JP2017122626A - Measurement device and manufacturing method thereof - Google Patents

Measurement device and manufacturing method thereof Download PDF

Info

Publication number
JP2017122626A
JP2017122626A JP2016001316A JP2016001316A JP2017122626A JP 2017122626 A JP2017122626 A JP 2017122626A JP 2016001316 A JP2016001316 A JP 2016001316A JP 2016001316 A JP2016001316 A JP 2016001316A JP 2017122626 A JP2017122626 A JP 2017122626A
Authority
JP
Japan
Prior art keywords
peripheral surface
tubular member
sensor
pipe
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016001316A
Other languages
Japanese (ja)
Other versions
JP6535604B2 (en
Inventor
図師 信彦
Nobuhiko Zushi
信彦 図師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2016001316A priority Critical patent/JP6535604B2/en
Publication of JP2017122626A publication Critical patent/JP2017122626A/en
Application granted granted Critical
Publication of JP6535604B2 publication Critical patent/JP6535604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device which maintains the strength of a tubular member, which can accurately measure a flow rate of fluid, and which achieves low-cost manufacturing.SOLUTION: A measurement device includes: a tubular member in which a second axial center of an inner peripheral surface is decentered parallel to a first axial center of an outer peripheral surface; and a sensor fixed on the outer peripheral surface of the tubular member. In a cross section of the tubular member, the length from a part where the sensor contacts with the tubular member to the second axial center is shorter than that from the part to the first axial center.SELECTED DRAWING: Figure 1

Description

本発明は、測定装置及び測定装置の製造方法に関する。   The present invention relates to a measuring apparatus and a method for manufacturing the measuring apparatus.

従来、流体の流量変化を検出するフローセンサとして、特許文献1記載の液体用のフローセンサが知られていた。当該フローセンサは、流体の流れ上流側・下流側のそれぞれに備えられた2つの温度センサ及び熱源が組み込まれた半導体モジュールを有する。当該フローセンサは、液体を導くパイプ(配管)を備え、半導体モジュール(センサ)は熱伝導ペースト等の接着剤を介してパイプの外面に設けられており、二つの温度センサ及び熱源はパイプの外面と熱的接触している(特許文献1の図1〜3)。このようなフローセンサの構造は、流体をパイプ以外の材料に接触させたくない場合やパイプの内径に比べて半導体モジュールが大きく、パイプの内部に半導体モジュールを配置することができない場合に採用される。   Conventionally, a flow sensor for liquid described in Patent Document 1 has been known as a flow sensor for detecting a change in the flow rate of a fluid. The flow sensor has a semiconductor module in which two temperature sensors and a heat source provided on each of the upstream side and the downstream side of the fluid flow are incorporated. The flow sensor includes a pipe (pipe) for guiding a liquid, the semiconductor module (sensor) is provided on the outer surface of the pipe via an adhesive such as a heat conductive paste, and two temperature sensors and a heat source are provided on the outer surface of the pipe. (FIGS. 1 to 3 of Patent Document 1). Such a flow sensor structure is employed when it is not desired to contact the fluid with a material other than the pipe, or when the semiconductor module is larger than the inner diameter of the pipe and the semiconductor module cannot be disposed inside the pipe. .

特表2003−532099号公報Special table 2003-532099 gazette

特許文献1のフローセンサにおいては、半導体モジュールはパイプの外壁に接着されている。ここで、パイプの外周面と内周面との距離であるパイプの厚みはセンサ感度に大きく影響する。一般的に、パイプの厚みが厚くなるほどセンサ感度が低下し、流体の流量を測定することができないおそれがある。   In the flow sensor of Patent Document 1, the semiconductor module is bonded to the outer wall of the pipe. Here, the thickness of the pipe, which is the distance between the outer peripheral surface and the inner peripheral surface of the pipe, greatly affects the sensor sensitivity. In general, the sensor sensitivity decreases as the pipe thickness increases, and the flow rate of the fluid may not be measured.

上記したようなセンサの感度の低下を防止すべく、半導体モジュールを配置するパイプの外周面を研削等することで、パイプの厚みを薄く加工することが考えられる。しかしながら、この薄肉加工には多くのコストがかかる。   In order to prevent a decrease in the sensitivity of the sensor as described above, it is conceivable to reduce the thickness of the pipe by grinding the outer peripheral surface of the pipe on which the semiconductor module is arranged. However, this thin processing is costly.

また、半導体モジュールの配置位置におけるパイプの厚みを機械的に加工する場合、パイプの加工面が損傷することによりパイプ強度が低下し、センサ特性に影響を与えるおそれがある。このように、パイプの厚みを機械的に調整することによって、流体の流量を正確に測定できるフローセンサを製造することは容易ではない。パイプにセンサが固定されたフローセンサ以外の測定装置でも、同様の問題が生じうる。   Further, when the thickness of the pipe at the position where the semiconductor module is disposed is mechanically processed, the processed surface of the pipe is damaged, so that the strength of the pipe is lowered and sensor characteristics may be affected. Thus, it is not easy to manufacture a flow sensor that can accurately measure the fluid flow rate by mechanically adjusting the thickness of the pipe. Similar problems may occur in measurement devices other than a flow sensor in which a sensor is fixed to a pipe.

そこで、本発明は、管状部材の強度を維持し、且つ、流体の流量を正確に測定できる測定装置であって、低コストで製造可能な測定装置を提供することを目的の一つとする。   Therefore, an object of the present invention is to provide a measuring device that can maintain the strength of the tubular member and can accurately measure the flow rate of the fluid and can be manufactured at low cost.

上記課題を解決するために、本発明の一側面に係る測定装置は、外周面の第1軸心に対し、内周面の第2軸心が平行に偏心する管状部材と、管状部材の外周面上に固定されるセンサと、を備え、管状部材の断面において、センサが管状部材に接触する部分から第2軸心までの長さが、第1軸心までの長さよりも短い。   In order to solve the above problems, a measuring apparatus according to one aspect of the present invention includes a tubular member in which a second axis of an inner peripheral surface is eccentric in parallel with a first axis of an outer peripheral surface, and an outer periphery of the tubular member A sensor fixed on the surface, and in a cross section of the tubular member, a length from a portion where the sensor contacts the tubular member to the second axis is shorter than a length to the first axis.

上記測定装置において、センサが、管状部材の断面方向厚さが最も薄くなる部分に固定されてもよい。   In the measurement apparatus, the sensor may be fixed to a portion where the thickness of the tubular member in the cross-sectional direction is the thinnest.

上記測定装置において、センサが、管状部材の断面において第2軸心から外周面及び内周面に向かって延びる直線が内周面と交差する第1交差点と直線が外周面と交差する第2交差点との距離が最も短い場合の第2交差点に固定されてもよい。   In the measurement apparatus, the sensor includes a first intersection where a straight line extending from the second axis toward the outer peripheral surface and the inner peripheral surface intersects the inner peripheral surface and a second intersection where the straight line intersects the outer peripheral surface in the cross section of the tubular member. May be fixed at the second intersection when the distance to is the shortest.

上記測定装置において、管状部材がガラスキャピラリーであってもよい。   In the measurement apparatus, the tubular member may be a glass capillary.

上記測定装置において、センサが、管状部材の内部を流れる流体の流速を測定してもよい。   In the measurement apparatus, the sensor may measure the flow velocity of the fluid flowing through the inside of the tubular member.

上記測定装置において、センサが、管状部材の内部を流れる流体の流量を測定してもよい。   In the measurement apparatus, the sensor may measure the flow rate of the fluid flowing through the inside of the tubular member.

上記課題を解決するために、本発明の一側面に係る測定装置の製造方法は、外周面の第1軸心に対し、内周面の第2軸心が平行に偏心する管状部材の外面上にセンサを固定する工程を含み、管状部材の断面において、センサが管状部材に接触する部分から第2軸心までの長さが、第1軸心までの長さよりも短い。   In order to solve the above-described problem, a method for manufacturing a measuring device according to one aspect of the present invention is provided on an outer surface of a tubular member in which a second axis of an inner peripheral surface is eccentric in parallel to a first axis of an outer peripheral surface. The length from the portion where the sensor contacts the tubular member to the second axis is shorter than the length to the first axis in the cross section of the tubular member.

上記測定装置の製造方法において、管状部材を製造する工程をさらに含み、管状部材を製造する工程は、外周面の軸心に対し、内周面の軸心が平行に偏心する母材を延伸加工して管状部材を製造してもよい。   In the method for manufacturing the measuring apparatus, the method further includes a step of manufacturing a tubular member, and the step of manufacturing the tubular member is performed by stretching a base material in which the axis of the inner peripheral surface is eccentric in parallel with the axis of the outer peripheral surface. Thus, a tubular member may be manufactured.

上記測定装置の製造方法において、センサが、管状部材の断面方向厚さが最も薄くなる部分に固定されてもよい。   In the method for manufacturing the measuring apparatus, the sensor may be fixed to a portion where the thickness in the cross-sectional direction of the tubular member is the thinnest.

上記測定装置の製造方法において、センサが、管状部材の断面において第2軸心から外周面及び内周面に向かって延びる直線が内周面と交差する第1交差点と直線が外周面と交差する第2交差点との距離が最も短い場合の第2交差点に固定されてもよい。   In the method for manufacturing the measuring apparatus, the sensor includes a first intersection where the straight line extending from the second axis toward the outer peripheral surface and the inner peripheral surface intersects the inner peripheral surface and the straight line intersects the outer peripheral surface in the cross section of the tubular member. You may fix to the 2nd intersection in case the distance with a 2nd intersection is the shortest.

上記測定装置の製造方法において、管状部材がガラスキャピラリーであってもよい。   In the method for manufacturing the measuring apparatus, the tubular member may be a glass capillary.

上記測定装置の製造方法において、センサが、管状部材の内部を流れる流体の流速を測定してもよい。   In the method for manufacturing the measuring device, the sensor may measure the flow velocity of the fluid flowing inside the tubular member.

上記測定装置の製造方法において、センサが、管状部材の内部を流れる流体の流量を測定してもよい。   In the method for manufacturing the measuring device, the sensor may measure the flow rate of the fluid flowing through the inside of the tubular member.

本発明によれば、管状部材の強度を維持し、且つ、流体の流量を正確に測定できる測定装置であって、低コストで製造可能な測定装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it is a measuring device which can maintain the intensity | strength of a tubular member and can measure the flow volume of a fluid correctly, Comprising: The measuring device which can be manufactured at low cost can be provided.

本発明の実施形態に係る流量計の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the flowmeter which concerns on embodiment of this invention. 本発明の実施形態に係る流量計の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the flowmeter which concerns on embodiment of this invention. 本発明の実施形態に係るフローセンサの構成例を示す斜視図である。It is a perspective view which shows the structural example of the flow sensor which concerns on embodiment of this invention. 本発明の実施形態に係るフローセンサの図3のIV−IV方向から見た断面図である。It is sectional drawing seen from the IV-IV direction of FIG. 3 of the flow sensor which concerns on embodiment of this invention. 本発明の実施形態に係る流量計の構成例を示す概略断面図の拡大図である。It is an enlarged view of a schematic sectional view showing a configuration example of a flow meter according to an embodiment of the present invention. 本発明の実施形態に係る流量計の製造工程を示した断面図である。It is sectional drawing which showed the manufacturing process of the flowmeter which concerns on embodiment of this invention. 本発明の実施形態に係る流量計の製造工程を示した断面図である。It is sectional drawing which showed the manufacturing process of the flowmeter which concerns on embodiment of this invention. 本発明の実施形態に係る流量計の製造工程を示した断面図である。It is sectional drawing which showed the manufacturing process of the flowmeter which concerns on embodiment of this invention. 本発明の実施形態に係る流量計の構成例を示す概略断面図の拡大図である。It is an enlarged view of a schematic sectional view showing a configuration example of a flow meter according to an embodiment of the present invention. 本発明の実施形態に係る流量計の構成例を示す概略断面図の拡大図である。It is an enlarged view of a schematic sectional view showing a configuration example of a flow meter according to an embodiment of the present invention. 本発明の実施形態に係る流量計の構成例を示す概略断面図の拡大図である。It is an enlarged view of a schematic sectional view showing a configuration example of a flow meter according to an embodiment of the present invention. 本発明の実施形態に係る流量計の構成例を示す底面図である。It is a bottom view which shows the structural example of the flowmeter which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。   Embodiments of the present invention will be described below with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.

(構成)
図1及び図2に示す本発明の実施形態に係る測定装置の一例である流量計は、配管11と、配管11の外壁に取り付けられた、配管11内を流れる流体の流量を測定するセンサであるフローセンサ51と、を備える。なお、図1及び図2は、流量計を配管11の延伸方向に対して垂直方向に切断した場合の断面図である。
(Constitution)
A flow meter which is an example of a measuring apparatus according to an embodiment of the present invention shown in FIGS. 1 and 2 is a sensor that measures the flow rate of a fluid flowing in the pipe 11 and attached to the outer wall of the pipe 11 and the pipe 11. A certain flow sensor 51. 1 and 2 are cross-sectional views when the flow meter is cut in a direction perpendicular to the extending direction of the pipe 11.

