JP2013049888A - Electrode and water electrolysis apparatus - Google Patents

Electrode and water electrolysis apparatus Download PDF

Info

Publication number
JP2013049888A
JP2013049888A JP2011188153A JP2011188153A JP2013049888A JP 2013049888 A JP2013049888 A JP 2013049888A JP 2011188153 A JP2011188153 A JP 2011188153A JP 2011188153 A JP2011188153 A JP 2011188153A JP 2013049888 A JP2013049888 A JP 2013049888A
Authority
JP
Japan
Prior art keywords
electrode
water electrolysis
layer capacitor
double layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011188153A
Other languages
Japanese (ja)
Other versions
JP5836016B2 (en
Inventor
Masatoshi Sugimasa
昌俊 杉政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011188153A priority Critical patent/JP5836016B2/en
Priority to PCT/JP2012/070479 priority patent/WO2013031522A1/en
Publication of JP2013049888A publication Critical patent/JP2013049888A/en
Application granted granted Critical
Publication of JP5836016B2 publication Critical patent/JP5836016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water electrolysis apparatus that suppresses a transient response in a water electrolysis reaction, and that is also capable of dealing with a fluctuating electrical power input by exercising simple control.SOLUTION: In the water electrolysis apparatus 101, a cathode 103 for a double-layer capacitor and a hydrogen generating pole 104 for water electrolysis are each installed opposite to one anode 102 to be connected in parallel, and thereby the water electrolysis and the double-layer capacitor are integrated. The one anode 102 is used as an oxygen generating pole in the water electrolysis reaction in common with an anode for the double-layer capacitor. Accordingly, the apparatus suppresses the transient response in the water electrolysis reaction and can deal with the fluctuating electrical power input by exercising the simple control. As a result, the deterioration is suppressed and the cost is reduced, in the water electrolysis apparatus.

Description

本発明は、二重層キャパシタを備えた水電気分解装置に関する。   The present invention relates to a water electrolysis apparatus including a double layer capacitor.

化石燃料の大量消費による環境への悪影響およびエネルギー源の枯渇が懸念されるなか、化石燃料に代わって次世代を担うエネルギー源として水素が注目されている。水素は使用後に水しか排出しないため、環境負荷の少なく、水の電気分解により場所を選ばずに生産できる偏りのないクリーンで資源問題のない新たなエネルギー源と考えられている。   Hydrogen is attracting attention as an energy source for the next generation in place of fossil fuels, in the face of concerns about the negative impact on the environment and the depletion of energy sources due to the massive consumption of fossil fuels. Since hydrogen only discharges water after use, it is considered to be a new energy source that has little environmental impact and is clean and free of resource problems that can be produced anywhere by electrolysis of water.

水素の製造に関しては、炭化水素の水蒸気改質、水の光触媒分解反応、微生物反応、水の電気分解反応など多数の手法が存在する。特に水の電気分解は太陽光発電や風力発電など再生可能エネルギー由来の電力を用いれば、製造時の二酸化炭素排出量も極めて低レベルに抑えられるため、真にクリーンなエネルギー製造方法として注目されている。   Regarding the production of hydrogen, there are many methods such as steam reforming of hydrocarbons, photocatalytic decomposition of water, microbial reaction, and electrolysis of water. In particular, water electrolysis is attracting attention as a truly clean energy production method because it uses carbon derived from renewable energy such as solar power generation and wind power generation to reduce carbon dioxide emissions during production to an extremely low level. Yes.

再生可能エネルギー由来の電力は出力が変動するため、これまで系統電力などの一定出力での利用が一般的であった水電気分解装置に直接連結すると電流集中による電極の破損や圧力上昇に伴う隔壁やセルの破壊等の様々な不具合が生じると予想される。例えば、特許文献1等のように再生可能エネルギー発電機と水電気分解装置の間に蓄電設備を設置することで、電力を一定にすることは可能である。しかし、設備コストが増し、制御法が複雑になるなどの問題点が残る。そこで、単独で再生可能エネルギー発電所向けとして変動電力利用に対応した装置が必要とされている。   Since the power output from renewable energy fluctuates, if it is directly connected to a water electrolyzer that has been generally used at a constant power, such as grid power, it is a partition wall due to electrode breakage or pressure increase due to current concentration It is expected that various problems such as cell destruction will occur. For example, it is possible to make electric power constant by installing a power storage facility between a renewable energy generator and a water electrolyzer as in Patent Document 1 or the like. However, problems such as increased equipment costs and complicated control methods remain. Therefore, there is a need for a device that can be used for renewable power plants independently for use with variable power.

特開2003−257443号公報JP 2003-257443 A

一般的に水の電気分解反応は、水分子の拡散や発生したガス泡沫の拡散など物質拡散が伴う反応であり、ミリ秒単位で変動する電力に対応することは難しい。特に急激な電力上昇が生じた場合、酸素発生極側での酸素発生反応が追随できず、電圧が想定以上に上昇し、酸素発生極側の溶解や破壊などの問題が生じると予想される。   In general, the electrolysis reaction of water is a reaction accompanied by substance diffusion such as diffusion of water molecules and diffusion of generated gas bubbles, and it is difficult to cope with electric power that varies in milliseconds. In particular, when an abrupt increase in power occurs, the oxygen generation reaction on the oxygen generation electrode side cannot follow, and the voltage rises more than expected, and problems such as dissolution and destruction on the oxygen generation electrode side are expected.

また水電解装置における酸素発生極は、二重層容量の大きな金属酸化物から形成されているため、水の電解反応が進行する前に酸素発生極の二重層容量の充電が必要になる。この充電による過渡応答性と入力電力の変動特性にずれがある場合、制御機器や発電機、電気分解装置に負荷がかかり故障の原因となる。   In addition, since the oxygen generation electrode in the water electrolysis apparatus is formed of a metal oxide having a large double layer capacity, it is necessary to charge the double layer capacity of the oxygen generation electrode before the water electrolysis reaction proceeds. If there is a difference between the transient response due to this charging and the fluctuation characteristics of the input power, a load is applied to the control device, the generator, and the electrolyzer, causing a failure.

電力変動を平準化するため、応答性に優れた二重層キャパシタやLi蓄電池を別途設置した場合、設置コストが増加する。また水電解装置と蓄電池を個別に制御する必要があるため制御法が難しくなる。   In order to level the power fluctuation, when a double layer capacitor or a Li storage battery having excellent responsiveness is separately installed, the installation cost increases. Moreover, since it is necessary to control a water electrolysis apparatus and a storage battery separately, a control method becomes difficult.

本発明は、以上の問題点を踏まえ、水電気分解反応における過渡応答性を抑制し、簡便な制御で変動電力の入力にも対応可能な水電気分解装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a water electrolysis apparatus that can suppress transient responsiveness in a water electrolysis reaction and can respond to input of variable power by simple control.

本発明は、水を電気分解して水素と酸素を得る水電解分解装置において、水の電気分解により水素を発生させる水素発生極と、水の電気分解により酸素を発生させる酸素発生極と、酸素発生極と対応して設置された二重層キャパシタ用陰極と、前記水素発生極、前記酸素発生極、前記二重層キャパシタ用陰極、及び、電解液を収容する電解槽と、を備え、前記酸素発生極を二重層キャパシタ用陽極として用いて、前記酸素発生極および前記二重層キャパシタ用陰極で二重層キャパシタを構成し、前記水素発生極および前記酸素発生極で構成される水電気分解セルと前記二重層キャパシタが電気的に並列に接続された構成を備える水電気分解装置を特徴とする。   The present invention relates to a water electrolysis apparatus for electrolyzing water to obtain hydrogen and oxygen, a hydrogen generating electrode for generating hydrogen by electrolyzing water, an oxygen generating electrode for generating oxygen by electrolyzing water, A cathode for a double layer capacitor installed corresponding to the generation electrode, the hydrogen generation electrode, the oxygen generation electrode, the cathode for the double layer capacitor, and an electrolytic cell containing an electrolytic solution, the oxygen generation A double-layer capacitor is formed by using the electrode as an anode for a double-layer capacitor, the oxygen-generating electrode and the cathode for the double-layer capacitor, and the water electrolysis cell including the hydrogen-generating electrode and the oxygen-generating electrode; It is characterized by a water electrolysis apparatus having a configuration in which multi-layer capacitors are electrically connected in parallel.

一枚の陽極に対し、二重層キャパシタ用陰極と水電解用の水素発生極をそれぞれ対向して設置し、並列に接続することで、応答性の速い二重層キャパシタを一体化した変動電力対応型水電気分解装置を提供できる。この際、陽極は水電解用の酸素発生極および二重層キャパシタ用の陽極として機能する。   Double-layer capacitor cathode and water electrolysis hydrogen generation electrode are placed facing each other on a single anode and connected in parallel to integrate a fast-response double-layer capacitor. A water electrolysis apparatus can be provided. At this time, the anode functions as an oxygen generating electrode for water electrolysis and an anode for a double layer capacitor.

本発明によれば、二重層キャパシタと水電気分解装置を一体化することで設置コストや電極コストを低減することが可能となる。また陽極を共通化することで水電気分解反応における過渡応答性を抑制し、簡便な制御で変動電力の入力に対応可能となり、水電気分解装置の劣化抑制、低コスト化を図ることができる。   According to the present invention, it is possible to reduce the installation cost and the electrode cost by integrating the double layer capacitor and the water electrolysis apparatus. Also, by sharing the anode, the transient response in the water electrolysis reaction is suppressed, and it becomes possible to respond to the input of variable power by simple control, so that the deterioration of the water electrolysis apparatus can be suppressed and the cost can be reduced.

本発明の水電気分解装置の電極設置構成図と接続模式図。The electrode installation block diagram and the connection schematic diagram of the water electrolysis apparatus of this invention. 本発明の金属酸化物を担持した電極の構造断面模式図。The structure cross-sectional schematic diagram of the electrode which carry | supported the metal oxide of this invention. 本発明におけるMnとIrの非晶質体酸化物を担持した電極表面の光学顕微鏡像を示す図。The figure which shows the optical microscope image of the electrode surface which carry | supported the amorphous body oxide of Mn and Ir in this invention. 本発明におけるMnとIrの非晶質体酸化物を担持した電極表面のXRD計測結果を示す図。The figure which shows the XRD measurement result of the electrode surface which carry | supported the amorphous body oxide of Mn and Ir in this invention.

本発明は、水電気分解装置であり、一枚の陽極に対し、二重層キャパシタ用陰極と水電解用の水素発生極をそれぞれ対向して設置し、並列に接続することで、水電気分解と二重層キャパシタを一体化したことを特徴とする。   The present invention is a water electrolysis apparatus, in which a cathode for a double layer capacitor and a hydrogen generation electrode for water electrolysis are respectively installed facing each other with respect to a single anode and connected in parallel, A double layer capacitor is integrated.

本発明の水電気分解装置は、水素発生極と、酸素発生極と、酸素発生極と対応して設置された二重層キャパシタ用陰極と、前記水素発生極、前記酸素発生極、前記二重層キャパシタ用陰極、及び、電解液を収容する電解槽と、を備え、前記酸素発生極を二重層キャパシタ用陽極として用いて、前記酸素発生極および前記二重層キャパシタ用陰極で二重層キャパシタを構成し、前記水素発生極および前記酸素発生極で構成される水電気分解セルと前記二重層キャパシタが電気的に並列に接続された構成を備える。   The water electrolysis apparatus of the present invention includes a hydrogen generating electrode, an oxygen generating electrode, a cathode for a double layer capacitor installed corresponding to the oxygen generating electrode, the hydrogen generating electrode, the oxygen generating electrode, and the double layer capacitor. A cathode for use, and an electrolytic cell containing an electrolytic solution, using the oxygen generation electrode as an anode for a double layer capacitor, forming a double layer capacitor with the oxygen generation electrode and the cathode for the double layer capacitor, A water electrolysis cell composed of the hydrogen generation electrode and the oxygen generation electrode and the double layer capacitor are electrically connected in parallel.

酸素発生極および二重層キャパシタ用陽極の電極には金属酸化物を用いることが好ましい。金属酸化物からなる電極を用いた二重層キャパシタは応答が速く、大容量であるため、短時間で急激に出力電力が変動する風力発電機などの再生可能エネルギー発電機との連携に好適である。   It is preferable to use a metal oxide for the oxygen generating electrode and the electrode of the double layer capacitor anode. A double layer capacitor using electrodes made of metal oxide has a quick response and a large capacity, and is suitable for cooperation with a renewable energy generator such as a wind power generator whose output power fluctuates rapidly in a short time. .

一般的に水電気分解装置と二重層キャパシタを並列に接続した回路では、本来それぞれの陽極と陰極の計4枚の電極が必要となる。一方、水電気分解反応の陽極、すなわち酸素発生極では金属酸化物が利用される。金属酸化物には電解液との界面で電荷が貯まる二重層容量以外に、水酸化物への変化など価数の変化による疑似容量が存在し、あわせて大容量の電荷を貯めることができる。そのため、金属酸化物をキャパシタ用の電極として用いることも可能である。そこで、本発明では水電解分解反応の酸素発生極と二重層キャパシタの陽極を同一の電極とすることで、3枚の電極で水電気分解反応と二重層キャパシタを実現し、さらに同一の槽内に一体化することを可能とした。   In general, in a circuit in which a water electrolyzer and a double layer capacitor are connected in parallel, a total of four electrodes, each of an anode and a cathode, are originally required. On the other hand, a metal oxide is used at the anode of the water electrolysis reaction, that is, the oxygen generating electrode. In addition to the double layer capacity in which charges are stored at the interface with the electrolyte, metal oxides have a pseudo capacity due to a change in valence, such as a change to hydroxide, and can store a large capacity charge. Therefore, it is possible to use a metal oxide as an electrode for a capacitor. Therefore, in the present invention, the oxygen generation electrode of the water electrolysis reaction and the anode of the double layer capacitor are made the same electrode, thereby realizing the water electrolysis reaction and the double layer capacitor with three electrodes, and further, in the same tank It was possible to integrate it into

また、一般的な水電解分解反応において、キャパシタ容量を有する酸素発生極では電圧を印加すると電荷の充電が終了するまで、酸素発生が生じない。本発明では、酸素発生極を二重層キャパシタの陽極とすることで、水電気分解反応が生じない電圧領域でも電荷の充電が可能となるため、水電気分解反応の開始が円滑になり、急激な電圧の変動に対する応答性を向上できる。   Further, in a general water electrolysis reaction, when a voltage is applied to an oxygen generation electrode having a capacitor capacity, oxygen generation does not occur until charge charge is completed. In the present invention, since the oxygen generation electrode is used as the anode of the double layer capacitor, charge can be charged even in a voltage region where no water electrolysis reaction occurs, so that the water electrolysis reaction starts smoothly and rapidly. Responsiveness to voltage fluctuation can be improved.

さらに、本発明による二重層キャパシタを一体化した水電気分解装置では、電解槽を直列に接続した場合に各槽の電圧の差を二重層キャパシタが吸収するため、水電気分解用の電極に過剰な負荷がかからず、劣化を抑制する効果が見込まれる。一般的な水電気分解装置では電解槽を直列に接続した際に、各槽の電極性能がわずかでも異なると、最も性能の劣る電解槽に高電圧がかかり、電極を劣化させる。したがって、本発明によれば電解槽を連結した大型装置の構築が容易になるという効果を有する。   Furthermore, in the water electrolysis apparatus integrated with the double layer capacitor according to the present invention, when the electrolytic cells are connected in series, the double layer capacitor absorbs the voltage difference between the cells, so that the electrode for water electrolysis is excessive. The effect which suppresses deterioration is anticipated without a heavy load. In a general water electrolyzer, when the electrolytic cells are connected in series, if the electrode performance of each cell is slightly different, a high voltage is applied to the electrolytic cell having the poorest performance and the electrodes are deteriorated. Therefore, according to the present invention, there is an effect that it is easy to construct a large-sized apparatus in which electrolytic cells are connected.

本発明では同一の浴槽に一体化した水電気分解用の電極と二重層キャパシタの電極を並列回路で接続する。これにより、瞬間的な電力変動は応答性の速い二重層キャパシタ電極に流れるため、風力発電機のように頻繁に短時間で出力が変動する発電機に接続することが可能となる。   In the present invention, the electrode for water electrolysis and the electrode of the double layer capacitor integrated in the same bathtub are connected in a parallel circuit. As a result, instantaneous power fluctuations flow through the responsive double layer capacitor electrode, so that it is possible to connect to a power generator whose output fluctuates frequently in a short time like a wind power generator.

水電気分解用の電極と二重層キャパシタ用の電極との接続は、スイッチなどで機械的に切り替えてもよいが、電極材料の特性を活用することで自動切り替えも可能である。本発明では、二重層キャパシタの陰極に用いる電極の水素発生過電圧が、水電気分解における水素発生極の水素発生過電圧に比べ50mVから500mV高いことを特徴とする。これにより、水電気分解反応が進行しない1.48Vより低い電圧領域では二重層キャパシタの充放電反応が進行するが、電圧が上昇すると過電圧の低い水素発生極における水素発生反応が主となり、自動的に水電気分解反応へと反応が切り替わる。酸素セル側に設置した二重層キャパシタの陰極で水素発生反応が進行すると、酸素発生反応に悪影響を及ぼすため、二重層キャパシタの陰極の水素発生過電圧は高ければ高い方がよいが、水電解反応を優先的に進めるには過電圧に差があればよく、50mVから500mV程度の過電圧の差があれば十分であり、100mVから300mVの差があればなおよい。   The connection between the electrode for water electrolysis and the electrode for the double layer capacitor may be switched mechanically with a switch or the like, but can also be switched automatically by utilizing the characteristics of the electrode material. The present invention is characterized in that the hydrogen generation overvoltage of the electrode used for the cathode of the double layer capacitor is 50 mV to 500 mV higher than the hydrogen generation overvoltage of the hydrogen generation electrode in water electrolysis. As a result, the charge / discharge reaction of the double layer capacitor proceeds in a voltage range lower than 1.48 V where the water electrolysis reaction does not proceed. However, when the voltage rises, the hydrogen generation reaction mainly occurs at the hydrogen generation electrode with a low overvoltage, and automatically The reaction switches to a water electrolysis reaction. If the hydrogen generation reaction proceeds at the cathode of the double layer capacitor installed on the oxygen cell side, the oxygen generation reaction will be adversely affected, so the higher the hydrogen generation overvoltage at the cathode of the double layer capacitor, the better. In order to proceed with priority, it is sufficient if there is a difference in overvoltage, a difference in overvoltage of about 50 mV to 500 mV is sufficient, and a difference in the range of 100 mV to 300 mV is even better.

酸素発生極及び二重層キャパシタ用陰極は、基板表面に金属酸化物を担持した構成とする。担持する金属酸化物としては、Ni、Ru、Ir、Ti、Sn、Mo、Ta、Nb、V、Fe、Mnといった金属、もしくはいずれかからなる合金の酸化物が挙げられる。酸素発生反応に用いる酸素発生極としては触媒活性の高いNi、Ru、Ir、Fe、Mnを利用することが好ましい。また二重層キャパシタに用いる電極としては疑似容量の大きなRu、Ir、Sn、Mo、V、Mnがよい。水素発生極と対向して設置する陽極は、酸素発生反応と二重層キャパシタ充放電反応を同一の電極で行うため、双方の反応に適したRu、Ir、Mnを利用するとよい。ただし貴金属であるRu、Irは高コストになるため、Mnを主体とし、Ru、Irを付加することが好ましい。二重層キャパシタ充放電反応のみに利用する二重層キャパシタ用陰極はRu、Ir、Sn、Mo、V、Mnのいずれを用いてもよい。   The oxygen generating electrode and the cathode for the double layer capacitor have a structure in which a metal oxide is supported on the substrate surface. Examples of the metal oxide to be supported include metals such as Ni, Ru, Ir, Ti, Sn, Mo, Ta, Nb, V, Fe, and Mn, or oxides of alloys made of any of these metals. As the oxygen generation electrode used for the oxygen generation reaction, it is preferable to use Ni, Ru, Ir, Fe, or Mn having high catalytic activity. Further, Ru, Ir, Sn, Mo, V, and Mn having a large pseudo capacitance are preferable as electrodes used for the double layer capacitor. Since the anode installed opposite to the hydrogen generation electrode performs the oxygen generation reaction and the double layer capacitor charge / discharge reaction on the same electrode, it is preferable to use Ru, Ir, or Mn suitable for both reactions. However, since the precious metals Ru and Ir are expensive, it is preferable to add Ru and Ir mainly with Mn. Any of Ru, Ir, Sn, Mo, V, and Mn may be used as the cathode for the double layer capacitor used only for the charge / discharge reaction of the double layer capacitor.

担持する金属酸化物の形態は特に制限するものではないが、非晶質であることが望ましい。結晶構造では特定の結晶面によって反応性が異なる、溶解性が異なるなどの問題があるため、均一で耐食性のある電極を形成するためには金属酸化物は非晶質であることが好ましい。   The form of the metal oxide to be supported is not particularly limited, but is preferably amorphous. Since the crystal structure has problems such as different reactivity and different solubility depending on a specific crystal plane, the metal oxide is preferably amorphous in order to form a uniform and corrosion-resistant electrode.

酸素発生極及び二重層キャパシタ用陰極を構成する電極の基板としては、導電性を有する材料であれば良いが、耐食性に優れるTiを用いることが好ましい。電極性能を高めるため、Tiは高比表面積であることが望ましい。このため、基板としてはTiの多孔体や網、不織布、パンチングメタル、エキスパンドメタルなどを用いるとよい。特に酸素発生反応に用いる電極には、発生する泡の脱離が容易である網、パンチングメタル、エキスパンドメタルを用いるとよい。   The substrate of the electrodes constituting the oxygen generating electrode and the cathode for the double layer capacitor may be any material having conductivity, but it is preferable to use Ti having excellent corrosion resistance. In order to enhance the electrode performance, Ti preferably has a high specific surface area. For this reason, it is good to use a porous body of Ti, a net | network, a nonwoven fabric, a punching metal, an expanded metal etc. as a board | substrate. In particular, for the electrode used for the oxygen generation reaction, it is preferable to use a net, a punching metal, or an expanded metal, from which generated bubbles can be easily detached.

電極の作製方法については、上記の構成が実現できれば良く、特に制限するものではない。たとえば、Mn、Ir、Ruの塩を含む水溶液中でのカソード析出、アノード析出などの湿式法でも担持可能であり、Mn、Ir、Ruの塩を溶液中に溶解し、塗布焼成する乾式法でも担持可能である。   The electrode manufacturing method is not particularly limited as long as the above configuration can be realized. For example, it can be supported by wet methods such as cathode deposition and anode deposition in an aqueous solution containing Mn, Ir, and Ru salts, and also by a dry method in which Mn, Ir, and Ru salts are dissolved in a solution and coated and fired. It can be supported.

