JP6475081B2 - Thermal flow meter and method for improving tilt error - Google Patents

Thermal flow meter and method for improving tilt error Download PDF

Info

Publication number
JP6475081B2
JP6475081B2 JP2015101303A JP2015101303A JP6475081B2 JP 6475081 B2 JP6475081 B2 JP 6475081B2 JP 2015101303 A JP2015101303 A JP 2015101303A JP 2015101303 A JP2015101303 A JP 2015101303A JP 6475081 B2 JP6475081 B2 JP 6475081B2
Authority
JP
Japan
Prior art keywords
flow meter
flow
fluid
measured
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101303A
Other languages
Japanese (ja)
Other versions
JP2016217814A (en
Inventor
久夫 清田
久夫 清田
哲也 舘山
哲也 舘山
俊之 片岡
俊之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2015101303A priority Critical patent/JP6475081B2/en
Publication of JP2016217814A publication Critical patent/JP2016217814A/en
Application granted granted Critical
Publication of JP6475081B2 publication Critical patent/JP6475081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、被測定流体の流量(流速)を測定する熱式流量計及びその傾斜誤差改善方法に関する。   The present invention relates to a thermal flow meter for measuring a flow rate (flow velocity) of a fluid to be measured and a method for improving a tilt error thereof.

従来、流量計としては、特許文献1に開示されているように、基板上に発熱体と当該発熱体を挟む2つの測温体とを設け、被測定流体が通過する時に、流体の流れによって発熱体上の熱が移動し、この移動した熱によって、2つの測温体に生じる温度差に基づいて質量流量を算出する。   Conventionally, as disclosed in Patent Document 1, as a flow meter, a heating element and two temperature measuring bodies sandwiching the heating element are provided on a substrate, and when the fluid to be measured passes, The heat on the heating element moves, and the mass flow rate is calculated based on the temperature difference generated between the two temperature measuring bodies by the moved heat.

特開2004−117157号公報JP 2004-117157 A 特許第4027470号公報Japanese Patent No. 4027470

ところで、発熱体と測温体の位置関係が、水準方向、すなわち鉛直方向に対して垂直に並んでいるのであれば、流体の流れがない時には熱の移動がないので温度差が発生することはなく、この状態に測定される流量はゼロとなる。   By the way, if the positional relationship between the heating element and the temperature measuring element is aligned in the level direction, that is, perpendicular to the vertical direction, there is no movement of heat when there is no fluid flow, so that a temperature difference occurs. There is no flow rate measured in this state.

一方で、発熱体と測温体との位置関係が、鉛直方向に並んでいる場合、発熱体によって発生した熱が鉛直方向に対して反対向きに分布する(以下、「熱対流効果」と称する)。そのため、流体の流れがない場合には本来ゼロと出力しなければならないところ、熱対流効果によって2つの測温体に温度差が生じてしまい、あたかも流れがあるかのように流量が出力されてしまう。   On the other hand, when the positional relationship between the heating element and the temperature measuring element is aligned in the vertical direction, the heat generated by the heating element is distributed in the opposite direction to the vertical direction (hereinafter referred to as “thermal convection effect”). ). For this reason, when there is no fluid flow, it must be output as zero. However, due to the thermal convection effect, a temperature difference occurs between the two temperature measuring elements, and the flow rate is output as if there is a flow. End up.

このため特許文献1に開示された流量計の取り付け方向は、発熱体と測温体とを配置する基板面が水準方向に沿っていないと精度よく測定できないことになり、取り付け方向の客先自由度を奪ってしまうという問題が生じていた。   For this reason, the mounting direction of the flow meter disclosed in Patent Document 1 cannot be measured accurately unless the substrate surface on which the heating element and the temperature measuring body are arranged is along the level direction. There was a problem of taking away the degree.

上記のような問題に鑑みて、特許文献2では、U字管の一方には自己発熱抵抗体(センサ素子)を設け、もう一方にはヒータ素子を設けることで、センサ素子側で発生した熱対流による流れを、ヒータ素子側で強制的に発生させた熱対流による流れによって、物理的に打ち消すような方法が開示されている。   In view of the above problems, in Patent Document 2, the heat generated on the sensor element side is provided by providing a self-heating resistor (sensor element) on one side of the U-shaped tube and a heater element on the other side. A method is disclosed in which the flow due to convection is physically canceled out by the flow due to thermal convection that is forcibly generated on the heater element side.

本発明は、上記の事情に鑑みて創案されたものであり、発熱体と測温体とを含む平面を水準方向から傾斜させて配置した場合であっても、正確な流量を測定することができる熱式流量計及びその傾斜誤差改善方法を提供することを目的とする。   The present invention was devised in view of the above circumstances, and it is possible to measure an accurate flow rate even when a plane including a heating element and a temperature measuring element is inclined from a level direction. An object of the present invention is to provide a thermal flow meter that can be used and a method for improving the tilt error.

上記目的を達成するために、本発明に係る熱式流量計は、被測定流体が流れる配管であって被測定流体の流れ方向が互いに逆向きになる第一部分と第二部分とを少なくとも備えた配管と、前記第一部分に設けられる第一流量計と、前記第二部分に設けられ、前記第一流量計と同じ特性を有する第二流量計と、を備え、前記第一流量計と前記第二流量計とは、それぞれ、発熱体と、前記発熱体から被測定流体に与えられた熱を検出する測温体と、を有し、前記第一流量計の出力、及び前記第二流量計の出力から、前記配管における被測定流体の流れの向きを特定し、前記第一流量計及び前記第二流量計のうち、前記被測定流体の流れの方向に対して測温体の温度差が逆方向に取り付けられていると判定された方の流量計の出力を補正するための情報に基づいて補正することを特徴とする。   In order to achieve the above object, a thermal flow meter according to the present invention includes at least a first part and a second part that are pipes through which a fluid to be measured flows, and in which the flow directions of the fluid to be measured are opposite to each other. A pipe, a first flow meter provided in the first portion, and a second flow meter provided in the second portion and having the same characteristics as the first flow meter, the first flow meter and the first flow meter Each of the two flow meters has a heating element and a temperature measuring element for detecting heat given from the heating element to the fluid to be measured, and the output of the first flow meter and the second flow meter The direction of the flow of the fluid to be measured in the pipe is specified from the output of the first flow meter and the second flow meter, and the temperature difference of the temperature measuring body with respect to the direction of the flow of the fluid to be measured is determined. To correct the output of the flow meter that is determined to be installed in the opposite direction And correcting on the basis of the distribution.

また、本発明に係る熱式流量計の傾斜誤差改善方法は、第一流量計の出力及び第二流量計の出力から、配管における各流量計の被測定流体の流れの向きを特定する手順と、第一流量計及び第二流量計のうち、前記被測定流体の流れの方向に対して測温体の温度差が逆方向に取り付けられている流量計の出力を補正するための情報に基づいて補正する手順と、を有することを特徴とする。   In addition, the method for improving the tilt error of the thermal flow meter according to the present invention includes a procedure for specifying the flow direction of the fluid under measurement of each flow meter in the piping from the output of the first flow meter and the output of the second flow meter. Based on the information for correcting the output of the flow meter in which the temperature difference of the temperature measuring element is attached in the opposite direction with respect to the flow direction of the fluid to be measured, of the first flow meter and the second flow meter And a correction procedure.

本発明に係る熱式流量計よれば、発熱体と測温体とを含む平面を水準方向から傾斜させて配置した場合であっても、正確な流量を測定することができる。   According to the thermal type flow meter according to the present invention, an accurate flow rate can be measured even when a plane including a heating element and a temperature measuring element is inclined from the level direction.

本発明の一実施の形態に係る熱式流量計の斜視図である。It is a perspective view of the thermal type flow meter concerning one embodiment of the present invention. 本実施の形態に係る熱式流量計の図1のII−II方向から見た断面図である。It is sectional drawing seen from the II-II direction of FIG. 1 of the thermal type flow meter which concerns on this Embodiment. 本実施の形態に係る熱式流量計の回路図である。It is a circuit diagram of the thermal type flow meter concerning this embodiment. 本実施の形態に係る熱式流量計を鉛直方向に設置した状態の模式図である。It is a schematic diagram of the state which installed the thermal type flow meter which concerns on this Embodiment in the perpendicular direction. 流量と偏差の関係を示す図である。It is a figure which shows the relationship between a flow volume and a deviation. 本実施の形態に係る熱式流量計の傾斜誤差改善方法の手順の説明に供する図である。It is a figure where it uses for description of the procedure of the inclination error improvement method of the thermal type flow meter which concerns on this Embodiment.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

まず、図1から図4を参照して、本発明の一実施の形態に係る熱式流量計について説明する。図1は本発明の一実施の形態に係る熱式流量計の斜視図である。図2は本発明の第1の実施の形態に係る熱式流量計の図1のII−II方向から見た断面図である。図3は本実施の形態に係る熱式流量計の回路図である。図4は本実施の形態に係る熱式流量計の設置状態の模式図である。   First, a thermal flow meter according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a thermal type flow meter according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the thermal type flow meter according to the first embodiment of the present invention as seen from the II-II direction in FIG. FIG. 3 is a circuit diagram of the thermal type flow meter according to the present embodiment. FIG. 4 is a schematic diagram of an installed state of the thermal flow meter according to the present embodiment.

本実施の形態に係る熱式流量計100は、図1及び図2に示す素子構造のマイクロチップを用い、検出回路1を図3に示すように構成して実現される。熱式流量計100は、キャビティCが設けられた基板B、及び基板B上にキャビティCを覆うように配置された絶縁膜Mを備える。基板Bの厚みは、例えば0.5mmであるが、例示の厚みに限定されない。また、基板Bの縦横の寸法は、例えばそれぞれ1.5mm程度であるが、例示の寸法に限定されない。絶縁膜MのキャビティCを覆う部分は、断熱性のダイアフラムをなしている。   The thermal flow meter 100 according to the present embodiment is realized by using the microchip having the element structure shown in FIGS. 1 and 2 and configuring the detection circuit 1 as shown in FIG. The thermal flow meter 100 includes a substrate B provided with a cavity C, and an insulating film M disposed on the substrate B so as to cover the cavity C. The thickness of the substrate B is, for example, 0.5 mm, but is not limited to the illustrated thickness. The vertical and horizontal dimensions of the substrate B are, for example, about 1.5 mm, but are not limited to the illustrated dimensions. The portion of the insulating film M covering the cavity C forms a heat insulating diaphragm.

さらに熱式流量計100は、絶縁膜Mのダイアフラムの部分に設けられた発熱体(ヒータ素子)RHと、発熱体RHを挟むように絶縁膜Mのダイアフラムの部分に設けられた上流側の測温体(抵抗素子)R1及び下流側の測温体(抵抗素子)R2と、基板B上に設けられた周囲温度計測用の温度センサRRと、を備える。温度センサRRも電気抵抗素子等からなる。   Further, the thermal flow meter 100 includes a heating element (heater element) RH provided in the diaphragm part of the insulating film M and an upstream measurement provided in the diaphragm part of the insulating film M so as to sandwich the heating element RH. A temperature sensor (resistance element) R1, a downstream temperature measurement element (resistance element) R2, and a temperature sensor RR for measuring ambient temperature provided on the substrate B are provided. The temperature sensor RR is also composed of an electric resistance element or the like.

発熱体RHは、キャビティCを覆う絶縁膜Mのダイアフラムの部分の中心に配置されている。発熱体RHは、電力が与えられて発熱し、発熱体RHに接する雰囲気ガス等の被測定流体を加熱する。発熱体RHに隣接して設けられた上流側の測温体R1及び下流側の測温体R2は、発熱体RHが発熱していないときの当該発熱体RH近傍の局所的な温度を、参照温度として検出する。温度センサRRは、発熱体RHから上流側の測温体R1及び下流側の測温体R2より遠方に配置されている。温度センサRRは、発熱体RHと熱的に平衡な雰囲気ガスのガス温度を、平衡ガス温度として検出する。温度センサRRは、絶縁膜Mを介して発熱体RHから離間されて、熱伝導性の基板B上に設けられている。そのため、上流側の測温体R1及び下流側の測温体R2と比較して、温度センサRRは、発熱体RHの発熱から受ける影響が少ない。   The heating element RH is disposed at the center of the diaphragm portion of the insulating film M covering the cavity C. The heating element RH generates heat when electric power is applied, and heats a fluid to be measured such as an atmospheric gas in contact with the heating element RH. The upstream temperature measuring element R1 and the downstream temperature measuring element R2 provided adjacent to the heating element RH refer to the local temperature in the vicinity of the heating element RH when the heating element RH is not generating heat. Detect as temperature. The temperature sensor RR is disposed farther from the heating element RH than the upstream temperature measuring element R1 and the downstream temperature measuring element R2. The temperature sensor RR detects the gas temperature of the atmospheric gas that is in thermal equilibrium with the heating element RH as the equilibrium gas temperature. The temperature sensor RR is provided on the thermally conductive substrate B so as to be separated from the heating element RH via the insulating film M. For this reason, the temperature sensor RR is less affected by the heat generated by the heating element RH than the temperature measuring element R1 on the upstream side and the temperature measuring element R2 on the downstream side.

基板Bの材料としては、シリコン(Si)等が使用可能であるが、例示の材料に限定されない。絶縁膜Mの材料としては、酸化ケイ素(SiO2)等が使用可能であるが、例示の材料に限定されない。キャビティCは、異方性エッチング等により形成されるが、例示の加工方法に限定されない。また、発熱体RH、上流側の測温体R1、下流側の測温体R2、及び温度センサRRのそれぞれの材料には白金(Pt)等が使用可能であり、リソグラフィ法等により形成可能であるが、例示の材料及び作製方法に限定されない。 As a material of the substrate B, silicon (Si) or the like can be used, but is not limited to the exemplified material. As a material of the insulating film M, silicon oxide (SiO 2 ) or the like can be used, but is not limited to the exemplified materials. The cavity C is formed by anisotropic etching or the like, but is not limited to the illustrated processing method. In addition, platinum (Pt) or the like can be used as a material for the heating element RH, the upstream temperature measuring element R1, the downstream temperature measuring element R2, and the temperature sensor RR, and can be formed by lithography or the like. Although not limited to the exemplified materials and manufacturing methods.

図3に示すように、熱式流量計100は、測温体R1,R2のブリッジ回路を使用して被測定流体の流量を検出する流量検出回路10と、発熱体RH及び温度センサRRのブリッジ回路を使用してヒータを制御するヒータ制御回路11とを備える。なお、抵抗R3〜R6は外付け抵抗であり、これらの抵抗値は発熱体RH、温度センサRR及び測温体R1,R2のバランスからそれぞれ決める。   As shown in FIG. 3, the thermal flow meter 100 includes a flow rate detection circuit 10 that detects a flow rate of a fluid to be measured using a bridge circuit of temperature measuring bodies R1 and R2, and a bridge of a heating element RH and a temperature sensor RR. And a heater control circuit 11 for controlling the heater using the circuit. The resistors R3 to R6 are external resistors, and their resistance values are determined from the balance of the heating element RH, the temperature sensor RR, and the temperature measuring elements R1 and R2, respectively.

流量検出回路10は、測温体R1,R2、抵抗R3,R4で形成されるブリッジ回路、及び演算増幅器(以下、「オペアンプ」という)U1で構成される。オペアンプU1の+入力端子は、直列に接続された上流側の測温体R1と下流側の測温体R2との間に電気的に接続されている。さらにオペアンプU1の+入力端子は、下流側の測温体R2を介して接地され、上流側の測温体R1を介して抵抗R3と電気的に接続されている。オペアンプU1の−入力端子は、直列に接続された抵抗R3と抵抗R4との間に電気的に接続されている。さらにオペアンプU1の−入力端子は、抵抗R4を介して接地され、抵抗R3を介して上流側の測温体R1と電気的に接続されている。オペアンプU1の出力端子は、例えば中央演算装置(CPU)等の流量演算部/補正部20と電気的に接続されている。流量演算部/補正部(以下、単に「補正部」という)20は、オペアンプU1で増幅した電圧を取り込んで、流量を演算したり補正したりする。補正部20は、被測定流体の測定流量を補正するための情報を保存する記憶装置30と電気的に接続されている。補正部20は、記憶装置30に保存された情報に基づいて被測定流体の測定流量を補正する。   The flow rate detection circuit 10 includes a bridge circuit formed by temperature measuring elements R1 and R2, resistors R3 and R4, and an operational amplifier (hereinafter referred to as “op-amp”) U1. The positive input terminal of the operational amplifier U1 is electrically connected between the upstream temperature measuring element R1 and the downstream temperature measuring element R2 connected in series. Further, the positive input terminal of the operational amplifier U1 is grounded via the downstream temperature measuring element R2, and is electrically connected to the resistor R3 via the upstream temperature measuring element R1. The negative input terminal of the operational amplifier U1 is electrically connected between the resistors R3 and R4 connected in series. Furthermore, the negative input terminal of the operational amplifier U1 is grounded via a resistor R4 and electrically connected to the upstream temperature measuring element R1 via a resistor R3. The output terminal of the operational amplifier U1 is electrically connected to a flow rate calculation unit / correction unit 20 such as a central processing unit (CPU). A flow rate calculation unit / correction unit (hereinafter simply referred to as “correction unit”) 20 takes in the voltage amplified by the operational amplifier U1, and calculates or corrects the flow rate. The correction unit 20 is electrically connected to a storage device 30 that stores information for correcting the measurement flow rate of the fluid to be measured. The correction unit 20 corrects the measured flow rate of the fluid to be measured based on the information stored in the storage device 30.

ヒータ制御回路11は、発熱体RH、周囲温度計測用の温度センサRR、及び抵抗R5,R6で形成されるブリッジ回路、並びにオペアンプU2で構成される。オペアンプU2の+入力端子は、直列に接続された発熱体RHと抵抗5との間に電気的に接続されている。さらにオペアンプU2の+入力端子は、発熱体RHを介して接地され、抵抗R5を介して抵抗R6と電気的に接続されている。オペアンプU2の−入力端子は、直列に接続された温度センサRRと抵抗R6との間に電気的に接続されている。さらにオペアンプU2の−入力端子は、温度センサRRを介して接地され、抵抗R6を介して抵抗R5と電気的に接続されている。オペアンプU2の出力端子は、抵抗R5,R6と電気的に接続されている。発熱体RHは、例えば60℃位に発熱する。   The heater control circuit 11 includes a heating element RH, a temperature sensor RR for measuring ambient temperature, a bridge circuit formed by resistors R5 and R6, and an operational amplifier U2. The + input terminal of the operational amplifier U2 is electrically connected between the heating element RH and the resistor 5 connected in series. Further, the + input terminal of the operational amplifier U2 is grounded via the heating element RH and electrically connected to the resistor R6 via the resistor R5. The negative input terminal of the operational amplifier U2 is electrically connected between the temperature sensor RR and the resistor R6 connected in series. Further, the negative input terminal of the operational amplifier U2 is grounded via the temperature sensor RR and electrically connected to the resistor R5 via the resistor R6. The output terminal of the operational amplifier U2 is electrically connected to the resistors R5 and R6. The heating element RH generates heat at about 60 ° C., for example.

図4に示すように、本実施の形態に係る熱式流量計100は、雰囲気ガス等の被測定流体が流れる配管であって、被測定流体の流れ方向が互いに逆向きになる第一部分31と第二部分32とを少なくとも備えたU字型の配管30に設置される。第一部分31には第一流量計101が設置され、第二部分32には第二流量計102が設置される。第一流量計101と第二流量計102には、それぞれ被測定流体に熱を与える発熱体RH、該発熱体RHから被測定流体に与えられた熱を検出する上流側の測温体R1及び下流側の測温体R2が図1から図3に示した同一の構成で配置される。   As shown in FIG. 4, the thermal flow meter 100 according to the present embodiment is a pipe through which a fluid to be measured such as an atmospheric gas flows, and a first portion 31 in which the flow directions of the fluid to be measured are opposite to each other. It is installed in a U-shaped pipe 30 having at least a second portion 32. A first flow meter 101 is installed in the first portion 31, and a second flow meter 102 is installed in the second portion 32. The first flow meter 101 and the second flow meter 102 include a heating element RH that applies heat to the fluid to be measured, an upstream temperature measuring body R1 that detects heat applied to the fluid to be measured from the heating element RH, and The downstream temperature measuring element R2 is arranged in the same configuration as shown in FIGS.

熱式流量計100の基本原理としては、発熱体RHによって加熱された流体が流れることにより、下流側の測温体R2によって検出される温度が、上流側の測温体R1によって検出される温度よりも高くなるため、この温度差から流速を算出するものである。   The basic principle of the thermal flow meter 100 is that the temperature detected by the downstream temperature measuring element R2 is the temperature detected by the upstream temperature measuring element R1 when the fluid heated by the heating element RH flows. Therefore, the flow velocity is calculated from this temperature difference.

図4に示すように、熱式流量計100が鉛直方向に設置されると、発熱体RHによって発生した熱が熱対流によって上向きに移動してしまう。このとき、鉛直方向上向きに移動した熱によって、第一流量計101においては、上流側の測温体(図4でいうと上側の測温体)R1の検出する温度が、下流側の測温体(図4でいうと下側の測温体)R2の検出する温度よりも高くなる。本来、被測定流体が流管の中を流れていない場合には、第一流量計101の出力はゼロとならなければいけないところ、上記のように測温体R1,R2の検出温度に差分が発生するため、あたかも、被測定流体が流れているかのような出力を示してしまう。なお、図4において、Fは被測定流体の流れ方向、Hは熱対流の影響方向を示している。   As shown in FIG. 4, when the thermal flow meter 100 is installed in the vertical direction, the heat generated by the heating element RH moves upward due to thermal convection. At this time, in the first flow meter 101, the temperature detected by the upstream temperature sensor (upper temperature sensor in FIG. 4) R1 is the downstream temperature sensor due to the heat that has moved upward in the vertical direction. It becomes higher than the temperature detected by the body (lower temperature measuring body in FIG. 4) R2. Originally, when the fluid to be measured does not flow through the flow tube, the output of the first flow meter 101 must be zero. As described above, there is a difference between the detected temperatures of the temperature measuring elements R1 and R2. As a result, the output appears as if the fluid to be measured is flowing. In FIG. 4, F indicates the flow direction of the fluid to be measured, and H indicates the influence direction of the thermal convection.

次に、このようなゼロ点(流量が流れていないときの出力)の誤差を補正するための方法について説明する。図5は、熱式流量計の基板面を図4のように鉛直方向に配置したときに、発熱体の温度を異なる2つの温度に変化させたときの設置(傾斜)方向に起因する流量誤差を示した関係である。   Next, a method for correcting such an error of the zero point (output when the flow rate is not flowing) will be described. FIG. 5 shows a flow rate error caused by the installation (tilt) direction when the temperature of the heating element is changed to two different temperatures when the substrate surface of the thermal flow meter is arranged in the vertical direction as shown in FIG. It is the relationship which showed.

図5において、横軸は、流管に流れる被測定流体の流量(L/min)を示しており、縦軸は、基板面を水平方向に配置した場合における流量出力からの偏差(L/min)を示している。図5に示されるように、流量が大きくなればなるほど、熱対流の影響(縦軸の偏差)が小さくなっていることが判る。   In FIG. 5, the horizontal axis indicates the flow rate (L / min) of the fluid to be measured flowing in the flow tube, and the vertical axis indicates the deviation (L / min) from the flow rate output when the substrate surface is arranged in the horizontal direction. ). As FIG. 5 shows, it turns out that the influence (deviation of a vertical axis | shaft) of thermal convection becomes small, so that flow volume becomes large.

また、図5には、4種類の状況で測定された差分が示されている。より具体的には、発熱体の温度をα℃として被測定流体を鉛直上向きに流したときの関係(関係1)、発熱体の温度をβ℃(ただし、α>β)として被測定流体を鉛直上向きに流したときの関係(関係2)、発熱体の温度をβ℃(ただし、α>β)として被測定流体を鉛直下向きに流したときの関係(関係3)、発熱体の温度をα℃(ただし、α>β)として被測定流体を鉛直下向きに流したときの関係(関係4)の4種類である。   FIG. 5 also shows differences measured in four situations. More specifically, the relationship when the fluid to be measured flows vertically upward with the temperature of the heating element as α ° C. (Relation 1), the temperature of the heating element as β ° C. (where α> β) The relationship when flowing vertically upward (Relation 2), the temperature of the heating element as β ° C (where α> β), the relationship when flowing the fluid to be measured vertically downward (Relation 3), and the temperature of the heating element There are four types of relationships (Relationship 4) when the fluid to be measured is flowed vertically downward at α ° C. (where α> β).

なお、発熱体の温度をγ℃(ただし、α>γ>β)として被測定流体を鉛直上向きに流した場合には、流量−偏差の関係が、関係1と関係2との間に位置するような関係となることも、実験により判っている。ただし、図5における関係1と関係2においては、流領域が高流量になるにつれて、その偏差にほとんど違いなくなってしまうため、正確な補正を行うことが難しくなる。一方で、図5における関係3と関係4においては、流領域が高流量になっても、その偏差にはっきりとした違いが観られる。   Note that when the temperature of the heating element is γ ° C. (where α> γ> β) and the fluid to be measured is caused to flow vertically upward, the relationship between the flow rate and the deviation is located between relationship 1 and relationship 2. Experiments have also shown that this is the relationship. However, in relation 1 and relation 2 in FIG. 5, as the flow region becomes a high flow rate, there is almost no difference in the deviation, and it is difficult to perform accurate correction. On the other hand, in relation 3 and relation 4 in FIG. 5, even when the flow region becomes a high flow rate, a clear difference is observed in the deviation.

そこで本発明では、鉛直下向きに流れている流量計の出力を常に使用し、また図5のA部に示すような補正テーブルにおける鉛直下向きの補正値を利用することで、より正確に補正された流量値を算出することが可能となる。検出された温度差を調べればどちらの向きに設置されているかを判定することが可能である。第一流量計101及び第二流量計102から温度差を検出してどちらが流れの向きに対して逆向き取り付けかを判定し、逆向き取り付けの流量計からの温度差のみを用いて流量を演算する。   Therefore, in the present invention, the output of the flowmeter that is flowing vertically downward is always used, and the correction value is corrected more accurately by using the vertically downward correction value in the correction table as shown in part A of FIG. The flow rate value can be calculated. By examining the detected temperature difference, it is possible to determine in which direction it is installed. The temperature difference is detected from the first flow meter 101 and the second flow meter 102 to determine which is attached in the opposite direction with respect to the flow direction, and the flow rate is calculated using only the temperature difference from the reversely attached flow meter. To do.

次に、図6を参照して、本実施の形態に係る熱式流量計の傾斜誤差改善方法の手順例について説明する。図6は本実施の形態に係る熱式流量計の傾斜誤差改善方法の手順の説明に供する図である。   Next, referring to FIG. 6, a procedure example of the method for improving the tilt error of the thermal flow meter according to the present embodiment will be described. FIG. 6 is a diagram for explaining the procedure of the method for improving the tilt error of the thermal flow meter according to the present embodiment.

第一流量計101及び第二流量計102が図4に示すように鉛直方向成分を含んでいる場合に、本実施の形態に係る熱式流量計の傾斜誤差改善方法を実施する。   When the first flow meter 101 and the second flow meter 102 include a vertical component as shown in FIG. 4, the method for improving the tilt error of the thermal flow meter according to the present embodiment is performed.

図6に示すように、まず、第一流量計101の上流側の測温体R1で検出される温度と下流側の測温体R2で検出される温度とを測定し、第一流量計101の出力を得る(ST1)。また、第二流量計102の上流側の測温体R1で検出される温度と下流側の測温体R2で検出される温度とを測定し、第二流量計102の出力を得る(ST2)。次に、補正部10は、第一流量計101の出力及び第二流量計102の出力から、U字型配管30におけるそれぞれの流量計101,102の被測定流体の流れの向きを特定する(ST3)。さらに、補正部10は、第一流量計101及び第二流量計102から温度差を検出して、どちらの流量計101(もしくは102)が流れの向きに対して測温体R1,R2が逆向き取り付けかを判定する(ST4)。   As shown in FIG. 6, first, the temperature detected by the temperature sensing element R1 on the upstream side of the first flow meter 101 and the temperature detected by the temperature measuring element R2 on the downstream side are measured, and the first flow meter 101 is measured. Is obtained (ST1). Further, the temperature detected by the temperature measuring element R1 upstream of the second flow meter 102 and the temperature detected by the temperature measuring element R2 downstream are measured, and the output of the second flow meter 102 is obtained (ST2). . Next, the correction unit 10 specifies the flow direction of the fluid to be measured of each of the flow meters 101 and 102 in the U-shaped pipe 30 from the output of the first flow meter 101 and the output of the second flow meter 102 ( ST3). Further, the correction unit 10 detects a temperature difference from the first flow meter 101 and the second flow meter 102, and the temperature measuring bodies R1 and R2 are reversed with respect to the flow direction of which flow meter 101 (or 102). It is determined whether the orientation is attached (ST4).

そして、第一流量計101及び第二流量計102のうち、被測定流体の流れの向きと測温体R1,R2の取り付けが逆向きであると判定した場合は(ST4/YES)、被測定流体の流れの向きに対して測温体R1,R2が逆向き取り付けである流量計101(もしくは102)の出力を記憶装置20に保存した流量と偏差との関係テーブルの鉛直下向きの情報に基づいて補正する(ST5)。他方、第一流量計101及び第二流量計102のうち、いずれの流量計101,102も被測定流体の流れの向きに対して測温体R1、R2が逆向き取り付けでいない場合は(ST4/NO)、補正部10は補正制御を行わない。   If it is determined that the direction of the flow of the fluid to be measured and the attachment of the temperature measuring elements R1 and R2 are reversed in the first flow meter 101 and the second flow meter 102 (ST4 / YES), Based on the vertically downward information in the relationship table between the flow rate and the deviation stored in the storage device 20, the output of the flow meter 101 (or 102) in which the temperature measuring elements R1 and R2 are mounted in the opposite direction with respect to the direction of fluid flow. (ST5). On the other hand, when any of the first flow meter 101 and the second flow meter 102 is not mounted with the temperature measuring bodies R1 and R2 in the reverse direction with respect to the flow direction of the fluid to be measured (ST4). / NO), the correction unit 10 does not perform correction control.

以上説明したように、本実施の形態に係る熱式流量計100は、第一流量計101の出力及び第二流量計102の出力から、U字型の配管30における被測定流体の流れの向きを判定し、第一流量計101及び第二流量計102のうち、被測定流体の流れの向きが第一方向成分を含んでいると判定された方の流量計101もしくは102の出力を補正するための情報(図5に示す流量と偏差との関係テーブル)に基づいて補正する。したがって、本実施の形態に係る熱式流量計100によれば、発熱体RHと測温体R1,R2とを含む基板Bの平面を水準方向から傾斜させて配置した場合であっても、正確な流量を測定することができるという優れた効果を発揮する。   As described above, the thermal flow meter 100 according to the present embodiment is based on the flow direction of the fluid to be measured in the U-shaped pipe 30 from the output of the first flow meter 101 and the output of the second flow meter 102. Of the first flow meter 101 and the second flow meter 102, the output of the flow meter 101 or 102, which is determined to include the first direction component, is corrected. Is corrected based on the information for this (the relationship table between the flow rate and the deviation shown in FIG. 5). Therefore, according to the thermal flow meter 100 according to the present embodiment, even when the plane of the substrate B including the heating element RH and the temperature measuring elements R1 and R2 is inclined from the level direction, it is accurate. The excellent effect of being able to measure the correct flow rate is exhibited.

〔その他の実施の形態〕
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
[Other Embodiments]
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. It should be understood that the present invention includes various embodiments and the like not described herein.

10 補正部
20 記憶装置
100 熱式流量計
101 第一流量計
102 第二流量計
RH 発熱体(ヒータ素子)
R1,R2 測温体(抵抗素子)
10 Correction unit 20 Storage device 100 Thermal flow meter 101 First flow meter 102 Second flow meter RH Heating element (heater element)
R1, R2 Temperature sensor (resistance element)

Claims (2)

被測定流体が流れる配管であって被測定流体の流れ方向が互いに逆向きになる第一部分と第二部分とを少なくとも備えた配管と、
前記第一部分に設けられる第一流量計と、
前記第二部分に設けられ、前記第一流量計と同じ特性を有する第二流量計と、を備え、
前記第一流量計と前記第二流量計とは、それぞれ、
発熱体と、前記発熱体から被測定流体に与えられた熱を検出する測温体と、を有し、
前記第一流量計の出力、及び前記第二流量計の出力から、前記配管における被測定流体の流れの向きを特定し、
前記第一流量計及び前記第二流量計のうち、前記被測定流体の流れの方向に対して測温体の温度差が逆方向に取り付けられていると判定された方の流量計の出力を補正するための情報に基づいて補正することを特徴とする熱式流量計。
A pipe through which the fluid to be measured flows, and a pipe having at least a first portion and a second portion in which the flow directions of the fluid to be measured are opposite to each other;
A first flow meter provided in the first portion;
A second flow meter provided in the second part and having the same characteristics as the first flow meter,
The first flow meter and the second flow meter are respectively
A heating element, and a temperature measuring element for detecting heat applied to the fluid to be measured from the heating element,
From the output of the first flow meter and the output of the second flow meter, specify the direction of the flow of the fluid to be measured in the pipe,
Of the first flow meter and the second flow meter, the output of the flow meter that has been determined that the temperature difference of the temperature measuring body is attached in the opposite direction with respect to the flow direction of the fluid to be measured. A thermal flow meter that corrects based on information for correction.
第一流量計の出力及び第二流量計の出力から、配管における各流量計の被測定流体の流れの向きを特定する手順と、
第一流量計及び第二流量計のうち、前記被測定流体の流れの方向に対して測温体の温度差が逆方向に取り付けられている流量計の出力を補正するための情報に基づいて補正する手順と、
を有することを特徴とする熱式流量計の傾斜誤差改善方法。
From the output of the first flow meter and the output of the second flow meter, a procedure for specifying the direction of the flow of the fluid under measurement of each flow meter in the piping,
Based on the information for correcting the output of the flow meter in which the temperature difference of the temperature measuring body is attached in the opposite direction to the direction of the flow of the fluid to be measured, of the first flow meter and the second flow meter. The procedure to correct,
A method for improving a tilt error of a thermal type flow meter, comprising:
JP2015101303A 2015-05-18 2015-05-18 Thermal flow meter and method for improving tilt error Active JP6475081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101303A JP6475081B2 (en) 2015-05-18 2015-05-18 Thermal flow meter and method for improving tilt error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101303A JP6475081B2 (en) 2015-05-18 2015-05-18 Thermal flow meter and method for improving tilt error

Publications (2)

Publication Number Publication Date
JP2016217814A JP2016217814A (en) 2016-12-22
JP6475081B2 true JP6475081B2 (en) 2019-02-27

Family

ID=57578367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101303A Active JP6475081B2 (en) 2015-05-18 2015-05-18 Thermal flow meter and method for improving tilt error

Country Status (1)

Country Link
JP (1) JP6475081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019156243A1 (en) * 2018-02-09 2021-01-28 オムロン株式会社 Flow measuring device and buried gas meter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141621A (en) * 1988-11-22 1990-05-31 Oval Eng Co Ltd Heat type flow rate sensor
WO1991019959A1 (en) * 1990-06-14 1991-12-26 Unit Instruments, Inc. Thermal mass flow sensor
JP3266707B2 (en) * 1993-07-10 2002-03-18 株式会社エステック Mass flow sensor
JPH0843163A (en) * 1994-08-02 1996-02-16 Hitachi Ltd Intake air flow rate measuring apparatus
US5792952A (en) * 1996-05-23 1998-08-11 Varian Associates, Inc. Fluid thermal mass flow sensor
JP2005172445A (en) * 2003-12-08 2005-06-30 Osaka Prefecture Flow sensor
JP4666252B2 (en) * 2005-05-31 2011-04-06 横河電機株式会社 Hot wire flow sensor and infrared gas analyzer
NL2006895C2 (en) * 2011-06-03 2012-12-04 Berkin Bv FLOW MEASURING DEVICE AND ITS USE FOR DETERMINING A FLOW OF A MEDIA, AND THE METHOD FOR THIS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019156243A1 (en) * 2018-02-09 2021-01-28 オムロン株式会社 Flow measuring device and buried gas meter

Also Published As

Publication number Publication date
JP2016217814A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP4976469B2 (en) Thermal humidity sensor
JP5450204B2 (en) Flowmeter
JP4157034B2 (en) Thermal flow meter
JPH0989619A (en) Heat-sensitive flowmeter
JP4859107B2 (en) Thermal flow meter
WO2018230478A1 (en) Flow measuring device
US7469583B2 (en) Flow sensor
JP6460911B2 (en) Thermal mass flow controller and tilt error improving method thereof
JP3705681B2 (en) Flow sensor
JP6475081B2 (en) Thermal flow meter and method for improving tilt error
JP5644674B2 (en) Thermal flow meter
JP6475080B2 (en) Thermal flow meter and method for improving tilt error
JP2012181090A (en) Heat flux sensor
JP5628236B2 (en) Thermal humidity sensor
WO2020184448A1 (en) Flow rate measurement device
JP2018066592A (en) Platinum temperature sensor element
WO2017203860A1 (en) Humidity measuring apparatus
JP6434238B2 (en) Flow meter and correction value calculation method
JP2005172445A (en) Flow sensor
JPH0493768A (en) Flow velocity sensor
JP3582718B2 (en) Thermal flow meter
JP5062720B2 (en) Flow detection device
JP2019158763A (en) Gas meter
JP2013064634A (en) Flowmeter
JPH0516730B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190131

R150 Certificate of patent or registration of utility model

Ref document number: 6475081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150