配管11(管状部材)は、流体を通過させる管状の部材であり、外周面OPの軸心S1(第1軸心)に対し、内周面IPの軸心S2(第2軸心)が平行に偏心するように構成されている。配管11は、例えば、流体の流量に対応した適切な内径、流体の圧力に耐えうる壁の厚み、及び最適な長さを有しており、これらは使用条件に応じて決定される。配管11の外径は、例えば数mmである。配管11は、例えばガラス等の材料で構成され、例えばガラスキャピラリーとして構成されてもよい。   The pipe 11 (tubular member) is a tubular member that allows fluid to pass through, and the axis S2 (second axis) of the inner peripheral surface IP is parallel to the axis S1 (first axis) of the outer peripheral surface OP. It is configured to be eccentric. The pipe 11 has, for example, an appropriate inner diameter corresponding to the flow rate of the fluid, a wall thickness that can withstand the pressure of the fluid, and an optimum length, which are determined according to use conditions. The outer diameter of the pipe 11 is, for example, several mm. The pipe 11 is made of, for example, a material such as glass, and may be made of, for example, a glass capillary.

フローセンサ51(センサ)は、配管11内を流通する流体の流速及び流量の少なくとも一方を測定するための測定手段である。フローセンサ51は、配管11の外周面上に固定される。例えば、配管11の断面において、フローセンサ51が配管11に接触する部分Pから内周面IPの軸心S2(第2軸心)までの長さdyが、外周面OPの軸心S1(第1軸心)までの長さdxよりも短くなるように、フローセンサ51は、配管11の外周面上に固定される。図1においては、フローセンサ51が、配管11の断面方向厚さが最も薄くなる部分に固定される例が説明されているが、フローセンサ51は、必ずしも、配管11の断面方向厚さが最も薄くなる部分に固定される必要はなく、図2に示すように、フローセンサ51は、長さdyが長さdxよりも短くなるように配管11の外周面上に固定されればよい。   The flow sensor 51 (sensor) is a measuring means for measuring at least one of the flow velocity and the flow rate of the fluid flowing through the pipe 11. The flow sensor 51 is fixed on the outer peripheral surface of the pipe 11. For example, in the cross section of the pipe 11, the length dy from the portion P where the flow sensor 51 contacts the pipe 11 to the axis S2 (second axis) of the inner peripheral surface IP is the axis S1 (first) of the outer peripheral surface OP. The flow sensor 51 is fixed on the outer peripheral surface of the pipe 11 so as to be shorter than the length dx up to one axis). FIG. 1 illustrates an example in which the flow sensor 51 is fixed to a portion where the cross-sectional thickness of the pipe 11 is the thinnest. However, the flow sensor 51 does not necessarily have the cross-sectional thickness of the pipe 11 being the largest. The flow sensor 51 need only be fixed on the outer peripheral surface of the pipe 11 such that the length dy is shorter than the length dx, as shown in FIG.

また、フローセンサ51は、キャビティ102が設けられた基板101と、基板101を覆う絶縁膜103と、を備える。絶縁膜103は、センサ部100と、電気接続部109と、を含み、キャビティ102を覆う部分は、断熱性のダイアフラムをなしている。フローセンサ51は、例えば、基板101の下方向からキャビティ102を形成するバックサイドエッチングにより製造される。フローセンサ51の具体的構成を図3及び図4を用いて説明する。   The flow sensor 51 includes a substrate 101 provided with a cavity 102 and an insulating film 103 that covers the substrate 101. The insulating film 103 includes a sensor unit 100 and an electrical connection unit 109, and a portion covering the cavity 102 forms a heat insulating diaphragm. The flow sensor 51 is manufactured by, for example, backside etching that forms the cavity 102 from below the substrate 101. A specific configuration of the flow sensor 51 will be described with reference to FIGS. 3 and 4.

図3は、本発明の実施形態に係るフローセンサの構成例を示す斜視図である。図4は、本発明の実施形態に係るフローセンサの図3のIV−IV方向から見た断面図である。図3及び図4に示すように、フローセンサ51は、例示的に、キャビティ102(図4)が設けられた基板101と、基板101上にキャビティ102を覆うように配置された絶縁膜103と、絶縁膜103に設けられたセンサ部100と、周囲温度センサ107と、センサ部100が検出した物理量に対応する電気信号を出力する電気接続部109と、を備えて構成されている。   FIG. 3 is a perspective view illustrating a configuration example of the flow sensor according to the embodiment of the present invention. 4 is a cross-sectional view of the flow sensor according to the embodiment of the present invention as seen from the IV-IV direction of FIG. As shown in FIGS. 3 and 4, the flow sensor 51 includes, for example, a substrate 101 provided with a cavity 102 (FIG. 4), and an insulating film 103 disposed on the substrate 101 so as to cover the cavity 102. The sensor unit 100 provided on the insulating film 103, the ambient temperature sensor 107, and the electrical connection unit 109 that outputs an electrical signal corresponding to the physical quantity detected by the sensor unit 100 are configured.

センサ部100は、例示的に、絶縁膜103に設けられたヒータ104と、測温抵抗素子105,106と、を備えて構成される温度検出手段である。センサ部100は、例えば、フローセンサ51の絶縁膜103に配置されており、センサ部100は、絶縁膜103から上方に突出するように構成されてもよいし、絶縁膜103に埋め込まれるように構成されてもよい。なお、センサ部100は、ヒータ104、測温抵抗素子105,106の他、後述する周囲温度センサ107を備えて構成されてもよい。   The sensor unit 100 is, for example, temperature detection means configured to include a heater 104 provided on the insulating film 103 and temperature measuring resistance elements 105 and 106. For example, the sensor unit 100 is disposed on the insulating film 103 of the flow sensor 51, and the sensor unit 100 may be configured to protrude upward from the insulating film 103, or may be embedded in the insulating film 103. It may be configured. The sensor unit 100 may include an ambient temperature sensor 107 described later in addition to the heater 104 and the resistance temperature detectors 105 and 106.

周囲温度センサ107は、配管11を流通する流体の温度を測定する。ヒータ104は、キャビティ102を覆う絶縁膜103の略中心に配置されており、配管11を流通する流体を、周囲温度センサ107が計測した温度よりも一定温度高くなるように加熱する。   The ambient temperature sensor 107 measures the temperature of the fluid flowing through the pipe 11. The heater 104 is disposed substantially at the center of the insulating film 103 that covers the cavity 102, and heats the fluid flowing through the pipe 11 so that the temperature is higher than the temperature measured by the ambient temperature sensor 107.

なお、基板101の材料としては、例えば、シリコン(Si)、ガラス、セラミック等が使用可能である。基板101は、例えば、FPC(lexible rinted ircuits)として構成されてもよい。絶縁膜103の材料としては、酸化ケイ素(SiO2)や窒化ケイ素(SiN)等が使用可能である。また、ヒータ104、測温抵抗素子105、測温抵抗素子106及び周囲温度センサ107の各々の材料としては、白金(Pt)等が使用可能である。 As a material of the substrate 101, for example, silicon (Si), glass, ceramic, or the like can be used. Substrate 101 may, for example, may be configured as a FPC (F lexible p rinted c ircuits ). As a material of the insulating film 103, silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be used. Further, platinum (Pt) or the like can be used as the material of each of the heater 104, the resistance temperature detector 105, the resistance temperature detector 106, and the ambient temperature sensor 107.

電気接続部109は、ヒータ104、測温抵抗素子105、及び測温抵抗素子106を含む各種抵抗素子に接続され、各抵抗素子の電気抵抗の情報を出力する手段である。電気接続部109は、例えば、図2に示すように基板101の対角関係にある角部近傍に配置されており、ヒータ104、測温抵抗素子105、及び測温抵抗素子106の電気抵抗に対応する電気信号を、ワイヤ等(不図示)を介して取り出し流量測定部(不図示)に出力する。電気接続部109は、例えば、絶縁膜103に配置されており、センサ部100は、絶縁膜103から上方に突出するように構成されてもよいし、絶縁膜103に埋め込まれるように構成されてもよい。   The electrical connection unit 109 is connected to various resistance elements including the heater 104, the resistance temperature sensor element 105, and the resistance temperature sensor element 106, and is a means for outputting information on the electrical resistance of each resistance element. For example, as shown in FIG. 2, the electrical connection portion 109 is disposed in the vicinity of a corner portion having a diagonal relationship with the substrate 101, and is connected to the electrical resistances of the heater 104, the resistance temperature detector 105, and the resistance temperature detector 106. A corresponding electrical signal is taken out via a wire or the like (not shown) and output to a flow rate measuring unit (not shown). For example, the electrical connection unit 109 is disposed on the insulating film 103, and the sensor unit 100 may be configured to protrude upward from the insulating film 103 or may be configured to be embedded in the insulating film 103. Also good.

図5は、本発明の実施形態に係る流量計の構成例を示す概略断面図の拡大図である。特に、図5は、図3のフローセンサ51の中心線Cに沿って配管が固定されて構成される流量計において図2のIV−IV方向から見た断面図である。すなわち、図5は、配管と配管の外周面に取り付けられたフローセンサとを備える流量計を配管の軸心に沿って切断した場合の断面図である。なお、図5は、配管とフローセンサとが固定されている部分を拡大した概略断面図である。   FIG. 5 is an enlarged view of a schematic cross-sectional view showing a configuration example of the flow meter according to the embodiment of the present invention. In particular, FIG. 5 is a cross-sectional view as seen from the IV-IV direction of FIG. 2 in a flow meter configured by fixing piping along the center line C of the flow sensor 51 of FIG. That is, FIG. 5 is a cross-sectional view when a flow meter including a pipe and a flow sensor attached to the outer peripheral surface of the pipe is cut along the axis of the pipe. FIG. 5 is an enlarged schematic sectional view of a portion where the pipe and the flow sensor are fixed.

図5に示すように、フローセンサ51のセンサ部100が、配管11に熱的に接続されることによって、矢印A1に示すとおり、センサ部100のヒータ104の熱が配管11内の流体に伝播する。次に、ヒータ104から伝播した熱によって変化した流体の熱が、矢印A2で示す測温抵抗素子105への方向と、矢印A3で示す測温抵抗素子106への方向に伝播する。この矢印A1方向の熱の伝搬と矢印A2,3方向の熱の伝搬とを合せて双方向に伝熱するという。配管11内における流体が上流側から下流側へと流通している場合、ヒータ104で加えられた熱は下流方向に運ばれる(運搬効果)。従って、測温抵抗素子105の温度よりも測温抵抗素子106の温度が高くなり、測温抵抗素子105の電気抵抗と測温抵抗素子106の電気抵抗との間に差が生じる。この電気抵抗の差は、配管11内を流通する流体の速度や流量と相関関係があることが知られている。このため、測温抵抗素子105の電気抵抗と測温抵抗素子106の電気抵抗との差に基づいて、配管11内を流通する流体の速度や流量を測定(算出)することができる。   As shown in FIG. 5, when the sensor unit 100 of the flow sensor 51 is thermally connected to the pipe 11, the heat of the heater 104 of the sensor unit 100 propagates to the fluid in the pipe 11 as indicated by an arrow A <b> 1. To do. Next, the heat of the fluid changed by the heat propagated from the heater 104 propagates in the direction toward the temperature measuring resistance element 105 indicated by the arrow A2 and in the direction indicated by the arrow A3. The heat propagation in the direction of the arrow A1 and the heat propagation in the directions of the arrows A2, 3 are combined to transfer heat in both directions. When the fluid in the pipe 11 is flowing from the upstream side to the downstream side, the heat applied by the heater 104 is conveyed in the downstream direction (transport effect). Accordingly, the temperature of the resistance temperature detector 106 becomes higher than the temperature of the resistance temperature detector 105, and a difference occurs between the electrical resistance of the resistance temperature detector 105 and the electrical resistance of the resistance temperature detector 106. This difference in electrical resistance is known to correlate with the speed and flow rate of the fluid flowing through the pipe 11. For this reason, the speed and flow rate of the fluid flowing through the pipe 11 can be measured (calculated) based on the difference between the electric resistance of the temperature measuring resistance element 105 and the electric resistance of the temperature measuring resistance element 106.

ここで、配管11の断面において、フローセンサ51が配管11に接触する部分Pから内周面IPの軸心S2(第2軸心)までの長さdyが、外周面OPの軸心S1(第1軸心)までの長さdxよりも短くなるように、フローセンサ51を配管11の外周面上に固定することにより、フローセンサ51と、配管11内の流体と、の間の熱伝導がよくなる。そのため、配管11内を流通する流体の速度や流量を正確に測定することが可能となる。   Here, in the cross section of the pipe 11, the length dy from the portion P where the flow sensor 51 contacts the pipe 11 to the axis S2 (second axis) of the inner peripheral surface IP is the axis S1 ( By fixing the flow sensor 51 on the outer peripheral surface of the pipe 11 so as to be shorter than the length dx to the first axis), heat conduction between the flow sensor 51 and the fluid in the pipe 11 Will be better. Therefore, it is possible to accurately measure the speed and flow rate of the fluid flowing through the pipe 11.

(製造工程)
図6から図11を用いて本発明の実施形態に係る流量計の製造工程を説明する。図6乃至図8は、本発明の実施形態に係る流量計の製造工程を示した断面図である。特に、図6は、配管を製造するための配管母材を示した図である。図7は、配管母材を延伸加工した後の配管を示した図である。図8は、配管にフローセンサを固定した流量計を示した図である。図9から図11は、配管と配管の外壁に取り付けられたフローセンサとを備える流量計を配管の軸心に垂直方向に切断した場合の断面図の拡大図である。
(Manufacturing process)
The manufacturing process of the flowmeter according to the embodiment of the present invention will be described with reference to FIGS. 6 to 8 are cross-sectional views showing the manufacturing process of the flow meter according to the embodiment of the present invention. In particular, FIG. 6 is a diagram showing a pipe base material for manufacturing a pipe. FIG. 7 is a view showing the pipe after the pipe base material is stretched. FIG. 8 is a view showing a flow meter in which a flow sensor is fixed to a pipe. FIG. 9 to FIG. 11 are enlarged views of sectional views when a flowmeter including a pipe and a flow sensor attached to the outer wall of the pipe is cut in a direction perpendicular to the axis of the pipe.

本発明の実施形態に係る流量計は、以下の工程を経て製造される。
(工程1)
まず、図6に示すように、外周面OPnの軸心Snに対し、内周面IPmの軸心Smが平行に偏心する、穴空き配管母材10(母材)を形成する。配管母材10の外径は、例えば50mmである。配管母材10は、配管と同様に、例えばガラス等の材料で構成される。
The flow meter according to the embodiment of the present invention is manufactured through the following steps.
(Process 1)
First, as shown in FIG. 6, a perforated pipe base material 10 (base material) is formed in which the axial center Sm of the inner peripheral surface IPm is eccentric in parallel to the axial center Sn of the outer peripheral surface OPn. The outer diameter of the pipe base material 10 is, for example, 50 mm. The piping base material 10 is made of a material such as glass, for example, similarly to the piping.

なお、工程1において、事前に外周面OPnの軸心Snに対し、内周面IPmの軸心Smが平行に偏心する配管母材10を納入することにより、工程1を省略し、工程2以降を実施してもよい。   In Step 1, by supplying the pipe base material 10 in which the axial center Sm of the inner peripheral surface IPm is eccentric in parallel to the axial center Sn of the outer peripheral surface OPn in advance, Step 1 is omitted, and Step 2 and subsequent steps. May be implemented.

(工程2)
図7に示すように、外周面OPの軸心S1(第1軸心)に対し、内周面IPの軸心S2(第2軸心)が平行に偏心する配管11(管状部材)を製造する。例えば、図6に示す、外周面OPの軸心Snに対し、内周面IPの軸心Smが平行に偏心する配管母材10を延伸加工して配管11を製造する。
(Process 2)
As shown in FIG. 7, a pipe 11 (tubular member) is manufactured in which the axis S2 (second axis) of the inner peripheral surface IP is eccentric in parallel to the axis S1 (first axis) of the outer peripheral surface OP. To do. For example, the pipe 11 is manufactured by stretching a pipe base material 10 in which the axis Sm of the inner peripheral surface IP is eccentric in parallel with the axis Sn of the outer peripheral face OP shown in FIG.

具体的には、電気炉内において、配管母材10の軟化点(例えば、数千℃)より数百℃高い温度で配管母材10を軟化させた後、軟化した配管母材10を延伸加工することによって、外径が例えば数mmの配管11を製造する。なお、配管母材10から所望の外径及び延伸方向長さの配管11を得るために、最適な延伸温度及び延伸速度等を用いて均一に延伸加工することができる。   Specifically, in the electric furnace, after the pipe base material 10 is softened at a temperature several hundred degrees Celsius higher than the softening point (for example, several thousand degrees Celsius) of the pipe base material 10, the softened pipe base material 10 is stretched. By doing so, the pipe 11 having an outer diameter of, for example, several mm is manufactured. In addition, in order to obtain the pipe 11 having a desired outer diameter and length in the drawing direction from the pipe base material 10, it can be uniformly drawn using an optimum drawing temperature and drawing speed.

(工程3)
図8に示すように、配管11の外周面OP上にフローセンサ51(センサ)を固定する。
(Process 3)
As shown in FIG. 8, the flow sensor 51 (sensor) is fixed on the outer peripheral surface OP of the pipe 11.

上記したとおり、フローセンサ51は、配管11の断面方向厚さが最も薄くなる部分に固定されている。例えば、図9に示すように、フローセンサ51は、配管11の外周面の軸心S1(第1軸心)及び内周面の軸心S2(第2軸心)に対して垂直である配管11の垂直断面SSにおいて軸心S2から配管11の外周面OP及び内周面IPに向かって延びる直線L1が内周面IPと交差する交差点P1(第1交差点)と直線L1が外周面OPと交差する交差点P2(第2交差点)との距離が最も短い場合のP2(第2交差点)に固定される。   As described above, the flow sensor 51 is fixed to the portion where the thickness in the cross-sectional direction of the pipe 11 is the thinnest. For example, as shown in FIG. 9, the flow sensor 51 is a pipe perpendicular to the axis S1 (first axis) of the outer peripheral surface of the pipe 11 and the axis S2 (second axis) of the inner peripheral surface. 11, a straight line L1 extending from the axis S2 toward the outer peripheral surface OP and the inner peripheral surface IP of the pipe 11 intersects the inner peripheral surface IP (first intersection) and the straight line L1 is the outer peripheral surface OP. It is fixed at P2 (second intersection) when the distance to the intersecting intersection P2 (second intersection) is the shortest.

他方、比較例として図10に示すように、フローセンサ51は、配管11の断面方向厚さが最も厚くなる部分に固定される場合を挙げる。例えば、図10に示すように、フローセンサ51は、配管11の外周面の軸心S1(第1軸心)及び内周面の軸心S2(第2軸心)に対して垂直である配管11の垂直断面SSにおいて軸心S2から配管11の外周面OP及び内周面IPに向かって延びる直線L1が内周面IPと交差する交差点P1と直線L1が外周面OPと交差する交差点P2との距離が最も長い場合のP4に固定される場合、フローセンサ51が固定されているP4における、配管11の断面方向厚さが厚くなるので、フローセンサ51と配管11内の流体との間の熱伝導が悪くなり、流体の流量を正確に測定できないおそれがある。したがって、図9に示すように、フローセンサ51は交差点P2に固定されるのが好ましい。   On the other hand, as a comparative example, as shown in FIG. 10, the flow sensor 51 is fixed to a portion where the cross-sectional thickness of the pipe 11 is the thickest. For example, as shown in FIG. 10, the flow sensor 51 is a pipe perpendicular to the axis S1 (first axis) of the outer peripheral surface of the pipe 11 and the axis S2 (second axis) of the inner peripheral surface. 11, a straight line L1 extending from the axis S2 toward the outer peripheral surface OP and the inner peripheral surface IP of the pipe 11 intersects the inner peripheral surface IP and an intersection P2 where the straight line L1 intersects the outer peripheral surface OP. When the distance is fixed to P4 when the distance is the longest, the thickness in the cross-sectional direction of the pipe 11 at P4 where the flow sensor 51 is fixed becomes thick. There is a possibility that the heat flow becomes poor and the flow rate of the fluid cannot be measured accurately. Therefore, as shown in FIG. 9, the flow sensor 51 is preferably fixed at the intersection P2.