水素発生極は水を還元して水素を発生させる反応を促進する役割を有している。水素発生極は高比表面積が好ましく、多孔体や網状、不織布状であるとより好ましい。さらに表面にナノ構造体などを作製するとよい。また、水素発生極はキャパシタ用電極の陰極に比べ水素発生過電圧が50mVから500mV低いことが好ましい。このような電極材料としてはIr、Mn、Ruの酸化物より水素発生過電圧の小さなPt、Rh、Irなどの白金族を利用することが好ましい。また白金族はコスト高であるため、より安価なNiを用いてもよく、白金族と合金化して用いても良い。   The hydrogen generation electrode has a role of promoting a reaction of reducing water to generate hydrogen. The hydrogen generation electrode preferably has a high specific surface area, more preferably a porous body, a net-like shape, or a non-woven fabric. Further, a nanostructure or the like is preferably formed on the surface. The hydrogen generation electrode preferably has a hydrogen generation overvoltage lower by 50 mV to 500 mV than the cathode of the capacitor electrode. As such an electrode material, it is preferable to use a platinum group such as Pt, Rh, and Ir, which has a smaller hydrogen generation overvoltage than the oxides of Ir, Mn, and Ru. In addition, since the platinum group is expensive, less expensive Ni may be used, or an alloy with the platinum group may be used.

本発明の水電気分解装置において、電極以外の部材は特に規定するものではないが、電解液に関しては抵抗が低く、腐食性の低いものがよい。一般的なアルカリ水電気分解装置で用いられる、水酸化ナトリウムや水酸化カリウムの水溶液を用いるとよい。電極間に設けられる隔壁の材料としては、特に規定されないが、水溶液に溶解しない安定性の高い樹脂が好ましい。ポリイミド、ポリエチレンなどが例として挙げられる。樹脂の場合、イオンが内部を移動できるように多孔体、スポンジ状であることが必要である。また電解質と隔壁の特性を併せ持つイオン導電性樹脂を利用しても良い。特にプロトン導電性樹脂を利用した場合、酸素発生極側は水溶液、水素発生極側には水が必要なく、純粋な水素のみになるため気液分離の必要がなく、発電も容易になる。なお、本発明の水電気分解装置においては、水素発生極と酸素発生極の電極間に加え、キャパシタ用の電極間にも短絡を防ぐ隔壁が設けられ、同様の材料を使用することができる。   In the water electrolysis apparatus of the present invention, members other than the electrodes are not particularly defined, but the electrolyte solution preferably has low resistance and low corrosivity. An aqueous solution of sodium hydroxide or potassium hydroxide used in a general alkaline water electrolysis apparatus may be used. The material of the partition provided between the electrodes is not particularly defined, but a highly stable resin that does not dissolve in an aqueous solution is preferable. Examples include polyimide and polyethylene. In the case of a resin, it needs to be porous and sponge-like so that ions can move inside. Moreover, you may utilize the ion conductive resin which has the characteristic of an electrolyte and a partition. In particular, when a proton conductive resin is used, the oxygen generation electrode side does not require an aqueous solution and the hydrogen generation electrode side does not require water, and only pure hydrogen is used, so that gas-liquid separation is not required, and power generation is facilitated. In the water electrolysis apparatus of the present invention, a partition wall is provided between the electrodes for the hydrogen generation electrode and the oxygen generation electrode and also between the electrodes for the capacitor, and the same material can be used.

以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to specific examples.

実施例1は本発明の電極の一例である。   Example 1 is an example of the electrode of the present invention.

図1は、本発明の水電気分解装置の電極設置構成図と接続模式図の一例である。   FIG. 1 is an example of an electrode installation configuration diagram and a connection schematic diagram of a water electrolysis apparatus of the present invention.

水電気分解装置101は水電気分解用酸素発生極兼二重層キャパシタ用陽極102、二重層キャパシタ用陰極103、水電解用水素発生極104、電解液105、隔壁106、電解槽109、配線接続部110からなる。水電気分解用酸素発生極兼二重層キャパシタ用陽極102、二重層キャパシタ用陰極103、水電解用水素発生極104はそれぞれ対向して設置してあり、二重層キャパシタ用陰極103と水電解用水素発生極104との間に、水電気分解用酸素発生極兼二重層キャパシタ用陽極102が位置する。水電気分解用の電極と二重層キャパシタ用の電極は並列に接続しており、外部電力源111の正極が水電気分解用酸素発生極兼二重層キャパシタ用陽極102に、負極が二重層キャパシタ用陰極103および水電解用水素発生極104にそれぞれ接続される。外部電力源111から水の電気分解に必要な電圧が印加されると、水電解用水素発生極104から水素ガス107が、水電気分解用酸素発生極兼二重層キャパシタ用陽極102から酸素ガス108が発生する。   The water electrolysis apparatus 101 includes an oxygen generation electrode for water electrolysis and an anode 102 for double layer capacitor, a cathode 103 for double layer capacitor, a hydrogen generation electrode 104 for water electrolysis, an electrolytic solution 105, a partition wall 106, an electrolytic cell 109, and a wiring connection portion. 110. The oxygen generation electrode for water electrolysis and the anode 102 for double layer capacitor, the cathode 103 for double layer capacitor, and the hydrogen generation electrode 104 for water electrolysis are placed facing each other, and the cathode 103 for double layer capacitor and hydrogen for water electrolysis Between the generation electrode 104, the oxygen generation electrode for water electrolysis and the anode 102 for a double layer capacitor are located. The electrode for water electrolysis and the electrode for the double layer capacitor are connected in parallel, the positive electrode of the external power source 111 is the oxygen generation electrode for double electrolysis and the anode 102 for the double layer capacitor, and the negative electrode is for the double layer capacitor. The cathode 103 and the hydrogen electrolysis hydrogen generation electrode 104 are connected to each other. When a voltage necessary for the electrolysis of water is applied from the external power source 111, the hydrogen gas 107 is supplied from the hydrogen electrolysis hydrogen generation electrode 104, and the oxygen gas 108 is supplied from the water electrolysis oxygen generation electrode / double layer capacitor anode 102. Will occur.

水電気分解用酸素発生極兼二重層キャパシタ用陽極102と二重層キャパシタ用陰極103は基板に金属酸化物を担持した電極である。図2に基板に金属酸化物を担持した電極の構造断面模式図を示す。電極201は金属酸化物202と基板203からなる。金属酸化物202は基板203の全面に存在し、形状は微粒子状、薄膜状、多孔体、棒状、円盤状のいずれでもよい。また、金属酸化物は非晶質体である。基板203には水電解分解反応において、発生したガスの抜け道となる貫通孔204が存在する。   The oxygen generating electrode for water electrolysis and the anode 102 for double layer capacitor and the cathode 103 for double layer capacitor are electrodes having a metal oxide supported on a substrate. FIG. 2 shows a schematic cross-sectional view of the structure of an electrode having a metal oxide supported on a substrate. The electrode 201 includes a metal oxide 202 and a substrate 203. The metal oxide 202 exists on the entire surface of the substrate 203, and the shape may be any of fine particles, thin films, porous bodies, rods, and disks. The metal oxide is an amorphous material. The substrate 203 has a through-hole 204 that serves as a passage for gas generated in the water electrolysis reaction.

電極201の一例として、図3に実際に作製した電極の表面の光学顕微鏡像を示す。Ti基板は90℃の10wt%シュウ酸水溶液中で10分間エッチングして作製した。次に、Mnを含むブタノール溶液にTi基板を浸漬した後、500℃で焼成してMnの酸化物を担持し、さらにIrを含むブタノール溶液に浸漬・焼成することで図3に示す電極を作成した。棒状に析出したMnとIrの混合酸化物が表面に確認できる。図4に図3に示す電極表面のXRD計測結果を示す。金属TiとTi酸化物以外に非晶質体に由来するハローパターンとブロードなピークが確認でき、表面に担持したMnとIrの混合酸化物は非晶質体を形成していることを示している。   As an example of the electrode 201, FIG. 3 shows an optical microscope image of the surface of the actually produced electrode. The Ti substrate was fabricated by etching in a 10 wt% oxalic acid aqueous solution at 90 ° C. for 10 minutes. Next, after immersing the Ti substrate in a butanol solution containing Mn, firing it at 500 ° C. to support the oxide of Mn, and further immersing and firing it in a butanol solution containing Ir to produce the electrode shown in FIG. did. A mixed oxide of Mn and Ir deposited in a rod shape can be confirmed on the surface. FIG. 4 shows the XRD measurement result of the electrode surface shown in FIG. In addition to metal Ti and Ti oxide, a halo pattern derived from an amorphous material and a broad peak can be confirmed, indicating that the mixed oxide of Mn and Ir supported on the surface forms an amorphous material. Yes.

実施例1では、酸素セル側の電極としてMnとIrの混合酸化物の非晶質体を選択した。MnとIrの比率は8:1とした。基板にはTiの0.2mm厚のエキスパンドメタルを使用した。水素発生極側にはNiの金網を使用した。電解液は30wt%の水酸化カリウム水溶液を利用し、隔壁には0.5mm厚のポリエチレン製の不織布を利用した。   In Example 1, an amorphous body of a mixed oxide of Mn and Ir was selected as the electrode on the oxygen cell side. The ratio of Mn to Ir was 8: 1. An expanded metal of 0.2 mm thickness of Ti was used for the substrate. A Ni wire mesh was used on the hydrogen generation electrode side. The electrolyte used was a 30 wt% potassium hydroxide aqueous solution, and a polyethylene nonwoven fabric having a thickness of 0.5 mm was used for the partition walls.

酸素セル側の二重層キャパシタにおける充放電容量は電極1cm2当たり824mCであった。水電気分解能力は1A通電時の電圧で計測した。実施例1の構成では、電解電圧は1.8Vとなった。 The charge / discharge capacity of the double-layer capacitor on the oxygen cell side was 824 mC per 1 cm 2 of electrode. The water electrolysis ability was measured by the voltage when 1 A was energized. In the configuration of Example 1, the electrolytic voltage was 1.8V.

実施例2では、基板に0.15mm径のTi金網を使用した。他の条件は実施例1と同等とした。このとき、二重層キャパシタの充放電容量は電極1cm2当たり780mCであった。水電気分解における電解電圧は1.8Vとなった。 In Example 2, a 0.15 mm diameter Ti wire mesh was used for the substrate. Other conditions were the same as in Example 1. At this time, the charge / discharge capacity of the double layer capacitor was 780 mC per 1 cm 2 of electrode. The electrolysis voltage in water electrolysis was 1.8V.

実施例3では、酸素セル側の電極としてMnとRuの混合酸化物の非晶質体を選択した。MnとRuの比率は6:1とした。他の条件は実施例1と同等とした。このとき、二重層キャパシタの充放電容量は電極1cm2当たり920mCであった。水電気分解における電解電圧は1.7Vとなった。 In Example 3, an amorphous body of a mixed oxide of Mn and Ru was selected as the electrode on the oxygen cell side. The ratio of Mn to Ru was 6: 1. Other conditions were the same as in Example 1. At this time, the charge / discharge capacity of the double layer capacitor was 920 mC per 1 cm 2 of electrode. The electrolysis voltage in water electrolysis was 1.7V.

実施例4では、酸素セル側の電極としてMnとIrの酸化物をそれぞれ担持した電極を利用した。酸化物は結晶構造を有しており、主にMn34とIrO2から形成されていた。他の条件は実施例1と同等とした。このとき、二重層キャパシタの充放電容量は電極1cm2当たり620mCであった。水電気分解における電解電圧は2.4Vとなった。 In Example 4, an electrode carrying Mn and Ir oxides was used as an electrode on the oxygen cell side. The oxide has a crystal structure, and was mainly formed from Mn 3 O 4 and IrO 2 . Other conditions were the same as in Example 1. At this time, the charge / discharge capacity of the double layer capacitor was 620 mC per 1 cm 2 of electrode. The electrolysis voltage in water electrolysis was 2.4V.

実施例5では、酸素セル側の電極としてIrの酸化物を担持した電極を利用した。酸化物は結晶構造を有しており、主にIrO2から形成されていた。他の条件は実施例1と同等とした。このとき、二重層キャパシタの充放電容量は電極1cm2当たり480mCであった。水電気分解における電解電圧は2.2Vとなった。 In Example 5, an electrode carrying an Ir oxide was used as the electrode on the oxygen cell side. The oxide has a crystal structure, it has been formed predominantly from IrO 2. Other conditions were the same as in Example 1. At this time, the charge / discharge capacity of the double layer capacitor was 480 mC per 1 cm 2 of electrode. The electrolysis voltage in water electrolysis was 2.2V.

実施例6では、酸素セル側の電極として水素発生極側と同等のNi金網を利用した。他の条件は実施例1と同等とした。このとき、二重層キャパシタの充放電容量は電極1cm2当たり90mCであった。水電気分解における電解電圧は2.0Vとなった。 In Example 6, a Ni wire mesh equivalent to the hydrogen generation electrode side was used as the electrode on the oxygen cell side. Other conditions were the same as in Example 1. At this time, the charge / discharge capacity of the double layer capacitor was 90 mC per 1 cm 2 of electrode. The electrolysis voltage in water electrolysis was 2.0V.

101 本発明による水電気分解装置
102 水電気分解用酸素発生極兼二重層キャパシタ用陽極
103 二重層キャパシタ用陰極
104 水電解用水素発生極
105 電解液
106 隔壁
107 水素ガス
108 酸素ガス
109 電解槽
110 配線接続部
111 外部電力源
201 電極
202 金属酸化物
203 基板
204 貫通孔
DESCRIPTION OF SYMBOLS 101 Water electrolysis apparatus 102 by this invention Oxygen generating electrode for water electrolysis and anode for double layer capacitor 103 Cathode for double layer capacitor 104 Hydrogen generating electrode for water electrolysis 105 Electrolytic solution 106 Partition 107 Hydrogen gas 108 Oxygen gas 109 Electrolysis tank 110 Wiring connection portion 111 External power source 201 Electrode 202 Metal oxide 203 Substrate 204 Through hole

Claims (9)

水を電気分解して水素と酸素を得る水電解分解装置において、
水の電気分解により水素を発生させる水素発生極と、
水の電気分解により酸素を発生させる酸素発生極と、
酸素発生極と対応して設置された二重層キャパシタ用陰極と、
前記水素発生極、前記酸素発生極、前記二重層キャパシタ用陰極、及び、電解液を収容する電解槽と、を備え、
前記酸素発生極を二重層キャパシタ用陽極として用いて、前記酸素発生極および前記二重層キャパシタ用陰極で二重層キャパシタを構成し、
前記水素発生極および前記酸素発生極で構成される水電気分解セルと前記二重層キャパシタが電気的に並列に接続された構成を備える水電気分解装置。
In water electrolysis equipment that electrolyzes water to obtain hydrogen and oxygen,
A hydrogen generating electrode that generates hydrogen by electrolysis of water;
An oxygen generating electrode that generates oxygen by electrolysis of water;
A cathode for a double layer capacitor installed corresponding to the oxygen generating electrode;
The hydrogen generating electrode, the oxygen generating electrode, the cathode for the double layer capacitor, and an electrolytic cell containing an electrolytic solution,
Using the oxygen generating electrode as a double layer capacitor anode, the oxygen generating electrode and the double layer capacitor cathode constitute a double layer capacitor,
A water electrolysis apparatus comprising a structure in which a water electrolysis cell composed of the hydrogen generation electrode and the oxygen generation electrode and the double layer capacitor are electrically connected in parallel.
請求項1において、前記酸素発生極および前記二重層キャパシタ用陰極は、基板の表面に金属酸化物が担持された構成であることを特徴とする水電気分解装置。   2. The water electrolysis apparatus according to claim 1, wherein the oxygen generating electrode and the double layer capacitor cathode have a structure in which a metal oxide is supported on a surface of a substrate. 請求項2において、前記金属酸化物が非晶質であることを特徴とする水電気分解装置。   The water electrolysis apparatus according to claim 2, wherein the metal oxide is amorphous. 請求項1において、前記水素発生極と前記酸素発生極の間、および、前記酸素発生極と前記二重層キャパシタ用陰極の間に、電極間の短絡を防ぐ隔壁を有することを特徴とする水電気分解装置。   2. The hydroelectric system according to claim 1, further comprising a partition wall between the hydrogen generation electrode and the oxygen generation electrode and between the oxygen generation electrode and the cathode for the double layer capacitor to prevent a short circuit between the electrodes. Disassembly equipment. 請求項1において、前記二重層キャパシタ用陰極の水素発生過電圧が、前記水素発生極の水素発生過電圧よりも50〜500mV高いことを特徴とする水電気分解装置。   2. The water electrolysis apparatus according to claim 1, wherein the hydrogen generation overvoltage of the double layer capacitor cathode is 50 to 500 mV higher than the hydrogen generation overvoltage of the hydrogen generation electrode. 請求項2において、前記基板にTiであり、前記金属酸化物がMn、Ru、Irのいずれかの酸化物の組み合わせからなることを特徴とする水電気分解装置。   3. The water electrolysis apparatus according to claim 2, wherein the substrate is Ti, and the metal oxide is a combination of oxides of Mn, Ru, and Ir. 請求項2において、前記酸素発生極を構成する前記基板がTiであり、前記金属酸化物がMnとIrの非晶質体酸化物であることを特徴とする水電気分解装置。   3. The water electrolysis apparatus according to claim 2, wherein the substrate constituting the oxygen generating electrode is Ti, and the metal oxide is an amorphous oxide of Mn and Ir. 請求項2において、前記基板がTiであり、前記基板の形状が網、パンチメタル、エキスパンドメタル、多孔体のいずれかであることを特徴とする水電気分解装置。   3. The water electrolysis apparatus according to claim 2, wherein the substrate is Ti, and the shape of the substrate is any one of a net, a punch metal, an expanded metal, and a porous body. 請求項1において、前記水素発生極、前記酸素発生極、前記二重層キャパシタ用陰極、及び、電解液を収容する電解槽を複数備え、それらが電気的に直列に接続されていることを特徴とする水電気分解装置。   The hydrogen generation electrode according to claim 1, the oxygen generation electrode, the cathode for the double layer capacitor, and a plurality of electrolytic cells for storing an electrolytic solution, which are electrically connected in series. Water electrolyzer.
JP2011188153A 2011-08-31 2011-08-31 Water electrolyzer Expired - Fee Related JP5836016B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011188153A JP5836016B2 (en) 2011-08-31 2011-08-31 Water electrolyzer
PCT/JP2012/070479 WO2013031522A1 (en) 2011-08-31 2012-08-10 Water electrolysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188153A JP5836016B2 (en) 2011-08-31 2011-08-31 Water electrolyzer

