である水酸化物イオンの濃度は高ければ高いほど好ましく、拡散律速にならない2M/L以上であることが必要である。   When zinc is used as the negative electrode active material, the concentration of zinc ions is preferably as high as possible, and needs to be 2 M / L or more which does not become diffusion-controlled. However, since the conductivity of the electrolytic solution decreases as the concentration increases, the battery is preferably about 3 to 15 M / L. Further, when zinc oxide is used as the active material, the concentration of the hydroxide ion as the reactant is preferably as high as possible, and it is necessary that the concentration be 2 M / L or more which does not become diffusion-controlled.

正極活物質も溶解度が高いことが好ましい。ヨウ化ナトリウムは水溶液への溶解度が12M/Lであり、ヨウ化物イオンの標準酸化還元電位は0.57Vであるため、溶解度および反応電位の観点から正極活物質として好適である。濃度は拡散律速にならない2〜12M/Lであることが好ましい。また臭素化合物は溶解度が2M/L程度であるが、標準酸化還元電位が1.1V程度であるため正極活物質として利用してもよい。   The positive electrode active material is also preferably highly soluble. Sodium iodide has a solubility in an aqueous solution of 12 M / L, and the standard oxidation-reduction potential of iodide ions is 0.57 V. Therefore, it is suitable as a positive electrode active material from the viewpoint of solubility and reaction potential. The concentration is preferably 2 to 12 M / L which does not become diffusion-limited. The bromine compound has a solubility of about 2 M / L, but may have a standard oxidation-reduction potential of about 1.1 V, so that it can be used as a positive electrode active material.

電極基材の材料に関しては、負極側は亜鉛および酸化亜鉛の電池反応が円滑に進めばよい。金属ではZnが好適であるが、Ti、Fe、Cuなどでもよい。また化学的に安定な炭素材料を用いてもよい。正極側はヨウ化物イオンや臭化物イオンによる腐食が問題となるため、化学的に安定な炭素材料であることが好ましい。さらに反応速度を上げるため、白金族を担持してもよい。   As for the electrode base material, the battery reaction of zinc and zinc oxide should proceed smoothly on the negative electrode side. Zn is suitable as the metal, but Ti, Fe, Cu, etc. may be used. Further, a chemically stable carbon material may be used. The positive electrode side is preferably a chemically stable carbon material because corrosion due to iodide ions or bromide ions becomes a problem. In order to further increase the reaction rate, a platinum group may be supported.

電極基材の形状に関しては、板状でもよいが、高電流密度化を図るため高比表面積な多孔体、メッシュ、エキスパンドメタル、繊維、フェルト、不織布のいずれかであることが好ましい。亜鉛を負極活物質とした場合はZnイオンの溶解析出を利用するため析出の均一性と高比表面積化のバランスを考慮し、メッシュ、エキスパンドメタル、不織布などの形状を選択する必要がある。さらに酸化亜鉛を負極活物質とした場合は亜鉛、もしくは酸化亜鉛の微粒子をバインダを用いて電極基材に結着した微粒子多孔体形状が好ましい。   The shape of the electrode substrate may be plate-like, but is preferably any of a porous body, mesh, expanded metal, fiber, felt, and non-woven fabric having a high specific surface area in order to increase the current density. When zinc is used as the negative electrode active material, it is necessary to select the shape of mesh, expanded metal, nonwoven fabric, etc. in consideration of the balance between the uniformity of the precipitation and the increase in the specific surface area because it uses the dissolution and precipitation of Zn ions. Further, when zinc oxide is used as the negative electrode active material, a fine porous particle shape in which zinc or zinc oxide fine particles are bound to an electrode substrate using a binder is preferable.

正極側の電極基材の形状についても同様に板状でもよいが、高電流密度化を図るために高比表面積な多孔体、メッシュ、エキスパンドメタル、繊維、フェルト、不織布のいずれかであることが好ましい。   Similarly, the shape of the electrode substrate on the positive electrode side may be plate-like, but in order to increase the current density, it may be any of a porous body, mesh, expanded metal, fiber, felt, and non-woven fabric with a high specific surface area. preferable.

貯蔵タンク、筐体、配管の素材はハロゲン化物による腐食への耐久性と、電解液の重量、送液ポンプの圧力に耐える機械的強度があればよい。樹脂で形成することが好ましい。   The storage tank, housing, and piping materials only need to be durable against corrosion by halides, and have mechanical strength that can withstand the weight of the electrolyte and the pressure of the pump. It is preferable to form with resin.

〔実施例1〕
図1に蓄電池の構成モデル図の一例を示す。負極には金属の固体活物質を適用し、金属と金属水酸化物との反応により酸化還元を行う。正極には活物質イオンを適用し、電極表面で酸化還元を行う。正極は水酸化物イオンを介した反応であるため、電解液はアルカリ性となる。隔膜は水酸化物イオンの透過を阻害し、かつ、正負極のイオンバランスを維持するイオンを透過するカチオン交換膜を用い、電池反応に伴うイオンの移動はナトリウムイオンなどのアルカリカチオンを利用する。
[Example 1]
FIG. 1 shows an example of a configuration model diagram of a storage battery. A metal solid active material is applied to the negative electrode, and oxidation and reduction is performed by a reaction between the metal and the metal hydroxide. Active material ions are applied to the positive electrode, and oxidation and reduction are performed on the electrode surface. Since the positive electrode is a reaction through hydroxide ions, the electrolytic solution becomes alkaline. The diaphragm uses a cation exchange membrane that inhibits the permeation of hydroxide ions and permeates ions that maintain the ion balance of the positive and negative electrodes, and the movement of ions accompanying the battery reaction utilizes alkali cations such as sodium ions.

具体的には、正極には亜鉛板、負極には炭素板を使用した。負極電解液には3M水酸化ナトリウム水溶液、正極電解液には3Mヨウ化ナトリウム水溶液を用い、隔膜にはカチオン交換膜を使用した。負極反応は亜鉛(Zn)と亜鉛水酸化物(ZnOH)との酸化還元反応(式2)となり標準電極電位は1.21Vとなる。また、正極反応はヨウ化物イオン(I)とトリヨウ化物イオン(I )との酸化還元反応(式3)となり標準電極電位は0.57Vとなる。 Specifically, a zinc plate was used for the positive electrode and a carbon plate was used for the negative electrode. A 3M sodium hydroxide aqueous solution was used for the negative electrode electrolyte, a 3M sodium iodide aqueous solution was used for the positive electrode electrolyte, and a cation exchange membrane was used for the diaphragm. The negative electrode reaction is an oxidation-reduction reaction (formula 2) between zinc (Zn) and zinc hydroxide (ZnOH), and the standard electrode potential is 1.21V. The positive electrode reaction is an oxidation-reduction reaction (formula 3) of iodide ion (I ) and triiodide ion (I 3 ), and the standard electrode potential is 0.57V.

Zn+OH-⇔ZnOH2+2e E0=-1.21V・・・式2
3I- ⇔I3-+2e E0=0.56V・・・式3
pHは負極が14、正極が4となり、移動するカチオンはナトリウムイオンとなる。電池電圧は、1.78Vとなり、水の分解電圧(1.23V)より高い電位での反応が可能となる。
Zn + OH-⇔ZnOH 2 + 2e E0 = -1.21V ・ ・ ・ Formula 2
3I - ⇔I 3- + 2e E0 = 0.56V ・ ・ ・ Equation 3
The pH is 14 for the negative electrode and 4 for the positive electrode, and the moving cations are sodium ions. The battery voltage is 1.78 V, and a reaction at a potential higher than the water decomposition voltage (1.23 V) is possible.

図3に図2の本実施例の負極に亜鉛、正極にヨウ素化物イオンを利用した電池系の放電曲線の一例を示す。   FIG. 3 shows an example of a discharge curve of a battery system in which zinc is used for the negative electrode and iodine ions are used for the positive electrode in the present embodiment of FIG.

〔比較例1〕
比較例として、亜鉛の溶解析出(標準電極電位-0.72V)を酸化還元反応(式4)に用い、負極電解液と正極電解を同じpHとした場合の例を示す。比較例では、負極に亜鉛、正負極の電解液に塩化亜鉛水溶液を用いた。正極側は実施例1と同じである。図3に比較例の構成モデルにおける放電曲線の一例を示す。
[Comparative Example 1]
As a comparative example, an example in which zinc dissolution dissolution (standard electrode potential -0.72 V) is used for the oxidation-reduction reaction (Formula 4) and the negative electrode electrolyte and the positive electrode electrolysis are set to the same pH is shown. In the comparative example, zinc was used for the negative electrode, and zinc chloride aqueous solution was used for the positive and negative electrode electrolytes. The positive electrode side is the same as in Example 1. FIG. 3 shows an example of a discharge curve in the configuration model of the comparative example.

Zn ⇔Zn2++2e E0=-0.72V・・・式2
本実施例の蓄電池の開回路電位は1.78Vであり、比較例の蓄電池の開回路電位(1.25V)に比べ高い値であった。同じ電流密度で放電した場合、本実施例の60分後の放電電圧が1.7V、比較例が1.1Vとなり、1.6倍の電圧差を実現できることが確認できた。このように、水酸化物イオンが酸化還元反応に寄与する構成とし、かつ、正極電解液のpHより負極電解液のpHが高い構成を採用することで高電圧化を実現することができる。特に負極活物質を亜鉛、負極電解液をアルカリ性とし、正極は中性のハロゲン化物水溶液を利用することにより、高エネルギー密度で高出力な水溶液系蓄電池を実現できる。
Zn ⇔Zn 2+ + 2e E0 = -0.72V ・ ・ ・ Formula 2
The open circuit potential of the storage battery of this example was 1.78 V, which was higher than the open circuit potential (1.25 V) of the storage battery of the comparative example. When discharging at the same current density, the discharge voltage after 60 minutes of this example was 1.7 V, and the comparative example was 1.1 V, confirming that a voltage difference of 1.6 times could be realized. Thus, it is possible to realize a high voltage by adopting a configuration in which hydroxide ions contribute to the oxidation-reduction reaction and a pH of the negative electrode electrolyte is higher than that of the positive electrode electrolyte. In particular, by using zinc as the negative electrode active material and alkaline as the negative electrode electrolyte, and using a neutral halide aqueous solution as the positive electrode, an aqueous solution storage battery with high energy density and high output can be realized.

〔実施例2〕
図4は、正極に外部タンクを必要としない1タンク1ポンプのフロー電池400の構成モデルの一例である。活物質、電解液の構成は、図1と同様である。外部タンク9には正極活物質10を溶解した正極電解液11が貯蔵されており、ポンプ8を介して正極電解液11が正極電解液貯蔵部2に供給され、外部タンク9と正極電解液貯蔵部2の間を正極電解液11が循環する構成となっている。亜鉛の理論エネルギー密度は水溶液系として最も高いため、正極活物質のみフローさせ、負極を固体電解質とした1液系のフロー電池とすることで、コンパクトで大容量の電力が貯蔵でき、大規模貯蔵に適した蓄電装置となる。
[Example 2]
FIG. 4 is an example of a configuration model of a flow battery 400 of 1 tank 1 pump that does not require an external tank for the positive electrode. The configurations of the active material and the electrolytic solution are the same as those in FIG. A positive electrode electrolyte 11 in which the positive electrode active material 10 is dissolved is stored in the external tank 9, and the positive electrode electrolyte 11 is supplied to the positive electrode electrolyte storage unit 2 via the pump 8, and the external tank 9 and the positive electrode electrolyte storage are stored. The cathode electrolyte 11 is circulated between the parts 2. Since the theoretical energy density of zinc is the highest as an aqueous solution system, only a positive electrode active material is allowed to flow, and a one-component flow battery with a negative electrode as a solid electrolyte can be used to store compact and large-capacity electric power. It becomes a power storage device suitable for.

Claims (6)

正極と負極を隔膜で分離した構成を備えた水溶液系蓄電池であり、正極活物質および負極活物質のいずれか、もしくは双方の酸化還元反応に水酸化物イオンが寄与しており、前記隔膜がイオン選択性のカチオン交換膜であり、正極電解液のpHより負極電解液のpHが高いことを特徴とする水溶液系蓄電池。   An aqueous storage battery having a structure in which a positive electrode and a negative electrode are separated by a diaphragm, and hydroxide ions contribute to the oxidation-reduction reaction of one or both of the positive electrode active material and the negative electrode active material. An aqueous storage battery, which is a selective cation exchange membrane, wherein the pH of the negative electrode electrolyte is higher than the pH of the positive electrode electrolyte. 請求項1に記載の水溶液系蓄電池であって、蓄電池反応に伴い隔膜の中を移動する主たるイオンがアルカリ金属イオンもしくはアルカリ土類金属イオンであることを特徴とする水溶液系蓄電池。   2. The aqueous solution storage battery according to claim 1, wherein the main ions moving through the diaphragm in accordance with the storage battery reaction are alkali metal ions or alkaline earth metal ions. 請求項2に記載の水溶液系蓄電池であって、負極電解液がアルカリ性であり、負極活物質が金属であり、酸化還元反応が金属と金属水酸化物と金属酸化物によることを特徴とする水溶液系蓄電池。   The aqueous solution storage battery according to claim 2, wherein the negative electrode electrolyte is alkaline, the negative electrode active material is a metal, and the oxidation-reduction reaction is performed by a metal, a metal hydroxide, and a metal oxide. System storage battery. 請求項3に記載の水溶液系蓄電池であって、正極活物質がハロゲン化物イオンであり、電解液がpH緩衝効果を示すことを特徴とする水溶液系蓄電池。   4. The aqueous solution storage battery according to claim 3, wherein the positive electrode active material is halide ions, and the electrolytic solution exhibits a pH buffering effect. 請求項1〜4のいずれかに記載の水溶液系蓄電池であって、正極電解液または負極電解液の少なくとも一方を循環して充放電を行うフロー型の水溶液系蓄電池。   5. The aqueous solution type storage battery according to claim 1, wherein charge / discharge is performed by circulating at least one of a positive electrode electrolyte or a negative electrode electrolyte. 6. 請求項1〜4のいずれかに記載の水溶液系蓄電池であって、負極活物質材料が亜鉛または酸化亜鉛であり、正極活物質材料が正極電解液に溶解したヨウ化物イオンであり、正極電解液を循環して充放電を行なう1液系フロー型の水溶液系蓄電池。   5. The aqueous storage battery according to claim 1, wherein the negative electrode active material is zinc or zinc oxide, and the positive electrode active material is iodide ion dissolved in the positive electrode electrolyte. A one-component flow-type aqueous storage battery that circulates and charges and discharges.
JP2016000326A 2016-01-05 2016-01-05 Aqueous solution-based storage battery Pending JP2017123222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000326A JP2017123222A (en) 2016-01-05 2016-01-05 Aqueous solution-based storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000326A JP2017123222A (en) 2016-01-05 2016-01-05 Aqueous solution-based storage battery

Publications (1)

Publication Number Publication Date
JP2017123222A true JP2017123222A (en) 2017-07-13

Family

ID=59306580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000326A Pending JP2017123222A (en) 2016-01-05 2016-01-05 Aqueous solution-based storage battery

Country Status (1)

Country Link
JP (1) JP2017123222A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435473A1 (en) * 2017-07-27 2019-01-30 Nanjing Tech University A hybrid aqueous rechargeable battery
KR20200073510A (en) * 2018-12-14 2020-06-24 전자부품연구원 A negative electrode having zinc particle coating layer and zinc-bromine flow battery comprising the same
KR20200073509A (en) * 2018-12-14 2020-06-24 전자부품연구원 Zinc-bromide flow battery comprising conductive interlayer
WO2020218456A1 (en) 2019-04-24 2020-10-29 株式会社村田製作所 Secondary battery
WO2022054416A1 (en) * 2020-09-10 2022-03-17 株式会社村田製作所 Secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435473A1 (en) * 2017-07-27 2019-01-30 Nanjing Tech University A hybrid aqueous rechargeable battery
CN109309244A (en) * 2017-07-27 2019-02-05 南京工业大学 Hybrid water-based rechargeable battery
CN109309244B (en) * 2017-07-27 2021-08-24 南京工业大学 Hybrid water-based rechargeable battery
KR20200073510A (en) * 2018-12-14 2020-06-24 전자부품연구원 A negative electrode having zinc particle coating layer and zinc-bromine flow battery comprising the same
KR20200073509A (en) * 2018-12-14 2020-06-24 전자부품연구원 Zinc-bromide flow battery comprising conductive interlayer
KR102302464B1 (en) * 2018-12-14 2021-09-15 한국전자기술연구원 A negative electrode having zinc particle coating layer and zinc-bromine flow battery comprising the same
KR102379200B1 (en) * 2018-12-14 2022-03-25 한국전자기술연구원 Zinc-bromide flow battery comprising conductive interlayer
WO2020218456A1 (en) 2019-04-24 2020-10-29 株式会社村田製作所 Secondary battery
WO2022054416A1 (en) * 2020-09-10 2022-03-17 株式会社村田製作所 Secondary battery
JPWO2022054416A1 (en) * 2020-09-10 2022-03-17
JP7420271B2 (en) 2020-09-10 2024-01-23 株式会社村田製作所 secondary battery

Similar Documents

Publication Publication Date Title
AU2014303614B2 (en) Redox flow battery
JP2017123222A (en) Aqueous solution-based storage battery
US7270911B2 (en) Load leveling battery and methods therefor
JP2016103386A (en) Electrolytic solution for redox flow battery and redox flow battery arranged by use thereof
US20140004403A1 (en) Multiple-membrane multiple-electrolyte redox flow battery design
WO2016078491A1 (en) Zinc-bromine flow battery having extended service life
JP2017532735A (en) Copper flow battery
JP2019505967A (en) Redox flow battery electrolyte and redox flow battery
JP5740357B2 (en) Large capacity storage device
AU2016280779A2 (en) High-power redox flow battery based on the CRIII/CRVI redox couple and its mediated regeneration
JP2013049888A (en) Electrode and water electrolysis apparatus
JP2016213034A (en) Power storage device
CN114665165A (en) High-voltage aqueous battery with three-function metal diaphragm
EP3545581A1 (en) Flow batteries incorporating active materials containing doubly bridged aromatic groups
JP2014170715A (en) Cell
Botte et al. Electrochemical energy storage: applications, processes, and trends
US20240047714A1 (en) Rechargeable flow battery
KR101514881B1 (en) Method of manufacturing electrolyte for Vanadium secondary battery and apparatus thereof
WO2003017407A1 (en) Improved load leveling battery and methods therefor
US11552324B2 (en) High efficiency zinc-iodine adsorption-aided flow battery with a low cost membrane
KR20220067124A (en) Flow cell and power generation system comprising thereof
JP2016186853A (en) Vanadium redox battery
Huq et al. Development and Performance Analysis of a Low-Cost Redox Flow Battery
JP6874806B2 (en) Aqueous solution-based secondary battery and aqueous solution-based secondary battery system
JP6813016B2 (en) Alkaline batteries and electrolytes for alkaline batteries