なお、配管11の外周面OPと内周面IPとの距離である配管11の厚さは、熱伝導の障害に殆どならない程度に薄く(例えば、数十μm)なるように構成されている。   In addition, the thickness of the piping 11 which is the distance between the outer peripheral surface OP and the inner peripheral surface IP of the piping 11 is configured to be thin (for example, several tens of μm) so as not to hinder heat conduction.

配管11の外周面にフローセンサ51を固定する方法は少なくとも以下の方法を含む。   The method of fixing the flow sensor 51 to the outer peripheral surface of the pipe 11 includes at least the following method.

例えば、フローセンサ51を別途製造し、製造したフローセンサ51を配管11の外周面に設置し固定する方法がある。具体的には、フローセンサ51の基板101上に配置されているセンサ部100を少なくとも覆うように熱伝導性接着剤(不図示)を付着し、熱伝導性接着剤を介して基板101上に配置されているセンサ部100を配管11の外周面に設置し、当該熱伝導性接着剤を硬化させる。   For example, there is a method in which the flow sensor 51 is manufactured separately, and the manufactured flow sensor 51 is installed and fixed on the outer peripheral surface of the pipe 11. Specifically, a heat conductive adhesive (not shown) is attached so as to cover at least the sensor unit 100 disposed on the substrate 101 of the flow sensor 51, and the heat conductive adhesive is used on the substrate 101. The arranged sensor unit 100 is installed on the outer peripheral surface of the pipe 11 and the thermally conductive adhesive is cured.

なお、センサ部100の表面のみ覆うように熱伝導性接着剤を付着してもよい。また、フローセンサ51と配管11とをより強固に固定するために、センサ部100の表面のみ覆うように熱伝導性接着剤を付着した後、基板101上の絶縁膜103上に漏れ出す程度に熱伝導性接着剤をさらに付着してもよい。またさらに、熱伝導性接着剤は、センサ部100の全てを必ずしも覆う必要はなく、フローセンサ51から配管11の壁を介して流体へ伝わる熱、及び、流体から配管11の壁を介してフローセンサ51へ伝わる熱を効率的に伝達できる程度にセンサ部100を覆えばよい。   In addition, you may adhere a heat conductive adhesive so that only the surface of the sensor part 100 may be covered. In addition, in order to more firmly fix the flow sensor 51 and the pipe 11, a heat conductive adhesive is attached so as to cover only the surface of the sensor unit 100, and then leaks onto the insulating film 103 on the substrate 101. A thermally conductive adhesive may be further attached. Furthermore, the heat conductive adhesive does not necessarily need to cover all of the sensor unit 100, and heat transferred from the flow sensor 51 to the fluid through the wall of the pipe 11 and flows from the fluid through the wall of the pipe 11. What is necessary is just to cover the sensor part 100 to such an extent that the heat transmitted to the sensor 51 can be efficiently transmitted.

熱伝導性接着剤を硬化させる方法には、特に制限はない。例えば、熱伝導性接着剤を硬化させる方法として、光照射による硬化方法や加熱による硬化方法等があるがこれに限られない。例えば、熱伝導性接着剤が自然に硬化する場合は、熱伝導性接着剤を付着した後、所定期間放置することにより硬化させてもよい。なお、熱伝導性接着剤の接着力が低い場合には、例えば、フローセンサ51を配管11により強固に固定するためのなんらかの取り付け具(不図示)を用いてもよい。   There is no restriction | limiting in particular in the method of hardening a heat conductive adhesive. For example, methods for curing a heat conductive adhesive include a curing method by light irradiation and a curing method by heating, but are not limited thereto. For example, when the heat conductive adhesive is naturally cured, the heat conductive adhesive may be cured by being left for a predetermined period after being attached. In addition, when the adhesive force of a heat conductive adhesive is low, you may use some attachments (not shown) for fixing the flow sensor 51 firmly with the piping 11, for example.

なお、熱伝導性接着剤は、例えば、銀、銅、金、アルミニウム等の金属粒子を含むペーストを含む。当該ペーストは、例えば、伝導性フィラーとバインダー樹脂とが混合されることにより得られる材料が含まれる。伝導性フィラーには、例えば、銀、銅、鉄、ニッケル等の金属微粉末、セラミック粒子やカーボンブラックが含まれる。また、バインダー樹脂には、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、フェノール樹脂及びイミド樹脂等の樹脂が含まれる。   In addition, a heat conductive adhesive contains the paste containing metal particles, such as silver, copper, gold | metal | money, aluminum, for example. The paste includes, for example, a material obtained by mixing a conductive filler and a binder resin. Examples of the conductive filler include fine metal powders such as silver, copper, iron, and nickel, ceramic particles, and carbon black. The binder resin includes resins such as an epoxy resin, a polyester resin, a urethane resin, a phenol resin, and an imide resin.

また、他の方法として、配管11の外周面に所定のパターニング方法を行うことにより、フローセンサ51の構成素子を直接形成し固定する方法が挙げられる。   Another method includes a method of directly forming and fixing the constituent elements of the flow sensor 51 by performing a predetermined patterning method on the outer peripheral surface of the pipe 11.

図11は、本発明の実施形態に係る流量計の構成例を示す概略断面図の拡大図である。図12は、本発明の実施形態に係る流量計の構成例を示す底面図である。図11及び図12に示すように、白金(Pt)等を材料とするセンサ部100及び周囲温度センサ107、並びに電気接続部109は、例えば、蒸着、スパッタリング等の薄膜形成方法や、リソグラフィー・ナノパターニング方法等を用いて配管11の外周面に形成される。また、センサ部100及び周囲温度センサ109の表面を保護する目的で、窒化シリコン(SiN)、酸化シリコン(SiO2)やフッ素系樹脂等を含む保護膜110を保護膜形成領域110Rに形成しても良い。センサ部100及び周囲温度センサ109のそれぞれは、ワイヤ等を用いて各電気接続部109と接続される。 FIG. 11 is an enlarged view of a schematic cross-sectional view showing a configuration example of the flow meter according to the embodiment of the present invention. FIG. 12 is a bottom view showing a configuration example of the flow meter according to the embodiment of the present invention. As shown in FIGS. 11 and 12, the sensor unit 100, the ambient temperature sensor 107, and the electrical connection unit 109 made of platinum (Pt) or the like are formed by, for example, a thin film formation method such as vapor deposition or sputtering, or lithography / nano It is formed on the outer peripheral surface of the pipe 11 using a patterning method or the like. Further, in order to protect the surfaces of the sensor unit 100 and the ambient temperature sensor 109, a protective film 110 containing silicon nitride (SiN), silicon oxide (SiO 2 ), fluorine-based resin, or the like is formed in the protective film forming region 110R. Also good. Each of the sensor unit 100 and the ambient temperature sensor 109 is connected to each electrical connection unit 109 using a wire or the like.