Publications (2)

Publication Number Publication Date
JP2013049888A true JP2013049888A (en) 2013-03-14
JP5836016B2 JP5836016B2 (en) 2015-12-24

Family

ID=47756020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188153A Expired - Fee Related JP5836016B2 (en) 2011-08-31 2011-08-31 Water electrolyzer

Country Status (2)

Country Link
JP (1) JP5836016B2 (en)
WO (1) WO2013031522A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105995251A (en) * 2015-03-27 2016-10-12 苏州弗乐卡电器科技发展有限公司 Food purification system hydroxyl free radical generator anode and preparation method thereof
JP2019537662A (en) * 2016-10-12 2019-12-26 ニューサウス・イノベイションズ・プロプライエタリー・リミテッドNewsouth Innovations Pty Limited Method and process for controlling an electrochemical process
US10975476B2 (en) 2017-11-29 2021-04-13 Korea Institute Of Science And Technology Iridium oxide electrodeposited porous titanium composite layer of polymer electrolyte membrane water electrolysis apparatus, method for preparing the same, and polymer electrolyte membrane water electrolysis apparatus using the same
CN114207187A (en) * 2019-08-08 2022-03-18 奈诺普特科公司 Radiation assisted electrolytic cell unit and stack

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047445B2 (en) 2014-12-15 2018-08-14 JOI Scientific, Inc. Hydrogen generation system
US9816190B2 (en) 2014-12-15 2017-11-14 JOI Scientific, Inc. Energy extraction system and methods
US10214820B2 (en) 2014-12-15 2019-02-26 JOI Scientific, Inc. Hydrogen generation system with a controllable reactive circuit and associated methods
CN109354132A (en) * 2018-12-03 2019-02-19 刘新志 Pure apparatus for electrolyzing and electrolysis barrel water drinking machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182294A (en) * 1986-02-07 1987-08-10 Mitsubishi Heavy Ind Ltd Apparatus for reducing inverse current in electrolytic cell
JP2768904B2 (en) * 1993-07-21 1998-06-25 古河電気工業株式会社 Oxygen generating electrode
JP4562634B2 (en) * 2005-10-06 2010-10-13 勝敏 小野 Electrolysis system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105995251A (en) * 2015-03-27 2016-10-12 苏州弗乐卡电器科技发展有限公司 Food purification system hydroxyl free radical generator anode and preparation method thereof
JP2019537662A (en) * 2016-10-12 2019-12-26 ニューサウス・イノベイションズ・プロプライエタリー・リミテッドNewsouth Innovations Pty Limited Method and process for controlling an electrochemical process
US20200299849A1 (en) * 2016-10-12 2020-09-24 Newsouth Innovations Pty Limited Method and apparatus for controlling an electrochemical process
JP7035039B2 (en) 2016-10-12 2022-03-14 ニューサウス・イノベイションズ・プロプライエタリー・リミテッド Methods and processes for controlling electrochemical processes
US11732371B2 (en) 2016-10-12 2023-08-22 Newsouth Innovations Pty Limited Method and apparatus for controlling an electrochemical process
US10975476B2 (en) 2017-11-29 2021-04-13 Korea Institute Of Science And Technology Iridium oxide electrodeposited porous titanium composite layer of polymer electrolyte membrane water electrolysis apparatus, method for preparing the same, and polymer electrolyte membrane water electrolysis apparatus using the same
CN114207187A (en) * 2019-08-08 2022-03-18 奈诺普特科公司 Radiation assisted electrolytic cell unit and stack
JP2022543662A (en) * 2019-08-08 2022-10-13 ナンオプテック コーポレイション Radiation-assisted electrolyzer cells and panels
US11739432B2 (en) 2019-08-08 2023-08-29 Nanoptek Corporation Radiation-assisted electrolyzer cell and panel

Also Published As

Publication number Publication date
JP5836016B2 (en) 2015-12-24
WO2013031522A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5836016B2 (en) Water electrolyzer
AU2016289094B2 (en) Redox flow battery with carbon dioxide based redox couple
US10619253B2 (en) Method for electrolyzing alkaline water
Santos et al. Hydrogen production by alkaline water electrolysis
EP3064614B1 (en) Anode for alkaline water electrolysis
US20200388857A1 (en) Redox flow batteries employing diamond
JP5827953B2 (en) Hydrogen production apparatus and hydrogen production system
WO2015056641A1 (en) Water electrolysis device and energy storage and supply system using same
JP6788378B2 (en) Water electrolysis cell and multi-pole water electrolysis tank
Guo et al. A novel design of an electrolyser using a trifunctional (HER/OER/ORR) electrocatalyst for decoupled H 2/O 2 generation and solar to hydrogen conversion
US20220074059A1 (en) Electrolytic cell for h2 generation
JP6438205B2 (en) Water electrolysis cell
JP7036316B2 (en) Electrochemical devices and methods for controlling electrochemical devices
JP5740357B2 (en) Large capacity storage device
Niya et al. Enhancement of the performance of a proton battery
KR102063753B1 (en) Energy storage system via iodine compound redox couples
KR101514881B1 (en) Method of manufacturing electrolyte for Vanadium secondary battery and apparatus thereof
JP7038375B2 (en) Electrochemical devices and methods for controlling electrochemical devices
Pulido Comparison of Activated Graphitic Carbon versus Platinum-Loaded Cathode Catalysts in Near-Neutral pH and Pem Water Electrolyzers
CN116487638A (en) Power generation technology and device
JP2019102179A (en) Flow battery
Kim et al. Facile electrochemical synthesis of transition metal (oxy) hydroxide as oxygen evolution electrocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

LAPS Cancellation because of no payment of annual fees