WO2015162853A1 - Physical quantity sensor and physical quantity sensor manufacturing method - Google Patents

Physical quantity sensor and physical quantity sensor manufacturing method Download PDF

Info

Publication number
WO2015162853A1
WO2015162853A1 PCT/JP2015/001680 JP2015001680W WO2015162853A1 WO 2015162853 A1 WO2015162853 A1 WO 2015162853A1 JP 2015001680 W JP2015001680 W JP 2015001680W WO 2015162853 A1 WO2015162853 A1 WO 2015162853A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
physical quantity
wafer
straight line
thin
Prior art date
Application number
PCT/JP2015/001680
Other languages
French (fr)
Japanese (ja)
Inventor
友貴 種村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015162853A1 publication Critical patent/WO2015162853A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements

Definitions

  • the present disclosure relates to a physical quantity sensor and a method for manufacturing the physical quantity sensor.
  • a sensor chip having a sensing portion is bonded to a resin member, and a thin portion is formed on one surface of the sensor chip by forming a recess on the other surface opposite to the one surface.
  • a physical quantity sensor that detects a physical quantity of a detection body is used.
  • a flow rate sensor that detects the flow rate of a fluid is conventionally known.
  • this type of flow sensor one described in Patent Document 1 has been proposed.
  • This flow sensor has a sensing unit for detecting a flow rate of a fluid that is a detection target, and a sensor chip including the sensing unit is bonded to a resin member.
  • a thin portion is formed which is thinned by forming a recess on the other surface opposite to the one surface.
  • the flow rate of the fluid flowing above the thin portion is detected by a sensing portion formed on the thin portion of one surface of the sensor chip.
  • this flow sensor when a fluid passes above the thin wall portion, a change occurs in the temperature distribution detected by the sensing unit, and a resistance value change due to the temperature difference of the detected temperature of the sensing unit caused thereby is detected as an electric signal. As a result, the flow rate of the fluid is detected.
  • the recess of the sensor chip is covered with the resin member.
  • the resin member is configured to come into contact with the entire other surface of the sensor chip (particularly the peripheral portion of the thin portion)
  • the linear expansion coefficient of the adhesive that fixes the resin, the sensor chip, and the sensor chip to the resin is reduced. Due to the difference, distortion occurs when the temperature of the surrounding environment changes, and the stress generated in the sensor chip increases. In this case, eventually, the stress applied to the thin portion formed on the sensor chip increases. And if stress is applied to the thin part formed in the sensor chip and the thin part is deformed, the sensor characteristics of the flow sensor may change, and the detection accuracy of the flow sensor may be reduced.
  • a portion around the thin portion of the sensor chip that is, a portion around the concave portion and the resin member are configured to have a gap
  • the sensor chip is a portion around the concave portion. It is set as the structure supported by the resin member in parts other than. That is, the sensor chip is configured to be supported by the resin member in a portion of the sensor chip that is farther from the peripheral portion of the recess as viewed from the thin portion.
  • the sensor chip is configured to be fixed to the resin member at a portion far from the thin portion of the sensor chip, and thus occurs in relation to the resin member with respect to the thin portion of the sensor chip. There is a risk that it is difficult to apply stress.
  • the inventors of the present application found the following regarding the physical quantity sensor.
  • a gap is formed between the resin chip and the peripheral portion of the recess in the sensor chip, and the sensor chip has a resin portion other than the peripheral portion of the recess. It is the structure supported by the member. For this reason, in this flow sensor, the contact area between the resin chip and the portion around the recess in the sensor chip is small, and it is difficult for stress to be applied to the thin portion.
  • the fluid enters the gap if the gap is wide, the fluid flowing through the gap tends to be turbulent, and a vortex is likely to occur when the fluid wraps into the recess.
  • the gap be narrow so that the intruded fluid is likely to become a laminar flow that is difficult to reduce the detection accuracy of the flow sensor.
  • the time until the adhesive that bonds the resin member and the sensor chip is cured, the resin member and the sensor chip. Must maintain the positional relationship.
  • the flow sensor is difficult to manufacture.
  • the flow sensor described in Patent Document 1 is manufactured by cutting a wafer and attaching a resin member to a sensor chip that is made into a unit. That is, in the production of the flow sensor, it is necessary to process the sensor chip separately in a separate manufacturing process such as a process of manufacturing the sensor chip and a process of bonding the resin member to the sensor chip, which may complicate the manufacturing process. is there.
  • the present disclosure has a thin portion that is thinned by forming a recess, and a physical quantity sensor in which a sensing portion is formed on the surface of the thin portion, it is difficult to apply stress to the thin portion,
  • An object is to provide an easy configuration.
  • the physical quantity sensor has the first end and the second end opposite to the first end, and the first surface and the second surface opposite to the first surface.
  • a first substrate having a thin portion with a first recess on the first surface on the first end side of the support substrate, a third surface, and a direction normal to the second surface
  • the second substrate includes a second concave portion included in the third surface including the thin portion, and the third surface is bonded to the first substrate while being in contact with the first surface of the first substrate;
  • a sensing unit that is provided on the second surface of the thin-walled portion and detects a physical quantity of the detected object and outputs it as an electrical signal.
  • the physical quantity sensor manufacturing method includes the fourth surface and the fourth surface as members constituting the first substrate of the plurality of physical quantity sensors.
  • a first wafer having a plurality of thin portions is prepared by forming a plurality of first recesses corresponding to each of the plurality of physical quantity sensors on the fourth surface, and having a fifth surface opposite to the surface.
  • a plate having a sixth surface as a member constituting the second substrate of the plurality of physical quantity sensors, and a plurality of second recesses corresponding to each of the plurality of physical quantity sensors are formed on the sixth surface.
  • each of the plurality of second recesses corresponds to the first corresponding to the plurality of first recesses when viewed from the direction of the normal to the sixth surface. So as to include a recess inward. Has a attaching the first wafer and the second wafer while contacting the surface to the fourth surface, the.
  • a gap is formed between the portion around the thin portion of the first substrate and the second substrate, and the periphery of the thin portion is arranged.
  • the portion other than the portion is fixed by the second substrate. Therefore, compared with the case where the thin portion is fixed at the peripheral portion, it is difficult to apply stress generated in relation to the second substrate to the thin portion. Thereby, the fall of the detection accuracy of the physical quantity sensor by stress being applied to the thin part and the thin part being deformed can be suppressed.
  • FIG. 1 is a diagram illustrating a planar configuration of a flow sensor according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the flow sensor shown in FIG.
  • FIG. 3A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3B is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3C is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 1 is a diagram illustrating a planar configuration of a flow sensor according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the flow sensor shown in FIG.
  • FIG. 3A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3B
  • FIG. 3D is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3E is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3F is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3G is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3H is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3H is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3I is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3J is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 3K is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 4 is a diagram illustrating a planar configuration of the flow sensor according to the second embodiment
  • FIG. 5 is a diagram showing a VV cross-sectional configuration of the flow sensor shown in FIG.
  • FIG. 6A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow
  • FIG. 6B is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6C is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6D is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6E is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6F is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6G is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6H is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6I is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 6J is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG.
  • FIG. 7 is a diagram illustrating a planar configuration of the flow sensor according to the third embodiment
  • FIG. 8 is a diagram showing a VIII-VIII cross-sectional configuration of the flow sensor shown in FIG.
  • FIG. 9 is a diagram illustrating a planar configuration of the flow sensor according to the fourth embodiment.
  • FIG. 10 is a diagram showing the XX cross-sectional configuration of the flow sensor shown in FIG.
  • FIG. 11 is a diagram illustrating a planar configuration of the flow sensor according to the fifth embodiment.
  • 12 is a diagram showing a cross-sectional configuration of the flow sensor shown in FIG. 11 taken along line XII-XII.
  • FIG. 13 is a diagram illustrating a planar configuration of a pressure sensor according to another embodiment.
  • FIG. 14 is a diagram showing a cross-sectional configuration of the pressure sensor shown in FIG.
  • FIG. 15 is a diagram illustrating a planar configuration of a temperature sensor according to another embodiment.
  • 16 is a diagram showing a cross-sectional configuration of the temperature sensor shown in FIG. 15 taken along the line XVI-XVI.
  • FIG. 11 is a diagram illustrating a planar configuration of the flow sensor according to the fifth embodiment.
  • 12 is a diagram showing a cross-sectional configuration of the flow sensor shown in FIG. 11 taken along line X
  • FIG. 17 is a diagram illustrating a planar configuration of a flow sensor according to another embodiment
  • 18 is a diagram showing a cross-sectional configuration of the flow sensor shown in FIG. 17 taken along XVIII-XVIII.
  • FIG. 19 is a view showing a cross-sectional configuration of the flow sensor shown in FIG.
  • FIG. 20 is a diagram illustrating a planar configuration of a flow sensor according to another embodiment
  • FIG. 21 is a view showing a cross-sectional configuration of the flow sensor shown in FIG. 20 taken along XXI-XXI.
  • the flow sensor 1 is a flow meter that detects a flow rate of a fluid, and is a thermal flow meter as an example here.
  • the use of the flow sensor 1 is not limited.
  • the flow sensor 1 is used as an air flow meter (thermal flow meter) that is mounted on an automobile and measures an intake air amount or an exhaust amount of an automobile engine.
  • the flow sensor 1 is a sensor having sensing units 7 and 9 for detecting the flow rate of fluid, and includes a first substrate 2, a second substrate 3, and an electric circuit unit. 4, a lead frame 5, and a mold resin 6.
  • the first substrate 2 is configured to include a support substrate 20.
  • the support substrate 20 is a plate-like chip made of a semiconductor such as a silicon semiconductor or glass.
  • the support substrate 20 has one end 2 a and the other end 2 b opposite to the one end 2 a, and one surface 21 and another surface 22 opposite to the one surface 21.
  • the one surface 21 is referred to as a first surface 21, and the other surface 22 is referred to as a second surface 22.
  • the one end 2a is also called a first end, and the other end 2b is also called a second end.
  • a silicon oxide film 16a is formed on the second surface 22 of the first substrate 2 (hereinafter, the silicon oxide film 16a is referred to as a first silicon oxide film 16a).
  • the first silicon oxide film 16a is formed by plasma CVD or the like.
  • a recess 21a is formed in the first surface 21 on the one end 2a side of the first substrate 2 (hereinafter, the recess 21a is referred to as a first recess 21a).
  • the first recess 21 a is formed, so that a thin portion 22 a is formed on the second surface 22 side of the first substrate 2.
  • the support substrate 20 is configured to penetrate, and the thin portion 22a includes the first silicon oxide film 16a and a thin film resistor described later. It is comprised by the bodies 7, 8, and 9.
  • the first recess 21a is formed by anisotropic etching or the like. The thickness of the thin portion is, for example, several ⁇ m or less.
  • the first substrate 2 includes a first surface 21 to a second surface 22 in an inner region of a second recess 31a described later and in a region around the thin portion 22a.
  • a penetrating through hole 23 is formed. Since the through hole 23 is formed, in the flow sensor 1 according to this embodiment, the portion sandwiched between the thin portion 22a and the through hole 23 in the portion around the thin portion 22a in the first substrate 2 is When expanding, the stress due to strain generated on the surface where the first substrate 2 and the second substrate 3 sandwiching the through hole 23 with respect to the thin portion 22a can be expanded into the space in which the through hole 23 is formed. Becomes difficult to be transmitted to the thin portion 22a. Therefore, in the present embodiment, the generation of stress in the first substrate 2 is suppressed, and as a result, stress is hardly generated in the thin portion 22a of the first substrate 2.
  • the through hole 23 has a first straight line 23 a and a second straight line as viewed from the direction of the normal to the second surface 22 (the direction of the normal to the paper surface of FIG. 1).
  • 23b and the third straight line 23c form a U-shape.
  • the 2nd straight line 23b is a straight line arrange
  • the second straight line 23b is a straight line parallel to the first straight line 23a, but the second straight line 23b is not necessarily a straight line parallel to the first straight line 23a.
  • the third straight line 23c is a straight line connecting the first straight line 23a and the second straight line 23b.
  • the through hole 23 is a connection portion between the first straight line 23 a and the third straight line 23 c and the second straight line 23 b when viewed from the direction of the normal to the second surface 22.
  • the third straight line 23c are bent at right angles.
  • the through hole 23 has the other end of the first substrate 2 with the third straight line 23 c sandwiching the thin portion 22 a when viewed from the direction normal to the second surface 22. It is set as the structure arrange
  • the second surface 22 of the first substrate 2 has three thin film resistors made of a metal such as aluminum or platinum or silicon partially doped by ion implantation.
  • the bodies 7, 8, and 9 are formed.
  • a thin film resistor 7 is formed on the upstream side of the fluid flow, and a thin film resistor 9 is formed on the downstream side.
  • a thin film resistor 8 is formed at an intermediate position between the thin film resistor 7 and the thin film resistor 9.
  • the three thin film resistors 7, 8, and 9 are formed on the upper surface of the first silicon oxide film 16a.
  • the three thin film resistors 7 to 9 have different electrode pairs 10 (10a, 10b), 11 (11a, 11b), 12 (12a) disposed on the second surface 22, respectively. , 12b) and is electrically connected to the electric circuit portion 4 by the first bonding wire 14.
  • Each of the three thin film resistors 7 and 9 constitutes a part of a bridge circuit (not shown), and is configured as a sensing unit.
  • the thin film resistor 8 is configured as a heater (heating element) for increasing the difference in temperature detected by the two thin film resistors 7 and 9 which are temperature sensors.
  • the electrode pairs 10 to 12 are made of gold or the like.
  • the sensing portions 7 and 9 are used. Changes the temperature distribution detected by. As a result, the thin film resistor 7 disposed upstream of the thin film resistor 8 serving as a heater is cooled, and the thin film resistor 9 disposed downstream is heated by the heat of the heater (thin film resistor 8). Is done. At this time, the flow rate of the fluid is detected by outputting a resistance value change caused by the temperature difference between the temperatures detected by the two temperature sensors (thin film resistors 7 and 9) as an electrical signal.
  • the three thin film resistors 7 to 9 are extended over the thin portion 22a, which is a portion of the first substrate 2 having a small heat capacity, so as to be thin.
  • the flow rate of the fluid is detected above the portion 22a.
  • heat such as the heat generated by the heater (thin film resistor 8) is not easily applied to the thin-walled portion 22a, and the thermal response due to a change in the flow rate of the fluid is good.
  • the detection sensitivity of 1 becomes high.
  • the first substrate 2 is bonded and fixed to the lead frame 5 via a conductive or electrically insulating adhesive 13 on the other end 2b side.
  • the flow sensor 1 when the fluid flows above the thin portion 22a of the second surface 22 of the first substrate 2 (see Y1 in FIGS. 1 and 2), two temperatures are used. A temperature difference corresponding to the flow rate of the fluid occurs between the sensors (thin film resistors 7, 9). As a result, the balance of the bridge circuit changes and an electrical change occurs. The flow sensor 1 detects the flow rate of the fluid flowing above the thin portion 22a in the second surface 22 of the first substrate 2 by obtaining this electrical change as an electrical signal corresponding to the fluid flow rate.
  • the second substrate 3 is a plate-shaped chip made of a semiconductor such as a silicon semiconductor or glass. As shown in FIG. 2, the second substrate 3 has one surface 31 (hereinafter, the one surface 31 is referred to as the third surface 31). The second substrate 3 is bonded to the first substrate 2 while the third surface 31 is in contact with the first surface 21 of the first substrate 2.
  • the third surface 31 has a recess 31a (hereinafter, the recess 31a is referred to as a second recess 31a).
  • the second recess 31a is formed on the third surface 31 so as to include the thin portion 22a when viewed from the direction of the normal to the second surface 22 (direction of the normal to the paper surface of FIG. 1).
  • the first substrate 2 is configured to have a gap between the portion around the thin portion 22a and the second substrate 3, and the periphery of the thin portion 22a. The portion other than the portion is fixed by the second substrate 3.
  • the thickness of the first substrate 2 and the thickness of the second substrate 3 are compared as the length in the direction of the normal to the second surface 22 of the first substrate 2.
  • the second substrate 3 is thinner than the first substrate 2.
  • the distance between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is set to 100 ⁇ m or less. For this reason, in the flow sensor 1 according to the present embodiment, the space formed between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is narrow. Therefore, the Reynolds number of the fluid flowing through the space is reduced, and in the flow sensor 1 according to the present embodiment, the fluid enters the through hole 23 from the outside and eventually enters the second recess 31a of the second substrate 3. However, the infiltrated fluid tends to be laminar rather than turbulent. Therefore, even when the infiltrated fluid reaches the first recess 21a, the fluid is unlikely to cause a vortex in the first recess 21a. It tends to decrease.
  • the electrical circuit unit 4 is a circuit chip having an electrical circuit that performs arithmetic processing on the electrical signals detected and output by the sensing units 7 and 9.
  • the electric circuit unit 4 is electrically connected to the outside through a second bonding wire 15 connected to an external output connection terminal 5a, which will be described later.
  • the obtained electrical signal is output to the outside.
  • the electric circuit unit 4 performs arithmetic processing for comparing a flow rate signal indicated by an electrical signal detected by two temperature sensors (thin film resistors 7 and 9) and a set flow rate signal in which a predetermined flow rate is set in advance.
  • the resulting electrical signal is output to the outside.
  • the electric circuit portion 4 is mounted on and supported by a lead frame 5.
  • the lead frame 5 is made of a metal having excellent conductivity such as Cu or 42 alloy, and is formed by etching or pressing. As shown in FIGS. 1 and 2, the lead frame 5 has an external output connection terminal 5 a for electrical connection between the electric circuit portion 4 and the outside. As shown in FIGS. 1 and 2, the lead frame 5 mounts and supports the second substrate 3 on which the first substrate 2 is loaded and the electric circuit unit 4.
  • the mold resin 6 is made of a thermosetting resin such as an epoxy resin, and is formed by a transfer molding method using a mold or a compression molding method.
  • the flow sensor 1 is basically manufactured through a process similar to a general IC manufacturing process. That is, the flow sensor 1 performs dicing and mounting on a wafer completed through the previous process (process for forming wirings such as the sensing units 7 and 9 on the wafer (the first wafer 200 and the second wafer 300)) and the previous process. It is manufactured through a post-process that performs such processing. Therefore, only the characteristic part of the manufacturing method of the flow sensor 1 according to the present embodiment will be described in detail here.
  • the manufacturing method of the flow sensor 1 includes the following first to third steps.
  • the first and second steps are steps included in the preceding step, and the third step is a step included in the subsequent step.
  • the first wafer 200 shown in FIG. 3G is prepared through the steps shown in FIGS. 3A to 3G. That is, a plate-like first wafer 200 having one surface 201 and the other surface 202 opposite to the one surface 201 is prepared as a member constituting the first substrate 2 of the plurality of flow sensors 1.
  • the one surface 201 is referred to as a fourth surface 201
  • the other surface 202 is referred to as a fifth surface 202.
  • a wafer made of a semiconductor or glass is prepared.
  • the first wafer 200 made of a silicon semiconductor is employed.
  • the fourth surface 201 corresponds to the first surface 21 of the first substrate 2
  • the fifth surface 202 corresponds to the second surface 22.
  • a plurality of first recesses 21 a corresponding to the plurality of flow sensors 1 are formed on the fourth surface 201, so that a plurality of thin portions 22 a corresponding to the plurality of flow sensors 1 are formed.
  • a wafer having the structure is prepared.
  • a wafer having a plurality of through holes 23 penetrating from the fourth surface 201 to the fifth surface 202 corresponding to the plurality of through holes 23 corresponding to the plurality of flow sensors 1 respectively. Prepare.
  • the first wafer 200 having this configuration can be manufactured, for example, by the following procedure.
  • a first silicon oxide film 16a is formed on the fifth surface 202 of the first wafer 200 by plasma CVD or the like, and a plurality of flow sensors 1 are formed on the upper surface of the first silicon oxide film 16a.
  • a plurality of thin film resistors 7 to 9 corresponding to each are arranged. Specifically, a plurality of two thin film resistors 7 and 9 made of a metal such as aluminum or platinum or silicon partially doped by ion implantation are formed corresponding to each of the plurality of flow sensors 1.
  • the thin film resistor 8 is patterned at the same time.
  • a plurality of electrode pairs 10 to 12 are arranged on the fifth surface 202 of the first wafer 200.
  • Each of the electrode pairs 10 to 12 is a pad made of gold or the like.
  • a silicon oxide film 16b is formed on the fourth surface 201 of the first wafer 200 by plasma CVD or the like (hereinafter, the silicon oxide film 16b is referred to as a second silicon oxide film 16b), and the second silicon oxide film 16b. The part corresponding to the some 1st recessed part 21a is removed.
  • a photoresist 17 is applied on the fifth surface 202 of the first wafer 200 so as to cover the thin film resistors 7, 8, 9 and the first silicon oxide film 16a.
  • patterning is performed by development to remove portions of the photoresist 17 corresponding to the plurality of through holes 23.
  • FIG. 3D using the photoresist 17 as a mask, portions of the first silicon oxide film 16a corresponding to the plurality of through holes 23 are removed by dry etching or the like.
  • the photoresist 17 is removed with an organic solvent such as acetone.
  • the portion of the first wafer 200 that becomes the through hole 23 is removed by dry etching or the like using the first silicon oxide film 16a as a mask.
  • the second silicon oxide film 16b is formed on the fourth surface 201, even if the etching gas introduced from the fifth surface 202 side flows through the through hole 23 to the fourth surface 201 side.
  • the etching gas flow is blocked by the second silicon oxide film 16b. Therefore, the etching gas is suppressed from flowing around to the fourth surface 201 side.
  • the first wafer 200 can be manufactured by the above procedure.
  • the second wafer 300 shown in FIG. 3J is prepared through the steps of FIGS. 3H to 3J. That is, a plate-like second wafer 300 having one surface 301 is prepared as a member constituting the second substrate 3 of the plurality of flow sensors 1 (hereinafter, the one surface 301 is referred to as the sixth surface 301).
  • the second wafer 300 a wafer made of a semiconductor or glass is prepared.
  • the second wafer 300 made of a silicon semiconductor is employed.
  • the second wafer 300 having this configuration can be manufactured, for example, by the following procedure.
  • a silicon oxide film 18 is formed on the sixth surface 301 of the second wafer 300 by plasma CVD or the like (hereinafter, the silicon oxide film 18 is referred to as a third silicon oxide film 18).
  • the silicon oxide film 18 is referred to as a third silicon oxide film 18.
  • portions of the third silicon oxide film 18 corresponding to the plurality of second recesses 31a are removed.
  • the portion of the second wafer 300 that becomes the second recess 31a is removed by dry etching or the like using the third silicon oxide film 18 as a mask.
  • the third silicon oxide film 18 is removed by dry etching or the like.
  • the second wafer 300 can be manufactured by the above procedure.
  • each of the plurality of second recesses 31a corresponds to the corresponding thin portion 22a of the plurality of thin portions 22a and the corresponding through hole 23 of the plurality of through holes 23.
  • the first wafer 200 and the second wafer 300 are bonded together so as to be included inward.
  • the second step is performed, and the following third step is performed after the second step.
  • the third step first, a plurality of workpieces shown in FIG. 3K are obtained by dicing a workpiece having a configuration in which the first wafer 200 and the second wafer 300 are bonded together into individual pieces.
  • each of the plurality of workpieces is bonded to the lead frame 5 via the adhesive 13.
  • the electric circuit unit 4 is mounted on the lead frame 5.
  • the first bonding wire 14 allows the three thin film resistors 7 to 9 to be electrically connected to the electric circuit unit 4 via different electrode pairs 10 to 12 disposed on the fifth surface 202 of the first wafer 200, respectively. Connect. Then, sealing with the mold resin 6 is performed.
  • the second recess 31a and the through hole 23 which are characteristic parts are formed in the wafer (first and second wafers 200 and 300), and the flow sensor 1 is formed on a single wafer. build up.
  • the second recess 31a that is a characteristic portion is formed in the second wafer 300, and the flow rate sensor 1 is manufactured by a manufacturing technique for forming the flow rate sensor 1 on a single wafer. can do. For this reason, in the manufacturing method of this flow sensor 1, it becomes possible to process simultaneously about several flow sensors 1 by a semiconductor process.
  • the flow sensor 1 is a flow sensor having the sensing units 7 and 9 that detect the flow rate of the fluid and output it as an electrical signal, and has the following characteristics.
  • the first substrate 2 and the second substrate 3 are provided. That is, the first substrate 2 includes a support substrate 20 having one end 2a and the other end 2b and having a first surface 21 and a second surface 22, and the first surface 21 on the first end 2a side of the support substrate 20 is first on the first surface 21. It has the thin part 22a made thin by forming the recessed part 21a.
  • the second substrate 3 has a third surface 31, and has a second recess 31 a formed in the third surface 31 so as to include the thin portion 22 a when viewed from the direction of the normal to the second surface 22.
  • the third surface 31 is bonded to the first substrate 2 while being in contact with the first surface 21 of the first substrate 2.
  • a gap is formed between the portion around the thin portion 22a of the first substrate 2 and the second substrate 3, and the periphery of the thin portion 22a. It is set as the structure fixed by the 2nd board
  • the flow rate sensor 1 in the first substrate 2, when viewed from the direction of the normal to the second surface 22, an area inside the second recess 31 a and an area around the thin portion 22 a. , A through hole 23 penetrating from the first surface 21 to the second surface 22 is formed.
  • the portion sandwiched between the thin portion 22a and the through hole 23 among the portions around the thin portion 22a in the first substrate 2 is expanded when the through hole is formed.
  • 23 can be expanded into the space in which the first substrate 2 and the second substrate 3 are bonded to the thin portion 22a, and stress due to strain generated on the surface where the first substrate 2 and the second substrate 3 are joined to the thin portion 22a is hardly transmitted to the thin portion 22a.
  • the generation of stress in the first substrate 2 is suppressed, and as a result, stress is hardly generated in the thin portion 22a of the first substrate 2.
  • the thickness of the first substrate 2 and the thickness of the second substrate 3 are compared as the length in the direction of the normal to the second surface 22 of the first substrate 2.
  • the second substrate 3 is thinner than the first substrate 2.
  • the second substrate is more easily deformed than the first substrate 2, that is, The first substrate 2 becomes difficult to deform, and as a result, the thin portion 22a becomes difficult to deform.
  • the distance between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is set to 100 ⁇ m or less.
  • the space formed between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is narrow, and the space The Reynolds number for the fluid flowing through
  • the method for manufacturing the flow sensor 1 includes the following first and second steps. That is, in the first step, first, a plate-shaped first having a fourth surface 201 and a fifth surface 202 opposite to the fourth surface 201 as a member constituting the first substrate 2 of the plurality of flow sensors 1.
  • a wafer 200 is prepared.
  • the fourth surface 201 corresponds to the first surface 21 of the first substrate 2, and the fifth surface 202 corresponds to the second surface 22.
  • a plurality of first recesses 21 a corresponding to the plurality of flow sensors 1 are formed on the fourth surface 201, so that a plurality of thin portions 22 a corresponding to the plurality of flow sensors 1 are formed.
  • a wafer having the structure is prepared.
  • a plate-like second wafer 300 having a sixth surface 301 is prepared as a member constituting the second substrate 3 of the plurality of flow sensors 1.
  • the first wafer 200 and the second wafer 300 are bonded together while the sixth surface 301 is in contact with the fourth surface 201.
  • each of the plurality of second recesses 31 a corresponds to the corresponding first recess 21 a among the plurality of first recesses 21 a and the corresponding through hole of the plurality of through holes 23.
  • the first wafer 200 and the second wafer 300 are bonded together so as to include the hole 23 inside.
  • a plurality of flow sensors 1 are manufactured at the same time without separately processing a plurality of members in separate manufacturing steps as in the conventional technique described above. Can do. Thereby, in the flow sensor 1 which concerns on this embodiment, a manufacturing process can be simplified rather than before.
  • FIGS. 4 to 6 A second embodiment of the present disclosure will be described with reference to FIGS. 4 to 6.
  • the configuration of the through hole 23 is changed with respect to the first embodiment. Since the rest is basically the same as that of the first embodiment, only the parts different from the first embodiment will be described.
  • the through hole 23 has a configuration in which the connecting portion between the first straight line 23a and the third straight line 23c and the connecting portion between the second straight line 23b and the third straight line 23c are bent at right angles. It was. However, as shown in FIGS. 4 and 5, in the present embodiment, the through hole 23 is connected to the connecting portion between the first straight line 23a and the third straight line 23c, and the connecting portion between the second straight line 23b and the third straight line 23c. Each portion has a plurality of portions bent at an obtuse angle.
  • connection portion between the first straight line 23a and the third straight line 23c, or the connection between the second straight line 23b and the third straight line 23c is difficult to concentrate on the part.
  • stress is concentrated on these connection portions and the connection portions are cracked. It is difficult to cause problems such as
  • the electric circuit unit 4 is formed in the second substrate 3.
  • the thin film resistors 7 and 9 that are sensing units, the thin film resistor 8 that is a heater, the first silicon oxide film 16a, and the like related to electrical connection are not shown.
  • the through electrode 19 penetrating from the first surface 21 to the second surface 22 for electrically connecting the electric circuit portion 4 and the second bonding wire 15 connected to the external output connection terminal 5a is provided in the first. By providing it on the substrate 2, electrical connection between the electric circuit portion 4 and the outside is made possible.
  • an electrode 19a is provided at the end of the through electrode 19 opposite to the end directed to the electric / BR> C circuit section 4, and the electrode 19a is an electrode pair. 10 and the first bonding wire 14, and the external output connection terminal 5 ⁇ / b> A and the second bonding wire 15 are electrically connected.
  • the flow sensor 1 according to the present embodiment is basically manufactured through the same process as a general IC manufacturing process. That is, the flow sensor 1 is manufactured through the above-described pre-process and post-process. Therefore, as in the first embodiment, only the characteristic part of the method for manufacturing the flow sensor 1 according to this embodiment will be described in detail here.
  • the manufacturing method of the flow sensor 1 includes the following first to third steps.
  • the first and second steps are steps included in the preceding step, and the third step is a step included in the subsequent step.
  • the first wafer 200 shown in FIG. 6G is prepared through the steps shown in FIGS. 6A to 6G. That is, a plate-like first wafer 200 having a fourth surface 201 and a fifth surface 202 is prepared as a member constituting the first substrate 2 of the plurality of flow sensors 1.
  • the first wafer 200 has a plurality of through electrodes 19 penetrating from the fourth surface 201 to the fifth surface 202 corresponding to the plurality of through electrodes 19 corresponding to the plurality of flow sensors 1 respectively.
  • the first wafer 200 having this configuration can be manufactured, for example, by the following procedure.
  • a first silicon oxide film 16a is formed on the fifth surface 202 of the first wafer 200 by plasma CVD or the like, and a plurality of flow sensors 1 are formed on the upper surface of the first silicon oxide film 16a.
  • a plurality of thin film resistors 7 to 9 corresponding to each are arranged.
  • a second silicon oxide film 16b is formed on the fourth surface 201 of the first wafer 200 by plasma CVD or the like, and portions corresponding to the plurality of first recesses 21a in the second silicon oxide film 16b are removed. To do.
  • FIG. 6A a first silicon oxide film 16a is formed on the fifth surface 202 of the first wafer 200 by plasma CVD or the like, and a plurality of flow sensors 1 are formed on the upper surface of the first silicon oxide film 16a.
  • a plurality of thin film resistors 7 to 9 corresponding to each are arranged.
  • a second silicon oxide film 16b is formed on
  • portions of the first silicon oxide film 16a corresponding to the plurality of through electrodes 19 are removed by dry etching or the like.
  • a portion of the first wafer 200 where the through electrode 19 is formed is removed by dry etching using the first silicon oxide film 16a as a mask.
  • the through electrode 19 is formed by metal plating such as copper on a portion of the first wafer 200 that is removed as a portion where the through electrode 19 is formed.
  • the electrode pair 10 and the electrode 19a are arranged.
  • the first wafer 200 is etched to remove the portion to be the first recess 21a on the fourth surface 201 of the first wafer 200, and then the second wafer 200 is dry-etched or the like.
  • the silicon oxide film 16b is removed.
  • the first wafer 200 can be manufactured by the above procedure.
  • the second wafer 300 shown in FIG. 6I is prepared through the steps shown in FIGS. 6H and 6I. That is, a plate-like second wafer 300 having a sixth surface 301 is prepared as a member constituting the second substrate 3 of the plurality of flow sensors 1. Since the second wafer 300 can be manufactured by the same method as in the first embodiment, the description of the manufacturing method of the second wafer 300 is omitted here.
  • the first step is performed, and in the second step after the first step, as in the case of the first embodiment, the sixth surface 301 is brought into contact with the fourth surface 201 as shown in FIG. 6J.
  • the first wafer 200 and the second wafer 300 are bonded together.
  • the following third step is performed after the second step. Since the third step is the same as in the case of the first embodiment, the description of the third step is omitted here.
  • the second recess 31a and the through hole 23 are formed in the wafer (first and second wafers 200 and 300), and the flow sensor 1 is formed as a single unit. Create on the wafer. For this reason, in the manufacturing method of this flow sensor 1, it becomes possible to process simultaneously about several flow sensors 1 by a semiconductor process.
  • the through electrode 19 can be formed in the same process as the process of forming the through hole 23. Therefore, in this manufacturing method, the flow sensor 1 having a configuration in which the through electrode 19 for enabling the electrical connection between the electric circuit unit 4 and the outside is provided on the first substrate 2 can be manufactured efficiently. it can.
  • the through hole 23 has a plurality of bent portions, each of the connecting portion between the first straight line 23a and the third straight line 23c and the connecting portion between the second straight line 23b and the third straight line 23c.
  • the through hole 23 is connected to the connecting portion between the first straight line 23a and the third straight line 23c, and the connecting portion between the second straight line 23b and the third straight line 23c.
  • Each of the portions has a curved portion.
  • the thin film resistors 7 and 9 that are sensing units, the thin film resistor 8 that is a heater, the first silicon oxide film 16a, and the electrode pairs 10 to 12 are related to electrical connection. The illustration is omitted.
  • connection portion between the first straight line 23a and the third straight line 23c and the connection between the second straight line 23b and the third straight line 23c are further increased than in the second embodiment. Stress is difficult to concentrate on the part. As a result, in the flow sensor 1 according to the present embodiment, compared to the second embodiment, stress is concentrated on these connection portions during the semiconductor process (for example, during the dicing process), and the connection portions are Problems such as cracking are less likely to occur.
  • FIGS. 9 and 10 A fourth embodiment of the present disclosure will be described with reference to FIGS. 9 and 10.
  • the configuration of the through hole 23 is changed with respect to the first embodiment. Since the rest is basically the same as that of the first embodiment, only the parts different from the first embodiment will be described.
  • the through hole 23 is configured such that the third straight line 23c is disposed on the opposite side of the other end 2b of the first substrate 2 with the thin portion 22a interposed therebetween.
  • the through hole 23 is configured such that the third straight line 23 c is disposed on the opposite side of the one end 2 a of the first substrate 2 with the thin portion 22 a interposed therebetween. ing.
  • the stress generated in the relationship between the second substrate 3 and the portion of the first substrate 2 on the other end 2 b side passes around the through hole 23.
  • the light is transmitted to the thin portion 22a through a path that goes around the region between the first straight line 23a and the second straight line 23b. That is, the stress at the other end is transmitted through a path as indicated by an arrow Y2 in FIG. Therefore, in this embodiment, the transmission path until the other end-induced stress reaches the thin portion 22a is longer than that in the first embodiment. Therefore, in the flow sensor 1 according to the present embodiment, the stress due to the other end is easily absorbed by the time it reaches the thin portion 22a, and the stress concentration on the thin portion 22a is easily relaxed.
  • FIGS. 11 and 12 A fifth embodiment of the present disclosure will be described with reference to FIGS. 11 and 12.
  • the through hole 23 is omitted and the shape of the second recess 31a is changed with respect to the second embodiment. Since the other parts are basically the same as those of the second embodiment, only portions different from those of the second embodiment will be described.
  • the second recess 31 a is located on the side of the one end 2 a of the second substrate 3 when viewed from the direction of the normal to the second surface 22. It is formed so as to include the entire portion. Therefore, in the present embodiment, the second substrate 3 is not brought into contact with the first surface 21 in the portion on the one end 2a side of the third surface 31 due to the formation of the second recess 31a. Of the three surfaces 31, at least a part of the portion on the other end 2 b side is brought into contact with the first surface 21. In the example of FIGS. 11 and 12, the second recess 31a is formed so as to be connected from the lower end to the upper end in the vertical direction of FIG. 11 and to the right end in the horizontal direction of FIG. Is formed.
  • the second substrate 3 is not brought into contact with the first surface 21 in the portion on the one end 2a side of the third surface 31 by forming the second recess 31a.
  • the third surface is in contact with the first surface 21 in at least a part of the portion on the other end 2b side.
  • the flow sensor 1 according to the present embodiment no stress is generated due to the relationship between the second substrate 3 and the portion of the first substrate 2 on the one end 2a side, and the stress caused by the other end is Is not transmitted to the portion on the one end 2a side. Therefore, in the flow sensor 1 according to the present embodiment, stress concentration on the thin portion 22a is suppressed even if the through hole 23 is not formed. Note that the through hole 23 may be formed in the flow sensor 1 according to the present embodiment.
  • the flow sensor 1 has a configuration in which the through hole 23 is formed.
  • the flow sensor 1 according to the first to fourth embodiments may have a configuration in which the through hole 23 is not formed.
  • the electric circuit unit 4 is manufactured in the second substrate 3. In the first and fourth embodiments, the electric circuit unit 4 is manufactured on the second substrate 3. It may be configured.
  • the thin portion 22a is configured by the first silicon oxide film 16a and the thin film resistors 7, 8, and 9.
  • the configuration of the thin portion 22a is not limited to this configuration.
  • the thin portion 22a may be constituted by the constituent material of the support substrate 20.
  • the second and third silicon oxide films 16b and 18 are removed, and the first substrate 2 and the second substrate 3 are connected. I was pasting them together.
  • the second and third silicon oxide films 16b and 18 may be left without being removed.
  • the second silicon oxide film 16b and the third silicon oxide film 18 are brought into contact (adhesion), and the first substrate 2 and the second substrate 3 are bonded together by the adhesive force between the oxide films 16b and 18. It can be set as the flow sensor 1 of a structure. In this case, the number of manufacturing steps is reduced as compared with the first to fifth embodiments, and the flow sensor 1 can be easily manufactured.
  • the present disclosure may be applied to the pressure sensor 1A.
  • This pressure sensor 1A is obtained by changing the basic configuration to a pressure sensor in the flow sensor 1 according to the first embodiment. Specifically, the sensing units 7 and 9 for detecting the flow rate of the fluid are changed to a sensing unit 7A configured by a piezoresistor or the like for detecting the pressure by the detection target, and the pressure reference chamber is configured.
  • a third substrate 20A having a concave portion is provided on the other surface 22 side of the first substrate 2. In the pressure sensor 1A, the through hole 23 is not formed.
  • substrate 3 is formed so that the thin part 22a may be included like the flow sensor 1 in 1st Embodiment.
  • a vent hole 22 ⁇ / b> A is formed on the bottom surface of the second recess 31 a of the second substrate 3 so as to penetrate from the bottom surface of the second recess 31 a to the surface 32 of the second substrate 3 opposite to the third surface 31.
  • the vent hole 22A is an inlet through which a fluid to be measured flows.
  • a fluid that is a detection object sequentially enters the second recess 31a of the second substrate 3 and the first recess 21a of the first substrate 2 from the air hole 22A, and the thin portion 22a is caused by the pressure of the fluid.
  • the piezoresistor formed in (1) changes, the pressure is detected by outputting an electric signal corresponding to the pressure. Since the air hole 22A has a very small size (for example, the diameter of the hole is several ⁇ m to several tens ⁇ m), the air hole 22A is provided in the air hole 22A as in the case of the prior art (the flow sensor described in Patent Document 1). It is difficult for foreign matter (metal scraps, organic matter, etc.) to enter the surface.
  • This air hole 22A can be formed by dry etching or the like. Also in this pressure sensor 1A, as in the case of the flow rate sensor 1 in the first embodiment, compared to the case where the pressure sensor 1A is fixed at the peripheral portion of the thin portion 22a, the second substrate 3 and the thin portion 22a are fixed. It becomes difficult to apply the stress caused by the relationship.
  • the members (see reference numeral 30A in FIGS. 13 and 14) arranged around the first substrate 2 are formed integrally with the mold resin 6 when the mold resin 6 is molded. is there.
  • the member 30A is molded so as to be in close contact with the second substrate 3 at the time of molding the mold.
  • the first of the mold resin constituting the member 30A around the first substrate 2 is formed.
  • the portion that has been in contact with the substrate 2 is removed by the laser irradiation.
  • a gap 31A is formed between the member 30A and the first substrate 2, and since this gap 31A is formed, at least a part of the member 30A is the first. 1 is separated from the substrate 2.
  • the member 30A when the gap 30A is formed and at least a part of the member 30A is separated from the first substrate 2, the member 30A is in close contact with the first substrate 2. As compared with the above, it is difficult to apply stress generated in relation to the member 30A to the thin portion 22a.
  • the member 30A functions as a portion that protects the first substrate 2.
  • the present disclosure may be applied to the temperature sensor 1B.
  • This temperature sensor 1B is obtained by changing the basic configuration of the flow rate sensor 1 according to the first embodiment to a temperature sensor. Specifically, the sensing units 7 and 9 for detecting the flow rate of the fluid are changed to a sensing unit 7B composed of a thermistor for detecting the temperature of the detection target, and a recess (reference numeral in FIG. 16). 21B) is provided on the other surface 22 side of the first substrate 2.
  • the bottom surface of the second recess 31a of the second substrate 3 extends from the bottom surface of the second recess 31a to the surface 32 of the second substrate 3 opposite to the third surface 31.
  • a penetrating air hole 22B is formed.
  • the fluid that is the detection object enters the second recess 31a of the second substrate 3 and the first recess 21a of the first substrate 2 in order from the air hole 22B, and the temperature of the thermistor depends on the temperature of the fluid.
  • the vent hole 22B is an inlet through which a fluid as a measurement object flows. Since the vent hole 22B has a very small size (for example, the diameter of the hole is several ⁇ m to several tens ⁇ m), the vent hole 22B is provided in the vent hole 22B as in the case of the prior art (the flow sensor described in Patent Document 1).
  • the vent hole 22B can be formed by dry etching or the like. Also in this pressure sensor 1A, as in the case of the flow rate sensor 1 in the first embodiment, compared to the case where the pressure sensor 1A is fixed at the peripheral portion of the thin portion 22a, the second substrate 3 and the thin portion 22a are fixed. It becomes difficult to apply the stress caused by the relationship.
  • the members (see reference numeral 30B in FIGS. 15 and 16) arranged around the first substrate 2 are formed integrally with the mold resin 6 when the mold resin 6 is molded. is there.
  • the gap 31B is formed so that at least a part of the member 30B is separated from the first substrate 2. Therefore, compared to the case where the member 30B is in close contact with the first substrate 2, it is difficult to apply the stress generated in relation to the member 30B to the thin portion 22a.
  • the member 30B also functions as a part that protects the first substrate 2.
  • a rectifying plate 30 for adjusting the flow of the fluid to be measured may be provided.
  • the rectifying plate 30 is made of a mold resin, and out of the periphery of the first substrate 2, the fluid upstream of the sensing units 7 and 9 in the direction of the second surface 22 of the first substrate 2 and the sensing unit 7. , 9 are arranged in close contact with the first substrate 2 on the downstream side.
  • the current plate 30 is made of a thermosetting resin such as an epoxy resin, and can be formed by a transfer molding method using a mold or a compression molding method.
  • the mold resin constituting the rectifying plate 30 is formed, that is, the first step.
  • the rectifying plate 30 is disposed in close contact with the second substrate 3, but the first substrate 2 has a through hole 23 formed therein. Therefore, the stress caused by the expansion and contraction of the rectifying plate 30 is not easily transmitted to the thin portion 22 a of the first substrate 2. As shown in FIG. 19, since the fluid cannot be rectified when the first substrate 2 protrudes upward in the drawing from the rectifying plate 30, in this flow sensor 1, the end of the rectifying plate 30 is It protrudes upward in the figure from one substrate 2.
  • a plate 30 may be provided.
  • the mold resin constituting the rectifying plate 30 is irradiated with a laser along the boundary between the rectifying plate 30 and the first substrate 2 on the first substrate 2 to be positioned around the first substrate 2.
  • the mold resin to be removed may be removed.
  • a gap 40 is formed between the rectifying plate 30 and the first substrate 2. At least a portion is separated from the first substrate 2.
  • the current plate 30 is fixed by being integrated with the mold resin 6.
  • the gap 40 is formed, at least a part of the rectifying plate 30 is separated from the first substrate 2, so that the rectifying plate 30 is in close contact with the first substrate 2.
  • the stress which arises by the relationship with the baffle plate 30 with respect to the thin part 22a becomes difficult to apply.
  • the gap 40 is formed by the irradiation of the laser.
  • the width of the gap 40 can be narrowed only by adjusting the laser or the like. That is, by narrowing the width of the gap 40, a problem that the flow of the fluid is inhibited due to the fluid flowing into the gap 40 is less likely to occur.

Abstract

This physical quantity sensor has: a first substrate (2), which is provided with a supporting substrate (20) having a first end (2a), a second end (2b), a first surface (21), and a second surface (22), and which has a thin section (22a); a second substrate (3), which has a third surface (31) and a second recessed section (31a), said third surface (31) being bonded to the first substrate (2), while being in contact with the first surface (21) of the first substrate (2); and sensing sections (7, 9, 7A, 7B), which detect a physical quantity of a subject to be detected, and which output the physical quantity as electric signals. This physical quantity sensor manufacturing method has: a step for preparing a first wafer (200) having a plurality of the thin sections (22a); a step for preparing a second wafer (300) having a plurality of the second recessed sections (31a) formed in a sixth surface (301); and a step for bonding the first wafer (200) and the second wafer (300) to each other.

Description

物理量センサ、および物理量センサの製造方法Physical quantity sensor and method of manufacturing physical quantity sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年4月24日に出願された日本国特許出願2014-90264号および2014年12月3日に出願された日本国特許出願2014-245251号、に基づくものであり、ここにその記載内容を参照により援用する。 This application is based on Japanese Patent Application No. 2014-90264 filed on April 24, 2014 and Japanese Patent Application No. 2014-245251 filed on December 3, 2014, and here The description is incorporated by reference.
 本開示は、物理量センサ、および物理量センサの製造方法に関する。 The present disclosure relates to a physical quantity sensor and a method for manufacturing the physical quantity sensor.
 従来、センシング部を備えるセンサチップが樹脂部材に貼り合わされると共に、センサチップの一面において該一面とは反対側の他面に凹部が形成されたことにより薄肉とされた薄肉部が形成され、被検出体の物理量を検出する物理量センサが用いられている。 Conventionally, a sensor chip having a sensing portion is bonded to a resin member, and a thin portion is formed on one surface of the sensor chip by forming a recess on the other surface opposite to the one surface. A physical quantity sensor that detects a physical quantity of a detection body is used.
 このようなセンサの1つとして、従来、流体の流量を検出する流量センサが知られている。この種の流量センサとしては、特許文献1に記載のものが提案されている。この流量センサは、被検出体である流体の流量を検出するためのセンシング部を有し、センシング部を備えるセンサチップが樹脂部材に貼り合わされた構成とされている。センサチップの一面には、該一面とは反対側の他面に凹部が形成されたことにより薄肉とされた薄肉部が形成されている。この流量センサでは、センサチップの一面のうち薄肉部に形成されたセンシング部によって、薄肉部の上方を流れる流体の流量を検出する。具体的には、この流量センサでは、薄肉部の上方を流体が通ると、センシング部が検出する温度分布に変化が生じ、これによって生じるセンシング部の検出温度の温度差による抵抗値変化を電気信号として出力することで、流体の流量を検出する。 As one of such sensors, a flow rate sensor that detects the flow rate of a fluid is conventionally known. As this type of flow sensor, one described in Patent Document 1 has been proposed. This flow sensor has a sensing unit for detecting a flow rate of a fluid that is a detection target, and a sensor chip including the sensing unit is bonded to a resin member. On one surface of the sensor chip, a thin portion is formed which is thinned by forming a recess on the other surface opposite to the one surface. In this flow sensor, the flow rate of the fluid flowing above the thin portion is detected by a sensing portion formed on the thin portion of one surface of the sensor chip. Specifically, in this flow sensor, when a fluid passes above the thin wall portion, a change occurs in the temperature distribution detected by the sensing unit, and a resistance value change due to the temperature difference of the detected temperature of the sensing unit caused thereby is detected as an electric signal. As a result, the flow rate of the fluid is detected.
 ここで、この流量センサでは、センサチップの凹部に流体が流れ込むことによる検出精度の低下を防止するために、上記の樹脂部材によってセンサチップの凹部が覆われた構成とされている。しかしながら、樹脂部材をセンサチップの他面の全面に(特に、薄肉部の周辺の部分に)接触する構成とした場合、樹脂とセンサチップとセンサチップを樹脂に固定する接着剤の線膨張係数の差異によって、周囲環境の温度が変化した際に歪が生じ、センサチップに発生する応力が大きくなる。この場合、ひいては、センサチップに形成された薄肉部にかかる応力が大きくなる。そして、センサチップに形成された薄肉部に応力が加えられて薄肉部が変形しまうと、流量センサのセンサ特性が変化して、流量センサの検出精度が低下するおそれがある。 Here, in this flow sensor, in order to prevent a decrease in detection accuracy due to fluid flowing into the recess of the sensor chip, the recess of the sensor chip is covered with the resin member. However, when the resin member is configured to come into contact with the entire other surface of the sensor chip (particularly the peripheral portion of the thin portion), the linear expansion coefficient of the adhesive that fixes the resin, the sensor chip, and the sensor chip to the resin is reduced. Due to the difference, distortion occurs when the temperature of the surrounding environment changes, and the stress generated in the sensor chip increases. In this case, eventually, the stress applied to the thin portion formed on the sensor chip increases. And if stress is applied to the thin part formed in the sensor chip and the thin part is deformed, the sensor characteristics of the flow sensor may change, and the detection accuracy of the flow sensor may be reduced.
 そこで、この流量センサでは、センサチップのうち薄肉部の周辺の部分、すなわち凹部の周辺の部分と樹脂部材との間に隙間が空いた構成とされると共に、センサチップが該凹部の周辺の部分以外の部分において樹脂部材によって支持された構成とされている。すなわち、センサチップは、センサチップのうち薄肉部から見て該凹部の周辺の部分よりも遠い部分において樹脂部材によって支持された構成とされている。このように、この流量センサでは、センサチップがセンサチップのうち薄肉部から遠い部分で樹脂部材に固定された構成とされることで、センサチップの薄肉部に対して樹脂部材との関係で生じる応力がかかり難くなるおそれがある。 Therefore, in this flow sensor, a portion around the thin portion of the sensor chip, that is, a portion around the concave portion and the resin member are configured to have a gap, and the sensor chip is a portion around the concave portion. It is set as the structure supported by the resin member in parts other than. That is, the sensor chip is configured to be supported by the resin member in a portion of the sensor chip that is farther from the peripheral portion of the recess as viewed from the thin portion. Thus, in this flow sensor, the sensor chip is configured to be fixed to the resin member at a portion far from the thin portion of the sensor chip, and thus occurs in relation to the resin member with respect to the thin portion of the sensor chip. There is a risk that it is difficult to apply stress.
 本願発明者は物理量センサに関して下記を見出した。 The inventors of the present application found the following regarding the physical quantity sensor.
 特許文献1に記載の流量センサでは、センサチップのうち凹部の周辺の部分と樹脂部材との間に隙間が空いた構成とされると共に、センサチップが該凹部の周辺の部分以外の部分が樹脂部材によって支持された構成とされている。このため、この流量センサでは、センサチップのうち凹部周辺の部分と樹脂部材との接触面積が小さくなって、薄肉部に応力がかかり難くなっている。ここで、上記の隙間に流体が浸入した場合、該隙間が広いと、該隙間を流れる流体が乱流となり易く、この流体が凹部内にまで回り込んだときに渦を生じ易い。そして、凹部内で渦が生じると、薄肉部に形成されたセンシング部が検出する温度分布を変化させてしまい、ひいては流量センサの検出精度を低下させるおそれがある。よって、この流量センサでは、浸入した流体が流量センサの検出精度を低下させ難い層流になり易くなるように、上記の隙間が狭い構成とされることが好ましい。しかしながら、該隙間を狭くしつつ樹脂部材にセンサチップを高精度に貼り付けることは容易ではなく、また、樹脂部材とセンサチップとを接着する接着剤が硬化するまでの時間、樹脂部材とセンサチップの位置関係を維持しなければならない。このように、この流量センサでは、製造が困難であるおそれがある。 In the flow sensor described in Patent Document 1, a gap is formed between the resin chip and the peripheral portion of the recess in the sensor chip, and the sensor chip has a resin portion other than the peripheral portion of the recess. It is the structure supported by the member. For this reason, in this flow sensor, the contact area between the resin chip and the portion around the recess in the sensor chip is small, and it is difficult for stress to be applied to the thin portion. Here, when the fluid enters the gap, if the gap is wide, the fluid flowing through the gap tends to be turbulent, and a vortex is likely to occur when the fluid wraps into the recess. And if a vortex arises in a recessed part, the temperature distribution which the sensing part formed in the thin part will change, and there exists a possibility that the detection accuracy of a flow sensor may fall by extension. Therefore, in this flow sensor, it is preferable that the gap be narrow so that the intruded fluid is likely to become a laminar flow that is difficult to reduce the detection accuracy of the flow sensor. However, it is not easy to attach the sensor chip to the resin member with high accuracy while narrowing the gap. Also, the time until the adhesive that bonds the resin member and the sensor chip is cured, the resin member and the sensor chip. Must maintain the positional relationship. Thus, there is a possibility that the flow sensor is difficult to manufacture.
 また、流量センサ以外の物理量センサ、例えば、被検出体の圧力を検出する圧力センサや被検出体の温度を検出する温度センサなどにおいても、同様の事情から同様の欠点が生じる。すなわち、圧力センサや温度センサなどにおいても、上記のようにセンサチップのうち凹部の周辺の部分と樹脂部材との間に隙間が空いた構成とした場合には、この隙間が広いと、隙間に異物(金属屑、有機物など)が入り込み、ひいてはセンシング部に付着して検出精度を低下させる等の問題が生じ得る。このため、圧力センサや温度センサなどにおいても、隙間が狭い構成とされることが好ましいが、隙間を狭くするには樹脂部材とセンサチップの位置関係を維持しなければならず、製造が困難となるおそれがある。 Also, physical defects other than the flow rate sensor, such as a pressure sensor that detects the pressure of the detection object and a temperature sensor that detects the temperature of the detection object, have the same drawbacks due to the same circumstances. That is, in a pressure sensor, a temperature sensor, etc., when the gap between the sensor chip and the resin member is formed as described above, if the gap is wide, Foreign matter (metal scrap, organic matter, etc.) may enter and eventually adhere to the sensing unit, causing problems such as a reduction in detection accuracy. For this reason, it is preferable that the gap be narrow in the pressure sensor, the temperature sensor, etc., but in order to narrow the gap, the positional relationship between the resin member and the sensor chip must be maintained, which is difficult to manufacture. There is a risk.
 また、上記したように、特許文献1に記載の流量センサは、ウェハをカットして1枚単位とされたセンサチップに対して樹脂部材を貼り合わせることによって製造される。すなわち、この流量センサの製造においては、センサチップを製造する工程とセンサチップに対して樹脂部材を貼り合わせる工程という別個の製造工程において別個に加工する必要があり、製造工程が複雑となるおそれがある。 Further, as described above, the flow sensor described in Patent Document 1 is manufactured by cutting a wafer and attaching a resin member to a sensor chip that is made into a unit. That is, in the production of the flow sensor, it is necessary to process the sensor chip separately in a separate manufacturing process such as a process of manufacturing the sensor chip and a process of bonding the resin member to the sensor chip, which may complicate the manufacturing process. is there.
日本国公開特許公報2010-160092号Japanese Published Patent Publication No. 2010-160092
 本開示は上記点に鑑みて、凹部が形成されることにより薄肉とされた薄肉部を有し、薄肉部の表面にセンシング部が形成された物理量センサにおいて、薄肉部に応力がかかり難く、製造容易な構成を提供することを目的とする。 In view of the above points, the present disclosure has a thin portion that is thinned by forming a recess, and a physical quantity sensor in which a sensing portion is formed on the surface of the thin portion, it is difficult to apply stress to the thin portion, An object is to provide an easy configuration.
 本開示の一態様に係る物理量センサによれば、物理量センサは、第1端および第1端とは反対側の第2端を有すると共に第1面および第1面とは反対側の第2面を有する支持基板を備え、支持基板の第1端の側における第1面の第1凹部を備える薄肉部を有する第1基板と、第3面を有し、第2面に対する法線の方向から見て、薄肉部を内包して第3面に備えられた第2凹部を有すると共に、第3面が第1基板の第1面に接触させられつつ第1基板に貼り合わされた第2基板と、薄肉部における第2面に備えられ、被検出体の物理量を検出して電気信号として出力するセンシング部と、を有する。 According to the physical quantity sensor according to one aspect of the present disclosure, the physical quantity sensor has the first end and the second end opposite to the first end, and the first surface and the second surface opposite to the first surface. A first substrate having a thin portion with a first recess on the first surface on the first end side of the support substrate, a third surface, and a direction normal to the second surface As seen, the second substrate includes a second concave portion included in the third surface including the thin portion, and the third surface is bonded to the first substrate while being in contact with the first surface of the first substrate; And a sensing unit that is provided on the second surface of the thin-walled portion and detects a physical quantity of the detected object and outputs it as an electrical signal.
 本開示の一態様に係る物理量センサの製造方法によれば、物理量センサの製造方法は、物理量センサの製造方法は、複数の物理量センサの第1基板を構成する部材として、第4面および第4面とは反対側の第5面を有する板状とされ、複数の物理量センサそれぞれに対応した複数の第1凹部が第4面に形成されたことにより複数の薄肉部を有する第1ウェハを用意することと、複数の物理量センサの第2基板を構成する部材として、第6面を有する板状とされ、複数の物理量センサそれぞれに対応した複数の第2凹部が第6面に形成された第2ウェハを用意することと、第1ウェハと第2ウェハの用意の後に、第6面に対する法線の方向から見て、複数の第2凹部それぞれが複数の第1凹部のうち対応する第1凹部を内方に含むように、第6面を第4面に接触させつつ第1ウェハと第2ウェハとを貼り合わせることと、を有する。 According to the physical quantity sensor manufacturing method according to an aspect of the present disclosure, the physical quantity sensor manufacturing method includes the fourth surface and the fourth surface as members constituting the first substrate of the plurality of physical quantity sensors. A first wafer having a plurality of thin portions is prepared by forming a plurality of first recesses corresponding to each of the plurality of physical quantity sensors on the fourth surface, and having a fifth surface opposite to the surface. And a plate having a sixth surface as a member constituting the second substrate of the plurality of physical quantity sensors, and a plurality of second recesses corresponding to each of the plurality of physical quantity sensors are formed on the sixth surface. After preparing two wafers and preparing the first wafer and the second wafer, each of the plurality of second recesses corresponds to the first corresponding to the plurality of first recesses when viewed from the direction of the normal to the sixth surface. So as to include a recess inward. Has a attaching the first wafer and the second wafer while contacting the surface to the fourth surface, the.
 本開示に係る物理量センサおよび物理量センサの製造方法によれば、第1基板のうち薄肉部の周辺の部分と第2基板との間に隙間が空いた構成とされると共に、薄肉部の周辺の部分以外の部分において第2基板によって固定される。よって、薄肉部の周辺の部分で固定された場合に比べて、薄肉部に対して第2基板との関係で生じる応力がかかり難くなる。これにより、薄肉部に応力が加えられて薄肉部が変形することによる物理量センサの検出精度の低下を抑制できる。 According to the physical quantity sensor and the manufacturing method of the physical quantity sensor according to the present disclosure, a gap is formed between the portion around the thin portion of the first substrate and the second substrate, and the periphery of the thin portion is arranged. The portion other than the portion is fixed by the second substrate. Therefore, compared with the case where the thin portion is fixed at the peripheral portion, it is difficult to apply stress generated in relation to the second substrate to the thin portion. Thereby, the fall of the detection accuracy of the physical quantity sensor by stress being applied to the thin part and the thin part being deformed can be suppressed.
 本開示についての上記および他の目的、特徴や利点は、添付の図面を参照した下記の詳細な説明から、より明確になる。添付図面において
図1は、第1実施形態に係る流量センサの平面構成を示す図であり、 図2は、図1に示す流量センサのII-II断面を示す図であり、 図3Aは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Bは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Cは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Dは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Eは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Fは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Gは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Hは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Iは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Jは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図3Kは、図1に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図4は、第2実施形態に係る流量センサの平面構成を示す図であり、 図5は、図4に示す流量センサのV-V断面構成を示す図であり、 図6Aは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Bは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Cは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Dは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Eは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Fは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Gは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Hは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Iは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図6Jは、図4に示す流量センサの製造工程中のワークの断面構成を示した図であり、 図7は、第3実施形態に係る流量センサの平面構成を示す図であり、 図8は、図7に示す流量センサのVIII-VIII断面構成を示す図であり、 図9は、第4実施形態に係る流量センサの平面構成を示す図であり、 図10は、図9に示す流量センサのX-X断面構成を示す図であり、 図11は、第5実施形態に係る流量センサの平面構成を示す図であり、 図12は、図11に示す流量センサのXII-XII断面構成を示す図であり、 図13は、他の実施形態に係る圧力センサの平面構成を示す図であり、 図14は、図13に示す圧力センサのXIV-XIV断面構成を示す図であり、 図15は、他の実施形態に係る温度センサの平面構成を示す図であり、 図16は、図15に示す温度センサのXVI-XVI断面構成を示す図であり、 図17は、他の実施形態に係る流量センサの平面構成を示す図であり、 図18は、図17に示す流量センサのXVIII-XVIII断面構成を示す図であり、 図19は、図17に示す流量センサのXIX-XIX断面構成を示す図であり、 図20は、別の他の実施形態に係る流量センサの平面構成を示す図であり、 図21は、図20に示す流量センサのXXI-XXI断面構成を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the attached drawings
FIG. 1 is a diagram illustrating a planar configuration of a flow sensor according to the first embodiment. FIG. 2 is a cross-sectional view taken along the line II-II of the flow sensor shown in FIG. FIG. 3A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3B is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3C is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3D is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3E is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3F is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3G is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3H is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3I is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3J is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 3K is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 4 is a diagram illustrating a planar configuration of the flow sensor according to the second embodiment, FIG. 5 is a diagram showing a VV cross-sectional configuration of the flow sensor shown in FIG. FIG. 6A is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6B is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6C is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6D is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6E is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6F is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6G is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6H is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6I is a diagram showing a cross-sectional configuration of a workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 6J is a diagram showing a cross-sectional configuration of the workpiece during the manufacturing process of the flow sensor shown in FIG. FIG. 7 is a diagram illustrating a planar configuration of the flow sensor according to the third embodiment, FIG. 8 is a diagram showing a VIII-VIII cross-sectional configuration of the flow sensor shown in FIG. FIG. 9 is a diagram illustrating a planar configuration of the flow sensor according to the fourth embodiment. FIG. 10 is a diagram showing the XX cross-sectional configuration of the flow sensor shown in FIG. FIG. 11 is a diagram illustrating a planar configuration of the flow sensor according to the fifth embodiment. 12 is a diagram showing a cross-sectional configuration of the flow sensor shown in FIG. 11 taken along line XII-XII. FIG. 13 is a diagram illustrating a planar configuration of a pressure sensor according to another embodiment. FIG. 14 is a diagram showing a cross-sectional configuration of the pressure sensor shown in FIG. FIG. 15 is a diagram illustrating a planar configuration of a temperature sensor according to another embodiment. 16 is a diagram showing a cross-sectional configuration of the temperature sensor shown in FIG. 15 taken along the line XVI-XVI. FIG. 17 is a diagram illustrating a planar configuration of a flow sensor according to another embodiment, 18 is a diagram showing a cross-sectional configuration of the flow sensor shown in FIG. 17 taken along XVIII-XVIII. FIG. 19 is a view showing a cross-sectional configuration of the flow sensor shown in FIG. FIG. 20 is a diagram illustrating a planar configuration of a flow sensor according to another embodiment, FIG. 21 is a view showing a cross-sectional configuration of the flow sensor shown in FIG. 20 taken along XXI-XXI.
 以下、本開示の実施形態について図1~図21に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to FIGS. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態に係る物理量センサに相当する流量センサ1について図1~図3Kを参照して説明する。流量センサ1は、流体の流量を検出する流量計であり、ここでは一例として熱式流量計とされている。流量センサ1は、用途が限定されるものではないが、例えば、自動車に搭載され自動車用エンジンの吸入空気量や排気量などを測定するエアフロメータ(熱式流量計)として用いられる。
(First embodiment)
A flow sensor 1 corresponding to the physical quantity sensor according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3K. The flow sensor 1 is a flow meter that detects a flow rate of a fluid, and is a thermal flow meter as an example here. The use of the flow sensor 1 is not limited. For example, the flow sensor 1 is used as an air flow meter (thermal flow meter) that is mounted on an automobile and measures an intake air amount or an exhaust amount of an automobile engine.
 図1、図2に示すように、流量センサ1は、流体の流量を検出するためのセンシング部7、9を有するセンサであって、第1基板2と、第2基板3と、電気回路部4と、リードフレーム5と、モールド樹脂6とを有する構成とされている。 As shown in FIGS. 1 and 2, the flow sensor 1 is a sensor having sensing units 7 and 9 for detecting the flow rate of fluid, and includes a first substrate 2, a second substrate 3, and an electric circuit unit. 4, a lead frame 5, and a mold resin 6.
 図1、図2に示すように、第1基板2は、支持基板20を備えた構成とされている。支持基板20は、シリコン半導体などの半導体もしくはガラスなどで構成された板状のチップである。図1、図2に示すように、支持基板20は、一端2aおよび一端2aとは反対側の他端2bを有すると共に、一面21および一面21とは反対側の他面22を有する。以下、一面21を第1面21といい、他面22を第2面22という。一端2aは第1端ともいい、他端2bは第2端ともいう。 As shown in FIGS. 1 and 2, the first substrate 2 is configured to include a support substrate 20. The support substrate 20 is a plate-like chip made of a semiconductor such as a silicon semiconductor or glass. As shown in FIGS. 1 and 2, the support substrate 20 has one end 2 a and the other end 2 b opposite to the one end 2 a, and one surface 21 and another surface 22 opposite to the one surface 21. Hereinafter, the one surface 21 is referred to as a first surface 21, and the other surface 22 is referred to as a second surface 22. The one end 2a is also called a first end, and the other end 2b is also called a second end.
 図2に示すように、第1基板2の第2面22には、シリコン酸化膜16aが形成されている(以下、シリコン酸化膜16aを第1シリコン酸化膜16aという)。第1シリコン酸化膜16aは、プラズマCVDなどにより成膜される。 As shown in FIG. 2, a silicon oxide film 16a is formed on the second surface 22 of the first substrate 2 (hereinafter, the silicon oxide film 16a is referred to as a first silicon oxide film 16a). The first silicon oxide film 16a is formed by plasma CVD or the like.
 図2に示すように、第1基板2の一端2aの側における第1面21には、凹部21aが形成されている(以下、凹部21aを第1凹部21aという)。本実施形態に係る流量センサ1では、第1凹部21aが形成されていることにより、第1基板2の第2面22側には、薄肉とされた薄肉部22aが構成されている。具体的には、本実施形態では、第1凹部21aが形成されたことにより、支持基板20は、貫通した構成とされており、薄肉部22aは、第1シリコン酸化膜16aおよび後述する薄膜抵抗体7、8、9によって構成されている。なお、第1凹部21aは、異方性エッチングなどにより形成される。なお、薄肉部の厚さは、例えば、数μm以下である。 As shown in FIG. 2, a recess 21a is formed in the first surface 21 on the one end 2a side of the first substrate 2 (hereinafter, the recess 21a is referred to as a first recess 21a). In the flow rate sensor 1 according to the present embodiment, the first recess 21 a is formed, so that a thin portion 22 a is formed on the second surface 22 side of the first substrate 2. Specifically, in the present embodiment, since the first recess 21a is formed, the support substrate 20 is configured to penetrate, and the thin portion 22a includes the first silicon oxide film 16a and a thin film resistor described later. It is comprised by the bodies 7, 8, and 9. The first recess 21a is formed by anisotropic etching or the like. The thickness of the thin portion is, for example, several μm or less.
 図1、図2に示すように、第1基板2には、後述する第2凹部31aの内方の領域であって薄肉部22aの周囲の領域において、第1面21から第2面22まで貫通する貫通孔23が形成されている。貫通孔23が形成されていることにより、本実施形態に係る流量センサ1では、第1基板2における薄肉部22aの周囲の部分のうち薄肉部22aと貫通孔23の間に挟まれた部分は、膨張する際において、貫通孔23が形成された空間に膨張できると共に、薄肉部22aに対して貫通孔23を挟んだ第1基板2と第2基板3が接合された面で生じる歪による応力が薄肉部22aに伝達されにくくなる。よって、本実施形態では、第1基板2における応力の発生が抑制され、ひいては第1基板2の薄肉部22aに応力が発生し難くなる。 As shown in FIGS. 1 and 2, the first substrate 2 includes a first surface 21 to a second surface 22 in an inner region of a second recess 31a described later and in a region around the thin portion 22a. A penetrating through hole 23 is formed. Since the through hole 23 is formed, in the flow sensor 1 according to this embodiment, the portion sandwiched between the thin portion 22a and the through hole 23 in the portion around the thin portion 22a in the first substrate 2 is When expanding, the stress due to strain generated on the surface where the first substrate 2 and the second substrate 3 sandwiching the through hole 23 with respect to the thin portion 22a can be expanded into the space in which the through hole 23 is formed. Becomes difficult to be transmitted to the thin portion 22a. Therefore, in the present embodiment, the generation of stress in the first substrate 2 is suppressed, and as a result, stress is hardly generated in the thin portion 22a of the first substrate 2.
 図1に示すように、本実施形態では、貫通孔23は、第2面22に対する法線の方向(図1の紙面に対する法線の方向)から見て、第1直線23aと、第2直線23bと、第3直線23cとによってUの字状に構成されている。ここで、第2直線23bは、薄肉部22aを挟んで第1直線23aとは反対側に配置された直線である。なお、ここでは一例として、第2直線23bを、第1直線23aと平行な直線としているが、必ずしも、第2直線23bを、第1直線23aと平行な直線とする必要はない。また、第3直線23cは、第1直線23aと第2直線23bとを連結する直線である。 As shown in FIG. 1, in the present embodiment, the through hole 23 has a first straight line 23 a and a second straight line as viewed from the direction of the normal to the second surface 22 (the direction of the normal to the paper surface of FIG. 1). 23b and the third straight line 23c form a U-shape. Here, the 2nd straight line 23b is a straight line arrange | positioned on the opposite side to the 1st straight line 23a on both sides of the thin part 22a. Here, as an example, the second straight line 23b is a straight line parallel to the first straight line 23a, but the second straight line 23b is not necessarily a straight line parallel to the first straight line 23a. The third straight line 23c is a straight line connecting the first straight line 23a and the second straight line 23b.
 図1に示すように、本実施形態では、貫通孔23は、第2面22に対する法線の方向から見て、第1直線23aと第3直線23cとの連結部分、および、第2直線23bと第3直線23cとの連結部分が、それぞれ、直角に折れ曲がった構成とされている。 As shown in FIG. 1, in the present embodiment, the through hole 23 is a connection portion between the first straight line 23 a and the third straight line 23 c and the second straight line 23 b when viewed from the direction of the normal to the second surface 22. And the third straight line 23c are bent at right angles.
 なお、図1に示すように、本実施形態では、貫通孔23は、第2面22に対する法線の方向から見て、第3直線23cが薄肉部22aを挟んで第1基板2の他端2bの反対側に配置された構成とされている。 As shown in FIG. 1, in the present embodiment, the through hole 23 has the other end of the first substrate 2 with the third straight line 23 c sandwiching the thin portion 22 a when viewed from the direction normal to the second surface 22. It is set as the structure arrange | positioned on the opposite side of 2b.
 また、図1、図2に示すように、第1基板2の第2面22には、アルミ、白金などの金属やイオン注入により部分的にドーピングされたシリコンなどで構成された3つの薄膜抵抗体7、8、9が形成されている。具体的には、図1に示すように、第1基板2の薄肉部22aにおける第2面22において、流体の流れの上流側に薄膜抵抗体7、下流側に薄膜抵抗体9が形成されており、薄膜抵抗体7と薄膜抵抗体9との間の中間位置に薄膜抵抗体8が形成されている。なお、図2に示すように、3つの薄膜抵抗体7、8、9は、第1シリコン酸化膜16aの上面に形成されている。 As shown in FIGS. 1 and 2, the second surface 22 of the first substrate 2 has three thin film resistors made of a metal such as aluminum or platinum or silicon partially doped by ion implantation. The bodies 7, 8, and 9 are formed. Specifically, as shown in FIG. 1, on the second surface 22 of the thin portion 22a of the first substrate 2, a thin film resistor 7 is formed on the upstream side of the fluid flow, and a thin film resistor 9 is formed on the downstream side. A thin film resistor 8 is formed at an intermediate position between the thin film resistor 7 and the thin film resistor 9. As shown in FIG. 2, the three thin film resistors 7, 8, and 9 are formed on the upper surface of the first silicon oxide film 16a.
 図1、図2に示すように、3つの薄膜抵抗体7~9は、それぞれ、第2面22に配置された異なる電極対10(10a、10b)、11(11a、11b)、12(12a、12b)を介して、第1ボンディングワイヤ14により電気回路部4と電気的に接続される。3つの薄膜抵抗体7および9は、それぞれ、図示しないブリッジ回路の一部を構成しており、センシング部として構成されている。また、薄膜抵抗体8は、温度センサである2つの薄膜抵抗体7、9が検出する温度の差を大きくするためのヒータ(発熱体)として構成されている。なお、電極対10~12は、金などで構成されている。 As shown in FIG. 1 and FIG. 2, the three thin film resistors 7 to 9 have different electrode pairs 10 (10a, 10b), 11 (11a, 11b), 12 (12a) disposed on the second surface 22, respectively. , 12b) and is electrically connected to the electric circuit portion 4 by the first bonding wire 14. Each of the three thin film resistors 7 and 9 constitutes a part of a bridge circuit (not shown), and is configured as a sensing unit. The thin film resistor 8 is configured as a heater (heating element) for increasing the difference in temperature detected by the two thin film resistors 7 and 9 which are temperature sensors. The electrode pairs 10 to 12 are made of gold or the like.
 本実施形態に係る流量センサ1では、第1基板2の第2面22のうち薄肉部22aの上方を流体が通ると(図1、図2中の符号Y1を参照)、センシング部7、9が検出する温度分布が変化する。これにより、ヒータである薄膜抵抗体8よりも上流側に配置された薄膜抵抗体7が冷却されると共に、下流側に配置された薄膜抵抗体9がヒータ(薄膜抵抗体8)の熱によって加熱される。このとき、2つの温度センサ(薄膜抵抗体7、9)が検出する温度の温度差によって生じる抵抗値変化を電気信号として出力することで、流体の流量を検出する。 In the flow sensor 1 according to the present embodiment, when the fluid passes above the thin portion 22a of the second surface 22 of the first substrate 2 (see the reference numeral Y1 in FIGS. 1 and 2), the sensing portions 7 and 9 are used. Changes the temperature distribution detected by. As a result, the thin film resistor 7 disposed upstream of the thin film resistor 8 serving as a heater is cooled, and the thin film resistor 9 disposed downstream is heated by the heat of the heater (thin film resistor 8). Is done. At this time, the flow rate of the fluid is detected by outputting a resistance value change caused by the temperature difference between the temperatures detected by the two temperature sensors (thin film resistors 7 and 9) as an electrical signal.
 なお、上記したように、本実施形態に係る流量センサ1では、3つの薄膜抵抗体7~9が第1基板2のうち熱容量の小さい部分である薄肉部22aの上まで延設されて、薄肉部22aの上方にて流体の流量を検出する構成とされている。このため、本実施形態に係る流量センサ1では、ヒータ(薄膜抵抗体8)が発する熱などの熱が薄肉部22aに篭り難くなり、流体の流量変化による熱応答性が良好であり、流量センサ1の検出感度が高くなる。 Note that, as described above, in the flow sensor 1 according to the present embodiment, the three thin film resistors 7 to 9 are extended over the thin portion 22a, which is a portion of the first substrate 2 having a small heat capacity, so as to be thin. The flow rate of the fluid is detected above the portion 22a. For this reason, in the flow sensor 1 according to the present embodiment, heat such as the heat generated by the heater (thin film resistor 8) is not easily applied to the thin-walled portion 22a, and the thermal response due to a change in the flow rate of the fluid is good. The detection sensitivity of 1 becomes high.
 なお、図2に示すように、第1基板2は、他端2bの側において、リードフレーム5に対して、導電性あるいは電気絶縁性の接着剤13を介して接着されて固定されている。 Note that, as shown in FIG. 2, the first substrate 2 is bonded and fixed to the lead frame 5 via a conductive or electrically insulating adhesive 13 on the other end 2b side.
 本実施形態に係る流量センサ1では、流体が第1基板2の第2面22のうち薄肉部22aの上方において流れたときに(図1、図2中の符号Y1を参照)、2つの温度センサ(薄膜抵抗体7、9)の間に流体の流量に対応した温度差が生じる。これによって、ブリッジ回路の平衡が変化して電気的変化が生じることとなる。この流量センサ1では、この電気的変化を流体の流量に対応した電気信号として得ることで、第1基板2の第2面22のうち薄肉部22aの上方を流れる流体の流量を検出する。 In the flow sensor 1 according to the present embodiment, when the fluid flows above the thin portion 22a of the second surface 22 of the first substrate 2 (see Y1 in FIGS. 1 and 2), two temperatures are used. A temperature difference corresponding to the flow rate of the fluid occurs between the sensors (thin film resistors 7, 9). As a result, the balance of the bridge circuit changes and an electrical change occurs. The flow sensor 1 detects the flow rate of the fluid flowing above the thin portion 22a in the second surface 22 of the first substrate 2 by obtaining this electrical change as an electrical signal corresponding to the fluid flow rate.
 第2基板3は、シリコン半導体などの半導体もしくはガラスなどで構成された板状のチップである。図2に示すように、第2基板3は、一面31を有する(以下、一面31を第3面31という)。第2基板3は、第3面31が第1基板2の第1面21に接触させられつつ第1基板2に貼り合わされている。 The second substrate 3 is a plate-shaped chip made of a semiconductor such as a silicon semiconductor or glass. As shown in FIG. 2, the second substrate 3 has one surface 31 (hereinafter, the one surface 31 is referred to as the third surface 31). The second substrate 3 is bonded to the first substrate 2 while the third surface 31 is in contact with the first surface 21 of the first substrate 2.
 図1、図2に示すように、第3面31には、凹部31aが形成されている(以下、凹部31aを第2凹部31aという)。第2凹部31aは、第2面22に対する法線の方向(図1の紙面に対する法線の方向)から見て、薄肉部22aを内包するように第3面31に形成されている。 1 and 2, the third surface 31 has a recess 31a (hereinafter, the recess 31a is referred to as a second recess 31a). The second recess 31a is formed on the third surface 31 so as to include the thin portion 22a when viewed from the direction of the normal to the second surface 22 (direction of the normal to the paper surface of FIG. 1).
 流量センサ1では、第2凹部31aが形成されていることにより、第1基板2の第1面21における第1凹部21aの外側周辺の部分のうち第2凹部31aに対向する部分が、第2基板3の第3面31と接触せずに、第2凹部31aとの間に隙間が空いている。こうして、本実施形態に係る流量センサ1では、第1基板2のうち薄肉部22aの周辺の部分と第2基板3との間に隙間が空いた構成とされると共に、薄肉部22aの周辺の部分以外の部分において第2基板3によって固定された構成とされている。このように、流量センサ1では、第1基板2が第1基板2のうち薄肉部22aから遠い部分で第2基板3に固定されているため、薄肉部22aの周辺の部分で固定された場合に比べて、薄肉部22aに対して第2基板3との関係で生じる応力がかかり難くなる。これにより、本実施形態に係る流量センサ1では、薄肉部22aに応力が加えられて薄肉部22aが変形してしまって流量センサの検出精度を低下してしまうことが生じ難くなる。 In the flow sensor 1, since the second recess 31 a is formed, a portion of the first surface 21 of the first substrate 2 that is opposed to the second recess 31 a in the outer peripheral portion of the first recess 21 a is second. There is a gap between the second recess 31 a without contacting the third surface 31 of the substrate 3. Thus, in the flow sensor 1 according to the present embodiment, the first substrate 2 is configured to have a gap between the portion around the thin portion 22a and the second substrate 3, and the periphery of the thin portion 22a. The portion other than the portion is fixed by the second substrate 3. Thus, in the flow sensor 1, since the 1st board | substrate 2 is being fixed to the 2nd board | substrate 3 in the part far from the thin part 22a among the 1st board | substrates 2, when fixed in the peripheral part of the thin part 22a As compared with the above, it is difficult to apply stress generated in relation to the second substrate 3 to the thin portion 22a. As a result, in the flow sensor 1 according to the present embodiment, it is difficult for stress to be applied to the thin portion 22a and the thin portion 22a to be deformed to reduce the detection accuracy of the flow sensor.
 なお、本実施形態に係る流量センサ1では、第1基板2の第2面22に対する法線の方向における長さとしての第1基板2の厚さおよび第2基板3の厚さを比較したときに、第2基板3が第1基板2よりも薄い構成とされている。このため、本実施形態に係る流量センサ1では、第1基板2および第2基板3が温度変化により膨張、収縮するときに、第1基板2よりも第2基板3の方が変形し易く、すなわち第1基板2が変形し難くなる。したがって、さらに薄肉部22aが変形し難くなる。 In the flow sensor 1 according to the present embodiment, when the thickness of the first substrate 2 and the thickness of the second substrate 3 are compared as the length in the direction of the normal to the second surface 22 of the first substrate 2. In addition, the second substrate 3 is thinner than the first substrate 2. For this reason, in the flow sensor 1 according to the present embodiment, when the first substrate 2 and the second substrate 3 expand and contract due to a temperature change, the second substrate 3 is more easily deformed than the first substrate 2, That is, the first substrate 2 is difficult to deform. Therefore, the thin-walled portion 22a is not easily deformed.
 また、第1基板2の第1面21と第2基板3の第2凹部31aの底面との間の距離が100μm以下とされている。このため、本実施形態に係る流量センサ1では、第1基板2の第1面21と第2基板3の第2凹部31aの底面との間に形成された空間が狭くなっている。したがって、該空間を流れる流体についてのレイノルズ数は小さくなり、本実施形態に係る流量センサ1では、流体が外部から貫通孔23に浸入して、ひいては第2基板3の第2凹部31aに浸入したとしても、浸入した流体は乱流ではなく層流となり易い。よって、該浸入した流体が第1凹部21aにまで回り込んだ場合においても、この流体が第1凹部21a内において渦を生じさせる事態とはなり難いため、流量センサ1の検出精度に与える影響は少なくなり易い。 Further, the distance between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is set to 100 μm or less. For this reason, in the flow sensor 1 according to the present embodiment, the space formed between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is narrow. Therefore, the Reynolds number of the fluid flowing through the space is reduced, and in the flow sensor 1 according to the present embodiment, the fluid enters the through hole 23 from the outside and eventually enters the second recess 31a of the second substrate 3. However, the infiltrated fluid tends to be laminar rather than turbulent. Therefore, even when the infiltrated fluid reaches the first recess 21a, the fluid is unlikely to cause a vortex in the first recess 21a. It tends to decrease.
 電気回路部4は、センシング部7、9が検出して出力した電気信号について演算処理を実行する電気回路を有する回路チップである。電気回路部4は、後述する外部出力用接続端子5aに接続された第2ボンディングワイヤ15を介して外部と電気的に接続されており、これにより、電気回路部4によって演算処理された結果として得られる電気信号が外部へ出力される。電気回路部4は、例えば、2つの温度センサ(薄膜抵抗体7、9)が検出した電気信号が示す流量信号と、予め所定の流量が設定された設定流量信号とを比較する演算処理を行い、その結果としての電気信号を外部に出力する。図1、図2に示すように、電気回路部4は、リードフレーム5に搭載されて支持されている。 The electrical circuit unit 4 is a circuit chip having an electrical circuit that performs arithmetic processing on the electrical signals detected and output by the sensing units 7 and 9. The electric circuit unit 4 is electrically connected to the outside through a second bonding wire 15 connected to an external output connection terminal 5a, which will be described later. As a result of calculation processing by the electric circuit unit 4, The obtained electrical signal is output to the outside. For example, the electric circuit unit 4 performs arithmetic processing for comparing a flow rate signal indicated by an electrical signal detected by two temperature sensors (thin film resistors 7 and 9) and a set flow rate signal in which a predetermined flow rate is set in advance. The resulting electrical signal is output to the outside. As shown in FIGS. 1 and 2, the electric circuit portion 4 is mounted on and supported by a lead frame 5.
 リードフレーム5は、Cuや42アロイなどの導電性に優れた金属よりなるもので、エッチングやプレスなどにより形成されたものである。図1、図2に示すように、リードフレーム5は、電気回路部4と外部との電気的接続のための外部出力用接続端子5aを有する。図1、図2に示すように、リードフレーム5は、第1基板2を積載した第2基板3、および、電気回路部4を搭載して支持している。 The lead frame 5 is made of a metal having excellent conductivity such as Cu or 42 alloy, and is formed by etching or pressing. As shown in FIGS. 1 and 2, the lead frame 5 has an external output connection terminal 5 a for electrical connection between the electric circuit portion 4 and the outside. As shown in FIGS. 1 and 2, the lead frame 5 mounts and supports the second substrate 3 on which the first substrate 2 is loaded and the electric circuit unit 4.
 モールド樹脂6は、エポキシ樹脂等の熱硬化性樹脂等によって構成され、金型を用いたトランスファーモールド法やコンプレッションモールド法により形成されたものである。 The mold resin 6 is made of a thermosetting resin such as an epoxy resin, and is formed by a transfer molding method using a mold or a compression molding method.
 以上、本実施形態に係る流量センサ1の構成について説明した。次に、本実施形態に係る流量センサ1の製造方法について図3Aから図3Kを参照して説明する。 The configuration of the flow sensor 1 according to this embodiment has been described above. Next, a method for manufacturing the flow sensor 1 according to the present embodiment will be described with reference to FIGS. 3A to 3K.
 流量センサ1は、基本的には、一般的なICの製造工程と同様の工程を経て製造される。すなわち、流量センサ1は、前工程(ウェハ(第1ウェハ200、第2ウェハ300)上にセンシング部7、9などの配線などを作り込む工程)と前工程を経て完成したウェハについてダイシング、マウントなどの加工等を行う後工程を経て製造される。したがって、ここでは本実施形態に係る流量センサ1の製造方法のうち特徴的部分のみを詳しく説明する。 The flow sensor 1 is basically manufactured through a process similar to a general IC manufacturing process. That is, the flow sensor 1 performs dicing and mounting on a wafer completed through the previous process (process for forming wirings such as the sensing units 7 and 9 on the wafer (the first wafer 200 and the second wafer 300)) and the previous process. It is manufactured through a post-process that performs such processing. Therefore, only the characteristic part of the manufacturing method of the flow sensor 1 according to the present embodiment will be described in detail here.
 本実施形態に係る流量センサ1の製造方法は、以下の第1~3工程を有することを特徴とする。なお、第1、2工程は上記の前工程に含まれる工程であって、第3工程は上記の後工程に含まれる工程である。 The manufacturing method of the flow sensor 1 according to the present embodiment includes the following first to third steps. The first and second steps are steps included in the preceding step, and the third step is a step included in the subsequent step.
 第1工程では、図3A~図3Gの各工程を経て、図3Gに示す第1ウェハ200を用意する。すなわち、複数の流量センサ1の第1基板2を構成する部材として、一面201および一面201とは反対側の他面202を有する板状の第1ウェハ200を用意する。以下、一面201を第4面201、他面202を第5面202という。第1ウェハ200としては、半導体もしくはガラスなどで構成されたウェハを用意するが、ここでは、一例として、シリコン半導体で構成された第1ウェハ200を採用している。ここで、第4面201は第1基板2の第1面21に相当し、第5面202は第2面22に相当する。また、第1ウェハ200としては、複数の流量センサ1それぞれに対応した複数の第1凹部21aが第4面201に形成されたことで複数の流量センサ1それぞれに対応した複数の薄肉部22aを有する構成のウェハを用意する。また、第1ウェハ200としては、複数の流量センサ1それぞれに対応した複数の貫通孔23に対応して、第4面201から第5面202まで貫通する複数の貫通孔23を有する構成のウェハを用意する。 In the first step, the first wafer 200 shown in FIG. 3G is prepared through the steps shown in FIGS. 3A to 3G. That is, a plate-like first wafer 200 having one surface 201 and the other surface 202 opposite to the one surface 201 is prepared as a member constituting the first substrate 2 of the plurality of flow sensors 1. Hereinafter, the one surface 201 is referred to as a fourth surface 201, and the other surface 202 is referred to as a fifth surface 202. As the first wafer 200, a wafer made of a semiconductor or glass is prepared. Here, as an example, the first wafer 200 made of a silicon semiconductor is employed. Here, the fourth surface 201 corresponds to the first surface 21 of the first substrate 2, and the fifth surface 202 corresponds to the second surface 22. Further, as the first wafer 200, a plurality of first recesses 21 a corresponding to the plurality of flow sensors 1 are formed on the fourth surface 201, so that a plurality of thin portions 22 a corresponding to the plurality of flow sensors 1 are formed. A wafer having the structure is prepared. Further, as the first wafer 200, a wafer having a plurality of through holes 23 penetrating from the fourth surface 201 to the fifth surface 202 corresponding to the plurality of through holes 23 corresponding to the plurality of flow sensors 1 respectively. Prepare.
 なお、この構成の第1ウェハ200は、例えば、以下の手順で製造することができる。まず、図3Aに示すように、第1ウェハ200の第5面202において、第1シリコン酸化膜16aをプラズマCVDなどにより成膜し、第1シリコン酸化膜16aの上面に、複数の流量センサ1それぞれに対応した複数の薄膜抵抗体7~9を配置する。具体的には、アルミ、白金などの金属やイオン注入により部分的にドーピングされたシリコンなどで構成された2つの薄膜抵抗体7、9を、複数の流量センサ1それぞれに対応した複数形成されるようにパターニングし、薄膜抵抗体8を同時にパターニングする。また、第1ウェハ200の第5面202において、複数の電極対10~12を配置する。電極対10~12は、それぞれ、金などで構成されるパッドである。また、第1ウェハ200の第4面201上に、プラズマCVDなどによりシリコン酸化膜16bを成膜して(以下、シリコン酸化膜16bを第2シリコン酸化膜16bという)、第2シリコン酸化膜16bのうち複数の第1凹部21aに対応する部分を除去する。 Note that the first wafer 200 having this configuration can be manufactured, for example, by the following procedure. First, as shown in FIG. 3A, a first silicon oxide film 16a is formed on the fifth surface 202 of the first wafer 200 by plasma CVD or the like, and a plurality of flow sensors 1 are formed on the upper surface of the first silicon oxide film 16a. A plurality of thin film resistors 7 to 9 corresponding to each are arranged. Specifically, a plurality of two thin film resistors 7 and 9 made of a metal such as aluminum or platinum or silicon partially doped by ion implantation are formed corresponding to each of the plurality of flow sensors 1. The thin film resistor 8 is patterned at the same time. A plurality of electrode pairs 10 to 12 are arranged on the fifth surface 202 of the first wafer 200. Each of the electrode pairs 10 to 12 is a pad made of gold or the like. Further, a silicon oxide film 16b is formed on the fourth surface 201 of the first wafer 200 by plasma CVD or the like (hereinafter, the silicon oxide film 16b is referred to as a second silicon oxide film 16b), and the second silicon oxide film 16b. The part corresponding to the some 1st recessed part 21a is removed.
 次に、図3Bに示すように、第1ウェハ200の第5面202上に、薄膜抵抗体7、8、9および第1シリコン酸化膜16aを覆うように、フォトレジスト17を塗布する。次に、図3Cに示すように、現像によりパターニングしてフォトレジスト17のうち複数の貫通孔23に対応する部分を除去する。次に、図3Dに示すように、フォトレジスト17をマスクとして、ドライエッチングなどによって第1シリコン酸化膜16aのうち複数の貫通孔23に対応する部分を除去する。次に、図3Eに示すように、アセトンなどの有機溶剤などによってフォトレジスト17を除去する。次に、図3Fに示すように、第1シリコン酸化膜16aをマスクとしたドライエッチングなどによって、第1ウェハ200のうち貫通孔23となる部分を除去する。このとき、第4面201には第2シリコン酸化膜16bが成膜されているため、第5面202側から導入されたエッチングガスが貫通孔23を通って第4面201側に流れても、このエッチングガスの流れは第2シリコン酸化膜16bによって遮られる。よって、エッチングガスが第4面201側に回り込んでしまうことが抑制される。次に、図3Gに示すように、第1ウェハ200をエッチングすることにより、第1ウェハ200の第4面201において、第1凹部21aとなる部分を除去した後、ドライエッチングなどによって、第2シリコン酸化膜16bを除去する。以上の手順で、第1ウェハ200を製造することができる。 Next, as shown in FIG. 3B, a photoresist 17 is applied on the fifth surface 202 of the first wafer 200 so as to cover the thin film resistors 7, 8, 9 and the first silicon oxide film 16a. Next, as shown in FIG. 3C, patterning is performed by development to remove portions of the photoresist 17 corresponding to the plurality of through holes 23. Next, as shown in FIG. 3D, using the photoresist 17 as a mask, portions of the first silicon oxide film 16a corresponding to the plurality of through holes 23 are removed by dry etching or the like. Next, as shown in FIG. 3E, the photoresist 17 is removed with an organic solvent such as acetone. Next, as shown in FIG. 3F, the portion of the first wafer 200 that becomes the through hole 23 is removed by dry etching or the like using the first silicon oxide film 16a as a mask. At this time, since the second silicon oxide film 16b is formed on the fourth surface 201, even if the etching gas introduced from the fifth surface 202 side flows through the through hole 23 to the fourth surface 201 side. The etching gas flow is blocked by the second silicon oxide film 16b. Therefore, the etching gas is suppressed from flowing around to the fourth surface 201 side. Next, as shown in FIG. 3G, by etching the first wafer 200, a portion that becomes the first recess 21 a is removed from the fourth surface 201 of the first wafer 200, and then second etching is performed by dry etching or the like. The silicon oxide film 16b is removed. The first wafer 200 can be manufactured by the above procedure.
 また、第1工程では、図3Hから図3Jの各工程を経て、図3Jに示す第2ウェハ300を用意する。すなわち、複数の流量センサ1の第2基板3を構成する部材として、一面301を有する板状の第2ウェハ300を用意する(以下、一面301を第6面301という)。第2ウェハ300としては、半導体もしくはガラスなどで構成されたウェハを用意するが、ここでは、一例として、シリコン半導体で構成された第2ウェハ300を採用している。 In the first step, the second wafer 300 shown in FIG. 3J is prepared through the steps of FIGS. 3H to 3J. That is, a plate-like second wafer 300 having one surface 301 is prepared as a member constituting the second substrate 3 of the plurality of flow sensors 1 (hereinafter, the one surface 301 is referred to as the sixth surface 301). As the second wafer 300, a wafer made of a semiconductor or glass is prepared. Here, as an example, the second wafer 300 made of a silicon semiconductor is employed.
 なお、この構成の第2ウェハ300は、例えば、以下の手順で製造することができる。まず、図3Hに示すように、第2ウェハ300の第6面301上に、プラズマCVDなどによりシリコン酸化膜18を成膜する(以下、シリコン酸化膜18を第3シリコン酸化膜18という)。そして、第3シリコン酸化膜18のうち複数の第2凹部31aに対応する部分を除去する。次に、図3Iに示すように、第3シリコン酸化膜18をマスクとしたドライエッチングなどによって、第2ウェハ300のうち第2凹部31aとなる部分を除去する。次に、図3Jに示すように、ドライエッチングなどによって、第3シリコン酸化膜18を除去する。以上の手順で、第2ウェハ300を製造することができる。 Note that the second wafer 300 having this configuration can be manufactured, for example, by the following procedure. First, as shown in FIG. 3H, a silicon oxide film 18 is formed on the sixth surface 301 of the second wafer 300 by plasma CVD or the like (hereinafter, the silicon oxide film 18 is referred to as a third silicon oxide film 18). Then, portions of the third silicon oxide film 18 corresponding to the plurality of second recesses 31a are removed. Next, as shown in FIG. 3I, the portion of the second wafer 300 that becomes the second recess 31a is removed by dry etching or the like using the third silicon oxide film 18 as a mask. Next, as shown in FIG. 3J, the third silicon oxide film 18 is removed by dry etching or the like. The second wafer 300 can be manufactured by the above procedure.
 このように第1工程を行い、第1工程の後の第2工程では、図3Kに示すように、第6面301を第4面201に接触させつつ第1ウェハ200と第2ウェハ300とを貼り合わせる。このとき、第6面301に対する法線の方向から見て、複数の第2凹部31aそれぞれが、複数の薄肉部22aのうち対応する薄肉部22aおよび複数の貫通孔23のうち対応する貫通孔23を内方に含むように、第1ウェハ200と第2ウェハ300とを貼り合わせる。 Thus, in the second step after the first step, the first wafer 200 and the second wafer 300 are brought into contact with the fourth surface 201 as shown in FIG. Paste together. At this time, when viewed from the direction of the normal to the sixth surface 301, each of the plurality of second recesses 31a corresponds to the corresponding thin portion 22a of the plurality of thin portions 22a and the corresponding through hole 23 of the plurality of through holes 23. The first wafer 200 and the second wafer 300 are bonded together so as to be included inward.
 このように第2工程を行い、第2工程の後に以下の第3工程を行う。第3工程では、まず、第1ウェハ200および第2ウェハ300が貼り合わされた構成のワークをダイシングして個片化することで、図3Kに示すワークを複数得る。次に、これら複数のワークについて、それぞれ、接着剤13を介してリードフレーム5に接着する。また、電気回路部4をリードフレーム5に搭載する。また、第1ボンディングワイヤ14によって、3つの薄膜抵抗体7~9を、それぞれ、第1ウェハ200の第5面202に配置された異なる電極対10~12を介して、電気回路部4と電気的に接続する。そして、モールド樹脂6による封止を行う。 Thus, the second step is performed, and the following third step is performed after the second step. In the third step, first, a plurality of workpieces shown in FIG. 3K are obtained by dicing a workpiece having a configuration in which the first wafer 200 and the second wafer 300 are bonded together into individual pieces. Next, each of the plurality of workpieces is bonded to the lead frame 5 via the adhesive 13. In addition, the electric circuit unit 4 is mounted on the lead frame 5. Further, the first bonding wire 14 allows the three thin film resistors 7 to 9 to be electrically connected to the electric circuit unit 4 via different electrode pairs 10 to 12 disposed on the fifth surface 202 of the first wafer 200, respectively. Connect. Then, sealing with the mold resin 6 is performed.
 以上の工程を経て、複数の流量センサ1が完成する。以上説明した本製造方法では、半導体プロセスにおいて、特徴部分である第2凹部31aおよび貫通孔23をウェハ(第1、2ウェハ200、300)に形成して、流量センサ1を単一ウェハ上に作り上げる。このように、この流量センサ1の製造方法においては、半導体プロセスにおいて、特徴部分である第2凹部31aを第2ウェハ300に形成して、流量センサ1を単一ウェハ上に作り上げる製法技術によって製造することができる。このため、この流量センサ1の製造方法においては、半導体プロセスによって複数の流量センサ1について同時に加工を行うことが可能となる。 Through the above steps, a plurality of flow sensors 1 are completed. In the manufacturing method described above, in the semiconductor process, the second recess 31a and the through hole 23 which are characteristic parts are formed in the wafer (first and second wafers 200 and 300), and the flow sensor 1 is formed on a single wafer. build up. As described above, in the manufacturing method of the flow rate sensor 1, in the semiconductor process, the second recess 31a that is a characteristic portion is formed in the second wafer 300, and the flow rate sensor 1 is manufactured by a manufacturing technique for forming the flow rate sensor 1 on a single wafer. can do. For this reason, in the manufacturing method of this flow sensor 1, it becomes possible to process simultaneously about several flow sensors 1 by a semiconductor process.
 以上、本実施形態に係る流量センサ1の製造方法について説明した。次に、上記で説明した本実施形態に係る流量センサ1の構成および製造方法による作用効果について説明する。 The manufacturing method of the flow sensor 1 according to the present embodiment has been described above. Next, the effect of the structure and manufacturing method of the flow sensor 1 according to the present embodiment described above will be described.
 上記で説明したように、本実施形態に係る流量センサ1は、流体の流量を検出して電気信号として出力するセンシング部7、9を有する流量センサであって、以下の特徴を有する構成とされた第1基板2および第2基板3を有する。すなわち、第1基板2は、一端2aおよび他端2bを有すると共に第1面21および第2面22を有する支持基板20を備え、支持基板20の一端2aの側における第1面21に第1凹部21aが形成されたことにより薄肉とされた薄肉部22aを有する。また、第2基板3は、第3面31を有し、第2面22に対する法線の方向から見て、薄肉部22aを内包するように第3面31に形成された第2凹部31aを有し、第3面31が第1基板2の第1面21に接触させられつつ第1基板2に貼り合わされている。 As described above, the flow sensor 1 according to the present embodiment is a flow sensor having the sensing units 7 and 9 that detect the flow rate of the fluid and output it as an electrical signal, and has the following characteristics. The first substrate 2 and the second substrate 3 are provided. That is, the first substrate 2 includes a support substrate 20 having one end 2a and the other end 2b and having a first surface 21 and a second surface 22, and the first surface 21 on the first end 2a side of the support substrate 20 is first on the first surface 21. It has the thin part 22a made thin by forming the recessed part 21a. In addition, the second substrate 3 has a third surface 31, and has a second recess 31 a formed in the third surface 31 so as to include the thin portion 22 a when viewed from the direction of the normal to the second surface 22. The third surface 31 is bonded to the first substrate 2 while being in contact with the first surface 21 of the first substrate 2.
 このため、本実施形態に係る流量センサ1では、第1基板2のうち薄肉部22aの周辺の部分と第2基板3との間に隙間が空いた構成とされると共に、薄肉部22aの周辺の部分以外の部分において第2基板3によって固定された構成とされる。よって、薄肉部22aの周辺の部分で固定された場合に比べて、薄肉部22aに対して第2基板3との関係で生じる応力がかかり難くなる。これにより、本実施形態に係る流量センサ1では、薄肉部22aに応力が加えられて薄肉部22aが変形することによる流量センサ1の検出精度の低下を抑制できる。 For this reason, in the flow sensor 1 according to the present embodiment, a gap is formed between the portion around the thin portion 22a of the first substrate 2 and the second substrate 3, and the periphery of the thin portion 22a. It is set as the structure fixed by the 2nd board | substrate 3 in parts other than this part. Therefore, compared with the case where the thin portion 22a is fixed at the peripheral portion, the thin portion 22a is less likely to be stressed due to the relationship with the second substrate 3. Thereby, in the flow sensor 1 which concerns on this embodiment, the fall of the detection accuracy of the flow sensor 1 by a stress being added to the thin part 22a and deform | transforming the thin part 22a can be suppressed.
 また、本実施形態に係る流量センサ1では、第1基板2において、第2面22に対する法線の方向から見て、第2凹部31aの内方の領域であって薄肉部22aの周囲の領域において、第1面21から第2面22まで貫通する貫通孔23が形成されている。 Further, in the flow rate sensor 1 according to the present embodiment, in the first substrate 2, when viewed from the direction of the normal to the second surface 22, an area inside the second recess 31 a and an area around the thin portion 22 a. , A through hole 23 penetrating from the first surface 21 to the second surface 22 is formed.
 このため、本実施形態に係る流量センサ1では、第1基板2における薄肉部22aの周囲の部分のうち薄肉部22aと貫通孔23の間に挟まれた部分は、膨張する際において、貫通孔23が形成された空間に膨張できると共に、薄肉部22aに対して貫通孔23を挟んだ第1基板2と第2基板3が接合された面で生じる歪による応力が薄肉部22aに伝達されにくくなる。よって、本実施形態では、第1基板2における応力の発生が抑制され、ひいては第1基板2の薄肉部22aに応力が発生し難くなる。 For this reason, in the flow rate sensor 1 according to the present embodiment, the portion sandwiched between the thin portion 22a and the through hole 23 among the portions around the thin portion 22a in the first substrate 2 is expanded when the through hole is formed. 23 can be expanded into the space in which the first substrate 2 and the second substrate 3 are bonded to the thin portion 22a, and stress due to strain generated on the surface where the first substrate 2 and the second substrate 3 are joined to the thin portion 22a is hardly transmitted to the thin portion 22a. Become. Therefore, in the present embodiment, the generation of stress in the first substrate 2 is suppressed, and as a result, stress is hardly generated in the thin portion 22a of the first substrate 2.
 また、本実施形態に係る流量センサ1では、第1基板2の第2面22に対する法線の方向における長さとしての第1基板2の厚さおよび第2基板3の厚さを比較したときに、第2基板3が第1基板2よりも薄い構成とされている。 In the flow sensor 1 according to the present embodiment, when the thickness of the first substrate 2 and the thickness of the second substrate 3 are compared as the length in the direction of the normal to the second surface 22 of the first substrate 2. In addition, the second substrate 3 is thinner than the first substrate 2.
 このため、本実施形態に係る流量センサ1では、第1基板2および第2基板3が温度変化により膨張、収縮するときに、第1基板2よりも第2基板の方が変形し易く、すなわち第1基板2が変形し難くなり、ひいては薄肉部22aが変形し難くなる。 For this reason, in the flow sensor 1 according to the present embodiment, when the first substrate 2 and the second substrate 3 expand and contract due to a temperature change, the second substrate is more easily deformed than the first substrate 2, that is, The first substrate 2 becomes difficult to deform, and as a result, the thin portion 22a becomes difficult to deform.
 また、本実施形態に係る流量センサ1では、第1基板2の第1面21と第2基板3の第2凹部31aの底面との間の距離が100μm以下とされている。 In the flow sensor 1 according to this embodiment, the distance between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is set to 100 μm or less.
 このため、本実施形態に係る流量センサ1では、第1基板2の第1面21と第2基板3の第2凹部31aの底面との間に形成された空間が狭くなっており、該空間を流れる流体についてのレイノルズ数は小さくなる。これにより、本実施形態に係る流量センサ1では、流体が外部から第2凹部31aに浸入した流体が層流となり易く、該浸入した流体が第1凹部21aにまで回り込んだ場合においても、流量センサ1の検出精度に与える影響が少なくなり易い。 For this reason, in the flow sensor 1 according to the present embodiment, the space formed between the first surface 21 of the first substrate 2 and the bottom surface of the second recess 31a of the second substrate 3 is narrow, and the space The Reynolds number for the fluid flowing through Thereby, in the flow sensor 1 according to the present embodiment, the fluid that has entered the second recess 31a from the outside tends to become a laminar flow, and even when the intruded fluid wraps around the first recess 21a, the flow rate The influence on the detection accuracy of the sensor 1 tends to be reduced.
 上記で説明したように、本実施形態に係る流量センサ1の製造方法は、以下の第1工程および第2工程を有することを特徴とする。すなわち、第1工程では、まず、複数の流量センサ1の第1基板2を構成する部材として、第4面201および第4面201とは反対側の第5面202を有する板状の第1ウェハ200を用意する。第4面201は、第1基板2の第1面21に相当し、第5面202は第2面22に相当する。また、第1ウェハ200としては、複数の流量センサ1それぞれに対応した複数の第1凹部21aが第4面201に形成されたことで複数の流量センサ1それぞれに対応した複数の薄肉部22aを有する構成のウェハを用意する。また、第1ウェハ200としては、複数の流量センサ1それぞれに対応した複数の薄肉部22aに対応して、第4面201から第5面202まで貫通する複数の貫通孔23を有する構成のウェハを用意する。また、第1工程では、複数の流量センサ1の第2基板3を構成する部材として、第6面301を有する板状の第2ウェハ300を用意する。第1工程の後の第2工程では、第6面301を第4面201に接触させつつ第1ウェハ200と第2ウェハ300とを貼り合わせる。このとき、第6面301に対する法線の方向から見て、複数の第2凹部31aそれぞれが、複数の第1凹部21aのうち対応する第1凹部21aおよび複数の貫通孔23のうち対応する貫通孔23を内方に含むように、第1ウェハ200と第2ウェハ300とを貼り合わせる。 As described above, the method for manufacturing the flow sensor 1 according to the present embodiment includes the following first and second steps. That is, in the first step, first, a plate-shaped first having a fourth surface 201 and a fifth surface 202 opposite to the fourth surface 201 as a member constituting the first substrate 2 of the plurality of flow sensors 1. A wafer 200 is prepared. The fourth surface 201 corresponds to the first surface 21 of the first substrate 2, and the fifth surface 202 corresponds to the second surface 22. Further, as the first wafer 200, a plurality of first recesses 21 a corresponding to the plurality of flow sensors 1 are formed on the fourth surface 201, so that a plurality of thin portions 22 a corresponding to the plurality of flow sensors 1 are formed. A wafer having the structure is prepared. Further, as the first wafer 200, a wafer having a plurality of through holes 23 penetrating from the fourth surface 201 to the fifth surface 202 corresponding to the plurality of thin portions 22 a corresponding to the plurality of flow sensors 1. Prepare. In the first step, a plate-like second wafer 300 having a sixth surface 301 is prepared as a member constituting the second substrate 3 of the plurality of flow sensors 1. In the second step after the first step, the first wafer 200 and the second wafer 300 are bonded together while the sixth surface 301 is in contact with the fourth surface 201. At this time, when viewed from the direction of the normal to the sixth surface 301, each of the plurality of second recesses 31 a corresponds to the corresponding first recess 21 a among the plurality of first recesses 21 a and the corresponding through hole of the plurality of through holes 23. The first wafer 200 and the second wafer 300 are bonded together so as to include the hole 23 inside.
 このため、本実施形態に係る流量センサ1の製造においては、上記した従来技術のように複数の部材についてそれぞれ別個の製造工程において別個に加工することなく、同時に複数の流量センサ1を製造することができる。これにより、本実施形態に係る流量センサ1では、従来よりも製造工程を簡略化することができる。 For this reason, in the manufacture of the flow sensor 1 according to the present embodiment, a plurality of flow sensors 1 are manufactured at the same time without separately processing a plurality of members in separate manufacturing steps as in the conventional technique described above. Can do. Thereby, in the flow sensor 1 which concerns on this embodiment, a manufacturing process can be simplified rather than before.
 (第2実施形態)
 本開示の第2実施形態について図4~図6を参照して説明する。本実施形態は、第1実施形態に対して、貫通孔23の構成を変更したものである。その他については基本的には第1実施形態と同様であるため、第1実施形態と異なる部分のみについて説明する。
(Second Embodiment)
A second embodiment of the present disclosure will be described with reference to FIGS. 4 to 6. In the present embodiment, the configuration of the through hole 23 is changed with respect to the first embodiment. Since the rest is basically the same as that of the first embodiment, only the parts different from the first embodiment will be described.
 第1実施形態では、貫通孔23を、第1直線23aと第3直線23cとの連結部分、および、第2直線23bと第3直線23cとの連結部分が、それぞれ、直角に折れ曲がった構成としていた。しかしながら、図4、図5に示すように、本実施形態では、貫通孔23を、第1直線23aと第3直線23cとの連結部分、および、第2直線23bと第3直線23cとの連結部分が、それぞれ、鈍角に折れ曲がった部分を複数有する構成としている。 In the first embodiment, the through hole 23 has a configuration in which the connecting portion between the first straight line 23a and the third straight line 23c and the connecting portion between the second straight line 23b and the third straight line 23c are bent at right angles. It was. However, as shown in FIGS. 4 and 5, in the present embodiment, the through hole 23 is connected to the connecting portion between the first straight line 23a and the third straight line 23c, and the connecting portion between the second straight line 23b and the third straight line 23c. Each portion has a plurality of portions bent at an obtuse angle.
 このため、本実施形態に係る流量センサ1では、第1実施形態の場合に比べて、第1直線23aと第3直線23cとの連結部分や、第2直線23bと第3直線23cとの連結部分に、応力が集中し難くなる。これによって、本実施形態に係る流量センサ1では、第1実施形態の場合に比べて、半導体プロセス中(例えば、ダイシング工程時)において、これら連結部分に応力が集中して該連結部分が割れてしまうなどの不具合が生じ難くなる。 For this reason, in the flow sensor 1 according to the present embodiment, compared to the case of the first embodiment, the connection portion between the first straight line 23a and the third straight line 23c, or the connection between the second straight line 23b and the third straight line 23c. Stress is difficult to concentrate on the part. As a result, in the flow sensor 1 according to the present embodiment, compared to the case of the first embodiment, during the semiconductor process (for example, during the dicing process), stress is concentrated on these connection portions and the connection portions are cracked. It is difficult to cause problems such as
 なお、本実施形態では、図4、5に示すように、電気回路部4が第2基板3内に作製されている。なお、図4、図5では、センシング部である薄膜抵抗体7、9や、ヒータである薄膜抵抗体8や、第1シリコン酸化膜16aなどの電気的接続に関わるものの図示を省略してある。ここでは、電気回路部4と外部出力用接続端子5aに接続された第2ボンディングワイヤ15とを電気的に接続するための第1面21から第2面22まで貫通した貫通電極19を第1基板2に設けることで、電気回路部4と外部との電気的接続を可能としている。このような構成とすることにより、本実施形態に係る流量センサ1では、第1実施形態の場合に比べて、流量センサ1の小型化が可能となる。なお、図5に示すように、貫通電極19のうち電・BR>C回路部4に向けられた端部とは反対側の端部において電極19aが設けられており、この電極19aは電極対10と第1ボンディングワイヤ14によって電気的に接続されていると共に、外部出力用接続端子5Aと第2ボンディングワイヤ15で電気的に接続されている。 In the present embodiment, as shown in FIGS. 4 and 5, the electric circuit unit 4 is formed in the second substrate 3. In FIGS. 4 and 5, the thin film resistors 7 and 9 that are sensing units, the thin film resistor 8 that is a heater, the first silicon oxide film 16a, and the like related to electrical connection are not shown. . Here, the through electrode 19 penetrating from the first surface 21 to the second surface 22 for electrically connecting the electric circuit portion 4 and the second bonding wire 15 connected to the external output connection terminal 5a is provided in the first. By providing it on the substrate 2, electrical connection between the electric circuit portion 4 and the outside is made possible. By setting it as such a structure, in the flow sensor 1 which concerns on this embodiment, the size reduction of the flow sensor 1 is attained compared with the case of 1st Embodiment. As shown in FIG. 5, an electrode 19a is provided at the end of the through electrode 19 opposite to the end directed to the electric / BR> C circuit section 4, and the electrode 19a is an electrode pair. 10 and the first bonding wire 14, and the external output connection terminal 5 </ b> A and the second bonding wire 15 are electrically connected.
 以上、本実施形態に係る流量センサ1の構成について説明した。本実施形態に係る流量センサ1の製造方法について図6Aから図6Jを参照して説明する。 The configuration of the flow sensor 1 according to this embodiment has been described above. A method for manufacturing the flow sensor 1 according to the present embodiment will be described with reference to FIGS. 6A to 6J.
 第1実施形態の場合と同様、本実施形態に係る流量センサ1は、基本的には、一般的なICの製造工程と同様の工程を経て製造される。すなわち、流量センサ1は、上記した前工程および後工程を経て製造される。したがって、第1実施形態と同様、ここでは本実施形態に係る流量センサ1の製造方法のうち特徴的部分のみを詳しく説明する。 As in the case of the first embodiment, the flow sensor 1 according to the present embodiment is basically manufactured through the same process as a general IC manufacturing process. That is, the flow sensor 1 is manufactured through the above-described pre-process and post-process. Therefore, as in the first embodiment, only the characteristic part of the method for manufacturing the flow sensor 1 according to this embodiment will be described in detail here.
 本実施形態に係る流量センサ1の製造方法は、以下の第1~3工程を有することを特徴とする。なお、第1、2工程は上記の前工程に含まれる工程であって、第3工程は上記の後工程に含まれる工程である。 The manufacturing method of the flow sensor 1 according to the present embodiment includes the following first to third steps. The first and second steps are steps included in the preceding step, and the third step is a step included in the subsequent step.
 第1工程では、図6A~図6Gの各工程を経て、図6Gに示す第1ウェハ200を用意する。すなわち、複数の流量センサ1の第1基板2を構成する部材として、第4面201および第5面202を有する板状の第1ウェハ200を用意する。ここで、第1ウェハ200としては、複数の流量センサ1それぞれに対応した複数の貫通電極19に対応して、第4面201から第5面202まで貫通する複数の貫通電極19を有する構成のウェハを用意する。 In the first step, the first wafer 200 shown in FIG. 6G is prepared through the steps shown in FIGS. 6A to 6G. That is, a plate-like first wafer 200 having a fourth surface 201 and a fifth surface 202 is prepared as a member constituting the first substrate 2 of the plurality of flow sensors 1. Here, the first wafer 200 has a plurality of through electrodes 19 penetrating from the fourth surface 201 to the fifth surface 202 corresponding to the plurality of through electrodes 19 corresponding to the plurality of flow sensors 1 respectively. Prepare a wafer.
 なお、この構成の第1ウェハ200は、例えば、以下の手順で製造することができる。まず、図6Aに示すように、第1ウェハ200の第5面202において、第1シリコン酸化膜16aをプラズマCVDなどにより成膜し、第1シリコン酸化膜16aの上面に、複数の流量センサ1それぞれに対応した複数の薄膜抵抗体7~9を配置する。また、第1ウェハ200の第4面201上に、プラズマCVDなどにより第2シリコン酸化膜16bを成膜して、第2シリコン酸化膜16bのうち複数の第1凹部21aに対応する部分を除去する。次に、図6Bに示すように、ドライエッチングなどによって第1シリコン酸化膜16aのうち複数の貫通電極19に対応する部分を除去する。次に、図6Cに示すように、第1シリコン酸化膜16aをマスクとしたドライエッチングなどによって、第1ウェハ200のうち貫通電極19が形成される部分を除去する。次に、図6Dに示すように、第1ウェハ200のうち貫通電極19が形成される部分として除去された部分に銅などの金属めっきによって貫通電極19を形成する。次に、図6Eに示すように、電極対10および電極19aを配置する。次に、図6Fに示すように、ドライエッチングなどによって第1シリコン酸化膜16aのうち複数の貫通孔23に対応する部分を除去した後、第1シリコン酸化膜16aをマスクとしたドライエッチングなどによって、第1ウェハ200のうち貫通孔23となる部分を除去する。このとき、第1実施形態の場合と同様、第4面201には第2シリコン酸化膜16bが成膜されているため、エッチングガスが第4面201側に回り込んでしまうことが抑制される。次に、図6Gに示すように、第1ウェハ200をエッチングすることにより、第1ウェハ200の第4面201において、第1凹部21aとなる部分を除去した後、ドライエッチングなどによって、第2シリコン酸化膜16bを除去する。以上の手順で、第1ウェハ200を製造することができる。 Note that the first wafer 200 having this configuration can be manufactured, for example, by the following procedure. First, as shown in FIG. 6A, a first silicon oxide film 16a is formed on the fifth surface 202 of the first wafer 200 by plasma CVD or the like, and a plurality of flow sensors 1 are formed on the upper surface of the first silicon oxide film 16a. A plurality of thin film resistors 7 to 9 corresponding to each are arranged. Further, a second silicon oxide film 16b is formed on the fourth surface 201 of the first wafer 200 by plasma CVD or the like, and portions corresponding to the plurality of first recesses 21a in the second silicon oxide film 16b are removed. To do. Next, as shown in FIG. 6B, portions of the first silicon oxide film 16a corresponding to the plurality of through electrodes 19 are removed by dry etching or the like. Next, as shown in FIG. 6C, a portion of the first wafer 200 where the through electrode 19 is formed is removed by dry etching using the first silicon oxide film 16a as a mask. Next, as shown in FIG. 6D, the through electrode 19 is formed by metal plating such as copper on a portion of the first wafer 200 that is removed as a portion where the through electrode 19 is formed. Next, as shown in FIG. 6E, the electrode pair 10 and the electrode 19a are arranged. Next, as shown in FIG. 6F, after removing portions of the first silicon oxide film 16a corresponding to the plurality of through holes 23 by dry etching or the like, dry etching or the like using the first silicon oxide film 16a as a mask is performed. The portion of the first wafer 200 that becomes the through hole 23 is removed. At this time, as in the case of the first embodiment, since the second silicon oxide film 16b is formed on the fourth surface 201, the etching gas is suppressed from flowing around to the fourth surface 201 side. . Next, as shown in FIG. 6G, the first wafer 200 is etched to remove the portion to be the first recess 21a on the fourth surface 201 of the first wafer 200, and then the second wafer 200 is dry-etched or the like. The silicon oxide film 16b is removed. The first wafer 200 can be manufactured by the above procedure.
 また、第1工程では、図6H、図6Iの各工程を経て、図6Iに示す第2ウェハ300を用意する。すなわち、複数の流量センサ1の第2基板3を構成する部材として、第6面301を有する板状の第2ウェハ300を用意する。この第2ウェハ300は第1実施形態の場合と同様の方法で製造できるものであるため、ここでは第2ウェハ300の製造方法についての説明は省略する。 In the first step, the second wafer 300 shown in FIG. 6I is prepared through the steps shown in FIGS. 6H and 6I. That is, a plate-like second wafer 300 having a sixth surface 301 is prepared as a member constituting the second substrate 3 of the plurality of flow sensors 1. Since the second wafer 300 can be manufactured by the same method as in the first embodiment, the description of the manufacturing method of the second wafer 300 is omitted here.
 このように第1工程を行い、第1工程の後の第2工程では、第1実施形態の場合と同様、図6Jに示すように、第6面301を第4面201に接触させつつ第1ウェハ200と第2ウェハ300とを貼り合わせる。 Thus, the first step is performed, and in the second step after the first step, as in the case of the first embodiment, the sixth surface 301 is brought into contact with the fourth surface 201 as shown in FIG. 6J. The first wafer 200 and the second wafer 300 are bonded together.
 そして、第2工程の後に以下の第3工程を行う。第3工程は第1実施形態の場合と同様であるため、ここでは第3工程についての説明は省略する。 Then, the following third step is performed after the second step. Since the third step is the same as in the case of the first embodiment, the description of the third step is omitted here.
 以上の工程を経て、複数の流量センサ1が完成する。以上説明した本製造方法では、第1実施形態と同様、半導体プロセスにおいて、第2凹部31aおよび貫通孔23をウェハ(第1、2ウェハ200、300)に形成して、流量センサ1を単一ウェハ上に作り上げる。このため、この流量センサ1の製造方法においては、半導体プロセスによって複数の流量センサ1について同時に加工を行うことが可能となる。特に、本実施形態における製造方法では、貫通電極19を、貫通孔23を形成する工程と同一の工程で形成することができる。よって、本製造方法では、効率的に、電気回路部4と外部との電気的接続を可能とするための貫通電極19が第1基板2に設けられた構成の流量センサ1を製造することができる。 Through the above steps, a plurality of flow sensors 1 are completed. In the manufacturing method described above, similarly to the first embodiment, in the semiconductor process, the second recess 31a and the through hole 23 are formed in the wafer (first and second wafers 200 and 300), and the flow sensor 1 is formed as a single unit. Create on the wafer. For this reason, in the manufacturing method of this flow sensor 1, it becomes possible to process simultaneously about several flow sensors 1 by a semiconductor process. In particular, in the manufacturing method according to the present embodiment, the through electrode 19 can be formed in the same process as the process of forming the through hole 23. Therefore, in this manufacturing method, the flow sensor 1 having a configuration in which the through electrode 19 for enabling the electrical connection between the electric circuit unit 4 and the outside is provided on the first substrate 2 can be manufactured efficiently. it can.
 (第3実施形態)
 本開示の第3実施形態について図7、図8を参照して説明する。本実施形態は、第2実施形態に対して、貫通孔23の構成を変更したものである。その他については基本的には第2実施形態と同様であるため、第2実施形態と異なる部分のみについて説明する。
(Third embodiment)
A third embodiment of the present disclosure will be described with reference to FIGS. In the present embodiment, the configuration of the through hole 23 is changed with respect to the second embodiment. Since the other parts are basically the same as those of the second embodiment, only portions different from those of the second embodiment will be described.
 第2実施形態では、貫通孔23を、第1直線23aと第3直線23cとの連結部分、および、第2直線23bと第3直線23cとの連結部分が、それぞれ、折れ曲がった部分を複数有する構成としていた。しかしながら、図7、図8に示すように、本実施形態では、貫通孔23を、第1直線23aと第3直線23cとの連結部分、および、第2直線23bと第3直線23cとの連結部分が、それぞれ、曲線状に曲がった部分を有する構成とされている。なお、図7、図8では、センシング部である薄膜抵抗体7、9や、ヒータである薄膜抵抗体8や、第1シリコン酸化膜16a、電極対10~12などの電気的接続に関わるものの図示を省略してある。 In the second embodiment, the through hole 23 has a plurality of bent portions, each of the connecting portion between the first straight line 23a and the third straight line 23c and the connecting portion between the second straight line 23b and the third straight line 23c. Was configured. However, as shown in FIGS. 7 and 8, in the present embodiment, the through hole 23 is connected to the connecting portion between the first straight line 23a and the third straight line 23c, and the connecting portion between the second straight line 23b and the third straight line 23c. Each of the portions has a curved portion. In FIGS. 7 and 8, the thin film resistors 7 and 9 that are sensing units, the thin film resistor 8 that is a heater, the first silicon oxide film 16a, and the electrode pairs 10 to 12 are related to electrical connection. The illustration is omitted.
 このため、本実施形態に係る流量センサ1では、第2実施形態の場合よりもさらに、第1直線23aと第3直線23cとの連結部分や、第2直線23bと第3直線23cとの連結部分に、応力が集中し難くなる。これによって、本実施形態に係る流量センサ1では、第2実施形態の場合に比べて、さらに、半導体プロセス中(例えば、ダイシング工程時)において、これら連結部分に応力が集中して該連結部分が割れてしまうなどの不具合が生じ難くなる。 For this reason, in the flow sensor 1 according to the present embodiment, the connection portion between the first straight line 23a and the third straight line 23c and the connection between the second straight line 23b and the third straight line 23c are further increased than in the second embodiment. Stress is difficult to concentrate on the part. As a result, in the flow sensor 1 according to the present embodiment, compared to the second embodiment, stress is concentrated on these connection portions during the semiconductor process (for example, during the dicing process), and the connection portions are Problems such as cracking are less likely to occur.
 (第4実施形態)
 本開示の第4実施形態について図9、図10を参照して説明する。本実施形態は、第1実施形態に対して、貫通孔23の構成を変更したものである。その他については基本的には第1実施形態と同様であるため、第1実施形態と異なる部分のみについて説明する。
(Fourth embodiment)
A fourth embodiment of the present disclosure will be described with reference to FIGS. 9 and 10. In the present embodiment, the configuration of the through hole 23 is changed with respect to the first embodiment. Since the rest is basically the same as that of the first embodiment, only the parts different from the first embodiment will be described.
 第1実施形態では、貫通孔23が、第3直線23cが薄肉部22aを挟んで第1基板2の他端2bの反対側に配置された構成とされていた。しかしながら、本実施形態では、図9、図10に示すように、貫通孔23が、第3直線23cが薄肉部22aを挟んで第1基板2の一端2aの反対側に配置された構成とされている。 In the first embodiment, the through hole 23 is configured such that the third straight line 23c is disposed on the opposite side of the other end 2b of the first substrate 2 with the thin portion 22a interposed therebetween. However, in this embodiment, as shown in FIGS. 9 and 10, the through hole 23 is configured such that the third straight line 23 c is disposed on the opposite side of the one end 2 a of the first substrate 2 with the thin portion 22 a interposed therebetween. ing.
 このため、本実施形態では、第1基板2のうち他端2bの側の部分と第2基板3との関係で生じる応力(以下、他端起因応力という)は、貫通孔23の周囲を通って第1直線23aと第2直線23bの間の領域に回り込む経路で薄肉部22aに伝達することとなる。すなわち、他端起因応力は、図9の矢印Y2に示すような経路を通って伝達することとなる。したがって、本実施形態では、他端起因応力が薄肉部22aに到達するまでの伝達経路が、第1実施形態の場合と比べて、長距離となる。よって、本実施形態に係る流量センサ1では、他端起因応力が薄肉部22aに到達するまでに吸収され易くなり、ひいては、薄肉部22aへの応力集中が緩和され易い。 For this reason, in the present embodiment, the stress generated in the relationship between the second substrate 3 and the portion of the first substrate 2 on the other end 2 b side (hereinafter referred to as the other end-induced stress) passes around the through hole 23. Thus, the light is transmitted to the thin portion 22a through a path that goes around the region between the first straight line 23a and the second straight line 23b. That is, the stress at the other end is transmitted through a path as indicated by an arrow Y2 in FIG. Therefore, in this embodiment, the transmission path until the other end-induced stress reaches the thin portion 22a is longer than that in the first embodiment. Therefore, in the flow sensor 1 according to the present embodiment, the stress due to the other end is easily absorbed by the time it reaches the thin portion 22a, and the stress concentration on the thin portion 22a is easily relaxed.
 (第5実施形態)
 本開示の第5実施形態について図11、図12を参照して説明する。本実施形態は、第2実施形態に対して、貫通孔23を省略すると共に第2凹部31aの形状を変更したものである。その他については基本的には第2実施形態と同様であるため、第2実施形態と異なる部分のみについて説明する。
(Fifth embodiment)
A fifth embodiment of the present disclosure will be described with reference to FIGS. 11 and 12. In the present embodiment, the through hole 23 is omitted and the shape of the second recess 31a is changed with respect to the second embodiment. Since the other parts are basically the same as those of the second embodiment, only portions different from those of the second embodiment will be described.
 図11、図12に示すように、本実施形態に係る流量センサ1では、第2凹部31aが、第2面22に対する法線の方向から見て、第2基板3のうち一端2aの側の部分の全体を含むように形成されている。したがって、本実施形態では、第2基板3は、第2凹部31aが形成されたことにより、第3面31のうち一端2aの側の部分において第1面21と接触させられておらず、第3面31のうち他端2bの側の部分の少なくとも一部において第1面21と接触させられている。なお、図11、図12の例では、第2凹部31aは、第2基板3のうち、図11の上下方向における下端から上端まで繋がって形成されると共に、図11の左右方向における右端まで繋がって形成されている。 As shown in FIGS. 11 and 12, in the flow sensor 1 according to this embodiment, the second recess 31 a is located on the side of the one end 2 a of the second substrate 3 when viewed from the direction of the normal to the second surface 22. It is formed so as to include the entire portion. Therefore, in the present embodiment, the second substrate 3 is not brought into contact with the first surface 21 in the portion on the one end 2a side of the third surface 31 due to the formation of the second recess 31a. Of the three surfaces 31, at least a part of the portion on the other end 2 b side is brought into contact with the first surface 21. In the example of FIGS. 11 and 12, the second recess 31a is formed so as to be connected from the lower end to the upper end in the vertical direction of FIG. 11 and to the right end in the horizontal direction of FIG. Is formed.
 上記したように、本実施形態では、第2基板3は、第2凹部31aが形成されたことにより、第3面31のうち一端2aの側の部分において第1面21と接触させられておらず、第3面のうち他端2bの側の部分の少なくとも一部において第1面21と接触させられている。 As described above, in the present embodiment, the second substrate 3 is not brought into contact with the first surface 21 in the portion on the one end 2a side of the third surface 31 by forming the second recess 31a. The third surface is in contact with the first surface 21 in at least a part of the portion on the other end 2b side.
 このため、本実施形態に係る流量センサ1では、第1基板2のうち一端2aの側の部分と第2基板3との関係で応力が生じず、また、他端起因応力は第1基板2のうち一端2aの側の部分に伝達されない。よって、本実施形態に係る流量センサ1では、貫通孔23が形成されなくても、薄肉部22aへの応力集中が抑制される。なお、本実施形態に係る流量センサ1において貫通孔23が形成されていてもよい。 For this reason, in the flow sensor 1 according to the present embodiment, no stress is generated due to the relationship between the second substrate 3 and the portion of the first substrate 2 on the one end 2a side, and the stress caused by the other end is Is not transmitted to the portion on the one end 2a side. Therefore, in the flow sensor 1 according to the present embodiment, stress concentration on the thin portion 22a is suppressed even if the through hole 23 is not formed. Note that the through hole 23 may be formed in the flow sensor 1 according to the present embodiment.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims.
 例えば、第1~4実施形態では、流量センサ1において、貫通孔23が形成された構成としていた。しかしながら、第1~4実施形態に係る流量センサ1において、貫通孔23が形成されていない構成としてもよい。 For example, in the first to fourth embodiments, the flow sensor 1 has a configuration in which the through hole 23 is formed. However, the flow sensor 1 according to the first to fourth embodiments may have a configuration in which the through hole 23 is not formed.
 また、第2、3、5実施形態では、電気回路部4が第2基板3内に作製されていたが、第1、4実施形態において、電気回路部4が第2基板3に作製された構成してもよい。 In the second, third, and fifth embodiments, the electric circuit unit 4 is manufactured in the second substrate 3. In the first and fourth embodiments, the electric circuit unit 4 is manufactured on the second substrate 3. It may be configured.
 また、第1~5実施形態では、薄肉部22aを、第1シリコン酸化膜16aおよび薄膜抵抗体7、8、9によって構成していたが、薄肉部22aの構成は、この構成に限られない。例えば、第1~4実施形態において、薄肉部22aを、支持基板20の構成材料によって構成してもよい。 In the first to fifth embodiments, the thin portion 22a is configured by the first silicon oxide film 16a and the thin film resistors 7, 8, and 9. However, the configuration of the thin portion 22a is not limited to this configuration. . For example, in the first to fourth embodiments, the thin portion 22a may be constituted by the constituent material of the support substrate 20.
 また、第1~5実施形態では、図3K、図6Jに示すように、製造工程において、第2、3シリコン酸化膜16b、18を除去して、第1基板2と第2基板3とを貼り合わせていた。しかしながら、第1~5実施形態において、第2、3シリコン酸化膜16b、18を除去せずに残した構成としてもよい。この場合、第2シリコン酸化膜16bと第3シリコン酸化膜18とを接触(接着)させて、両酸化膜16b、18同士の接着力により第1基板2と第2基板3とを貼り合わせた構成の流量センサ1とすることができる。この場合、第1~5実施形態の場合に比べて、製造工程が少なくなり、容易に流量センサ1を製造することができる。 In the first to fifth embodiments, as shown in FIGS. 3K and 6J, in the manufacturing process, the second and third silicon oxide films 16b and 18 are removed, and the first substrate 2 and the second substrate 3 are connected. I was pasting them together. However, in the first to fifth embodiments, the second and third silicon oxide films 16b and 18 may be left without being removed. In this case, the second silicon oxide film 16b and the third silicon oxide film 18 are brought into contact (adhesion), and the first substrate 2 and the second substrate 3 are bonded together by the adhesive force between the oxide films 16b and 18. It can be set as the flow sensor 1 of a structure. In this case, the number of manufacturing steps is reduced as compared with the first to fifth embodiments, and the flow sensor 1 can be easily manufactured.
 また、第1~5実施形態では、本開示を流量センサ1に適用した例を示したが、本開示を流量センサ以外の物理量センサに適用しても良い。 In the first to fifth embodiments, an example in which the present disclosure is applied to the flow sensor 1 has been described. However, the present disclosure may be applied to a physical quantity sensor other than the flow sensor.
 すなわち、例えば、図13、図14に示すように、本開示を圧力センサ1Aに適用しても良い。この圧力センサ1Aは、第1実施形態に係る流量センサ1において、基本構成を圧力センサに変更したものである。具体的には、流体の流量を検出するためのセンシング部7、9を、被検出体による圧力を検出するためのピエゾ抵抗等で構成されたセンシング部7Aに変更すると共に、圧力基準室を構成する凹部(図14中の符号21Aを参照)を有する第3基板20Aを第1基板2の他面22側に設けている。なお、この圧力センサ1Aでは、貫通孔23を形成していない。そして、この圧力センサ1Aにおいても、第1実施形態における流量センサ1と同様、薄肉部22aを内包するように第2基板3の第3面31に形成された第2凹部31aを形成している。そして、第2基板3の第2凹部31aの底面には、第2凹部31aの底面から第2基板3のうち第3面31と反対側の面32まで貫通する通気孔22Aが形成されている。この通気孔22Aは、被測定体である流体が流れ込むための入口である。この圧力センサ1Aは、被検出体である流体が通気孔22Aから第2基板3の第2凹部31a、第1基板2の第1凹部21aへと順に進入して、流体の圧力によって薄肉部22aに形成されたピエゾ抵抗が変化した場合に、その圧力に対応する電気信号を出力することで圧力を検出するものである。通気孔22Aは、微少サイズ(例えば、孔の直径が数μm~数十μm)とされているため、この通気孔22Aには、従来技術(特許文献1に記載の流量センサ)の場合のように異物(金属屑、有機物など)が入り込むことは生じ難い。この通気孔22Aは、ドライエッチング等によって形成され得る。また、この圧力センサ1Aにおいても、第1実施形態における流量センサ1の場合と同様、薄肉部22aの周辺の部分で固定された場合に比べて、薄肉部22aに対して第2基板3との関係で生じる応力がかかり難くなる。 That is, for example, as shown in FIGS. 13 and 14, the present disclosure may be applied to the pressure sensor 1A. This pressure sensor 1A is obtained by changing the basic configuration to a pressure sensor in the flow sensor 1 according to the first embodiment. Specifically, the sensing units 7 and 9 for detecting the flow rate of the fluid are changed to a sensing unit 7A configured by a piezoresistor or the like for detecting the pressure by the detection target, and the pressure reference chamber is configured. A third substrate 20A having a concave portion (see reference numeral 21A in FIG. 14) is provided on the other surface 22 side of the first substrate 2. In the pressure sensor 1A, the through hole 23 is not formed. And also in this pressure sensor 1A, the 2nd recessed part 31a formed in the 3rd surface 31 of the 2nd board | substrate 3 is formed so that the thin part 22a may be included like the flow sensor 1 in 1st Embodiment. . A vent hole 22 </ b> A is formed on the bottom surface of the second recess 31 a of the second substrate 3 so as to penetrate from the bottom surface of the second recess 31 a to the surface 32 of the second substrate 3 opposite to the third surface 31. . The vent hole 22A is an inlet through which a fluid to be measured flows. In the pressure sensor 1A, a fluid that is a detection object sequentially enters the second recess 31a of the second substrate 3 and the first recess 21a of the first substrate 2 from the air hole 22A, and the thin portion 22a is caused by the pressure of the fluid. When the piezoresistor formed in (1) changes, the pressure is detected by outputting an electric signal corresponding to the pressure. Since the air hole 22A has a very small size (for example, the diameter of the hole is several μm to several tens μm), the air hole 22A is provided in the air hole 22A as in the case of the prior art (the flow sensor described in Patent Document 1). It is difficult for foreign matter (metal scraps, organic matter, etc.) to enter the surface. This air hole 22A can be formed by dry etching or the like. Also in this pressure sensor 1A, as in the case of the flow rate sensor 1 in the first embodiment, compared to the case where the pressure sensor 1A is fixed at the peripheral portion of the thin portion 22a, the second substrate 3 and the thin portion 22a are fixed. It becomes difficult to apply the stress caused by the relationship.
 なお、第1基板2の周囲に配置されている部材(図13、図14中の符号30Aを参照)は、モールド樹脂6を金型成形した際にモールド樹脂6と一体に成形されたものである。この部材30Aは、金型成形時には第2基板3に密着するように成形されるが、ここでは、金型成形の後に、部材30Aを構成するモールド樹脂のうち第1基板2の周囲において第1基板2に接触していた部分が、レーザーが照射されたことにより除去されている。これにより、この流量センサ1では、図13に示すように、部材30Aと第1基板2の間に隙間31Aが形成され、この隙間31Aが形成されたことにより、部材30Aの少なくとも一部が第1基板2から離されている。 The members (see reference numeral 30A in FIGS. 13 and 14) arranged around the first substrate 2 are formed integrally with the mold resin 6 when the mold resin 6 is molded. is there. The member 30A is molded so as to be in close contact with the second substrate 3 at the time of molding the mold. Here, after molding, the first of the mold resin constituting the member 30A around the first substrate 2 is formed. The portion that has been in contact with the substrate 2 is removed by the laser irradiation. Thereby, in this flow sensor 1, as shown in FIG. 13, a gap 31A is formed between the member 30A and the first substrate 2, and since this gap 31A is formed, at least a part of the member 30A is the first. 1 is separated from the substrate 2.
 このように、この圧力センサ1Aでは、隙間31Aが形成されることで部材30Aの少なくとも一部が第1基板2から離されていることにより、部材30Aが第1基板2に密着している場合に比べて、薄肉部22aに対して部材30Aとの関係で生じる応力がかかり難くなる。なお、この部材30Aは、第1基板2を保護する部分として機能する。 As described above, in the pressure sensor 1A, when the gap 30A is formed and at least a part of the member 30A is separated from the first substrate 2, the member 30A is in close contact with the first substrate 2. As compared with the above, it is difficult to apply stress generated in relation to the member 30A to the thin portion 22a. The member 30A functions as a portion that protects the first substrate 2.
 また、同様に、図15、図16に示すように、本開示を温度センサ1Bに適用しても良い。この温度センサ1Bは、第1実施形態に係る流量センサ1において、基本構成を温度センサに変更したものである。具体的には、流体の流量を検出するためのセンシング部7、9を、被検出体の温度を検出するためのサーミスタで構成されたセンシング部7Bに変更すると共に、凹部(図16中の符号21Bを参照)を有する第3基板20Bを第1基板2の他面22側に設けている。そして、上記の圧力センサ1Aの場合と同様、第2基板3の第2凹部31aの底面には、第2凹部31aの底面から第2基板3のうち第3面31と反対側の面32まで貫通する通気孔22Bが形成されている。この温度センサ1Bは、被検出体である流体が通気孔22Bから第2基板3の第2凹部31a、第1基板2の第1凹部21aへと順に進入して、流体の温度によってサーミスタの電気抵抗が変化した場合に、その温度に対応する電気信号を出力することで圧力を検出するものである。この通気孔22Bは、被測定体である流体が流れ込むための入口である。通気孔22Bは、微少サイズ(例えば、孔の直径が数μm~数十μm)とされているため、この通気孔22Bには、従来技術(特許文献1に記載の流量センサ)の場合のように異物(金属屑、有機物など)が入り込むことは生じ難い。この通気孔22Bは、ドライエッチング等によって形成され得る。また、この圧力センサ1Aにおいても、第1実施形態における流量センサ1の場合と同様、薄肉部22aの周辺の部分で固定された場合に比べて、薄肉部22aに対して第2基板3との関係で生じる応力がかかり難くなる。 Similarly, as shown in FIGS. 15 and 16, the present disclosure may be applied to the temperature sensor 1B. This temperature sensor 1B is obtained by changing the basic configuration of the flow rate sensor 1 according to the first embodiment to a temperature sensor. Specifically, the sensing units 7 and 9 for detecting the flow rate of the fluid are changed to a sensing unit 7B composed of a thermistor for detecting the temperature of the detection target, and a recess (reference numeral in FIG. 16). 21B) is provided on the other surface 22 side of the first substrate 2. As in the case of the pressure sensor 1A, the bottom surface of the second recess 31a of the second substrate 3 extends from the bottom surface of the second recess 31a to the surface 32 of the second substrate 3 opposite to the third surface 31. A penetrating air hole 22B is formed. In this temperature sensor 1B, the fluid that is the detection object enters the second recess 31a of the second substrate 3 and the first recess 21a of the first substrate 2 in order from the air hole 22B, and the temperature of the thermistor depends on the temperature of the fluid. When the resistance changes, the pressure is detected by outputting an electric signal corresponding to the temperature. The vent hole 22B is an inlet through which a fluid as a measurement object flows. Since the vent hole 22B has a very small size (for example, the diameter of the hole is several μm to several tens μm), the vent hole 22B is provided in the vent hole 22B as in the case of the prior art (the flow sensor described in Patent Document 1). It is difficult for foreign matter (metal scraps, organic matter, etc.) to enter the surface. The vent hole 22B can be formed by dry etching or the like. Also in this pressure sensor 1A, as in the case of the flow rate sensor 1 in the first embodiment, compared to the case where the pressure sensor 1A is fixed at the peripheral portion of the thin portion 22a, the second substrate 3 and the thin portion 22a are fixed. It becomes difficult to apply the stress caused by the relationship.
 なお、第1基板2の周囲に配置されている部材(図15、図16中の符号30Bを参照)は、モールド樹脂6を金型成形した際にモールド樹脂6と一体に成形されたものである。図15、図16に示すように、この温度センサ1Bにおいても、圧力センサ1Aの場合と同様、隙間31Bが形成されることで部材30Bの少なくとも一部が第1基板2から離されていることにより、部材30Bが第1基板2に密着している場合に比べて、薄肉部22aに対して部材30Bとの関係で生じる応力がかかり難くなる。なお、この部材30Bも、第1基板2を保護する部分として機能する。 The members (see reference numeral 30B in FIGS. 15 and 16) arranged around the first substrate 2 are formed integrally with the mold resin 6 when the mold resin 6 is molded. is there. As shown in FIGS. 15 and 16, also in this temperature sensor 1B, as in the case of the pressure sensor 1A, the gap 31B is formed so that at least a part of the member 30B is separated from the first substrate 2. Therefore, compared to the case where the member 30B is in close contact with the first substrate 2, it is difficult to apply the stress generated in relation to the member 30B to the thin portion 22a. The member 30B also functions as a part that protects the first substrate 2.
 また、第1~5実施形態に係る流量センサ1において、図17、図18に示すように、測定対象である流体の流れを整えるための整流板30を設けても良い。この整流板30は、モールド樹脂で構成されると共に、第1基板2の周囲のうち、第1基板2の第2面22の方向におけるセンシング部7、9よりも流体の上流側およびセンシング部7、9よりも下流側において第1基板2に密着して配置されている。具体的には、この整流板30は、エポキシ樹脂等の熱硬化性樹脂等によって構成され、金型を用いたトランスファーモールド法やコンプレッションモールド法により形成され得る。なお、第1実施形態において、第1基板2の他端2b側の部分を封止するモールド樹脂6を成形する工程と同じ工程において、整流板30を構成するモールド樹脂を成形する、すなわち第1基板2の他端2b側の部分を封止するモールド樹脂6と整流板30を構成するモールド樹脂とを一体成形することにより、製造工程の削減を図ることができる。 Further, in the flow rate sensor 1 according to the first to fifth embodiments, as shown in FIGS. 17 and 18, a rectifying plate 30 for adjusting the flow of the fluid to be measured may be provided. The rectifying plate 30 is made of a mold resin, and out of the periphery of the first substrate 2, the fluid upstream of the sensing units 7 and 9 in the direction of the second surface 22 of the first substrate 2 and the sensing unit 7. , 9 are arranged in close contact with the first substrate 2 on the downstream side. Specifically, the current plate 30 is made of a thermosetting resin such as an epoxy resin, and can be formed by a transfer molding method using a mold or a compression molding method. In the first embodiment, in the same step as the step of forming the mold resin 6 for sealing the portion on the other end 2b side of the first substrate 2, the mold resin constituting the rectifying plate 30 is formed, that is, the first step. By integrally molding the mold resin 6 that seals the portion on the other end 2b side of the substrate 2 and the mold resin that constitutes the rectifying plate 30, the number of manufacturing steps can be reduced.
 ここで、図17~図19に示すように、この流量センサ1では、整流板30が第2基板3に密着して配置されているが、第1基板2には貫通孔23が形成されているため、整流板30の膨張収縮に起因する応力が第1基板2の薄肉部22aに伝達され難い。なお、図19に示すように、第1基板2が整流板30よりも図中上方向に突き出してしまうと流体の整流ができなくなるため、この流量センサ1では、整流板30の端部が第1基板2よりも図中上方向に突き出している。 Here, as shown in FIGS. 17 to 19, in this flow sensor 1, the rectifying plate 30 is disposed in close contact with the second substrate 3, but the first substrate 2 has a through hole 23 formed therein. Therefore, the stress caused by the expansion and contraction of the rectifying plate 30 is not easily transmitted to the thin portion 22 a of the first substrate 2. As shown in FIG. 19, since the fluid cannot be rectified when the first substrate 2 protrudes upward in the drawing from the rectifying plate 30, in this flow sensor 1, the end of the rectifying plate 30 is It protrudes upward in the figure from one substrate 2.
 なお、第1基板2の周囲のうち、第1基板2の第2面22の方向におけるセンシング部7、9よりも流体の上流側およびセンシング部7、9よりも下流側の一方にのみに整流板30を設けても良い。 It should be noted that rectification is performed only on one of the fluid upstream side of the sensing units 7 and 9 and the downstream side of the sensing units 7 and 9 in the direction of the second surface 22 of the first substrate 2 in the periphery of the first substrate 2. A plate 30 may be provided.
 また、整流板30を設けた流量センサ1において、図20、図21に示すように、整流板30を構成するモールド樹脂のうち第1基板2の周囲において第1基板2に接触していた部分を、レーザーを照射することにより除去しても良い。すなわち、流量センサ1において、整流板30を構成するモールド樹脂に対して第1基板2に整流板30と第1基板2の境界に沿ってレーザーを照射することにより第1基板2の周囲に位置するモールド樹脂を除去しても良い。この場合、この流量センサ1では、図20、図21に示すように、整流板30と第1基板2の間に隙間40が形成され、この隙間40が形成されたことにより、整流板30の少なくとも一部が第1基板2から離されている。なお、ここでは、整流板30は、モールド樹脂6と一体となっていることで固定されている。 Further, in the flow sensor 1 provided with the rectifying plate 30, as shown in FIGS. 20 and 21, a portion of the mold resin constituting the rectifying plate 30 that is in contact with the first substrate 2 around the first substrate 2. May be removed by laser irradiation. In other words, in the flow sensor 1, the mold resin constituting the rectifying plate 30 is irradiated with a laser along the boundary between the rectifying plate 30 and the first substrate 2 on the first substrate 2 to be positioned around the first substrate 2. The mold resin to be removed may be removed. In this case, in this flow sensor 1, as shown in FIGS. 20 and 21, a gap 40 is formed between the rectifying plate 30 and the first substrate 2. At least a portion is separated from the first substrate 2. Here, the current plate 30 is fixed by being integrated with the mold resin 6.
 このように、この流量センサ1では、隙間40が形成されることで整流板30の少なくとも一部が第1基板2から離されていることにより、整流板30が第1基板2に密着している場合に比べて、薄肉部22aに対して整流板30との関係で生じる応力がかかり難くなる。なお、この隙間40に流体が流れ込むことで流体の流れが阻害されることが懸念されるが、この隙間40はレーザーが照射されたことにより形成されるものであるため、この流量センサ1では、レーザーの経口等を調節するだけで、隙間40の幅を狭くすることができる。すなわち、隙間40の幅を狭くすることにより、隙間40に流体が流れ込むことで流体の流れが阻害される問題は生じ難くなる。 As described above, in this flow sensor 1, since the gap 40 is formed, at least a part of the rectifying plate 30 is separated from the first substrate 2, so that the rectifying plate 30 is in close contact with the first substrate 2. Compared with the case where it exists, the stress which arises by the relationship with the baffle plate 30 with respect to the thin part 22a becomes difficult to apply. In addition, although there is a concern that the flow of the fluid is hindered by the fluid flowing into the gap 40, the gap 40 is formed by the irradiation of the laser. The width of the gap 40 can be narrowed only by adjusting the laser or the like. That is, by narrowing the width of the gap 40, a problem that the flow of the fluid is inhibited due to the fluid flowing into the gap 40 is less likely to occur.
 以上、本開示の実施形態、構成、態様を例示したが、本開示に係わる実施形態、構成、態様は、上述した各実施形態、各構成、各態様に限定されるものではない。例えば、異なる実施形態、構成、態様にそれぞれ開示された技術的部を適宜組み合わせて得られる実施形態、構成、態様についても本開示に係わる実施形態、構成、態様の範囲に含まれる。
 
The embodiments, configurations, and aspects of the present disclosure have been illustrated above, but the embodiments, configurations, and aspects according to the present disclosure are not limited to the above-described embodiments, configurations, and aspects. For example, embodiments, configurations, and aspects obtained by appropriately combining technical units disclosed in different embodiments, configurations, and aspects are also included in the scope of the embodiments, configurations, and aspects according to the present disclosure.

Claims (15)

  1.  第1端(2a)および前記第1端(2a)とは反対側の第2端(2b)を有すると共に第1面(21)および前記第1面(21)とは反対側の第2面(22)を有する支持基板(20)を備え、前記支持基板(20)の前記第1端(2a)の側における前記第1面(21)の第1凹部(21a)を備える薄肉部(22a)を有する第1基板(2)と、
     第3面(31)を有し、前記第2面(22)に対する法線の方向から見て、前記薄肉部(22a)を内包して前記第3面(31)に備えられた第2凹部(31a)を有すると共に、前記第3面(31)が前記第1基板(2)の第1面(21)に接触させられつつ前記第1基板(2)に貼り合わされた第2基板(3)と、
     前記薄肉部(22a)における前記第2面(22)に備えられ、被検出体の物理量を検出して電気信号として出力するセンシング部(7、9、7A、7B)と、を有する物理量センサ。
    A second surface having a first end (2a) and a second end (2b) opposite to the first end (2a) and opposite to the first surface (21) and the first surface (21) A thin substrate (22a) comprising a first recess (21a) of the first surface (21) on the first end (2a) side of the support substrate (20). A first substrate (2) having
    A second recess having a third surface (31) and including the thin-walled portion (22a) as viewed from the direction of the normal to the second surface (22). (3a) and the second substrate (3) bonded to the first substrate (2) while the third surface (31) is in contact with the first surface (21) of the first substrate (2). )When,
    A physical quantity sensor provided on the second surface (22) of the thin-walled part (22a) and having a sensing part (7, 9, 7A, 7B) that detects a physical quantity of the detection target and outputs it as an electrical signal.
  2.  前記被検出体の物理量として流体の流量を検出する前記センシング部(7、9)を有する請求項1に記載の物理量センサ。 The physical quantity sensor according to claim 1, comprising the sensing unit (7, 9) that detects a flow rate of a fluid as a physical quantity of the detected object.
  3.  前記第1基板(2)の周囲のうち前記第1基板(2)の第2面(22)の方向における前記流体の上流側および下流側のうち少なくとも一方において第1基板(2)に密着して配置され、前記流体の流れを整えるための整流板(30)を備える請求項2に記載の物理量センサ。 The first substrate (2) is in close contact with the first substrate (2) on at least one of the upstream side and the downstream side of the fluid in the direction of the second surface (22) of the first substrate (2) in the periphery of the first substrate (2). The physical quantity sensor according to claim 2, further comprising a baffle plate (30) arranged to adjust the flow of the fluid.
  4.  前記第1基板(2)の第2端(2b)の側の部分を封止するモールド樹脂(6)を有し、該モールド樹脂(6)と前記整流板(30)を構成する前記モールド樹脂(6)が一体成形されている請求項3に記載の物理量センサ。 The mold resin having a mold resin (6) for sealing a portion of the first substrate (2) on the second end (2b) side, and constituting the mold resin (6) and the current plate (30) The physical quantity sensor according to claim 3, wherein (6) is integrally formed.
  5.  前記第2面(22)に対する法線の方向における長さとしての前記第1基板(2)の厚さおよび前記第2基板(3)の厚さを比較したときに、前記第2基板(3)が前記第1基板(2)よりも薄い請求項1ないし4のいずれか1つに記載の物理量センサ。 When comparing the thickness of the first substrate (2) and the thickness of the second substrate (3) as the length in the direction of the normal to the second surface (22), the second substrate (3) The physical quantity sensor according to claim 1, wherein the physical quantity sensor is thinner than the first substrate.
  6.  前記第2基板(3)は、前記第2凹部(31a)を備え、前記第3面(31)のうち前記第1端(2a)の側の部分において前記第1面(21)と非接触であり、前記第3面(31)のうち前記第2端(2b)の側の部分の少なくとも一部において前記第1面(21)と接触している請求項1ないし5のいずれか1つに記載の物理量センサ。 The second substrate (3) includes the second recess (31a), and is not in contact with the first surface (21) in a portion of the third surface (31) on the first end (2a) side. The at least part of the third surface (31) on the second end (2b) side is in contact with the first surface (21). The physical quantity sensor described in 1.
  7.  前記第2基板(3)内に設けられ、前記センシング部(7、9、7A、7B)が検出して出力した電気信号について演算処理を実行する電気回路を有する電気回路部(4)と、
     前記第1基板(2)に設けられ、前記電気回路部(4)と外部との電気的接続を可能とするための前記第1基板(2)を前記第1面(21)から前記第2面(22)まで貫通した貫通電極(19)と、を有する請求項1ないし6のいずれか1つに記載の物理量センサ。
    An electric circuit unit (4) provided in the second substrate (3) and having an electric circuit for performing arithmetic processing on an electric signal detected and output by the sensing unit (7, 9, 7A, 7B);
    The first substrate (2) provided on the first substrate (2) for enabling electrical connection between the electric circuit portion (4) and the outside from the first surface (21) to the second. The physical quantity sensor according to any one of claims 1 to 6, further comprising a through electrode (19) penetrating to the surface (22).
  8.  前記第1基板(2)には、前記第2面(22)に対する法線の方向から見て、前記第2凹部(31a)の内方の領域であって前記薄肉部(22a)の周囲の領域において、前記第1面(21)から前記第2面(22)まで貫通する貫通孔(23)を備え、
     前記貫通孔(23)は、前記薄肉部(22a)の周囲を部分的に囲む請求項2ないし4のいずれか1つに記載の物理量センサ。
    The first substrate (2) is an inner region of the second recess (31a) and around the thin portion (22a) when viewed from the direction of the normal to the second surface (22). In the region, provided with a through hole (23) penetrating from the first surface (21) to the second surface (22),
    The physical quantity sensor according to any one of claims 2 to 4, wherein the through hole (23) partially surrounds the periphery of the thin portion (22a).
  9.  前記貫通孔(23)は、前記第2面(22)に対する法線の方向から見て、第1直線(23a)と、前記薄肉部(22a)を挟んで前記第1直線(23a)とは反対側に配置された第2直線(23b)と、前記第1直線(23a)と前記第2直線(23b)とを連結する第3直線(23c)と、によってU字状に設けられており、
     前記第2面(22)に対する法線の方向から見て、前記第1直線(23a)と前記第3直線(23c)との連結部分、および、前記第2直線(23b)と前記第3直線(23c)との連結部分が、それぞれ、鈍角に折れ曲がった部分を複数有する請求項8に記載の物理量センサ。
    The through hole (23) has a first straight line (23a) and the first straight line (23a) sandwiching the thin portion (22a) when viewed from the direction of the normal to the second surface (22). The second straight line (23b) disposed on the opposite side and the third straight line (23c) connecting the first straight line (23a) and the second straight line (23b) are provided in a U-shape. ,
    When viewed from the direction of the normal to the second surface (22), the connecting portion of the first straight line (23a) and the third straight line (23c), and the second straight line (23b) and the third straight line The physical quantity sensor according to claim 8, wherein each of the connecting portions to (23 c) has a plurality of portions bent at an obtuse angle.
  10.  前記貫通孔(23)は、前記第2面(22)に対する法線の方向から見て、第1直線(23a)と、前記薄肉部(22a)を挟んで前記第1直線(23a)とは反対側に配置された第2直線(23b)と、前記第1直線(23a)と前記第2直線(23b)とを連結する第3直線(23c)と、によってU字状に設けられており、
     前記第2面(22)に対する法線の方向から見て、前記第1直線(23a)と前記第3直線(23c)との連結部分、および、前記第2直線(23b)と前記第3直線(23c)との連結部分が、それぞれ、曲線状に曲がった部分を有する請求項8に記載の物理量センサ。
    The through hole (23) has a first straight line (23a) and the first straight line (23a) sandwiching the thin portion (22a) when viewed from the direction of the normal to the second surface (22). The second straight line (23b) disposed on the opposite side and the third straight line (23c) connecting the first straight line (23a) and the second straight line (23b) are provided in a U-shape. ,
    When viewed from the direction of the normal to the second surface (22), the connecting portion of the first straight line (23a) and the third straight line (23c), and the second straight line (23b) and the third straight line The physical quantity sensor according to claim 8, wherein each of the connecting portions with (23 c) has a curved portion.
  11.  前記貫通孔(23)は、前記第2面(22)に対する法線の方向から見て、第1直線(23a)と、前記薄肉部(22a)を挟んで前記第1直線(23a)とは反対側に配置された第2直線(23b)と、前記第1直線(23a)と前記第2直線(23b)とを連結する第3直線(23c)と、によってU字状に設けられており、
     前記第1基板(2)の前記第2面(22)に対する法線の方向から見て、前記第3直線(23c)が、前記薄肉部(22a)を挟んで前記第1基板(2)の第1端(2a)の反対側に配置されている請求項8ないし10のいずれか1つに記載の物理量センサ。
    The through hole (23) has a first straight line (23a) and the first straight line (23a) sandwiching the thin portion (22a) when viewed from the direction of the normal to the second surface (22). The second straight line (23b) disposed on the opposite side and the third straight line (23c) connecting the first straight line (23a) and the second straight line (23b) are provided in a U-shape. ,
    When viewed from the direction of the normal to the second surface (22) of the first substrate (2), the third straight line (23c) is formed on the first substrate (2) with the thin portion (22a) in between. 11. The physical quantity sensor according to claim 8, wherein the physical quantity sensor is disposed on the opposite side of the first end (2a).
  12.  前記第1基板(2)の第1面(21)と前記第2基板(3)の第2凹部(31a)の底面との間の距離が100μm以下とされている請求項2ないし11のいずれか1つに記載の物理量センサ。 The distance between the first surface (21) of the first substrate (2) and the bottom surface of the second recess (31a) of the second substrate (3) is 100 µm or less. The physical quantity sensor according to claim 1.
  13.  請求項1ないし12のいずれか1つに記載の物理量センサの製造方法であって、
     複数の前記物理量センサの前記第1基板(2)を構成する部材として、第4面(201)および前記第4面(201)とは反対側の第5面(202)を有する板状とされ、複数の前記物理量センサそれぞれに対応した複数の前記第1凹部(21a)が前記第4面(201)に形成されたことにより複数の前記薄肉部(22a)を有する第1ウェハ(200)を用意することと、
     複数の前記物理量センサの前記第2基板(3)を構成する部材として、第6面(301)を有する板状とされ、複数の前記物理量センサそれぞれに対応した複数の前記第2凹部(31a)が前記第6面(301)に形成された第2ウェハ(300)を用意することと、
     前記第1ウェハ(200)と第2ウェハ(300)の用意の後に、前記第6面(301)に対する法線の方向から見て、前記複数の前記第2凹部(31a)それぞれが前記複数の前記第1凹部(21a)のうち対応する前記第1凹部(21a)を内方に含むように、前記第6面(301)を前記第4面(201)に接触させつつ前記第1ウェハ(200)と前記第2ウェハ(300)とを貼り合わせることと、を有する物理量センサの製造方法。
    A method of manufacturing a physical quantity sensor according to any one of claims 1 to 12,
    The member constituting the first substrate (2) of the plurality of physical quantity sensors has a plate shape having a fourth surface (201) and a fifth surface (202) opposite to the fourth surface (201). A plurality of the first recesses (21a) corresponding to the plurality of physical quantity sensors are formed on the fourth surface (201), whereby the first wafer (200) having the plurality of thin portions (22a) is formed. To prepare,
    As a member constituting the second substrate (3) of the plurality of physical quantity sensors, a plate shape having a sixth surface (301) is formed, and the plurality of second recesses (31a) corresponding to the plurality of physical quantity sensors, respectively. Preparing a second wafer (300) formed on the sixth surface (301);
    After preparing the first wafer (200) and the second wafer (300), each of the plurality of second recesses (31a) is a plurality of the plurality of second recesses (31a) when viewed from the direction of the normal to the sixth surface (301). The first wafer (301) is brought into contact with the fourth surface (201) so that the corresponding first recess (21a) among the first recesses (21a) is included inward. 200) and the second wafer (300) are bonded together.
  14.  請求項8ないし11のいずれか1つに記載の物理量センサの製造方法であって、
     複数の前記物理量センサの前記第1基板(2)を構成する部材として、第4面(201)および前記第4面(201)とは反対側の第5面(202)を有する板状とされ、複数の前記物理量センサそれぞれに対応した複数の前記第1凹部(21a)が前記第4面(201)に形成されたことで複数の前記物理量センサそれぞれに対応した複数の前記薄肉部(22a)を有し、複数の前記物理量センサそれぞれに対応した前記複数の前記薄肉部(22a)に対応して、前記第4面(201)から前記第5面(202)まで貫通する複数の貫通孔(23)を有する第1ウェハ(200)を用意することと、
     複数の前記物理量センサの前記第2基板(3)を構成する部材として、第6面(301)を有する板状とされ、複数の前記物理量センサそれぞれに対応した複数の前記第2凹部(31a)が前記第6面(301)に形成された第2ウェハ(300)を用意することと、
     前記第1ウェハ(200)と第2ウェハ(300)の用意の後に、前記第6面(301)に対する法線の方向から見て、前記複数の前記第2凹部(31a)それぞれが、前記複数の前記第1凹部(21a)のうち対応する前記第1凹部(21a)および前記複数の貫通孔(23)のうち対応する前記貫通孔(23)を内方に含むように、前記第6面(301)を前記第4面(201)に接触させつつ前記第1ウェハ(200)と前記第2ウェハ(300)とを貼り合わせることと、を有する物理量センサの製造方法。
    A method of manufacturing a physical quantity sensor according to any one of claims 8 to 11,
    The member constituting the first substrate (2) of the plurality of physical quantity sensors has a plate shape having a fourth surface (201) and a fifth surface (202) opposite to the fourth surface (201). The plurality of first recesses (21a) corresponding to the plurality of physical quantity sensors are formed on the fourth surface (201), whereby the plurality of thin portions (22a) corresponding to the plurality of physical quantity sensors, respectively. A plurality of through-holes penetrating from the fourth surface (201) to the fifth surface (202) in correspondence with the plurality of thin portions (22a) corresponding to the plurality of physical quantity sensors, respectively. 23) providing a first wafer (200) having
    As a member constituting the second substrate (3) of the plurality of physical quantity sensors, a plate shape having a sixth surface (301) is formed, and the plurality of second recesses (31a) corresponding to the plurality of physical quantity sensors, respectively. Preparing a second wafer (300) formed on the sixth surface (301);
    After preparing the first wafer (200) and the second wafer (300), each of the plurality of second recesses (31a) is a plurality of the plurality of second recesses (31a) when viewed from the direction of the normal to the sixth surface (301). The sixth surface so as to include the corresponding through hole (23) of the first recess (21a) and the corresponding through hole (23) among the plurality of through holes (23). Bonding the first wafer (200) and the second wafer (300) while bringing (301) into contact with the fourth surface (201).
  15.  請求項5に記載の物理量センサの製造方法であって、
     複数の前記物理量センサの前記第1基板(2)を構成する部材として、第4面(201)および前記第4面(201)とは反対側の第5面(202)を有する板状とされた第1ウェハ(200)を用意して、複数の前記物理量センサそれぞれに対応した複数の貫通電極(19)を前記第1ウェハ(200)に形成すると共に複数の前記物理量センサそれぞれに対応した複数の前記第1凹部(21a)を前記第1ウェハ(200)に形成することにより、複数の前記貫通電極(19)および複数の前記薄肉部(22a)を有する前記第1ウェハ(200)を用意することと、
     複数の前記物理量センサの前記第2基板(3)を構成する部材として、第6面(301)を有する板状とされ、複数の前記物理量センサそれぞれに対応した複数の前記第2凹部(31a)が前記第6面(301)に形成された第2ウェハ(300)を用意することと、
     前記第1ウェハ(200)と第2ウェハ(300)の用意の後に、前記第6面(301)に対する法線の方向から見て、前記複数の前記第2凹部(31a)それぞれが前記複数の前記第1凹部(21a)のうち対応する前記第1凹部(21a)を内方に含むように、前記第6面(301)を前記第4面(201)に接触させつつ前記第1ウェハ(200)と前記第2ウェハ(300)とを貼り合わせることと、を有する物理量センサの製造方法。
    It is a manufacturing method of the physical quantity sensor according to claim 5,
    The member constituting the first substrate (2) of the plurality of physical quantity sensors has a plate shape having a fourth surface (201) and a fifth surface (202) opposite to the fourth surface (201). A first wafer (200) is prepared, and a plurality of through electrodes (19) corresponding to the plurality of physical quantity sensors are formed on the first wafer (200), and a plurality of corresponding to the plurality of physical quantity sensors are formed. The first recess (21a) is formed in the first wafer (200) to prepare the first wafer (200) having a plurality of the through electrodes (19) and a plurality of the thin portions (22a). To do
    As a member constituting the second substrate (3) of the plurality of physical quantity sensors, a plate shape having a sixth surface (301) is formed, and the plurality of second recesses (31a) corresponding to the plurality of physical quantity sensors, respectively. Preparing a second wafer (300) formed on the sixth surface (301);
    After preparing the first wafer (200) and the second wafer (300), each of the plurality of second recesses (31a) is a plurality of the plurality of second recesses (31a) when viewed from the direction of the normal to the sixth surface (301). The first wafer (301) is brought into contact with the fourth surface (201) so that the corresponding first recess (21a) among the first recesses (21a) is included inward. 200) and the second wafer (300) are bonded together.
PCT/JP2015/001680 2014-04-24 2015-03-24 Physical quantity sensor and physical quantity sensor manufacturing method WO2015162853A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014090264 2014-04-24
JP2014-090264 2014-04-24
JP2014-245251 2014-12-03
JP2014245251A JP6432314B2 (en) 2014-04-24 2014-12-03 Physical quantity sensor and method of manufacturing physical quantity sensor

Publications (1)

Publication Number Publication Date
WO2015162853A1 true WO2015162853A1 (en) 2015-10-29

Family

ID=54332036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001680 WO2015162853A1 (en) 2014-04-24 2015-03-24 Physical quantity sensor and physical quantity sensor manufacturing method

Country Status (2)

Country Link
JP (1) JP6432314B2 (en)
WO (1) WO2015162853A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227131A (en) * 2004-02-13 2005-08-25 Denso Corp Thermal airflow sensor and method for manufacturing the same
JP2009036639A (en) * 2007-08-01 2009-02-19 Denso Corp Sensor device
JP2010107315A (en) * 2008-10-29 2010-05-13 Denso Corp Thermal flow rate sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227131A (en) * 2004-02-13 2005-08-25 Denso Corp Thermal airflow sensor and method for manufacturing the same
JP2009036639A (en) * 2007-08-01 2009-02-19 Denso Corp Sensor device
JP2010107315A (en) * 2008-10-29 2010-05-13 Denso Corp Thermal flow rate sensor

Also Published As

Publication number Publication date
JP6432314B2 (en) 2018-12-05
JP2015215331A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
KR101355838B1 (en) Pressure sensor with silicon frit bonded cap
US9587970B2 (en) Airflow measuring apparatus including a ventilation hole between a connector part and a circuit chamber
JP5136868B2 (en) Thermal conductivity detector and gas chromatograph using the same
US9581427B2 (en) Mechanical quantity measuring device
CN105765360B (en) Pressure sensor
US20160025581A1 (en) Pressure sensor
JP2014048072A (en) Pressure sensor module
JP5206429B2 (en) Flow sensor
JP5243348B2 (en) Flow rate detector
JP4997039B2 (en) Flow sensor
JP5768011B2 (en) Thermal air flow sensor
CN112880903A (en) Piezoresistive pressure chip and preparation method thereof
WO2015162853A1 (en) Physical quantity sensor and physical quantity sensor manufacturing method
JP6535604B2 (en) Measuring device and manufacturing method of measuring device
JP2017198453A (en) Flow sensor
JP2003294508A (en) Thermosensitive flow rate detection element and its manufacturing method
WO2020158155A1 (en) Detection device
JP5949573B2 (en) Manufacturing method of physical quantity sensor
JP2010230312A (en) Semiconductor sensor manufacturing method and semiconductor sensor
JP6685789B2 (en) Gas sensor
JP6642036B2 (en) Sensor device and method of manufacturing the same
JP6206268B2 (en) Flow sensor and manufacturing method thereof
JP2016133367A (en) Thermal type air flowmeter
JPH09264900A (en) Manufacture of thermal flow veldcity sensor
JP6219769B2 (en) Flow sensor and method of manufacturing flow sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783495

Country of ref document: EP

Kind code of ref document: A1