本実施形態によれば、フローセンサ51は、配管11の断面において、フローセンサ51が配管11に接触する部分Pから内周面IPの軸心S2(第2軸心)までの長さdyが、外周面OPの軸心S1(第1軸心)までの長さdxよりも短くなるように、配管11の外周面上に固定される。よって、フローセンサ51と、配管11内の流体と、の間の熱伝導がよくなる。そのため、配管11内を流通する流体の速度や流量を正確に測定することが可能となる。フローセンサ51と、配管11内の流体と、の間の熱伝導がよくなるので、配管11の外周面を研削等で薄肉化する必要がなくなる。したがって、加工面損傷による強度低下は生じないし、低コストで製造できる。   According to this embodiment, in the cross section of the pipe 11, the flow sensor 51 has a length dy from the portion P where the flow sensor 51 contacts the pipe 11 to the axis S <b> 2 (second axis) of the inner peripheral surface IP. The outer circumferential surface OP is fixed on the outer circumferential surface of the pipe 11 so as to be shorter than the length dx to the axis S1 (first axial center) of the outer circumferential surface OP. Therefore, heat conduction between the flow sensor 51 and the fluid in the pipe 11 is improved. Therefore, it is possible to accurately measure the speed and flow rate of the fluid flowing through the pipe 11. Since heat conduction between the flow sensor 51 and the fluid in the pipe 11 is improved, it is not necessary to thin the outer peripheral surface of the pipe 11 by grinding or the like. Accordingly, there is no reduction in strength due to damage to the processed surface, and manufacturing can be performed at low cost.

(他の実施形態)
上記した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。また、上記した実施形態は、あくまでも例示であり、上記で明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施形態を組み合わせる等)して実施することができる。
(Other embodiments)
Each above-mentioned embodiment is for making an understanding of the present invention easy, and does not limit and interpret the present invention. Moreover, the above-described embodiment is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described above. That is, the present invention can be implemented with various modifications (combining the embodiments) without departing from the spirit of the present invention.

上記各実施形態においては、測定装置として流量計、センサとしてフローセンサを例に挙げて説明したが、これに限られず、配管の外壁にセンサを設置して構成される測定装置であればよく、例えば、測定装置として熱量計、センサとして熱量センサであってもよく、測定装置として温度計、センサとして温度センサであってもよい。   In each of the above-described embodiments, the flow meter is used as the measurement device and the flow sensor is used as the sensor.However, the measurement device is not limited thereto, and any measurement device may be used as long as the sensor is installed on the outer wall of the pipe. For example, a calorimeter may be used as the measuring device, a calorimeter sensor may be used as the sensor, a thermometer may be used as the measuring device, and a temperature sensor may be used as the sensor.

1 流量計
10 配管母材
11 配管
51 フローセンサ
100 センサ部
101 基板
102 キャビティ
103 絶縁膜
104 ヒータ
105,106 測温抵抗素子
107 周囲温度センサ
109 電気接続部
DESCRIPTION OF SYMBOLS 1 Flowmeter 10 Piping base material 11 Piping 51 Flow sensor 100 Sensor part 101 Board | substrate 102 Cavity 103 Insulating film 104 Heater 105,106 Temperature measuring resistance element 107 Ambient temperature sensor 109 Electrical connection part

Claims (13)

外周面の第1軸心に対し、内周面の第2軸心が平行に偏心する管状部材と、
前記管状部材の外周面上に固定されるセンサと、
を備え、
前記管状部材の断面において、前記センサが当該管状部材に接触する部分から前記第2軸心までの長さが、前記第1軸心までの長さよりも短い、
測定装置。
A tubular member in which the second axis of the inner peripheral surface is eccentric in parallel to the first axis of the outer peripheral surface;
A sensor fixed on the outer peripheral surface of the tubular member;
With
In the cross section of the tubular member, the length from the portion where the sensor contacts the tubular member to the second axis is shorter than the length to the first axis.
measuring device.
前記センサが、前記管状部材の断面方向厚さが最も薄くなる部分に固定される、請求項1に記載の測定装置。   The measuring device according to claim 1, wherein the sensor is fixed to a portion where the thickness in the cross-sectional direction of the tubular member is the thinnest. 前記センサが、
前記管状部材の断面において前記第2軸心から前記外周面及び前記内周面に向かって延びる直線が前記内周面と交差する第1交差点と前記直線が前記外周面と交差する第2交差点との距離が最も短い場合の前記第2交差点に固定される、
請求項1又は2に記載の測定装置。
The sensor is
A first intersection where a straight line extending from the second axis toward the outer peripheral surface and the inner peripheral surface intersects the inner peripheral surface and a second intersection where the straight line intersects the outer peripheral surface in the cross section of the tubular member; Fixed to the second intersection when the distance of
The measuring apparatus according to claim 1 or 2.
前記管状部材がガラスキャピラリーである、請求項1から3のいずれか1項に記載の測定装置。   The measuring apparatus according to claim 1, wherein the tubular member is a glass capillary. 前記センサが、前記管状部材の内部を流れる流体の流速を測定する、請求項1から4のいずれか1項に記載の測定装置。   The measuring device according to any one of claims 1 to 4, wherein the sensor measures a flow velocity of a fluid flowing inside the tubular member. 前記センサが、前記管状部材の内部を流れる流体の流量を測定する、請求項1から5のいずれか1項に記載の測定装置。   The measuring device according to claim 1, wherein the sensor measures a flow rate of a fluid flowing inside the tubular member. 外周面の第1軸心に対し、内周面の第2軸心が平行に偏心する管状部材の外周面上にセンサを固定する工程
を含み、
前記管状部材の断面において、前記センサが当該管状部材に接触する部分から前記第2軸心までの長さが、前記第1軸心までの長さよりも短い、
測定装置の製造方法。
A step of fixing the sensor on the outer peripheral surface of the tubular member in which the second axial center of the inner peripheral surface is eccentric in parallel with the first axial center of the outer peripheral surface;
In the cross section of the tubular member, the length from the portion where the sensor contacts the tubular member to the second axis is shorter than the length to the first axis.
Manufacturing method of the measuring device.
前記管状部材を製造する工程をさらに含み、
前記管状部材を製造する工程は、外周面の軸心と内周面の軸心とが平行に偏心する母材を延伸加工して前記管状部材を製造する、
請求項7に記載の測定装置の製造方法。
Further comprising manufacturing the tubular member;
The step of producing the tubular member produces the tubular member by stretching a base material in which the axis of the outer peripheral surface and the axis of the inner peripheral surface are eccentric in parallel.
A method for manufacturing the measuring apparatus according to claim 7.
前記センサが、前記管状部材の断面方向厚さが最も薄くなる部分に固定される、請求項7又は8に記載の測定装置の製造方法。   The method for manufacturing a measuring apparatus according to claim 7 or 8, wherein the sensor is fixed to a portion where the cross-sectional thickness of the tubular member is the smallest. 前記センサが、
前記管状部材の断面において前記第2軸心から前記外周面及び前記内周面に向かって延びる直線が前記内周面と交差する第1交差点と前記直線が前記外周面と交差する第2交差点との距離が最も短い場合の前記第2交差点に固定される、
請求項7から9のいずれか1項に記載の測定装置の製造方法。
The sensor is
A first intersection where a straight line extending from the second axis toward the outer peripheral surface and the inner peripheral surface intersects the inner peripheral surface and a second intersection where the straight line intersects the outer peripheral surface in the cross section of the tubular member; Fixed to the second intersection when the distance of
The manufacturing method of the measuring apparatus of any one of Claim 7 to 9.
前記管状部材がガラスキャピラリーである、請求項7から10のいずれか1項に記載の測定装置の製造方法。   The method for manufacturing a measuring apparatus according to claim 7, wherein the tubular member is a glass capillary. 前記センサが、前記管状部材の内部を流れる流体の流速を測定する、請求項7から11のいずれか1項に記載の測定装置の製造方法。   The method for manufacturing a measuring apparatus according to claim 7, wherein the sensor measures a flow velocity of a fluid flowing inside the tubular member. 前記センサが、前記管状部材の内部を流れる流体の流量を測定する、請求項7から12のいずれか1項に記載の測定装置の製造方法。   The manufacturing method of the measuring device according to claim 7, wherein the sensor measures a flow rate of a fluid flowing inside the tubular member.
JP2016001316A 2016-01-06 2016-01-06 Measuring device and manufacturing method of measuring device Expired - Fee Related JP6535604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016001316A JP6535604B2 (en) 2016-01-06 2016-01-06 Measuring device and manufacturing method of measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016001316A JP6535604B2 (en) 2016-01-06 2016-01-06 Measuring device and manufacturing method of measuring device

Publications (2)

Publication Number Publication Date
JP2017122626A true JP2017122626A (en) 2017-07-13
JP6535604B2 JP6535604B2 (en) 2019-06-26

Family

ID=59306261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001316A Expired - Fee Related JP6535604B2 (en) 2016-01-06 2016-01-06 Measuring device and manufacturing method of measuring device

Country Status (1)

Country Link
JP (1) JP6535604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066602A (en) * 2016-10-18 2018-04-26 サーパス工業株式会社 Flowmeter
JP2019027881A (en) * 2017-07-28 2019-02-21 アズビル株式会社 measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532099A (en) * 2000-05-04 2003-10-28 ゼンジリオン アクチエンゲゼルシャフト Flow sensor for liquid
JP2012154712A (en) * 2011-01-25 2012-08-16 Tokyo Electron Ltd Flow sensor and resist application device using the same
JP2012202971A (en) * 2011-03-28 2012-10-22 Tokyo Electron Ltd Flow sensor and resist coating device using the same
JP2012204813A (en) * 2011-03-28 2012-10-22 Tokyo Electron Ltd Bubble detection method, resist application method, and resist application device
JP2016156650A (en) * 2015-02-23 2016-09-01 サーパス工業株式会社 Thermal type flowmeter, and manufacturing method for the same
JP2016156651A (en) * 2015-02-23 2016-09-01 サーパス工業株式会社 Thermal type flowmeter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532099A (en) * 2000-05-04 2003-10-28 ゼンジリオン アクチエンゲゼルシャフト Flow sensor for liquid
JP2012154712A (en) * 2011-01-25 2012-08-16 Tokyo Electron Ltd Flow sensor and resist application device using the same
JP2012202971A (en) * 2011-03-28 2012-10-22 Tokyo Electron Ltd Flow sensor and resist coating device using the same
JP2012204813A (en) * 2011-03-28 2012-10-22 Tokyo Electron Ltd Bubble detection method, resist application method, and resist application device
JP2016156650A (en) * 2015-02-23 2016-09-01 サーパス工業株式会社 Thermal type flowmeter, and manufacturing method for the same
JP2016156651A (en) * 2015-02-23 2016-09-01 サーパス工業株式会社 Thermal type flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066602A (en) * 2016-10-18 2018-04-26 サーパス工業株式会社 Flowmeter
JP2019027881A (en) * 2017-07-28 2019-02-21 アズビル株式会社 measuring device

Also Published As

Publication number Publication date
JP6535604B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
CN101427110B (en) Flip-chip flow sensor
JP6467173B2 (en) Contact combustion type gas sensor
CN108027267B (en) Flow sensor
JP6535604B2 (en) Measuring device and manufacturing method of measuring device
JP2009300381A (en) Heat conduction type vacuum gage, and pressure measuring method
JP2016125896A (en) Measuring apparatus
JP2017026428A (en) Method for manufacturing measuring device and measuring device
JP2014010025A (en) Thermal type air flow rate sensor
JP2017101955A (en) Measuring apparatus and method for manufacturing measuring apparatus
JP2017026429A (en) Method for manufacturing measuring device and measuring device
JP2016125919A (en) Method of manufacturing measuring apparatus and measuring apparatus
JP2001215141A (en) Thermal flow-rate sensor
JP2020064071A (en) Flow sensor
JP6769720B2 (en) Gas sensor
JP5949573B2 (en) Manufacturing method of physical quantity sensor
JP2011209035A (en) Sensor
JP6475081B2 (en) Thermal flow meter and method for improving tilt error
JP2018072237A (en) Measurement device
JP6432314B2 (en) Physical quantity sensor and method of manufacturing physical quantity sensor
JP2015194428A (en) Flow sensor and manufacturing method for flow sensor
JP6219769B2 (en) Flow sensor and method of manufacturing flow sensor
JP2018146344A (en) Thermal flow rate sensor
JP2016219365A (en) Micro heater and sensor
JP2011209009A (en) Sensor
JP2018146345A (en) Thermal flow rate sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6535604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees