JP4997039B2 - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP4997039B2
JP4997039B2 JP2007244545A JP2007244545A JP4997039B2 JP 4997039 B2 JP4997039 B2 JP 4997039B2 JP 2007244545 A JP2007244545 A JP 2007244545A JP 2007244545 A JP2007244545 A JP 2007244545A JP 4997039 B2 JP4997039 B2 JP 4997039B2
Authority
JP
Japan
Prior art keywords
flow path
forming member
path forming
flow
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007244545A
Other languages
Japanese (ja)
Other versions
JP2009074945A (en
Inventor
信一 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007244545A priority Critical patent/JP4997039B2/en
Priority to EP08007978.3A priority patent/EP2040045B1/en
Priority to EP10191585A priority patent/EP2282180A1/en
Priority to CN2010102752404A priority patent/CN101963518A/en
Priority to CN2008100928734A priority patent/CN101393045B/en
Priority to US12/191,907 priority patent/US8166814B2/en
Publication of JP2009074945A publication Critical patent/JP2009074945A/en
Application granted granted Critical
Publication of JP4997039B2 publication Critical patent/JP4997039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば半導体製造装置に使用するガス等の微少な流量の測定に適したフローセンサに関する。   The present invention relates to a flow sensor suitable for measuring a minute flow rate of gas or the like used in a semiconductor manufacturing apparatus, for example.

例えば、半導体製造装置に使用するガス等の被測定流体の流量を検出するフローセンサ(流量測定装置)として流体に熱を加えて所定位置における流体の温度差を測定することにより微少な流量を測定する熱式のフローセンサがある(例えば、特許文献1、特許文献2、特許文献3参照)。   For example, as a flow sensor (flow rate measuring device) that detects the flow rate of a fluid to be measured such as gas used in semiconductor manufacturing equipment, heat is applied to the fluid and the minute flow rate is measured by measuring the temperature difference of the fluid at a predetermined position. There is a thermal type flow sensor that performs (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

図4は、従来の熱式フローセンサの一例を示し、熱式のフローセンサ1は、シリコン基板2上に流量検出部3が形成されたセンサチップ4と、流量検出部(センサ部)3を収容すると共に当該流量検出部3を流れる流体の流路(溝)5aが形成された透明な流路形成部材としてのガラスチップ5とを接合して形成されている。そして、ガラスチップ5の流路5aは、サンドブラスト等により形成されている。   FIG. 4 shows an example of a conventional thermal flow sensor. The thermal flow sensor 1 includes a sensor chip 4 having a flow rate detection unit 3 formed on a silicon substrate 2 and a flow rate detection unit (sensor unit) 3. It is formed by joining a glass chip 5 as a transparent flow path forming member in which a flow path (groove) 5a of the fluid flowing through the flow rate detection unit 3 is formed. The flow path 5a of the glass chip 5 is formed by sandblasting or the like.

フローセンサ1の製造後の検査工程において、流量検出部3及び流路内に異常が無いかを視覚的に確認でき、更に、使用後に被測定流体に混じって微小な塵埃等が流路5aに侵入していないか、または流路検出部3に不具合を与えていないか等を確認できる。
特開2002−168669号公報(5−6頁、図1) 特開2004−325335号公報(6−7頁、図8) 特開2007−071687号公報(2−3頁、図7)
In the inspection process after the manufacture of the flow sensor 1, it is possible to visually check whether there is any abnormality in the flow rate detection unit 3 and the flow path. Further, after use, minute dust or the like mixed with the fluid to be measured enters the flow path 5 a. It is possible to confirm whether or not the intrusion has occurred or the flow path detection unit 3 is not defective.
JP 2002-168669A (page 5-6, FIG. 1) JP 2004-325335 A (page 6-7, FIG. 8) JP 2007-071687 (page 2-3, FIG. 7)

しかしながら、ガラスチップ5の流路5aをサンドブラストにより形成する方法では、図4及び図5に示すようにセンサチップ4の上面4aからガラスチップ5の流路5aの内側上面5bまでの高さ(以下「センサ流路高さ」という)hを一様に加工することが難く、加工精度を高くすることが困難である。このため、流量検出部3付近の流路5aの断面積S(=h×w、wは流路5aの幅)が設計通りでない場合がある。センサ出力は、流量Qとセンサ流路の断面積Sによって決まるため、流路5aの断面積Sが変化すると流量特性(流量曲線)が変化し、大きなスパンの調整が必要になると共に、フローセンサの個体差が出てくるので品質の安定性を図り難くなる。   However, in the method of forming the flow path 5a of the glass chip 5 by sandblasting, the height from the upper surface 4a of the sensor chip 4 to the inner upper surface 5b of the flow path 5a of the glass chip 5 as shown in FIGS. It is difficult to uniformly process h (referred to as “sensor channel height”), and it is difficult to increase processing accuracy. For this reason, the cross-sectional area S (= h × w, w is the width of the flow path 5a) of the flow path 5a near the flow rate detection unit 3 may not be as designed. Since the sensor output is determined by the flow rate Q and the cross-sectional area S of the sensor flow path, if the cross-sectional area S of the flow path 5a changes, the flow characteristics (flow curve) change and a large span needs to be adjusted. As individual differences appear, it becomes difficult to achieve stable quality.

また、ガラスチップ5の流路5aをサンドブラストにより加工すると、加工面である流路5aの内側上面5bの面が粗くなり透明性が悪くなる。従って、透明性を高めるために後処理が必要となる。また、サンドブラスト加工時における微細な傷に起因してガラスチップの耐圧性が低下するおそれがある。   Moreover, when the flow path 5a of the glass chip 5 is processed by sandblasting, the surface of the inner upper surface 5b of the flow path 5a, which is the processed surface, becomes rough and the transparency is deteriorated. Therefore, post-processing is required to increase transparency. Further, the pressure resistance of the glass chip may be reduced due to fine scratches during sandblasting.

本発明の目的は、センサ流路の断面積の加工精度を向上させて個体差を少なくすることで流量検出精度を安定させたフローセンサを提供することにある。   An object of the present invention is to provide a flow sensor that stabilizes the flow rate detection accuracy by improving the processing accuracy of the cross-sectional area of the sensor flow path and reducing individual differences.

上述した課題を解決するために、本発明に係るフローセンサは、
基板の上面に形成された凹部の少なくとも一部を覆うように被覆された絶縁膜に流量検出部が形成されたセンサチップと、
前記センサチップ上に設けられ前記流量検出部を流れる流体の流路が形成された流路形成部材とを接合して構成したフローセンサにおいて、
前記流路形成部材は、透明部材である第1の流路形成部材と、第2の流路形成部材とを接合することにより構成され、
前記第1の流路形成部材は板状をなし、当該第1の流路形成部材には被測定流体の導入孔及び導出孔が設けられ、
前記第2の流路形成部材は、シリコンにより所定形状に形成された板状体からなり、かつ当該第2の流路形成部材には前記流量検出部に沿って流れる流体の流れに沿った流路を形成する所定形状の貫通口が設けられ、
前記貫通口は、両端が前記導入孔及び導出孔のそれぞれに連通し、前記流量検出部が前記貫通口の前記導入孔と導出孔に対応する部分の間に配置され、
前記第1及び第2の流路形成部材で所定の断面積の流路を形成することを特徴としている。
In order to solve the above-described problems, a flow sensor according to the present invention is
A sensor chip in which a flow rate detection unit is formed on an insulating film coated so as to cover at least a part of a recess formed on the upper surface of the substrate;
In a flow sensor configured by joining a flow path forming member provided on the sensor chip and formed with a flow path of fluid flowing through the flow rate detection unit,
The flow path forming member is configured by joining a first flow path forming member, which is a transparent member, and a second flow path forming member,
The first flow path forming member has a plate shape, and the first flow path forming member is provided with an introduction hole and a discharge hole for the fluid to be measured.
The second flow path forming member is composed of a plate-like body formed of silicon in a predetermined shape , and the second flow path forming member has a flow along the flow of the fluid flowing along the flow rate detection unit. A through hole of a predetermined shape that forms a path is provided,
Both ends of the through-hole communicate with the introduction hole and the lead-out hole, respectively, and the flow rate detection unit is disposed between portions corresponding to the introduction hole and the lead-out hole of the through-hole,
A flow path having a predetermined cross-sectional area is formed by the first and second flow path forming members.

流路形成部材を流体の導入孔と導出孔が形成された透明な板状の第1の流路形成部材と、板状をなしセンサチップに設けられた流量検出部に沿って流れる流体の流れに沿った流路を形成する貫通口が設けられた第2の流路形成部材とにより形成し、貫通口の両端を導入孔及び導出孔のそれぞれに連通させて所定の断面積の流路を形成し、貫通口に流量検出部を配置する。これにより、センサ流路の高さ、即ち貫通口の断面積を一定とすることができ、流路断面積に関するセンサの個体差が少なくなる。この結果、第1の流路形成部材の透明性を確保しつつフローセンサの品質の安定性を図ることができる。   The flow path forming member is a transparent plate-like first flow path forming member in which a fluid introduction hole and a lead-out hole are formed, and a fluid flow that flows along a flow rate detector provided in the sensor chip. And a second flow path forming member provided with a through-hole that forms a flow path along the flow path, and the flow path having a predetermined cross-sectional area by connecting both ends of the through-hole to the introduction hole and the discharge hole, respectively. Form a flow rate detector at the through hole. Thereby, the height of the sensor flow path, that is, the cross-sectional area of the through hole can be made constant, and the individual difference of the sensor related to the cross-sectional area of the flow path is reduced. As a result, the quality of the flow sensor can be stabilized while ensuring the transparency of the first flow path forming member.

なお、センサチップと第2の流路形成部材が接合されているので、センサチップと第2の流路形成部材とを互いに熱膨張係数が同一又は近い材料とすることにより、センサチップと第2の流路形成部材の周囲の温度変化が生じてもセンサチップと第2の流路形成部材のそれぞれに歪が生じ難くなり、センサの出力がドリフトし難くなり、センサの計測精度の悪化を避けることができるようになる In addition, since the sensor chip and the second flow path forming member are joined, the sensor chip and the second flow path forming member are made of materials having the same or close thermal expansion coefficient as each other. Even if the temperature around the flow path forming member changes, the sensor chip and the second flow path forming member are hardly distorted, the sensor output is less likely to drift, and deterioration of the sensor measurement accuracy is avoided. Will be able to .

また、センサチップと第2の流路形成部材とが同一の熱膨張係数をもつシリコン材料又は第2の流路形成部材を熱膨張係数がシリコン材料に略近い硼珪酸ガラスを使用することで、センサチップと第2の流路形成部材の周囲の温度変化等により、センサチップと第2の流路形成部材とに歪が生じ難くなり、センサの出力がドリフトし難く、センサの計測精度悪化を避けることができるようになる In addition, by using a silicon material having the same thermal expansion coefficient as the sensor chip and the second flow path forming member or using a borosilicate glass whose thermal expansion coefficient is substantially similar to the silicon material, Due to changes in the temperature around the sensor chip and the second flow path forming member, the sensor chip and the second flow path forming member are less likely to be distorted, the sensor output is less likely to drift, and the sensor measurement accuracy is degraded. Can be avoided.

特にシリコン材料は、加工精度を良くすることができる材料であり、第2の流路形成部材の加工精度が良くなり設計通りに製作することができ、その結果、センサ流路の高さを一様に設計通りとすることができる。これにより、流路断面積を設計通りとすることができ、フローセンサの流量検出精度を安定させることができる。   In particular, the silicon material is a material that can improve the processing accuracy, and the processing accuracy of the second flow path forming member can be improved and can be manufactured as designed. As a result, the height of the sensor flow path is made uniform. Can be as designed. Thereby, a flow-path cross-sectional area can be made as designed, and the flow volume detection accuracy of a flow sensor can be stabilized.

また、本発明の請求項に係るフローセンサは、請求項に記載のフローセンサにおいて、
前記第1の流路形成部材は硼珪酸ガラスにより形成されていることを特徴としている。
A flow sensor according to claim 2 of the present invention is the flow sensor according to claim 1 ,
The first flow path forming member is made of borosilicate glass .

第1の流路形成部材の硼珪酸ガラスと、第2の流路形成部材のシリコン材料又は硼珪酸ガラスとが略近い又は同一の熱膨張係数をもつこととなり、第1の流路形成部材と第2の流路形成部材の周囲の温度変化等により、第1の流路形成部材と第2の流路形成部材のそれぞれに歪が生じ難くなり、歪が第2の流路形成部材を介してセンサチップに伝わることも無く、センサの出力がドリフトし難く、センサの計測精度の悪化を避けることができる。   The borosilicate glass of the first flow path forming member and the silicon material or borosilicate glass of the second flow path forming member have substantially the same or the same thermal expansion coefficient, and the first flow path forming member and Due to a change in temperature around the second flow path forming member, the first flow path forming member and the second flow path forming member are less likely to be distorted, and the distortion is caused to pass through the second flow path forming member. Therefore, it is difficult for the sensor output to drift, and deterioration of the measurement accuracy of the sensor can be avoided.

本発明によると、センサ流路の断面積の加工精度を向上させて個体差を少なくすることでフローセンサの流量検出精度を安定させることができた。   According to the present invention, the flow rate detection accuracy of the flow sensor can be stabilized by improving the processing accuracy of the cross-sectional area of the sensor flow path and reducing individual differences.

より具体的には流体の導入孔と導出孔が形成された板状の第1の流路形成部材と、板状をなしセンサチップに設けられた流量検出部に沿って流れる流体の流れに沿った流路を形成する貫通口が設けられた第2の流路形成部材とにより流路形成部材を形成し、貫通口の両端を導入孔及び導出孔のそれぞれに連通させて流路を形成することにより、流路断面積が一定となりフローセンサの個体差を少なくすることができ、流量検出精度を安定させることが可能となる。   More specifically, a plate-like first flow path forming member in which a fluid introduction hole and a lead-out hole are formed, and a fluid flow that flows along a flow rate detection unit provided in the sensor chip. The flow path forming member is formed by the second flow path forming member provided with the through-hole that forms the flow path, and both ends of the through-hole are communicated with the introduction hole and the outlet hole to form the flow path. As a result, the cross-sectional area of the flow path becomes constant, individual differences among the flow sensors can be reduced, and the flow rate detection accuracy can be stabilized.

以下、本発明の一実施形態に係るフローセンサについて図面に基づいて説明する。図1は、本発明に係るフローセンサを示す組立斜視図である。フローセンサ11は、センサチップ12と、流路形成部材13を形成する第1の流路形成部材(ガラスチップ)14及び第2の流路形成部材15とにより形成されている。   Hereinafter, a flow sensor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an assembled perspective view showing a flow sensor according to the present invention. The flow sensor 11 is formed by a sensor chip 12, a first flow path forming member (glass chip) 14 that forms a flow path forming member 13, and a second flow path forming member 15.

センサチップ12は、直方体形状をなすシリコン基板21の上面21aに窒化シリコン又は二酸化シリコンの絶縁膜(薄膜)22が形成され、この絶縁膜22の位置に流量検出部(センサ部)23が形成され、更に流量検出部23が窒化シリコン又は二酸化シリコンの絶縁膜24により被覆された構成とされている。尚、図1において絶縁膜22,24は、流量検出部23を分かり易くするために透明に描いてある。   In the sensor chip 12, a silicon nitride or silicon dioxide insulating film (thin film) 22 is formed on an upper surface 21 a of a rectangular parallelepiped silicon substrate 21, and a flow rate detection unit (sensor unit) 23 is formed at the position of the insulating film 22. Further, the flow rate detector 23 is covered with an insulating film 24 of silicon nitride or silicon dioxide. In FIG. 1, the insulating films 22 and 24 are drawn transparently so that the flow rate detection unit 23 can be easily understood.

シリコン基板21の上面21aの中央位置には図2及び図3に示すように流量検出部23の下側に凹部21cが形成されており、流量検出部23が形成されている絶縁膜22の凹部21cを覆う部位はダイアフラムとされて流量検出部23とシリコン基板21とが熱的に遮断されている。流量検出部23は、熱式の検出部で絶縁膜22上に例えば白金(Pt)薄膜でできた図示しない発熱素子としてのヒータと、このヒータの上流側及び下流側に等間隔で配置された例えば白金薄膜でできた抵抗素子としての図示しない測温素子とにより構成されている。   As shown in FIGS. 2 and 3, a recess 21 c is formed below the flow rate detector 23 at the center position of the upper surface 21 a of the silicon substrate 21, and the recess of the insulating film 22 in which the flow rate detector 23 is formed. The part covering 21c is a diaphragm, and the flow rate detector 23 and the silicon substrate 21 are thermally blocked. The flow rate detection unit 23 is a thermal detection unit and is disposed on the insulating film 22 as a heating element (not shown) made of, for example, a platinum (Pt) thin film, and arranged at equal intervals on the upstream side and the downstream side of the heater. For example, it is constituted by a temperature measuring element (not shown) as a resistance element made of a platinum thin film.

そして、流量検出部23の前記ヒータ及び測温素子の信号取り出し配線としてのリードパターン23a,23b,23cは、シリコン基板21の両側面位置まで延出されている。これらのリードパターン23a〜23cの先端部は、それぞれ図示しない外部の測定回路に接続可能とされている。   The lead patterns 23 a, 23 b, and 23 c as signal extraction wirings of the heater and the temperature measuring element of the flow rate detection unit 23 are extended to both side surface positions of the silicon substrate 21. The tip portions of these lead patterns 23a to 23c can be connected to an external measurement circuit (not shown).

第1の流路形成部材14は、シリコン基板21の上面21aと同じ大きさで、かつ所定の板厚とされ、上面14aの長手方向に沿う中心線上の両側位置に被測定流体の導入孔14c、導出孔14dが下面14bまで貫通して形成されている。これらの導入孔14cと導出孔14dは、同じ大きさとされている。また、両側面には流量検出部23のリードパターン23a〜23cと対応する位置に切欠14fが設けられており、これらのリードパターン23a〜23cの先端の接続部を露出させて前記外部の測定回路に接続可能とされている。この第1の流路形成部材14は、透明な硼珪酸ガラスにより形成されており、導入孔14c及び導出孔14dは、サンドブラスト、エンドミル等の機械加工により形成され、ウェットエッチング又はドライエッチングによって仕上げ加工されるようになっている。   The first flow path forming member 14 has the same size as the upper surface 21a of the silicon substrate 21 and a predetermined plate thickness, and introduces a fluid to be measured 14c at both side positions on the center line along the longitudinal direction of the upper surface 14a. The lead-out hole 14d is formed to penetrate to the lower surface 14b. These introduction holes 14c and lead-out holes 14d have the same size. Further, notches 14f are provided on both side surfaces at positions corresponding to the lead patterns 23a to 23c of the flow rate detector 23, and the external measurement circuit is exposed by exposing the connecting portions at the tips of these lead patterns 23a to 23c. It is possible to connect to. The first flow path forming member 14 is formed of transparent borosilicate glass, and the introduction hole 14c and the lead-out hole 14d are formed by mechanical processing such as sandblasting and end milling, and are finished by wet etching or dry etching. It has come to be.

また、第1の流路形成部材14は、流体の導入孔14c及び導出孔14dを形成するだけであるためにサンドブラストにより加工した場合でもこれらの導入孔14cと導出孔14dとの間の部分の透明性が確保される。これにより、流量検出部23の外部からの視認性が確保される。   Further, since the first flow path forming member 14 only forms the fluid introduction hole 14c and the lead-out hole 14d, even when the first flow path forming member 14 is processed by sandblasting, the portion between the lead-in hole 14c and the lead-out hole 14d is formed. Transparency is ensured. Thereby, the visibility from the exterior of the flow volume detection part 23 is ensured.

尚、硼珪酸ガラスとして、例えばパイレックス(登録商標)ガラス或いはテンパックスガラスと称するガラスがある。本実施形態においては透明なパイレックス(登録商標)ガラスを使用している。これにより、第1の流路成形部材14の透明性を確保することができる。尚、テンパックスガラスでも同様に透明性を確保することができる。   Examples of borosilicate glass include glass called Pyrex (registered trademark) glass or Tempax glass. In this embodiment, transparent Pyrex (registered trademark) glass is used. Thereby, the transparency of the first flow path forming member 14 can be ensured. In addition, transparency can be secured in the same way even with Tempax glass.

第2の流路形成部材15は、第1の流路形成部材14と同じ大きさの長方形状の板体をなし、上面15aの長手方向に沿う中心線上に長手方向に沿って長い長円形の長穴(トラック形状の円)15cが下面15bまで貫通して形成されている(以下「貫通口15c」という)。この貫通口15cは、その幅が導入孔14c、導出孔14dの直径と同じ長さとされ、両端部の半円形部15d,15eが導入孔14c、導出孔14dの両端側の半円形部と合致するように形成されている。また、両側面には第1の流路形成部材14の切欠14fと対応して同じ形状の切欠15fが形成されており、流量検出部23のリードパターン23a〜23cの先端の接続部を露出させて前記外部の測定回路に接続可能とされている。   The second flow path forming member 15 is a rectangular plate having the same size as that of the first flow path forming member 14, and has a long oval shape along the longitudinal direction on the center line along the longitudinal direction of the upper surface 15a. A long hole (track-shaped circle) 15c is formed to penetrate to the lower surface 15b (hereinafter referred to as “through-hole 15c”). The through-hole 15c has the same width as the diameter of the introduction hole 14c and the lead-out hole 14d, and the semicircular portions 15d and 15e at both ends coincide with the semicircular portions at both ends of the lead-in hole 14c and the lead-out hole 14d. It is formed to do. Further, notches 15f having the same shape are formed on both side surfaces corresponding to the notches 14f of the first flow path forming member 14, and the connecting portions at the tips of the lead patterns 23a to 23c of the flow rate detecting portion 23 are exposed. Can be connected to the external measurement circuit.

貫通口15cの幅は、センサチップ12の上面12aに形成された流量検出部23の幅よりも幅広とされている。この貫通口15cは、サンドブラスト、エンドミル等の機械加工により形成され、ウェットエッチング又はドライエッチングによって仕上げ加工をしても良い。   The width of the through-hole 15 c is wider than the width of the flow rate detector 23 formed on the upper surface 12 a of the sensor chip 12. The through-hole 15c is formed by mechanical processing such as sand blasting or end milling, and may be finished by wet etching or dry etching.

この第2の流路形成部材15は、シリコンの板で形成されており、貫通口15cは、センサチップ12上に形成された流量検出部23上を流れる流体の流路とされる。第2の流路形成部材15をシリコンの板で形成することにより、その厚さを一定の厚みに正確に加工することができる。これにより、貫通口15cの深さ、即ちセンサ流路の高さhを正確に形成することが可能となり、流路断面積を正確に形成することができる。   The second flow path forming member 15 is formed of a silicon plate, and the through-hole 15 c is a flow path for fluid flowing on the flow rate detection unit 23 formed on the sensor chip 12. By forming the second flow path forming member 15 with a silicon plate, the thickness can be accurately processed to a constant thickness. As a result, the depth of the through-hole 15c, that is, the height h of the sensor channel can be accurately formed, and the channel cross-sectional area can be accurately formed.

第2の流路形成部材としてシリコン部材を用いる理由は2つあり、第1の理由は、加工精度が良好なので、従来技術に比べて流量検出部23付近のセンサ流路の断面積が設計通りに形成することができることである。また、第2の理由は、センサチップ12がシリコンを材料としており、かつ第1の流路形成部材14は硼珪酸ガラスを材料としているので、センサチップ12の材料であるシリコンの熱膨張係数に近い物質であることが好ましいことと、硼珪酸ガラスの熱膨張係数に近い物質であることが好ましいからである。   There are two reasons for using a silicon member as the second flow path forming member. The first reason is that the processing accuracy is good, so the cross-sectional area of the sensor flow path near the flow rate detection unit 23 is as designed as compared with the prior art. It can be formed. The second reason is that since the sensor chip 12 is made of silicon and the first flow path forming member 14 is made of borosilicate glass, the thermal expansion coefficient of silicon that is the material of the sensor chip 12 is increased. This is because it is preferably a close substance and a substance close to the thermal expansion coefficient of borosilicate glass.

センサチップと第2の流路形成部材が接合しているので、センサチップ12と第2の流路形成部材15とが互いに熱膨張係数の近い材料であることが好ましいとする理由は、熱膨張係数が近いとセンサチップ12と絶縁材料の周囲の温度変化等によりセンサチップ12と絶縁材料のそれぞれに歪が生じ難くなるので、フローセンサの出力がドリフトし難くなり、センサの計測精度の悪化を避けることができるためである。因みに、パイレックス(登録商標)ガラスの熱膨張係数は3.2×10−6/℃であり、シリコンの熱膨張係数は2.3×10−6/℃である。 Since the sensor chip and the second flow path forming member are joined, it is preferable that the sensor chip 12 and the second flow path forming member 15 are made of materials having a thermal expansion coefficient close to each other. If the coefficients are close, the sensor chip 12 and the insulating material are less likely to be distorted due to temperature changes around the sensor chip 12 and the insulating material, etc., so that the output of the flow sensor is less likely to drift and the measurement accuracy of the sensor is degraded. This is because it can be avoided. Incidentally, the thermal expansion coefficient of Pyrex (registered trademark) glass is 3.2 × 10 −6 / ° C., and the thermal expansion coefficient of silicon is 2.3 × 10 −6 / ° C.

次に、フローセンサ11の製造の手順を簡単に説明する。図1及び図2に示すように第1の流路形成部材(ガラスチップ)14と第2の流路形成部材(シリコン)15とを重ねて第1の流路形成部材14の下面14bと第2の流路形成部材15の上面15aとを陽極接合などの方法で接合して流路形成部材13を構成する。これらの第1の流路形成部材(ガラスチップ)14と第2の流路形成部材(シリコン)15とを位置合せする際は、第1の流路形成部材(ガラスチップ)14に形成した導入孔14c及び導出孔14dが第2の流路形成部材(シリコン)15に形成された貫通口15cの両端に合致して連通すると共に、両側部の切欠14fと15fが合致するように互いの部材を配置する。   Next, a procedure for manufacturing the flow sensor 11 will be briefly described. As shown in FIGS. 1 and 2, the first flow path forming member (glass chip) 14 and the second flow path forming member (silicon) 15 are overlapped, and the lower surface 14 b of the first flow path forming member 14 and the first The flow path forming member 13 is configured by joining the upper surface 15a of the second flow path forming member 15 by a method such as anodic bonding. When the first flow path forming member (glass chip) 14 and the second flow path forming member (silicon) 15 are aligned, the introduction formed in the first flow path forming member (glass chip) 14 is performed. The hole 14c and the lead-out hole 14d are in communication with both ends of the through-hole 15c formed in the second flow path forming member (silicon) 15, and the mutual members so that the notches 14f and 15f on both sides match. Place.

尚、上記工程の接合方法である陽極接合は、第1の流路形成部材(ガラスチップ)14、第2の流路形成部材(シリコン)15をそれぞれウエハにして、ウエハ状態(チップに分割する前)で実施しても良く、また、前記ウエハをチップに分割してから実施しても良い。   In the anodic bonding, which is a bonding method in the above process, the first flow path forming member (glass chip) 14 and the second flow path forming member (silicon) 15 are used as wafers, respectively. It may be performed in the previous step, or may be performed after the wafer is divided into chips.

因みに、本実施形態では、第1の流路形成部材(ガラスチップ)14の板厚は、約0.5〜1.0mmであり、センサ流路の高さ(h)となる第2の流路形成部材(シリコン製の板)の板厚は、約0.2〜1.0mmであり、センサチップ12のサイズは、1.5mm×3.5mm〜6.0mm×12.0mm程度である。   Incidentally, in the present embodiment, the plate thickness of the first flow path forming member (glass chip) 14 is about 0.5 to 1.0 mm, and the second flow that becomes the height (h) of the sensor flow path. The thickness of the path forming member (silicon plate) is about 0.2 to 1.0 mm, and the size of the sensor chip 12 is about 1.5 mm × 3.5 mm to 6.0 mm × 12.0 mm. .

次いで、センサチップ12の上面12aに上述したように形成した流路形成部材13を載置し、第2の流路形成部材(シリコン)15の貫通口15c内の略中央位置に流量検出部23の上面が露出するように、かつ流量検出部23のリードパターン23a〜23cの先端の接続部が切欠15f,14fから露出するように位置決めする。そして、第2の流路形成部材(シリコン)15の下面15bとセンサチップ12の上面12a(シリコン基板21の上面21a)とを陽極接合などの方法で接合する。   Next, the flow path forming member 13 formed as described above is placed on the upper surface 12 a of the sensor chip 12, and the flow rate detection unit 23 is disposed at a substantially central position in the through-hole 15 c of the second flow path forming member (silicon) 15. Is positioned so that the top surface of the lead pattern 23a to 23c of the flow rate detection unit 23 is exposed from the notches 15f and 14f. Then, the lower surface 15b of the second flow path forming member (silicon) 15 and the upper surface 12a of the sensor chip 12 (the upper surface 21a of the silicon substrate 21) are bonded by a method such as anodic bonding.

これにより、流量検出部23がセンサ流路の一部を構成する貫通口15c内に配設されるので、被測定流体を計測することができ、かつ透明部材である第1の流路形成部材(ガラスチップ)14を通してフローセンサ11の外部から流量検出部23を視認することができる。   Thereby, since the flow volume detection part 23 is arrange | positioned in the through-hole 15c which comprises a part of sensor flow path, the to-be-measured fluid can be measured and the 1st flow path formation member which is a transparent member The flow rate detection unit 23 can be visually recognized from the outside of the flow sensor 11 through the (glass chip) 14.

フローセンサ11の流路は、第1の流路形成部材(ガラスチップ)14の導入孔14c、導出孔14dと、これらが連通した第2の流路形成部材(シリコン)15の貫通口15cにより構成される。そして、前記センサ流路は、フローセンサ11の流路のうち第2の流路形成部材15の貫通口15cにより構成されたものを指す。このようにして、フローセンサ11が構成される。   A flow path of the flow sensor 11 is formed by an introduction hole 14c and a lead-out hole 14d of the first flow path forming member (glass chip) 14 and a through-hole 15c of the second flow path forming member (silicon) 15 in communication therewith. Composed. The sensor flow path refers to the flow path of the flow sensor 11 that is configured by the through-hole 15 c of the second flow path forming member 15. In this way, the flow sensor 11 is configured.

このフローセン11は、例えば半導体製造装置(図示せず)に取り付けられ、第1の流路形成部材(ガラスチップ)14の導入孔14c、導出孔14dが前記装置の被測定流体通路に気密に連通接続され、被測定流体が図2の矢印で示すように流れる。また、図1に示すフローセンサ11の各リードパターン23a〜23cが図示しない測定回路に接続される。   The flow sensor 11 is attached to, for example, a semiconductor manufacturing apparatus (not shown), and the introduction hole 14c and the discharge hole 14d of the first flow path forming member (glass chip) 14 are hermetically communicated with the fluid passage to be measured of the apparatus. The fluid to be measured flows as shown by the arrows in FIG. Moreover, each lead pattern 23a-23c of the flow sensor 11 shown in FIG. 1 is connected to the measurement circuit which is not shown in figure.

被測定流体は、導入孔14cから流路としての貫通口15c内に導入され、当該貫通口15c内を流れて導出孔14dから導出される。そして、流量検出部23のヒータに通電する。ヒータは、制御回路によりシリコン基板21上に設けられた周囲温度センサで測定されたガスの温度よりもある一定温度高く加熱され、貫通口(流路)15cを流れるガスを加熱する。   The fluid to be measured is introduced into the through-hole 15c as a flow path from the introduction hole 14c, flows through the through-hole 15c, and is led out from the lead-out hole 14d. Then, the heater of the flow rate detector 23 is energized. The heater is heated to a certain temperature higher than the temperature of the gas measured by the ambient temperature sensor provided on the silicon substrate 21 by the control circuit, and heats the gas flowing through the through-hole (flow path) 15c.

ガスが流れないときは、ヒータの上流側/下流側に均一の温度分布が形成されており、上流側の測温素子と下流側の測温素子は、略等しい温度に対応する抵抗値を示す。一方、ガスの流れがあるときには、ヒータの上流側/下流側の均一な温度分布のバランスが崩れ、上流側の温度が低くなり、下流側の温度が高くなる。そして、上流側の測温素子と下流側の測温素子により構成される例えばホイーストンブリッジ回路により測温素子の抵抗値差、即ちこれと等価的に対応する温度差を検出して貫通口(流路)15c内を流れるガスの流量を測定する。   When the gas does not flow, a uniform temperature distribution is formed on the upstream / downstream side of the heater, and the upstream temperature measuring element and the downstream temperature measuring element show resistance values corresponding to substantially equal temperatures. . On the other hand, when there is a gas flow, the balance of the uniform temperature distribution on the upstream / downstream side of the heater is lost, the temperature on the upstream side decreases, and the temperature on the downstream side increases. Then, a resistance value difference of the temperature measuring element, that is, a temperature difference equivalent to this is detected by, for example, a Wheatstone bridge circuit composed of the temperature measuring element on the upstream side and the temperature measuring element on the downstream side, and a through-hole ( (Flow path) The flow rate of the gas flowing in 15c is measured.

尚、上記実施形態においては1つのヒータ(発熱素子)と、このヒータの両側に配置した2つの測温素子とにより傍熱型の流量検出部を構成した場合について記述したが、これに限るものではなく、発熱素子が1つ、即ち1つのヒータで自己発熱型の流量検出部を構成しても良く、或いは発熱素子が2つ、即ち2つのヒータで自己発熱型の流量検出部を構成しても良い。   In the above embodiment, the case where the indirectly heated flow rate detection unit is configured by one heater (heating element) and two temperature measuring elements arranged on both sides of the heater has been described. However, the present invention is not limited to this. Rather, one heat generating element, that is, one heater may constitute a self-heating type flow rate detecting unit, or two heat generating elements, that is, two heaters, constitute a self-heating type flow rate detecting unit. May be.

尚、本発明の趣旨を逸脱しない範囲において、センサチップの材質に合わせて、センサチップと熱膨張係数の近い第2の流路形成部材を用いても良い。例えば、第1の流路検出部材及び第2の流路検出部材の材質も硼珪酸ガラスで形成することができる。硼珪酸ガラスは、平坦度が良く加工し易い材料であり、容易に使用することができる。   In addition, in the range which does not deviate from the meaning of this invention, you may use the 2nd flow path formation member near a sensor chip and a thermal expansion coefficient according to the material of a sensor chip. For example, the material of the first flow path detection member and the second flow path detection member can also be formed of borosilicate glass. Borosilicate glass is a material with good flatness and easy to process, and can be easily used.

以上説明したように本発明によれば、流路形成部材を流体の導入孔と導出孔が形成された透明な板状の第1の流路形成部材と、板状をなしセンサチップに設けられた流量検出部に沿って流れる流体の流れに沿った流路を形成する貫通口が設けられた第2の流路形成部材とを接合して形成し、貫通口(流路)の両端を導入孔及び導出孔のそれぞれに連通させて所定の流路断面積の流路を形成し、貫通口に流量検出部を配置することにより、センサ流路の高さ、即ち貫通口の断面積を一定にすることができる。その結果、流路断面積に関するセンサの個体差を少なくすることができ、フローセンサの品質の安定性を図ることができる。   As described above, according to the present invention, the flow path forming member is provided with the transparent plate-like first flow path forming member in which the fluid introduction hole and the lead-out hole are formed, and is provided on the sensor chip. It is formed by joining a second flow path forming member provided with a through hole that forms a flow path along the flow of the fluid flowing along the flow rate detection unit, and introduces both ends of the through hole (flow path) A flow passage having a predetermined flow passage cross-sectional area is formed by communicating with each of the hole and the lead-out hole, and a flow rate detection unit is disposed in the through-hole, thereby making the height of the sensor flow passage, that is, the cross-sectional area of the through-hole constant. Can be. As a result, it is possible to reduce individual differences between the sensors regarding the cross-sectional area of the flow path, and it is possible to stabilize the quality of the flow sensor.

また、第1の流路形成部材14にサンドブラスト等により流路を形成しないためにこの流路に微細な傷が付くことがなく、かかる微細な傷に起因して発生する割れ等を防止することができ、耐圧性及び耐久性の向上を図ることが可能であると共に、外部からの視認性を確保することができ、フローセンサの製造工程における流路内の粉塵の有無等の検査を行い易くなる。   In addition, since the flow path is not formed in the first flow path forming member 14 by sandblasting or the like, the flow path is not damaged, and cracks and the like caused by the fine damage are prevented. It is possible to improve pressure resistance and durability, and it is possible to ensure visibility from the outside, and it is easy to inspect the presence or absence of dust in the flow path in the flow sensor manufacturing process. Become.

また、センサチップと第2の流路形成部材が接合しているので、センサチップと第2の流路形成部材とを互いに熱膨張係数が同一又は近い材料とすることにより、センサチップと第2の流路形成部材の周囲の温度変化等により、センサチップと第2の流路形成部材とに歪が生じ難くなるので、センサの出力がドリフトし難くなり、センサの計測精度の悪化を避けることができる。   In addition, since the sensor chip and the second flow path forming member are joined, the sensor chip and the second flow path forming member are made of materials having the same or close thermal expansion coefficient as each other. Since the sensor chip and the second flow path forming member are less likely to be distorted due to a change in temperature around the flow path forming member, the sensor output is less likely to drift and deterioration of the sensor measurement accuracy is avoided. Can do.

また、センサチップと第2の流路形成部材が接合しているので、センサチップと第2の流路形成部材とが同一の熱膨張係数をもつシリコン材料又は第2の流路形成部材を熱膨張係数がシリコン材料に略近い硼珪酸ガラスを使用することで、センサチップと第2の流路形成部材の周囲の温度変化等により、センサチップと第2の流路形成部材のそれぞれに歪が生じ難くなり、センサの出力がドリフトし難く、センサの計測精度悪化を避けることができる。   In addition, since the sensor chip and the second flow path forming member are joined, the sensor chip and the second flow path forming member heat the silicon material having the same thermal expansion coefficient or the second flow path forming member. By using borosilicate glass whose expansion coefficient is substantially similar to that of a silicon material, the sensor chip and the second flow path forming member are distorted due to a change in temperature around the sensor chip and the second flow path forming member. It is difficult to occur, the output of the sensor is difficult to drift, and deterioration of the measurement accuracy of the sensor can be avoided.

特にシリコン材料は、加工精度を良くすることができる材料であり、第2の流路形成部材も加工精度が良く、設計通りに製作することができる。その結果、センサ流路の高さが一様に設計通りとすることができ、これにより、流路断面積を設計通りとすることができ、フローセンサの流量検出精度を安定させることができる。   In particular, the silicon material is a material that can improve the processing accuracy, and the second flow path forming member also has a high processing accuracy and can be manufactured as designed. As a result, the height of the sensor flow path can be made uniform as designed, and thereby the flow path cross-sectional area can be made as designed, and the flow rate detection accuracy of the flow sensor can be stabilized.

また、第1の流路形成部材の硼珪酸ガラスと第2の流路形成部材のシリコン材料又は硼珪酸ガラスが接合しているので、第1の流路形成部材の硼珪酸ガラスと、第2の流路形成部材のシリコン材料又は硼珪酸ガラスとが略近い又は同一の熱膨張係数を有することとなり、第1の流路形成部材と第2の流路形成部材の周囲の温度変化等により、第1の流路形成部材と第2の流路形成部材のそれぞれに歪が生じ難くなり、歪が第2の流路形成部材を介してセンサチップに伝わることも無く、センサの出力がドリフトし難く、センサの計測精度悪化を避けることができる。   Further, since the borosilicate glass of the first flow path forming member and the silicon material or borosilicate glass of the second flow path forming member are joined, the borosilicate glass of the first flow path forming member and the second The silicon material or the borosilicate glass of the flow path forming member has substantially the same or the same thermal expansion coefficient, and due to temperature changes around the first flow path forming member and the second flow path forming member, The first flow path forming member and the second flow path forming member are less likely to be distorted, and the strain is not transmitted to the sensor chip via the second flow path forming member, and the sensor output drifts. It is difficult to avoid deterioration of the measurement accuracy of the sensor.

本発明に係るフローセンサの組立斜視図である。It is an assembly perspective view of the flow sensor concerning the present invention. 図1に示したフローセンサを組立てた状態の断面図である。It is sectional drawing of the state which assembled the flow sensor shown in FIG. 図2に示したフローセンサの矢線III−IIIに沿う断面図である。It is sectional drawing which follows the arrow line III-III of the flow sensor shown in FIG. 従来のフローセンサの一例を示す断面図である。It is sectional drawing which shows an example of the conventional flow sensor. 図4に示したフローセンサの矢線V−Vに沿う断面図である。It is sectional drawing which follows the arrow line VV of the flow sensor shown in FIG.

符号の説明Explanation of symbols

1 フローセンサ
2 シリコン基板
3 流量検出部(センサ部)
4 センサチップ
4a 上面
5 ガラスチップ(流路形成部材)
5a 流路(溝)
5b 流路の内側上面
11 フローセンサ
12 センサチップ
12a 上面
12b 下面
13 流路形成部材
14 第1の流路形成部材(ガラスチップ)
14a 上面
14b 下面
14c 導入孔
14d 導出孔
14f 切欠
15 第2の流路形成部材(シリコン)
15a 上面
15b 下面
15c 貫通口(流路)
15d,15e 半円形部
15f 切欠
21 シリコン基板
21a 上面
21b 下面
21c 凹部
22,24 絶縁膜
23 流量検出部(センサ部)
23a,23b,23c リードパターン
h センサ流路高さ
w 流路幅
S 流路断面積
Q 流量
1 Flow sensor 2 Silicon substrate 3 Flow rate detection unit (sensor unit)
4 Sensor chip 4a Upper surface 5 Glass chip (channel forming member)
5a Channel (groove)
5b Inner upper surface of channel 11 Flow sensor 12 Sensor chip 12a Upper surface 12b Lower surface 13 Channel forming member 14 First channel forming member (glass chip)
14a Upper surface 14b Lower surface 14c Introducing hole 14d Deriving hole 14f Notch 15 Second flow path forming member (silicon)
15a Upper surface 15b Lower surface 15c Through-hole (flow path)
15d, 15e Semicircular part 15f Notch 21 Silicon substrate 21a Upper surface 21b Lower surface 21c Recessed part 22, 24 Insulating film 23 Flow rate detection part (sensor part)
23a, 23b, 23c Lead pattern h Sensor channel height w Channel width S Channel cross-sectional area Q Flow rate

Claims (2)

基板の上面に形成された凹部の少なくとも一部を覆うように被覆された絶縁膜に流量検出部が形成されたセンサチップと、
前記センサチップ上に設けられ前記流量検出部を流れる流体の流路が形成された流路形成部材とを接合して構成したフローセンサにおいて、
前記流路形成部材は、透明部材である第1の流路形成部材と、第2の流路形成部材とを接合することにより構成され、
前記第1の流路形成部材は板状をなし、当該第1の流路形成部材には被測定流体の導入孔及び導出孔が設けられ、
前記第2の流路形成部材は、シリコンにより所定形状に形成された板状体からなり、かつ当該第2の流路形成部材には前記流量検出部に沿って流れる流体の流れに沿った流路を形成する所定形状の貫通口が設けられ、
前記貫通口は、両端が前記導入孔及び導出孔のそれぞれに連通し、前記流量検出部が前記貫通口の前記導入孔と導出孔に対応する部分の間に配置され、
前記第1及び第2の流路形成部材で所定の断面積の流路を形成することを特徴とするフローセンサ。
A sensor chip in which a flow rate detection unit is formed on an insulating film coated so as to cover at least a part of a recess formed on the upper surface of the substrate;
In a flow sensor configured by joining a flow path forming member provided on the sensor chip and formed with a flow path of fluid flowing through the flow rate detection unit,
The flow path forming member is configured by joining a first flow path forming member, which is a transparent member, and a second flow path forming member,
The first flow path forming member has a plate shape, and the first flow path forming member is provided with an introduction hole and a discharge hole for the fluid to be measured.
The second flow path forming member is composed of a plate-like body formed of silicon in a predetermined shape , and the second flow path forming member has a flow along the flow of the fluid flowing along the flow rate detection unit. A through hole of a predetermined shape that forms a path is provided,
Both ends of the through-hole communicate with the introduction hole and the lead-out hole, respectively, and the flow rate detection unit is disposed between portions corresponding to the introduction hole and the lead-out hole of the through-hole,
A flow sensor having a predetermined cross-sectional area formed by the first and second flow path forming members.
前記第の流路形成部材は硼珪酸ガラスにより形成されていることを特徴とする、請求項1に記載のフローセンサ。 The flow sensor according to claim 1, wherein the first flow path forming member is made of borosilicate glass .
JP2007244545A 2007-09-20 2007-09-20 Flow sensor Active JP4997039B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007244545A JP4997039B2 (en) 2007-09-20 2007-09-20 Flow sensor
EP08007978.3A EP2040045B1 (en) 2007-09-20 2008-04-25 Flow sensor
EP10191585A EP2282180A1 (en) 2007-09-20 2008-04-25 Flow sensor and manufacturing method therefor
CN2010102752404A CN101963518A (en) 2007-09-20 2008-05-07 Flow sensor and manufacture method thereof
CN2008100928734A CN101393045B (en) 2007-09-20 2008-05-07 Flow sensor and manufacturing method therefor
US12/191,907 US8166814B2 (en) 2007-09-20 2008-08-14 Flow sensor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244545A JP4997039B2 (en) 2007-09-20 2007-09-20 Flow sensor

Publications (2)

Publication Number Publication Date
JP2009074945A JP2009074945A (en) 2009-04-09
JP4997039B2 true JP4997039B2 (en) 2012-08-08

Family

ID=40493453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244545A Active JP4997039B2 (en) 2007-09-20 2007-09-20 Flow sensor

Country Status (2)

Country Link
JP (1) JP4997039B2 (en)
CN (1) CN101393045B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327715B2 (en) * 2009-07-02 2012-12-11 Honeywell International Inc. Force sensor apparatus
CN104968151B (en) * 2015-07-03 2017-12-15 景旺电子科技(龙川)有限公司 A kind of preparation method for carving cup copper base
JP6722989B2 (en) * 2015-08-31 2020-07-15 日立オートモティブシステムズ株式会社 Gas sensor device
CN111033186B (en) * 2017-09-05 2022-01-07 日立安斯泰莫株式会社 Thermal flowmeter
WO2019153130A1 (en) * 2018-02-06 2019-08-15 盾安传感科技有限公司 Pressure sensor
CN115231510B (en) * 2022-07-21 2023-10-03 微纳感知(合肥)技术有限公司 MEMS chip packaging structure of gas flowmeter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1004040B (en) * 2001-07-31 2002-10-31 Method for the fabrication of suspended porous silicon microstructures and application in gas sensors
JP3964920B2 (en) * 2002-05-29 2007-08-22 シーケーディ株式会社 Thermal flow meter
US6871537B1 (en) * 2003-11-15 2005-03-29 Honeywell International Inc. Liquid flow sensor thermal interface methods and systems
US20060000272A1 (en) * 2004-06-30 2006-01-05 Beat Neuenschwander Thermal flow sensor having an asymmetric design
JP4854238B2 (en) * 2005-09-07 2012-01-18 株式会社山武 Flow sensor

Also Published As

Publication number Publication date
JP2009074945A (en) 2009-04-09
CN101393045A (en) 2009-03-25
CN101393045B (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US8166814B2 (en) Flow sensor and manufacturing method therefor
JP4997039B2 (en) Flow sensor
US9581480B2 (en) Micro flow sensor
JP4854238B2 (en) Flow sensor
JP5052275B2 (en) Flow sensor mounting structure
JP4845187B2 (en) Sensor package structure and flow sensor having the same
KR101355838B1 (en) Pressure sensor with silicon frit bonded cap
US20110252882A1 (en) Robust sensor with top cap
US20140352424A1 (en) Airflow measuring apparatus
JP5081174B2 (en) Sensor and flow sensor
JP6669957B2 (en) Flow sensor
JP2002168669A (en) Thermal flowmeter
JP5477636B2 (en) Thermal conductivity detector
JP2008039588A (en) Flow sensor and mass flow controller
JP5079435B2 (en) Flow sensor and manufacturing method thereof
JP5276493B2 (en) Flow sensor and manufacturing method thereof
JP2008070323A (en) Flow sensor
JP2010230388A (en) Flow sensor
JP2020064071A (en) Flow sensor
JP6432314B2 (en) Physical quantity sensor and method of manufacturing physical quantity sensor
JP2008070315A (en) Flow sensor
JP3740027B2 (en) Flow sensor
JP2003329503A (en) Thermal flowmeter
JP2015194428A (en) Flow sensor and manufacturing method for flow sensor
JP6219769B2 (en) Flow sensor and method of manufacturing flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4997039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250