JP2014010025A - Thermal type air flow rate sensor - Google Patents

Thermal type air flow rate sensor Download PDF

Info

Publication number
JP2014010025A
JP2014010025A JP2012146287A JP2012146287A JP2014010025A JP 2014010025 A JP2014010025 A JP 2014010025A JP 2012146287 A JP2012146287 A JP 2012146287A JP 2012146287 A JP2012146287 A JP 2012146287A JP 2014010025 A JP2014010025 A JP 2014010025A
Authority
JP
Japan
Prior art keywords
air flow
flow sensor
diaphragm
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012146287A
Other languages
Japanese (ja)
Other versions
JP5768011B2 (en
Inventor
Norio Ishizuka
典男 石塚
Keiji Hanzawa
恵二 半沢
Yasuo Onose
保夫 小野瀬
Noriyuki Sakuma
憲之 佐久間
Tomio Iwasaki
富生 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012146287A priority Critical patent/JP5768011B2/en
Priority to PCT/JP2013/065913 priority patent/WO2014002737A1/en
Publication of JP2014010025A publication Critical patent/JP2014010025A/en
Application granted granted Critical
Publication of JP5768011B2 publication Critical patent/JP5768011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable thermal type air flow rate sensor that suppresses exfoliation of wiring and so on of measuring element.SOLUTION: A thermal type air flow rate sensor comprises: a semiconductor substrate having a heat element 15 and a diaphragm 18 with resistance temperature detectors 14, one each of which is disposed upstream or downstream from the heat element, and a wiring part in which wiring for the heat element and the resistance temperature detectors is arranged; and resin 11 that seals the semiconductor substrate. In the thermal type air flow rate sensor whose resin has an exposed part that partially exposes a region including the diaphragm, a single-layer film formed of Cr, Ti, TiN, ALN, MoN or WN is disposed in a lower layer of the wiring part in the exposed part.

Description

本発明は、熱式空気流量センサに係り、特に自動車エンジンの吸気系に設置してエンジンの吸入空気流量を測定する熱式空気流量センサに関する。
The present invention relates to a thermal air flow sensor, and more particularly to a thermal air flow sensor that is installed in an intake system of an automobile engine and measures an intake air flow rate of the engine.

エンジンの吸入空気量を測定する空気流量計として、エンジン内に吸入される空気量を直接検知できる熱式の空気流量計が主流になっている。特に、半導体マイクロマシニング技術により製造された測定素子を備えた熱式の空気流量計は、コストが低減できることや、低電力で駆動できることなどから注目されている。このような熱式の空気流量計に用いられる測定素子としては、例えば特許文献1に提案されているものがある。この公報に提案されている測定素子は、半導体基板上に電気絶縁膜が形成され、この電気絶縁膜上に発熱抵抗体や測温抵抗体が形成されており、さらに発熱抵抗体、測温抵抗体の上には電気絶縁体が形成されている。また、発熱抵抗体や測温抵抗体が形成された領域は、半導体基板の裏面側から異方性エッチングすることにより半導体基板の一部が除去されてダイアフラム構造となっている。   As an air flow meter that measures the intake air amount of an engine, a thermal air flow meter that can directly detect the amount of air sucked into the engine has become the mainstream. In particular, a thermal air flow meter provided with a measuring element manufactured by a semiconductor micromachining technique has attracted attention because it can be reduced in cost and can be driven with low power. As a measuring element used in such a thermal air flow meter, for example, there is one proposed in Patent Document 1. In the measuring element proposed in this publication, an electrical insulating film is formed on a semiconductor substrate, and a heating resistor and a resistance thermometer are formed on the electrical insulating film. An electrical insulator is formed on the body. Further, the region where the heating resistor and the resistance temperature detector are formed has a diaphragm structure in which a part of the semiconductor substrate is removed by anisotropic etching from the back side of the semiconductor substrate.

また、特許文献2には、半導体チップを樹脂封止する表面実装構型電子部品およびその製造方法において、封止樹脂の経時劣化が発生せず、信頼性が高く、低コストで量産性を向上することを目的として、シリコーンゴム製の封止樹脂防止部材を光電効果素子部の表面に載置して光電効果素子部の表面を覆った状態で封止樹脂を注入し、光電効果素子部の表面を除いて樹脂封止部を形成することが開示されている。   Patent Document 2 discloses that in a surface-mount type electronic component for resin-sealing a semiconductor chip and its manufacturing method, the sealing resin does not deteriorate with time, is highly reliable, and improves mass productivity at low cost. In order to do so, a sealing resin prevention member made of silicone rubber is placed on the surface of the photoelectric effect element part, and the sealing resin is injected while covering the surface of the photoelectric effect element part. It is disclosed that a resin sealing portion is formed except for the surface.

特開2010−133897号公報JP 2010-133897 A 特開2007−27559号公報JP 2007-27559 A

ダイアフラムを有する半導体基板や半導体基板を実装する支持体等を樹脂封止により一体に成形する場合、測定の原理上、発熱抵抗体や測温抵抗体が形成されたダイアフラム領域は樹脂で覆わずに部分的に露出させ、吸入空気に接するようにしなければならない。封止樹脂がダイアフラムを覆わないようにする部分露出構造とするためには、樹脂注形金型とは別に設けられた、駆動可能な金型(入れ駒)で半導体基板のダイアフラム周辺を押さえつけ、樹脂がダイアフラムに流れ込まないようにする必要がある。ここで、ダイアフラムに樹脂が流れ込まないようにするために、ある程度の力で入れ駒を半導体基板に押し付ける必要があるので、半導体基板の部分露出部には外部から応力が印加されることとなる。
そのため、入れ駒を押し付けるダイアフラム周辺の配線等のはく離強度が低い場合には、この応力により配線等がはく離してしまう虞がある。ここで、配線部にはく離が発生すると、配線部の抵抗が変化する場合があり、そのような場合には流量検出に誤差が生じてしまう虞がある。特許文献1および特許文献2は、上記課題についてはなんら考慮がされていない。
When a semiconductor substrate having a diaphragm or a support for mounting a semiconductor substrate is integrally molded by resin sealing, the diaphragm area where the heating resistor or the resistance temperature detector is formed is not covered with resin on the principle of measurement. It must be partially exposed and in contact with the intake air. In order to have a partially exposed structure so that the sealing resin does not cover the diaphragm, the periphery of the diaphragm of the semiconductor substrate is pressed with a drivable mold (insert) provided separately from the resin casting mold, It is necessary to prevent the resin from flowing into the diaphragm. Here, in order to prevent the resin from flowing into the diaphragm, the insert piece needs to be pressed against the semiconductor substrate with a certain amount of force, so that a stress is applied from the outside to the partially exposed portion of the semiconductor substrate.
Therefore, when the peeling strength of the wiring around the diaphragm that presses the insert piece is low, the wiring may be peeled off by this stress. Here, if separation occurs in the wiring portion, the resistance of the wiring portion may change. In such a case, there is a possibility that an error may occur in the flow rate detection. In Patent Document 1 and Patent Document 2, no consideration is given to the above problem.

本発明の目的は、熱式空気流量センサにおいて、測定素子の配線等のはく離を抑制し、信頼性の高い熱式空気流量センサを提供することにある。   An object of the present invention is to provide a highly reliable thermal air flow sensor that suppresses peeling of wiring of a measuring element and the like in a thermal air flow sensor.

上記目的を達成するために、本発明の熱式空気流量センサは、発熱抵抗体と前記発熱抵抗体の上下流にそれぞれ設けられる側温抵抗体を有するダイアフラムと、前記発熱抵抗体および測温抵抗体の配線が配置される配線部と、を有する半導体基板と、 前記半導体基板を封止する樹脂と、を備え、前記樹脂は前記ダイアフラムを含む領域を部分的に露出する露出部を有する熱式流量センサにおいて、前記露出部にある配線部の下層に、Cr、Ti、TiN、ALN、MoN、WNのいずれかからなる単層膜を設けることを特徴とする。   In order to achieve the above object, the thermal air flow sensor of the present invention comprises a heating resistor and a diaphragm having side temperature resistors provided upstream and downstream of the heating resistor, the heating resistor and the resistance temperature detector, respectively. A thermal substrate having an exposed portion that partially exposes a region including the diaphragm; and a resin substrate that seals the semiconductor substrate. In the flow sensor, a single layer film made of any of Cr, Ti, TiN, ALN, MoN, and WN is provided below the wiring portion in the exposed portion.

本発明によれば、測定素子の配線等のはく離を抑制し、信頼性の高い熱式空気流量センサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, peeling of the wiring etc. of a measurement element can be suppressed, and a reliable thermal type air flow sensor can be provided.

本願に係る第一実施例における熱式空気流量センサの概略平面図である。It is a schematic plan view of the thermal air flow sensor in the first embodiment according to the present application. 本願に係る第一実施例における断面図である。It is sectional drawing in the 1st Example which concerns on this application. 本願に係る第一実施例における作用効果を説明するグラフである。It is a graph explaining the effect in the 1st example concerning this application. 本願に係る第二実施例における熱式空気流量センサの概略平面図である。It is a schematic plan view of the thermal type air flow sensor in the 2nd example concerning this application. 本願に係る第二実施例における断面図である。It is sectional drawing in the 2nd Example which concerns on this application. 本願に係る第二実施例の変形例における断面図である。It is sectional drawing in the modification of the 2nd Example which concerns on this application. 本願に係る第二実施例の変形例における熱式空気流量センサの概略平面図である。It is a schematic plan view of the thermal type air flow sensor in the modification of the 2nd example concerning this application.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明の第一の実施例である熱式空気流量センサを図1と図2を用いて説明する。図1は熱式空気流量センサの実装概略平面図、図2は図1のA−A位置における断面図である。   A thermal air flow sensor according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic plan view of a thermal air flow sensor mounting, and FIG.

本実施例の熱式空気流量センサは、図1に示すように、測定素子17とLSI16を支持体9上に搭載し、測定素子17の一部を部分的に露出するように樹脂11により封止されている。部分的に露出している領域近傍の樹脂11はテーパ状に形成されている。ここで、部分的に露出されている領域以外、すなわち樹脂端部13より外側は、本来は樹脂11に覆われているので外部から見ることはできないが、図1においては、樹脂11を透過させて樹脂11に覆われている部分も見えるような記載としている。測定素子17とLSI16はワイヤ10を介して電気的に接続されている。測定素子17は、ダイアフラム18を有していて、ダイアフラム18上に設けられる発熱抵抗体15と、発熱抵抗体の上流側と下流側にそれぞれ設けられる側温抵抗体14により吸入空気量を測定している。なお、支持体9としては、リードフレームやセラミック基板などが採用される。   As shown in FIG. 1, the thermal air flow sensor of this embodiment has a measuring element 17 and an LSI 16 mounted on a support 9, and is sealed with a resin 11 so that a part of the measuring element 17 is partially exposed. It has been stopped. The resin 11 in the vicinity of the partially exposed region is formed in a tapered shape. Here, the region other than the partially exposed region, that is, the outside of the resin end portion 13 is originally covered with the resin 11 and cannot be viewed from the outside. However, in FIG. In this way, the portion covered with the resin 11 is also visible. The measuring element 17 and the LSI 16 are electrically connected via the wire 10. The measuring element 17 has a diaphragm 18 and measures the amount of intake air by the heating resistor 15 provided on the diaphragm 18 and the side temperature resistors 14 provided on the upstream side and the downstream side of the heating resistor, respectively. ing. As the support 9, a lead frame, a ceramic substrate, or the like is employed.

図2を用いて本実施例の製造方法を説明する。   The manufacturing method of a present Example is demonstrated using FIG.

まずは、測定素子17の製造方法について詳述する。シリコン基板1を熱酸化して下部電気絶縁膜となる熱酸化膜2を形成し、熱酸化膜2の上に、はく離防止材3を20〜50nm、プラチナ(Pt)やモリブデン(Mo)などの金属膜4を150nm厚ほど順次堆積してパターニングを行うことにより、測温抵抗体14や発熱抵抗体15及びこれら抵抗体の配線を形成する。なお、下部電気絶縁膜は熱酸化膜2だけでも良いが、シリコンナイトライド(SiN)膜やシリコン酸化膜(SiO2)を積層しても良い。次に測温抵抗体14と発熱抵抗体15の上に上部電気絶縁膜となる、シリコン酸化膜5を500nm程度プラズマCVD法により堆積し、その後、膜の緻密化を目的に800℃以上で熱処理を行う。ここで、測温抵抗体14や発熱抵抗体15はパターンを有しているので、側温抵抗体14や発熱抵抗体15を形成してからシリコン酸化膜5を形成すると、シリコン酸化膜5に段差が発生する。この段差が何らかの機械的副作用を生じさせる場合には、機械研磨等により段差を解消してもよい。次に、プラズマCVD法によりシリコンナイトライド膜6を200nm程度堆積し、その後、膜の緻密化を目的に800℃以上で熱処理を行う。その後、シリコン酸化膜7を300〜500nmの膜厚でプラズマCVD法により堆積し、その後、800℃以上で熱処理を行う。次にポリイミド系の有機膜をシリコン酸化膜7上に堆積・パターニングを行い、ダイアフラムの一部を露出するようにPIQ膜8を形成する。弾性の高いPIQ膜8でダイアフラム18の端部12を保護する構成となっているので、ダストの衝突によるダイアフラム18の破壊を抑制することができる。また、吸入空気量を測定する発熱抵抗体15および側温抵抗体14を直接吸入空気にさらす必要があるので、ダイアフラム18の一部を露出させるようにPIQ膜8を形成している。次に、裏面よりシリコン酸化膜等をマスク材として、KOHなどのエッチング液を用いてダイアフラム18を形成することで測定素子17が完成する。なお、ダイアフラム18は、ドライエッチング法を用いて形成しても良い。 First, the manufacturing method of the measuring element 17 will be described in detail. The silicon substrate 1 is thermally oxidized to form a thermal oxide film 2 as a lower electrical insulating film. On the thermal oxide film 2, an anti-separation material 3 of 20 to 50 nm, such as platinum (Pt) or molybdenum (Mo) is formed. The metal film 4 is sequentially deposited to a thickness of about 150 nm and patterned to form the resistance temperature detector 14, the heating resistor 15, and the wiring of these resistors. The lower electrical insulating film may be the thermal oxide film 2 alone, but a silicon nitride (SiN) film or a silicon oxide film (SiO 2 ) may be laminated. Next, a silicon oxide film 5 serving as an upper electrical insulating film is deposited on the temperature measuring resistor 14 and the heating resistor 15 by a plasma CVD method to a thickness of about 500 nm, and then heat treatment is performed at 800 ° C. or higher for the purpose of densifying the film. I do. Here, since the resistance temperature detector 14 and the heating resistor 15 have a pattern, when the silicon oxide film 5 is formed after the side temperature resistor 14 and the heating resistor 15 are formed, the silicon oxide film 5 is formed. A step occurs. When this step causes some mechanical side effect, the step may be eliminated by mechanical polishing or the like. Next, a silicon nitride film 6 is deposited to a thickness of about 200 nm by plasma CVD, and then heat treatment is performed at 800 ° C. or higher for the purpose of densifying the film. Thereafter, a silicon oxide film 7 is deposited with a film thickness of 300 to 500 nm by a plasma CVD method, and then heat treatment is performed at 800 ° C. or higher. Next, a polyimide organic film is deposited and patterned on the silicon oxide film 7 to form a PIQ film 8 so as to expose a part of the diaphragm. Since the end portion 12 of the diaphragm 18 is protected by the highly elastic PIQ film 8, the destruction of the diaphragm 18 due to the collision of dust can be suppressed. Further, since it is necessary to directly expose the heating resistor 15 and the side temperature resistor 14 for measuring the intake air amount to the intake air, the PIQ film 8 is formed so as to expose a part of the diaphragm 18. Next, the measurement element 17 is completed by forming the diaphragm 18 from the back surface using a silicon oxide film or the like as a mask material and using an etching solution such as KOH. The diaphragm 18 may be formed using a dry etching method.

次に測定素子17を支持体9上にダイボンドテープ等で貼り付け、その後、測定素子17などを搭載した支持体9を樹脂注型金型に配置し、入れ駒を部分露出させたい領域に押し当てて樹脂注型金型に樹脂11を流し込み、樹脂封止することで、ダイアフラム18を含む領域を部分露出させた熱式空気流量センサが完成する。また、支持体9には、ダイアフラム18の裏面側の空間部を密封させないための換気孔19が設けられている。   Next, the measuring element 17 is affixed on the support 9 with a die bond tape or the like, and then the support 9 on which the measuring element 17 or the like is mounted is placed in a resin casting mold, and the insert is pushed into an area where it is desired to partially expose. The resin 11 is poured into the resin casting mold and sealed with resin, thereby completing the thermal air flow sensor in which the region including the diaphragm 18 is partially exposed. The support 9 is provided with a ventilation hole 19 for preventing the space on the back side of the diaphragm 18 from being sealed.

次に、本実施例の作用効果について説明する。   Next, the function and effect of this embodiment will be described.

金属膜4とシリコン酸化膜等の電気絶縁膜との界面のはく離強度は、一般に低いことが知られている。このため、ダイアフラム領域を樹脂により部分露出する際に、入れ駒の先端部を測定素子17に押し当てる際の荷重が大きい場合には、入れ駒を押し当てている領域、すなわち部分的に樹脂11から露出している領域にある金属膜4と電気絶縁膜との界面ではく離が発生する可能性がある。そこで、金属膜4と電気絶縁膜のはく離強度向上を目的に、入れ駒が押し当たる箇所を含む領域の金属膜4となるPt膜と電気絶縁膜となるシリコン酸化膜界面に、Cr,Ti,TiN、ALN、MoN、WNのいずれかからなる膜(はく離防止材3)を堆積させる。   It is known that the peel strength at the interface between the metal film 4 and an electrical insulating film such as a silicon oxide film is generally low. For this reason, when the diaphragm area is partially exposed with the resin, if the load applied when the tip of the insert piece is pressed against the measuring element 17 is large, the area where the insert piece is pressed, that is, partially from the resin 11 There is a possibility that separation occurs at the interface between the metal film 4 and the electrical insulating film in the exposed region. Therefore, for the purpose of improving the peeling strength between the metal film 4 and the electrical insulating film, Cr, Ti, A film (peeling prevention material 3) made of any one of TiN, ALN, MoN, and WN is deposited.

スクラッチ試験により、その界面のはく離強度を評価した結果を図3に示す。縦軸はPt膜/シリコン酸化膜界面のはく離強度を基準にした場合のはく離強度比を示す。Cr,Ti,TiN、ALN、MoN、WNのいずれかからなる単層膜では、何れの場合でも、Cr,Ti,TiN、ALN、MoN、WN膜を介在させない場合よりもはく離強度が向上した。はく離強度は、WN=MoN=ALN<TiN<Ti<Crの順で高くなることが分かった。金属膜4として、MoなどのPt以外の金属膜でも同様の実験を行ったところ、はく離強度の依存性はほぼ同様(図示せず)であり、はく離強度を向上させるために金属膜4と電気絶縁膜の間にCr,Ti,TiN、ALN、MoN、WNのいずれかからなる膜を設けることが有効であると判明した。これは、金属膜4およびシリコン酸化膜等の電気絶縁膜の両方と密着性の高い膜を、金属膜4と電気絶縁膜の間に介在させることで、膜同士の密着性を向上させているからである。   FIG. 3 shows the results of evaluating the peel strength at the interface by a scratch test. The vertical axis represents the peel strength ratio based on the peel strength at the Pt film / silicon oxide film interface. In any case, the peel strength of the single layer film made of any one of Cr, Ti, TiN, ALN, MoN, and WN was improved as compared with the case where no Cr, Ti, TiN, ALN, MoN, and WN films were interposed. It was found that the peel strength increases in the order of WN = MoN = ALN <TiN <Ti <Cr. When the same experiment was conducted with a metal film other than Pt such as Mo as the metal film 4, the dependence on the peel strength was almost the same (not shown), and the metal film 4 was electrically connected with the metal film 4 to improve the peel strength. It has been found effective to provide a film made of any one of Cr, Ti, TiN, ALN, MoN, and WN between the insulating films. This improves the adhesion between the films by interposing a film having high adhesion with both the metal film 4 and the electrical insulation film such as a silicon oxide film between the metal film 4 and the electrical insulation film. Because.

第一実施例では、はく離防止材3としてCr,Ti,TiN、ALN、MoN、WNを単層膜として堆積した場合を示したが、Cr,Ti,TiN、ALN、MoN、WNの少なくとも2種類の膜を積層した構造についても、単層膜同様にはく離強度が向上することは言うまでもない。特にPt膜やモリブデン膜の下にTiを配置させた場合では界面に反応層が形成され、後述する抵抗変化の温度依存性が極端に低下するので、Ti膜と金属膜4の間にTiN、ALN、WN等を堆積することで金属膜4の抵抗変化の温度依存性の低下を抑制することができる。特に、積層膜の最上層をTiN、ALN、WNのいずれかからなる膜で構成すると、金属膜4とTi膜による反応層の形成を確実に防止できる。   In the first embodiment, the case where Cr, Ti, TiN, ALN, MoN, and WN are deposited as a single layer film as the peeling prevention material 3 is shown, but at least two kinds of Cr, Ti, TiN, ALN, MoN, and WN are shown. Needless to say, the peel strength of the structure in which these films are laminated is improved as in the case of the single-layer film. In particular, when Ti is disposed under the Pt film or the molybdenum film, a reaction layer is formed at the interface, and the temperature dependence of the resistance change described later is extremely reduced. Therefore, TiN, By depositing ALN, WN or the like, it is possible to suppress a decrease in temperature dependency of the resistance change of the metal film 4. In particular, when the uppermost layer of the laminated film is composed of a film made of any one of TiN, ALN, and WN, formation of a reaction layer by the metal film 4 and the Ti film can be reliably prevented.

はく離防止材3は、はく離が発生する領域に設ける必要があるので、入れ駒が押し当てられる箇所、すなわち部分的に樹脂11から露出されている領域の配線部に設けられている必要がある。特に露出部の樹脂11近傍の領域に設けられていると良い。   Since the peeling preventing material 3 needs to be provided in a region where peeling occurs, the peeling preventing material 3 needs to be provided in a place where the insert piece is pressed, that is, in a wiring part in a region partially exposed from the resin 11. In particular, it may be provided in a region near the resin 11 in the exposed portion.

本発明の第二実施例を図4および図5を用いて説明する。なお、第一実施例と構成が同じ部分は説明を省略する。   A second embodiment of the present invention will be described with reference to FIGS. Note that the description of the same parts as in the first embodiment is omitted.

図4に示すように、本発明の第二の実施例では、測温抵抗体14の下のはく離防止材3を設けていないことを特徴とする。MEMS式の流量測定は、発熱抵抗体15の上流側と下流側に測温抵抗体14を配置し、上流と下流の測温抵抗体個所での温度差による抵抗変化を計測し、この抵抗変化から空気流量を算出する。そのため、抵抗変化の温度依存性が大きい方が高感度に流量測定が可能となるので好ましい。しかし、はく離防止材3を測温抵抗体14の下層に配置すると、側温抵抗体14の抵抗変化の温度依存性が低下してしまうので、高感度に流量を測定したい場合には好ましくない。そのため、温度変化によって抵抗が変化し、この出力を何らかの制御に使うような個所へのはく離防止材3適用は、あまり適していないので、ダイアフラム18上に設けられている測温抵抗体14へのはく離防止材3の適用を回避させている。   As shown in FIG. 4, the second embodiment of the present invention is characterized in that the peeling prevention material 3 under the resistance temperature detector 14 is not provided. In the MEMS type flow rate measurement, the resistance temperature detectors 14 are arranged on the upstream side and the downstream side of the heating resistor 15, and the resistance change due to the temperature difference between the upstream and downstream resistance temperature detectors is measured. From this, the air flow rate is calculated. Therefore, it is preferable that the temperature dependence of the resistance change is large because the flow rate can be measured with high sensitivity. However, if the peeling prevention material 3 is disposed in the lower layer of the resistance temperature detector 14, the temperature dependence of the resistance change of the side temperature resistance 14 is lowered, which is not preferable when it is desired to measure the flow rate with high sensitivity. For this reason, the resistance changes due to a temperature change, and the application of the anti-separation material 3 to a place where this output is used for some control is not very suitable. Therefore, the resistance to the resistance temperature detector 14 provided on the diaphragm 18 is not suitable. Application of the peeling preventing material 3 is avoided.

ダイアフラム18を含む領域を部分的に露出する構造とするときに、入れ駒をシリコン基板表面に押し当てて、ダイアフラム18を含む領域を入れ駒で隠すようにしてから樹脂を注入している。ここで、ダイアフラム18は他の部分よりも薄い構成であるので、入れ駒を直接押し当ててしまうとダイアフラム18に変形が生じてしまい、検出精度に誤差が生じるようになる。そのため、ダイアフラム18に入れ駒が直接押し当てられないように、入れ駒は凹部を有していて、この凹部外周縁に設けられた押し当て部でダイアフラム18周辺の領域を押し当てるようにしている。すなわち、ダイアフラム18には入れ駒が直接押し当てられないので、金属膜と電気絶縁膜とのはく離が発生しない。   When the region including the diaphragm 18 is partially exposed, the insert is pressed against the silicon substrate surface so that the region including the diaphragm 18 is hidden by the insert before the resin is injected. Here, since the diaphragm 18 is thinner than the other portions, if the insert piece is directly pressed, the diaphragm 18 is deformed, and an error occurs in detection accuracy. Therefore, the insert piece has a recess so that the insert piece is not directly pressed against the diaphragm 18, and the area around the diaphragm 18 is pressed by the pressing portion provided on the outer peripheral edge of the recess. . That is, since the insert piece is not directly pressed against the diaphragm 18, the metal film and the electrical insulating film are not peeled off.

第二実施例によると、入れ駒に押し当てられる領域、すなわちダイアフラム18の外側に形成される配線部の下層にはく離防止材3を設けていて、入れ駒に押し当てられない領域、すなわちダイアフラム18に形成される金属膜、特に抵抗変化の温度依存性が重要である側温抵抗体14の下層にははく離防止材を設けない構成としている。上記構成により、流量検出精度を維持しつつ、金属膜4のはく離を防止することができる。第二実施例によると高い流量精度ではく離を防止することができる。   According to the second embodiment, the anti-separation material 3 is provided in the region pressed against the insert, that is, the lower layer of the wiring portion formed outside the diaphragm 18, and the region not pressed against the insert, ie, the diaphragm 18 is provided. The metal film formed in this embodiment, in particular, the peeling prevention material is not provided in the lower layer of the side temperature resistor 14 where the temperature dependence of the resistance change is important. With the above configuration, it is possible to prevent the metal film 4 from peeling while maintaining the flow rate detection accuracy. According to the second embodiment, separation can be prevented with high flow accuracy.

第二実施例の変形例を、図7を用いて説明する。   A modification of the second embodiment will be described with reference to FIG.

図7に示すように、はく離防止材3をダイアフラム18上に設けずに、Si基板上に設けられた配線部の下層のみに設けた構成としたものである。上述したとおり、入れ駒の先端部が押しつけられる領域は、ダイアフラム18を除く、シリコン基板1上のみと必ずなる。第二実施例同様に、第三実施例においても高い流量精度ではく離を防止することができる。さらに、同一ダイアフラム18上に設けられている発熱抵抗体15と側温抵抗体14にはく離防止材を設けておらず、似たような構成とするので、測定素子17の製造が簡単になるという利点もある。   As shown in FIG. 7, the separation preventing material 3 is not provided on the diaphragm 18, but is provided only on the lower layer of the wiring portion provided on the Si substrate. As described above, the region where the tip of the insert piece is pressed is always only on the silicon substrate 1 excluding the diaphragm 18. Like the second embodiment, the third embodiment can prevent separation with high flow accuracy. Further, the heating resistor 15 and the side temperature resistor 14 provided on the same diaphragm 18 are not provided with an anti-separation material and have a similar structure, so that the measurement element 17 can be easily manufactured. There are also advantages.

さらなる変形例としては、入れ駒の先端部が押しつけられる詳しい領域は、樹脂端部13とダイアフラム端部12の間の領域であるので、図6に示すように、この領域のみにはく離防止材3を配置させている。必要最小限の領域にはく離防止材3を設ける構成としているので、低コストではく離を防止することが可能となる。   As a further modification, the detailed region where the tip of the insert piece is pressed is a region between the resin end 13 and the diaphragm end 12, and therefore, as shown in FIG. It is arranged. Since the separation preventing material 3 is provided in the minimum necessary region, it is possible to prevent the separation at a low cost.

1 シリコン基板
2 熱酸化膜
3 はく離防止材
4 金属膜
5 シリコン酸化膜
6 シリコンナイトライド膜
7 シリコン酸化膜
8 PIQ膜
9 支持体
10 ワイヤ
11 樹脂
12 ダイアフラム端部
13 樹脂端部
14 測温抵抗体
15 発熱抵抗体
16 LSI
17 測定素子
18 ダイアフラム
19 換気孔
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Thermal oxide film 3 Peeling prevention material 4 Metal film 5 Silicon oxide film 6 Silicon nitride film 7 Silicon oxide film 8 PIQ film 9 Support body 10 Wire 11 Resin 12 Diaphragm edge part 13 Resin edge part 14 Resistance temperature sensor 15 Heating resistor 16 LSI
17 Measuring element 18 Diaphragm 19 Ventilation hole

Claims (9)

発熱抵抗体と前記発熱抵抗体の上下流にそれぞれ設けられる側温抵抗体を有するダイアフラムと、前記発熱抵抗体および測温抵抗体の配線が配置される配線部と、を有する半導体基板と、
前記半導体基板を封止する樹脂と、を備え、
前記樹脂は前記ダイアフラムを含む領域を部分的に露出する露出部を有する熱式流量センサにおいて、
前記露出部にある配線部の下層に、Cr、Ti、TiN、ALN、MoN、WNのいずれかからなる単層膜を設けることを特徴とする熱式空気流量センサ。
A semiconductor substrate comprising: a heating resistor and a diaphragm having side temperature resistors provided upstream and downstream of the heating resistor; and a wiring portion in which wiring of the heating resistor and the resistance thermometer is disposed,
A resin for sealing the semiconductor substrate,
In the thermal flow sensor having an exposed portion that partially exposes the region including the diaphragm, the resin is
A thermal air flow sensor characterized in that a single-layer film made of any of Cr, Ti, TiN, ALN, MoN, and WN is provided below the wiring portion in the exposed portion.
請求項1に記載の熱式空気流量センサにおいて、
前記単層膜は、前記側温抵抗体の下層には設けられず、前記露出部にある配線部の下層に設けられることを特徴とする熱式空気流量センサ。
The thermal air flow sensor according to claim 1,
The thermal air flow sensor according to claim 1, wherein the single-layer film is not provided in a lower layer of the side temperature resistor, but is provided in a lower layer of the wiring portion in the exposed portion.
請求項1に記載の熱式空気流量センサにおいて、
前記単層膜は、前記発熱抵抗体の下層には設けられず、前記露出部にある配線部の下層に設けられることを特徴とする熱式空気流量センサ。
The thermal air flow sensor according to claim 1,
The thermal air flow sensor according to claim 1, wherein the single-layer film is not provided below the heating resistor, but is provided below the wiring portion in the exposed portion.
請求項1に記載の熱式空気流量センサにおいて、
前記単層膜は、前記ダイアフラムには設けられず、前記配線部の下層のみ設けられることを特徴とする熱式空気流量センサ。
The thermal air flow sensor according to claim 1,
The thermal air flow sensor according to claim 1, wherein the single-layer film is not provided on the diaphragm, and is provided only on a lower layer of the wiring portion.
発熱抵抗体と前記発熱抵抗体の上下流にそれぞれ設けられる側温抵抗体を有するダイアフラムと、前記発熱抵抗体および測温抵抗体の配線が配置される配線部と、を有する半導体基板と、
前記半導体基板を封止する樹脂と、を備え、
前記樹脂は前記ダイアフラムを含む領域を部分的に露出する露出部を有する熱式流量センサにおいて、
前記露出部にある配線部の下層に、Cr、Ti、TiN、ALN、MoN、WNのうち少なくとも2種類からなる積層膜を設けることを特徴とする熱式空気流量センサ。
A semiconductor substrate comprising: a heating resistor and a diaphragm having side temperature resistors provided upstream and downstream of the heating resistor; and a wiring portion in which wiring of the heating resistor and the resistance thermometer is disposed,
A resin for sealing the semiconductor substrate,
In the thermal flow sensor having an exposed portion that partially exposes the region including the diaphragm, the resin is
A thermal air flow sensor characterized in that a laminated film made of at least two of Cr, Ti, TiN, ALN, MoN, and WN is provided below the wiring portion in the exposed portion.
請求項5に記載の熱式流量センサにおいて、
前記積層膜の最上層は、TiN、ALN、WNのいずれかからなることを特徴とする熱式流量センサ。
The thermal flow sensor according to claim 5,
The uppermost layer of the laminated film is made of any one of TiN, ALN, and WN.
請求項5に記載の熱式空気流量センサにおいて、
前記積層膜は、前記側温抵抗体の下層には設けられず、前記露出部にある配線部の下層に設けられることを特徴とする熱式空気流量センサ。
The thermal air flow sensor according to claim 5,
The laminated air film is not provided in a lower layer of the side temperature resistor, but is provided in a lower layer of the wiring portion in the exposed portion.
請求項5に記載の熱式空気流量センサにおいて、
前記積層膜は、前記発熱抵抗体の下層には設けられず、前記露出部にある配線部の下層に設けられることを特徴とする熱式空気流量センサ。
The thermal air flow sensor according to claim 5,
The thermal air flow sensor according to claim 1, wherein the laminated film is not provided in a lower layer of the heating resistor, but is provided in a lower layer of the wiring portion in the exposed portion.
請求項5に記載の熱式空気流量センサにおいて、
前記積層膜は、前記ダイアフラムには前記積層膜を設けられず、前記配線部の下層のみに設けられていることを特徴とする熱式空気流量センサ。
The thermal air flow sensor according to claim 5,
The thermal air flow sensor according to claim 1, wherein the laminated film is provided only on a lower layer of the wiring portion without providing the laminated film on the diaphragm.
JP2012146287A 2012-06-29 2012-06-29 Thermal air flow sensor Expired - Fee Related JP5768011B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012146287A JP5768011B2 (en) 2012-06-29 2012-06-29 Thermal air flow sensor
PCT/JP2013/065913 WO2014002737A1 (en) 2012-06-29 2013-06-10 Thermal airflow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146287A JP5768011B2 (en) 2012-06-29 2012-06-29 Thermal air flow sensor

Publications (2)

Publication Number Publication Date
JP2014010025A true JP2014010025A (en) 2014-01-20
JP5768011B2 JP5768011B2 (en) 2015-08-26

Family

ID=49782902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146287A Expired - Fee Related JP5768011B2 (en) 2012-06-29 2012-06-29 Thermal air flow sensor

Country Status (2)

Country Link
JP (1) JP5768011B2 (en)
WO (1) WO2014002737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202871A1 (en) * 2019-04-04 2020-10-08 株式会社デンソー Physical quantity measurement device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182072A1 (en) * 2015-12-15 2017-06-21 Horiba, Ltd. Flow rate measurement device, fuel efficiency measurement device, program for flow rate measurement device and flow rate measurement method
WO2017174565A1 (en) 2016-04-07 2017-10-12 Arcelik Anonim Sirketi A dishwasher
WO2020094296A1 (en) 2018-11-06 2020-05-14 Arcelik Anonim Sirketi A dishwasher comprising a drawer
WO2020136260A1 (en) 2018-12-28 2020-07-02 Arcelik Anonim Sirketi A dishwasher

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294870A (en) * 2006-03-30 2007-11-08 Mitsui Mining & Smelting Co Ltd Thin-film sensor, thin-film sensor module, and method for manufacturing the thin-film sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294870A (en) * 2006-03-30 2007-11-08 Mitsui Mining & Smelting Co Ltd Thin-film sensor, thin-film sensor module, and method for manufacturing the thin-film sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202871A1 (en) * 2019-04-04 2020-10-08 株式会社デンソー Physical quantity measurement device
JP2020169929A (en) * 2019-04-04 2020-10-15 株式会社デンソー Physical quantity measurement device

Also Published As

Publication number Publication date
WO2014002737A1 (en) 2014-01-03
JP5768011B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
US9851233B2 (en) Physical quantity sensor
JP5768011B2 (en) Thermal air flow sensor
US7404321B2 (en) Sensor device having a buffer element between the molding and the sensing element
US11391611B2 (en) Thermal airflow sensor
JP2009058230A (en) Manufacturing method for sensor device, and the sensor device
JP5648021B2 (en) Thermal air flow sensor
US8104355B2 (en) Thermal humidity sensor
JP2009036639A (en) Sensor device
JP5243348B2 (en) Flow rate detector
CN108027267B (en) Flow sensor
JP5093052B2 (en) Thermal flow sensor
JP5857050B2 (en) Flowmeter
CN112880903A (en) Piezoresistive pressure chip and preparation method thereof
US10466197B2 (en) Component part having a MECS component on a mounting carrier
JP5744299B2 (en) Thermal air flow sensor
JP5841918B2 (en) Sensor device
JP2010139339A (en) Thermal type flow sensor
JP5768179B2 (en) Thermal air flow sensor
WO2015182257A1 (en) Flow rate sensor and method for manufacturing same
JP5949573B2 (en) Manufacturing method of physical quantity sensor
JP5609841B2 (en) Flow sensor
JP5092936B2 (en) Thermal flow sensor and manufacturing method thereof
JP2009031066A (en) Manufacturing method of thin-film type semiconductor sensor, and thin-film type semiconductor sensor
WO2015162853A1 (en) Physical quantity sensor and physical quantity sensor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5768011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees