JP5841918B2 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
JP5841918B2
JP5841918B2 JP2012184849A JP2012184849A JP5841918B2 JP 5841918 B2 JP5841918 B2 JP 5841918B2 JP 2012184849 A JP2012184849 A JP 2012184849A JP 2012184849 A JP2012184849 A JP 2012184849A JP 5841918 B2 JP5841918 B2 JP 5841918B2
Authority
JP
Japan
Prior art keywords
wiring
insulating film
sensor element
sensor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012184849A
Other languages
Japanese (ja)
Other versions
JP2014044048A (en
Inventor
中野 洋
洋 中野
松本 昌大
昌大 松本
哲 浅野
哲 浅野
半沢 恵二
恵二 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012184849A priority Critical patent/JP5841918B2/en
Priority to PCT/JP2013/070268 priority patent/WO2014030493A1/en
Publication of JP2014044048A publication Critical patent/JP2014044048A/en
Application granted granted Critical
Publication of JP5841918B2 publication Critical patent/JP5841918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、物理量を検出するセンサ装置に係り、特に、内燃機関の吸気管路内を流れる吸入空気量を検出するセンサ装置に関する。     The present invention relates to a sensor device that detects a physical quantity, and more particularly to a sensor device that detects the amount of intake air flowing in an intake pipe of an internal combustion engine.

圧力、加速度、温度などの物理量の検出するセンサ装置のセンサ素子は、小型化、製造プロセスの簡略化のためにリードフレームにセンサ素子を設置して金型に投入し、金型内にモールド樹脂を高圧で充填することによりセンサ素子の実装及びモールド樹脂の成形を行う射出成型技術を用いた製造方法が提案されている。   Sensor elements of sensor devices that detect physical quantities such as pressure, acceleration, temperature, etc. are placed in the mold by placing the sensor element on the lead frame in order to reduce the size and simplify the manufacturing process. A manufacturing method using an injection molding technique in which a sensor element is mounted and a molding resin is molded by filling the substrate with high pressure has been proposed.

最近では、MEMS技術を用いて半導体基板上に形成した数ミクロンの薄膜部に発熱部を設けた構造の熱式流量計においても、モールド樹脂による製造方法が提案されている。
熱式流量計のように検出部に薄膜構造を備えたセンサ素子は、検出部を部分的に露出させるために検出部または検出部周辺に金型を押しつけることによりモールド樹脂が検出部に流れ込むことを防止する製造方法が提案されている。
Recently, a manufacturing method using a mold resin has also been proposed for a thermal flow meter having a structure in which a heat generating part is provided on a thin film part of several microns formed on a semiconductor substrate using MEMS technology.
A sensor element with a thin film structure in the detection unit, such as a thermal flow meter, has mold resin flowing into the detection unit by pressing the mold around the detection unit or the detection unit in order to partially expose the detection unit. A manufacturing method for preventing the above has been proposed.

このように薄膜部を備えたセンサ素子は製造時の金型の押しつけやモールド樹脂の硬化時の熱収縮、さらに製造後に受ける周囲の温度変化によるモールド樹脂の収縮・膨張などの応力によりセンサ素子に形成した配線にダメージが加わり信頼性を低下させる可能性があった。そのためセンサ素子に加わる応力に関して十分な余裕度をもたせる必要があった。   Thus, the sensor element having the thin film portion is applied to the sensor element due to stress such as pressing of the mold during manufacture, heat shrinkage when the mold resin is cured, and shrinkage / expansion of the mold resin due to ambient temperature change after manufacture. There was a possibility that the formed wiring was damaged and the reliability was lowered. Therefore, it is necessary to provide a sufficient margin for the stress applied to the sensor element.

このような部分露出モールドにおけるモールド樹脂の応力に関連する従来技術として特許文献1に記載のものがある。特許文献1には、センサ素子の一端側をモールド樹脂で封止し他端側を露出させる構造において、応力緩和樹脂を介してモールド樹脂で封止することによりセンサ素子に加わる応力の低減を図っている。   There exists a thing of patent document 1 as a prior art relevant to the stress of the mold resin in such a partial exposure mold. In Patent Document 1, in a structure in which one end side of a sensor element is sealed with a mold resin and the other end side is exposed, the stress applied to the sensor element is reduced by sealing with a mold resin via a stress relaxation resin. ing.

特開2011−119500号公報JP 2011-119500 A

特許文献1に示されるセンサ装置には次のような課題がある。特許文献1に示されるセンサ素子は、既知の射出成型技術などを用いてモールド樹脂によって覆われている。センサ素子とモールド樹脂との熱膨張率の差により生じる応力を低減するために応力緩和樹脂を介在させている。しかし、応力緩和樹脂をどの程度の範囲に設けることが必要かについては検討が不十分である。モールド樹脂で被覆されるセンサ素子表面のすべてに応力緩和樹脂を形成すると、ボンディングワイヤーやボンディングパッドのためのパッド部まで塗布することが必要になる。そうすると応力緩和樹脂の材料によっては応力緩和樹脂を介して水分が浸入しやすくなり、ボンディングワイヤーやボンディングパッドを腐食させることになる。一方、モールド樹脂で被覆されるセンサ素子の表面に部分的に応力緩和樹脂を設けた場合、モールド樹脂とセンサ素子が直接に接する部分ができてしまう。そうするとモールド樹脂とセンサ素子の線膨張率の差により生じる応力によりセンサ素子に長期的にダメージを加えてしまうおそれがある。また、緩和樹脂を成形するための工程が必要でありコスト増も招く。   The sensor device disclosed in Patent Document 1 has the following problems. The sensor element disclosed in Patent Document 1 is covered with mold resin using a known injection molding technique or the like. In order to reduce the stress caused by the difference in coefficient of thermal expansion between the sensor element and the mold resin, a stress relaxation resin is interposed. However, the extent to which it is necessary to provide the stress relaxation resin is insufficiently studied. When the stress relaxation resin is formed on the entire surface of the sensor element covered with the mold resin, it is necessary to apply the bonding wire and the pad portion for the bonding pad. Then, depending on the material of the stress relaxation resin, moisture easily enters through the stress relaxation resin and corrodes the bonding wire and the bonding pad. On the other hand, when the stress relaxation resin is partially provided on the surface of the sensor element covered with the mold resin, a part where the mold resin and the sensor element are in direct contact with each other is formed. If it does so, there exists a possibility of damaging a sensor element in the long term by the stress which arises by the difference of the linear expansion coefficient of mold resin and a sensor element. In addition, a process for molding the relaxation resin is required, resulting in an increase in cost.

上記のように従来技術では、センサ素子に加わる応力を低減することで対策を図っていたが、一方では、水分等の浸入による腐食や製造コストに課題があった。   As described above, in the prior art, measures are taken by reducing the stress applied to the sensor element, but on the other hand, there are problems in corrosion due to the ingress of moisture and the manufacturing cost.

本発明の目的は、センサ素子の信頼性を向上したセンサ装置を提供することにある。   The objective of this invention is providing the sensor apparatus which improved the reliability of the sensor element.

上記目的を達成するために本発明のセンサ装置は、基板上に形成した下層絶縁膜と、前記下層絶縁膜上に形成した検出部と、前記検出部から引き出された配線と、前記配線上に形成した上層絶縁膜と、からなるセンサ素子と、前記センサ素子の前記検出部が形成された表面が露出するように部分的に被覆することによって形成した露出部を備えたモールド樹脂と、を備え、前記露出部の端部における前記配線を部分的に除去した配線除去部を形成した。   In order to achieve the above object, a sensor device according to the present invention includes a lower insulating film formed on a substrate, a detection unit formed on the lower insulating film, a wiring drawn from the detection unit, and a wiring on the wiring. A sensor element comprising: an upper insulating film formed; and a mold resin having an exposed portion formed by partially covering the sensor element so that a surface on which the detection portion of the sensor element is formed is exposed. Then, a wiring removal portion was formed by partially removing the wiring at the end of the exposed portion.

本発明によれば、センサ素子の信頼性を向上したセンサ装置が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the sensor apparatus which improved the reliability of the sensor element is obtained.

第1の実施例におけるセンサ素子を示す平面図である。It is a top view which shows the sensor element in a 1st Example. 第1の実施例におけるセンサ素子を示す断面図である。It is sectional drawing which shows the sensor element in a 1st Example. センサ素子の駆動・検出回路を示す回路図である。It is a circuit diagram which shows the drive / detection circuit of a sensor element. 第1の実施例におけるセンサパッケージの平面図である。It is a top view of the sensor package in a 1st Example. 第1の実施例におけるセンサパッケージの断面図である。It is sectional drawing of the sensor package in a 1st Example. 第2の実施例におけるセンサパッケージの実装図である。It is a mounting diagram of the sensor package in the second embodiment. 従来の露出部端部を示す断面図である。It is sectional drawing which shows the conventional exposed part edge part. 第1の実施例における配線除去部を示す平面図である。It is a top view which shows the wiring removal part in a 1st Example. 第1の実施例における配線除去部を示す断面図である。It is sectional drawing which shows the wiring removal part in 1st Example. 第2の実施例における配線除去部のその他の形状を示す平面である。It is a plane which shows the other shape of the wiring removal part in a 2nd Example. 第3の実施例におけるセンサ素子を示す断面図である。It is sectional drawing which shows the sensor element in a 3rd Example. 第3の実施例における配線除去部を示す断面図である。It is sectional drawing which shows the wiring removal part in a 3rd Example. 第4の実施例におけるセンサ素子を示す断面図である。It is sectional drawing which shows the sensor element in a 4th Example. 第4の実施例におけるセンサ素子の配線除去部を示す断面図である。It is sectional drawing which shows the wiring removal part of the sensor element in a 4th Example. 第5の実施例におけるセンサ素子を示す断面図である。It is sectional drawing which shows the sensor element in a 5th Example. 第5の実施例におけるセンサ素子の配線除去部を示す断面図である。It is sectional drawing which shows the wiring removal part of the sensor element in a 5th Example. 第6の実施例におけるセンサ素子の配線除去部を示す平面図である。It is a top view which shows the wiring removal part of the sensor element in a 6th Example. 第6の実施例におけるセンサ素子の配線除去部を示す断面である。It is a cross section which shows the wiring removal part of the sensor element in a 6th Example. 第6の実施例におけるセンサ素子のその他の配線除去部を示す平面図である。It is a top view which shows the other wiring removal part of the sensor element in a 6th Example.

以下、本発明に係る実施例について説明する。各実施例は、一例としてエンジンの吸気管路に取り付け、吸気管路内を流れる吸入空気の流量計測を行うものについて説明するが、例えば、圧力、加速度、排ガス流量やその他の物理量を計測するものにも適用できる。   Examples according to the present invention will be described below. Each embodiment is described as an example for measuring the flow rate of intake air flowing in the intake pipe of the engine and flowing through the intake pipe. For example, the pressure, acceleration, exhaust gas flow rate and other physical quantities are measured. It can also be applied to.

本発明に係る第1の実施例について以下説明する。本実施例による熱式流量計のセンサ素子1の構成を図1、図2により説明する。センサ素子1の基板2は、シリコンやセラミック等の熱伝導率の良い材料で構成される。そして、基板2上に下層絶縁膜3aを形成する。下層絶縁膜3aの表面には発熱抵抗体5を形成する。発熱抵抗体5の周囲に発熱抵抗体5の加熱温度を検出する加熱温度センサ7が、発熱抵抗体5を取り巻くように形成される。さらに加熱温度センサ7の両側には上流側温度センサ8a,8b、下流側温度センサ9a,9bを形成する。上流側温度センサ8a,8bは発熱抵抗体5に対して空気流6の流れの上流側、下流側温度センサ9a,9bは発熱抵抗体5に対して空気流6の流れの下流側に配置する。また、電気絶縁膜3a上には、空気流6の温度に応じて抵抗値が変化する感温抵抗体10,11,12を配置する。そして、センサ素子1の最表面は上層絶縁膜3bによって覆われる。電気絶縁膜3bは電気的絶縁を行うほか、保護膜としても働く。
さらに基板2を裏面からエッチングすることで薄膜部を形成しダイアフラム4を形成する。
A first embodiment according to the present invention will be described below. The configuration of the sensor element 1 of the thermal type flow meter according to this embodiment will be described with reference to FIGS. The substrate 2 of the sensor element 1 is made of a material having good thermal conductivity such as silicon or ceramic. Then, a lower insulating film 3 a is formed on the substrate 2. A heating resistor 5 is formed on the surface of the lower insulating film 3a. A heating temperature sensor 7 that detects the heating temperature of the heating resistor 5 is formed around the heating resistor 5 so as to surround the heating resistor 5. Further, upstream temperature sensors 8 a and 8 b and downstream temperature sensors 9 a and 9 b are formed on both sides of the heating temperature sensor 7. The upstream temperature sensors 8 a and 8 b are arranged upstream of the flow of the air flow 6 with respect to the heating resistor 5, and the downstream temperature sensors 9 a and 9 b are arranged downstream of the flow of the air flow 6 with respect to the heating resistor 5. . On the electrical insulating film 3a, temperature sensitive resistors 10, 11, and 12 whose resistance values change according to the temperature of the air flow 6 are arranged. The outermost surface of the sensor element 1 is covered with the upper insulating film 3b. The electrical insulating film 3b performs electrical insulation and also serves as a protective film.
Further, the substrate 2 is etched from the back surface to form a thin film portion to form the diaphragm 4.

上記の構成で発熱抵抗体5の温度を加熱温度センサ7で検出し、空気流6の温度に対して一定温度高くなるように加熱制御し、空気流6により生じる上流側温度センサ8a,8bと下流側温度センサ9a,9bの温度差から空気流量を検出する原理である。   With the above configuration, the temperature of the heating resistor 5 is detected by the heating temperature sensor 7 and is controlled to be higher than the temperature of the air flow 6 by a constant temperature, and upstream temperature sensors 8a and 8b generated by the air flow 6 This is the principle of detecting the air flow rate from the temperature difference between the downstream temperature sensors 9a and 9b.

これらの発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12は温度によって抵抗値の変化が大きい材料で形成する。例えば、白金,モリブデン,タングステン,ニッケル合金などの金属材料や、不純物をドープした多結晶シリコンや単結晶シリコンなどの半導体材料で形成すると良い。また、下層絶縁膜3a,上層絶縁膜3bは二酸化ケイ素(SiO2)や窒化ケイ素(Si3N4)により約2ミクロン厚の薄膜状に形成し、熱絶縁効果が十分に得られる構造であればよい。上記のように、発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9bも、感温抵抗体10,11,12と同様に、温度依存性を有する感温抵抗体である。   The heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, and the temperature sensitive resistors 10, 11, and 12 are formed of a material whose resistance value varies greatly depending on the temperature. . For example, a metal material such as platinum, molybdenum, tungsten, or a nickel alloy, or a semiconductor material such as polycrystalline silicon or single crystal silicon doped with impurities may be used. The lower insulating film 3a and the upper insulating film 3b may be formed in a thin film shape with a thickness of about 2 microns by silicon dioxide (SiO2) or silicon nitride (Si3N4) so long as the heat insulating effect can be sufficiently obtained. As described above, the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8 a and 8 b, and the downstream temperature sensors 9 a and 9 b also have temperature dependency like the temperature sensitive resistors 10, 11, and 12. It is a temperature sensitive resistor.

さらにセンサ素子1の端部には、発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12を構成する各抵抗体を駆動・検出回路と接続するための複数の電極が形成された電極パッド部13を設ける。尚、電極パッド部13はアルミなどで形成する。また、発熱抵抗5や各温度センサと電極パッド13を接続するための配線を形成する。この配線のうち発熱抵抗体5を電極パッド13に接続するための配線18a、18bには配線除去部19a、19bを形成している。この配線除去部19の詳細については後述する。   Further, at the end of the sensor element 1, each resistor constituting the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, and the temperature sensitive resistors 10, 11, and 12 is provided. An electrode pad portion 13 having a plurality of electrodes for connecting the body to the drive / detection circuit is provided. The electrode pad portion 13 is formed of aluminum or the like. Further, wiring for connecting the heating resistor 5 and each temperature sensor to the electrode pad 13 is formed. Of these wirings, wiring removal portions 19a and 19b are formed on the wirings 18a and 18b for connecting the heating resistor 5 to the electrode pad 13. Details of the wiring removal unit 19 will be described later.

図2のセンサ素子1の断面構成と共に示した温度分布14はセンサ素子1の表面温度の分布を示している。温度分布14の実線は無風時のダイアフラム4の温度分布を示す。発熱抵抗体5は、空気流6の温度よりもΔTh高くなるように加熱される。温度分布14の破線は、空気流6が発生したときのダイアフラム4の温度分布を示している。空気流6が発生することにより、発熱抵抗体5の上流側は空気流6により冷却され温度が下がり、下流側は発熱抵抗体5により加熱された空気が流れることから温度が上がる。したがって、上流側温度センサ8a,8bと下流側温度センサ9a,9bとの温度差ΔTsを測定することにより、空気流量を計測できる。   The temperature distribution 14 shown together with the cross-sectional configuration of the sensor element 1 in FIG. 2 indicates the distribution of the surface temperature of the sensor element 1. The solid line of the temperature distribution 14 indicates the temperature distribution of the diaphragm 4 when there is no wind. The heating resistor 5 is heated so as to be higher than the temperature of the air flow 6 by ΔTh. The broken line of the temperature distribution 14 indicates the temperature distribution of the diaphragm 4 when the air flow 6 is generated. When the air flow 6 is generated, the upstream side of the heating resistor 5 is cooled by the air flow 6 to lower the temperature, and the air heated by the heating resistor 5 flows to the downstream side to increase the temperature. Therefore, the air flow rate can be measured by measuring the temperature difference ΔTs between the upstream temperature sensors 8a and 8b and the downstream temperature sensors 9a and 9b.

次に、センサ素子1の駆動・検出回路について説明する。     Next, the drive / detection circuit of the sensor element 1 will be described.

図3に示されるように、発熱抵抗体5の温度によって抵抗値が変化する加熱温度センサ7と感温抵抗体10とからなる直列回路と、感温抵抗体11と感温抵抗体12とからなる直列回路とを並列に接続したブリッジ回路を構成し、各直列回路に基準電圧Vrefを印加する。これらの直列回路の中間電圧を取り出し、増幅器15に接続する。増幅器15の出力は、トランジスタの16のベースに接続する。トランジスタ16のコレクタは電源VBに接続し、エミッタは発熱抵抗体5に接続し、フィードバック回路を構成する。これにより、発熱抵抗体5の温度Thは空気流6の温度Taに対して温度ΔTh(=Th−Ta)高くなるように制御される。     As shown in FIG. 3, a series circuit composed of a heating temperature sensor 7 and a temperature sensitive resistor 10 whose resistance value varies depending on the temperature of the heating resistor 5, a temperature sensitive resistor 11, and a temperature sensitive resistor 12. A bridge circuit in which the series circuit is connected in parallel is configured, and a reference voltage Vref is applied to each series circuit. The intermediate voltage of these series circuits is taken out and connected to the amplifier 15. The output of amplifier 15 is connected to the 16 bases of the transistors. The collector of the transistor 16 is connected to the power supply VB, and the emitter is connected to the heating resistor 5 to constitute a feedback circuit. Thereby, the temperature Th of the heating resistor 5 is controlled to be higher than the temperature Ta of the air flow 6 by a temperature ΔTh (= Th−Ta).

そして、上流側温度センサ8aと下流側温度センサ9aとからなる直列回路と、下流側温度センサ9bと上流側温度センサ8bとからなる直列回路とを並列に接続したブリッジ回路を構成し、各直列回路に基準電圧Vrefを印加する。空気流により上流側温度センサ8a,8bと下流側温度センサ9a,9bとに温度差が発生すると、ブリッジ回路の抵抗バランスが変化して差電圧が発生する。この差電圧を増幅器17を介して検出することよって空気流量に応じた出力が得られる。これらの駆動・検出回路は回路チップ22として半導体プロセスによって製造される。   And the bridge circuit which connected in parallel the series circuit which consists of the upstream temperature sensor 8a and the downstream temperature sensor 9a, and the series circuit which consists of the downstream temperature sensor 9b and the upstream temperature sensor 8b is comprised, and each series A reference voltage Vref is applied to the circuit. When a temperature difference occurs between the upstream temperature sensors 8a and 8b and the downstream temperature sensors 9a and 9b due to the air flow, the resistance balance of the bridge circuit changes and a differential voltage is generated. By detecting this differential voltage via the amplifier 17, an output corresponding to the air flow rate can be obtained. These drive / detection circuits are manufactured as a circuit chip 22 by a semiconductor process.

上記のセンサ素子1、回路チップ22を部分露出モールドによって実装したセンサパッケージ21について図4、図5により説明する。図4はセンサパッケージの概略平面図である。センサ素子1、回路チップ22はリード部材31上に接着固定されている。センサ素子1と回路チップ22は金線などのボンディングワイヤー24aで電気的に接続する。
回路チップ22は電源の供給やセンサ信号の取り出しのためのリード部材31〜35に、金線などのボンディングワイヤー24bによってに電気的に接続される。このように接着、接続されたセンサ素子1、回路チップ22、リード部材31〜35を金型に投入し、金型内にモールド樹脂23を充填し硬化させることでセンサパッケージ21となる。図4には図示していないが,回路チップ22の表面はモールド樹脂23で覆われている。また、センサ素子1においては、少なくとも薄膜部4が露出するようにモールド樹脂で覆われている。センサ素子1の薄膜部4を露出させ空気流に晒す構造である。また、外部との電源供給、センサ信号の取り出しのためリード部材31〜35の端部がモールド樹脂23から露出している。リード部材31〜35としてはCu系素材のほかFe系素材などが用いられる。また、モールド樹脂23としては、エポキシ系の封止材などが用いられる。本実施形態では、リード部材31を、センサ素子1や回路チップを接着させるための支持材として利用するとともに、電源の供給などの電気的に接続する部材としても利用しているが、別部材とすることもできる。
A sensor package 21 in which the sensor element 1 and the circuit chip 22 are mounted by a partially exposed mold will be described with reference to FIGS. FIG. 4 is a schematic plan view of the sensor package. The sensor element 1 and the circuit chip 22 are bonded and fixed on the lead member 31. The sensor element 1 and the circuit chip 22 are electrically connected by a bonding wire 24a such as a gold wire.
The circuit chip 22 is electrically connected to lead members 31 to 35 for supplying power and taking out sensor signals by bonding wires 24b such as gold wires. The sensor element 1, the circuit chip 22, and the lead members 31 to 35 that are bonded and connected in this way are put into a mold, and the mold resin 23 is filled in the mold and cured to form the sensor package 21. Although not shown in FIG. 4, the surface of the circuit chip 22 is covered with a mold resin 23. The sensor element 1 is covered with a mold resin so that at least the thin film portion 4 is exposed. In this structure, the thin film portion 4 of the sensor element 1 is exposed and exposed to an air flow. Further, the end portions of the lead members 31 to 35 are exposed from the mold resin 23 for power supply to the outside and extraction of sensor signals. As the lead members 31 to 35, Fe-based materials and the like are used in addition to Cu-based materials. Moreover, as the mold resin 23, an epoxy-based sealing material or the like is used. In the present embodiment, the lead member 31 is used as a support material for bonding the sensor element 1 and the circuit chip, and is also used as a member for electrical connection such as power supply. You can also

図5にセンサパッケージ21の断面構造を示す。センサ素子1の表面側を被覆しているモールド樹脂23は、センサ素子1の薄膜部4が形成された部位を露出するように部分的にセンサ素子を被覆している。センサ素子1の発熱抵抗体5は配線18aを介して電流が供給され加熱される。センサ素子上の配線18aは部分露出した薄膜部4からモールド樹脂23で被覆された領域へと延設している。さらに配線18aは、センサ素子1上のモールド樹脂23で被覆された領域に形成した電極パッド13に接続される。電極パッド13には金線などのボンディングワイヤー24aによって回路チップ22に電気的に接続される。これにより、回路チップ22から、ボンディングワイヤー24a、電極パッド13、配線18aを介して発熱抵抗体5に電流を供給している。配線18aには、本発明の構成である配線除去部19aを設けている。配線除去部19aを設ける位置としては、センサ素子1の露出部端22の位置であることがより望ましい。言い換えると、センサ素子1上のモールド樹脂23の端部である。より詳細な配線除去部19aを設ける位置、及び作用については後述する。   FIG. 5 shows a cross-sectional structure of the sensor package 21. The mold resin 23 covering the surface side of the sensor element 1 partially covers the sensor element so as to expose the portion where the thin film portion 4 of the sensor element 1 is formed. The heating resistor 5 of the sensor element 1 is heated by supplying a current via the wiring 18a. The wiring 18 a on the sensor element extends from the partially exposed thin film portion 4 to a region covered with the mold resin 23. Further, the wiring 18 a is connected to the electrode pad 13 formed in the region covered with the mold resin 23 on the sensor element 1. The electrode pad 13 is electrically connected to the circuit chip 22 by a bonding wire 24a such as a gold wire. Thereby, a current is supplied from the circuit chip 22 to the heating resistor 5 through the bonding wire 24a, the electrode pad 13, and the wiring 18a. The wiring 18a is provided with a wiring removing portion 19a which is a configuration of the present invention. The position where the wiring removal portion 19a is provided is more preferably the position of the exposed portion end 22 of the sensor element 1. In other words, it is the end of the mold resin 23 on the sensor element 1. The position and operation of providing a more detailed wiring removal portion 19a will be described later.

本実施形態では、センサ素子1と回路チップ22を別チップで構成しているが、両方とも半導体基板上に半導体プロセスを用いて形成することが可能である。したがって、センサ素子1と回路チップを一体形成したものであっても良い。   In the present embodiment, the sensor element 1 and the circuit chip 22 are formed as separate chips, but both can be formed on a semiconductor substrate using a semiconductor process. Therefore, the sensor element 1 and the circuit chip may be integrally formed.

次に、センサパッケージ21を自動車などの内燃機関の吸入空気が流れる吸気管路28に実装した一例について図6を用いて説明する。図6において、吸気管路28の壁面から突出するようにベース部材29を設ける。ベース部材29には、吸気管路28を流れる吸気30の一部を取り込む副通路31を形成する。センサパッケージ21はセンサ素子1が副通路31に露出するようにベース部材29に固定している。副通路31は、湾曲部を有した通路形状であるが、センサ素子1が位置する付近の通路形状は直線形状である。センサ素子1が位置する付近の通路形状を直線形状とすることにより、センサ素子1上を流れる空気の流れ方向を安定させることができ良好な空気流検出が可能になる。副通路31内に露出したセンサパケージ21は、図6ではセンサ素子1が露出した面を空気が流れるように図示されているが、センサパッケージ21の裏面にも空気が流れるように片持ち支持された構成であっても良い。この場合、センサパッケージ21が空気にさらされる面積を広げることができセンサパッケージ21の冷却効果がより向上する。したがって、センサパッケージ21内の回路チップ22の発熱によるセンサチップ21の温度上昇による検出誤差を低減することができる。ベース部材29には、回路チップ22やセンサ素子1の電源供給、センサ信号の取り出しのための端子25を設ける。端子25はセンサパッケージ21の近傍から吸気管路の外側へ延設している。端子25はセンサパッケージ21のリード部材31、32、33、34、35にアルミボンディングワイヤー26などにより電気的に接続されている。本実施形態では、センサパッケージ21のリード部材31〜35と端子25の接続のためにアルミボンディングワイヤー26を用いた構成であるが、溶着などによりリード部材31〜35と端子25を直接接続する構成でも良い。     Next, an example in which the sensor package 21 is mounted on an intake pipe 28 through which intake air of an internal combustion engine such as an automobile flows will be described with reference to FIG. In FIG. 6, a base member 29 is provided so as to protrude from the wall surface of the intake pipe 28. The base member 29 is formed with a sub-passage 31 that takes in part of the intake air 30 flowing through the intake pipe 28. The sensor package 21 is fixed to the base member 29 so that the sensor element 1 is exposed to the auxiliary passage 31. The sub-passage 31 has a passage shape having a curved portion, but the passage shape near the sensor element 1 is a linear shape. By making the shape of the passage near the sensor element 1 a linear shape, the flow direction of the air flowing on the sensor element 1 can be stabilized and good air flow detection becomes possible. Although the sensor package 21 exposed in the sub-passage 31 is shown in FIG. 6 so that air flows on the surface where the sensor element 1 is exposed, it is cantilevered so that air also flows on the back surface of the sensor package 21. The structure may be different. In this case, the area where the sensor package 21 is exposed to air can be increased, and the cooling effect of the sensor package 21 is further improved. Therefore, the detection error due to the temperature rise of the sensor chip 21 due to the heat generation of the circuit chip 22 in the sensor package 21 can be reduced. The base member 29 is provided with terminals 25 for supplying power to the circuit chip 22 and the sensor element 1 and taking out sensor signals. The terminal 25 extends from the vicinity of the sensor package 21 to the outside of the intake pipe. The terminal 25 is electrically connected to the lead members 31, 32, 33, 34, and 35 of the sensor package 21 by an aluminum bonding wire 26 or the like. In the present embodiment, the aluminum bonding wire 26 is used to connect the lead members 31 to 35 of the sensor package 21 and the terminal 25. However, the lead members 31 to 35 and the terminal 25 are directly connected by welding or the like. But it ’s okay.

このように成形されるセンサパッケージ1の課題について説明する。図7は、図5における露出部端22の近傍の拡大図である。センサ素子1をモールドするためにセンサ素子1は金型に投入され図7(a)のように露出させる部位に金型36を押しつける。そして、モールド樹脂23をセンサ素子1と金型36との間に高圧で流しこみ金型内に充填する。センサ素子1の露出部は金型が押しつけられているのでモールド樹脂23が流れ込まない。そして、モールド樹脂23を硬化・冷却することにより部分露出を備えたセンサパッケージが得られる。   The problem of the sensor package 1 molded in this way will be described. FIG. 7 is an enlarged view of the vicinity of the exposed portion end 22 in FIG. In order to mold the sensor element 1, the sensor element 1 is put into a mold, and the mold 36 is pressed against a portion to be exposed as shown in FIG. Then, the mold resin 23 is poured between the sensor element 1 and the mold 36 at a high pressure to fill the mold. The mold resin 23 does not flow into the exposed portion of the sensor element 1 because the mold is pressed against the exposed portion. And the sensor package provided with the partial exposure is obtained by hardening and cooling the mold resin 23.

しかし、このような方法で製造する場合、以下の問題が起きる可能性がある。センサ素子1の表面に押しつける金型36の押しつけ圧力は、モールド樹脂23の充填圧力よりも十分に強くする必要がある。これは、モールド樹脂23の充填圧力によりモールド樹脂23が金型36とセンサ素子1の押しつけ部に浸入することによる樹脂バリを抑制するためである。この金型36の押しつけ圧力が強いと、センサ素子1に過大な圧力が加わりセンサ素子1にダメージを与えてしまう。特に、配線18aに過大な圧力がかかると、配線18aと下層絶縁膜3aの界面にダメージが加わり、配線18aと下層絶縁膜3aの密着力を低下させる原因となる。配線18aはアルミ、タンタル、タングステン、モリブデンなどの金属材料が用いられる。下層絶縁膜3a、上層絶縁膜3bには酸化シリコン、窒化シリコンなどシリコンを主成分とした絶縁膜が用いられる。このように異なる材料間の密着面は、線膨張係数の差による応力が集中しやすい。したがって、界面にダメージを受けると線膨張係数の差による応力によって剥がれや配線の断線を引き起こす原因になりうる。   However, when manufacturing by such a method, the following problems may occur. The pressing pressure of the mold 36 pressed against the surface of the sensor element 1 needs to be sufficiently higher than the filling pressure of the mold resin 23. This is to prevent resin burrs caused by the mold resin 23 entering the pressing portions of the mold 36 and the sensor element 1 due to the filling pressure of the mold resin 23. If the pressing pressure of the mold 36 is strong, an excessive pressure is applied to the sensor element 1 and the sensor element 1 is damaged. In particular, when an excessive pressure is applied to the wiring 18a, damage is applied to the interface between the wiring 18a and the lower insulating film 3a, which causes a decrease in the adhesion between the wiring 18a and the lower insulating film 3a. The wiring 18a is made of a metal material such as aluminum, tantalum, tungsten, or molybdenum. For the lower insulating film 3a and the upper insulating film 3b, an insulating film mainly composed of silicon such as silicon oxide or silicon nitride is used. In this way, stress due to the difference in linear expansion coefficient tends to concentrate on the contact surfaces between different materials. Therefore, if the interface is damaged, it may cause peeling or wire breakage due to stress due to the difference in linear expansion coefficient.

さらに図7(b)に示すように、モールド樹脂23を流し込んだ後、モールド樹脂を硬化・冷却すると、モールド樹脂の収縮によってセンサ素子1の表面が引っ張られる。これにより、金型36の押しつけによってダメージを受けた界面に剥がれが発生する可能性がある。また、このようなセンサ素子から成る熱式流量計を自動車のエンジンの吸気管路に設置して使用すると、エンジンからの熱や環境温度の変化により−40℃から+120℃の温度変化が長期間繰り返され、この剥がれを起点として配線18aの剥がれが徐々に拡大し、センサ素子1の劣化の原因となりうる。   Further, as shown in FIG. 7B, when the mold resin 23 is poured and then the mold resin is cured and cooled, the surface of the sensor element 1 is pulled by the shrinkage of the mold resin. Thereby, there is a possibility that peeling occurs at the interface damaged by the pressing of the mold 36. In addition, when a thermal flow meter comprising such a sensor element is installed and used in the intake pipe of an automobile engine, a temperature change from −40 ° C. to + 120 ° C. is caused by a change in the heat from the engine and the environmental temperature for a long time. Repeatedly, the peeling of the wiring 18a gradually increases from this peeling as a starting point, which may cause deterioration of the sensor element 1.

配線18aの剥がれを低減するためには、金型36の押しつけ圧力を弱めることによって界面のダメージを低減することが考えられる。しかし、モールド樹脂23を高圧で流し込むと、金型36の押しつけ部分にモールド樹脂23が浸入し薄膜部4が破壊される。また、モールド樹脂23を流し込む圧力を低下させると十分に樹脂が充填されず、ボイド(空洞部)の発生、モールド樹脂の成形後の形状のばらつきを引き起こすことになる。このように、センサ素子1の配線18aの剥がれの問題は、センサ素子1の信頼性を低下させるとともに、部分露出モールドを備えたセンサパッケージ1の成形を困難にする。この課題は、本実施例のようにセンサ素子1を部分的に露出した部分露出モールドの成形において、金型36をセンサ素子1に押しつける方法を用いた場合に発生する特有の課題である。   In order to reduce the peeling of the wiring 18a, it is conceivable to reduce the interface damage by reducing the pressing pressure of the mold 36. However, when the mold resin 23 is poured at a high pressure, the mold resin 23 enters the pressed portion of the mold 36 and the thin film portion 4 is destroyed. Further, when the pressure at which the mold resin 23 is poured is lowered, the resin is not sufficiently filled, and voids (cavities) are generated, and variations in the shape of the molded resin after molding are caused. Thus, the problem of peeling of the wiring 18a of the sensor element 1 lowers the reliability of the sensor element 1 and makes it difficult to form the sensor package 1 including the partially exposed mold. This problem is a specific problem that occurs when a method of pressing the mold 36 against the sensor element 1 is used in forming a partially exposed mold in which the sensor element 1 is partially exposed as in this embodiment.

上記の課題を解決した本実施例の構成を図8及び図9を用いて詳細に説明する。図8は、センサ素子1上に形成した配線18aを示す平面図である。配線18aの一端は、図5で示したようにセンサ素子1の発熱抵抗体5に接続され、配線18の他端は電極パッド13に接続している。配線18aの上層には上層絶縁膜13bが堆積されている。モールド樹脂23は上層絶縁膜3bを介して配線18aを部分的に被覆している。モールド樹脂23によって覆われた領域と露出部した領域との境界が露出部端部22である。露出部端22に位置する配線18aには、配線18aを部分的に除去した配線除去部19aを形成している。   The configuration of the present embodiment that solves the above problem will be described in detail with reference to FIGS. FIG. 8 is a plan view showing the wiring 18 a formed on the sensor element 1. One end of the wiring 18 a is connected to the heating resistor 5 of the sensor element 1 as shown in FIG. 5, and the other end of the wiring 18 is connected to the electrode pad 13. An upper insulating film 13b is deposited on the upper layer of the wiring 18a. The mold resin 23 partially covers the wiring 18a through the upper insulating film 3b. The boundary between the region covered with the mold resin 23 and the exposed region is the exposed portion end 22. In the wiring 18a located at the exposed portion end 22, a wiring removal portion 19a from which the wiring 18a is partially removed is formed.

図9は図8のX線に沿った断面を示す断面図である。基板2上に形成した下層絶縁膜13aと、下層絶縁膜13a上に形成した配線18aと、配線18a上に形成した上層絶縁膜18bから成る。露出部端22における配線18aを部分的に除去した配線除去部19aを形成している。これにより、配線除去部19aにおいて、上層絶縁膜3bと下層絶縁膜3aが接する構成である。上層絶縁膜3bと下層絶縁膜3aは同一材料からなる絶縁膜で形成されているため配線18aと密着させたときと比べ密着力が強い。また上層絶縁膜3bと下層絶縁膜3aの線膨張係数をほぼ等しくすることから、温度変化による配線除去部19aにおける上層絶縁膜3bと下層絶縁膜3aの接着面の応力を非常に小さくすることができる。   FIG. 9 is a cross-sectional view showing a cross section along the X-ray of FIG. A lower insulating film 13a formed on the substrate 2, a wiring 18a formed on the lower insulating film 13a, and an upper insulating film 18b formed on the wiring 18a. A wiring removal portion 19a is formed by partially removing the wiring 18a at the exposed end 22. Thereby, in the wiring removal part 19a, the upper insulating film 3b and the lower insulating film 3a are in contact with each other. Since the upper insulating film 3b and the lower insulating film 3a are formed of an insulating film made of the same material, the adhesive strength is stronger than when the upper insulating film 3b and the lower insulating film 3a are in close contact with the wiring 18a. Further, since the linear expansion coefficients of the upper insulating film 3b and the lower insulating film 3a are made substantially equal, the stress on the bonding surface between the upper insulating film 3b and the lower insulating film 3a in the wiring removal portion 19a due to temperature change can be made extremely small. it can.

上記のように露出部端22に位置する配線18aに、配線18aを部分的に除去した配線除去部19aすることにより、特に配線18aの剥がれが発生しやすい露出部端22の配線18aの密着を維持することができる。これによりセンサ素子1の信頼性を向上する。また、金型36の押しつけ圧力を強くしても配線18aの剥がれが抑制される構造であるため、部分露出モールドを備えたセンサパッケージ1の成形を簡易にすることができる。   As described above, the wiring 18a located at the exposed portion end 22 is partly removed from the wiring 18a, whereby the wiring 18a at the exposed portion end 22 where the wiring 18a is liable to be peeled can be adhered. Can be maintained. Thereby, the reliability of the sensor element 1 is improved. In addition, the sensor package 1 including the partially exposed mold can be easily formed because the wiring 18a is prevented from being peeled even when the pressing force of the mold 36 is increased.

本実施形態では、発熱抵抗体5に接続された配線18aに配線除去部19aを設けた構成であるが、その他の配線に関しても露出部端22に位置する配線に配線除去部19aを設けることによって同様な効果が得られる。とりわけ、発熱抵抗体5に接続された配線18aは発熱抵抗5を加熱するために電流が多く流れる。配線抵抗が大きいと電流による発熱、電力損失が大きくなる。これを低減するために発熱抵抗体5に接続された配線18a、18bは配線幅が広くなるように形成している。配線幅が広いと、配線と絶縁膜の接着面が連続して広がり、配線の剥がれが進行すると広範囲で剥がれが発生する。したがって、本実施例による配線除去部19aは特に発熱抵抗体5に接続された配線18a、18bに形成することにより高い効果が得られる。   In the present embodiment, the wiring removal portion 19a is provided in the wiring 18a connected to the heating resistor 5, but the wiring removal portion 19a is also provided in the wiring located at the exposed end 22 for other wirings. Similar effects can be obtained. In particular, a large amount of current flows through the wiring 18 a connected to the heating resistor 5 in order to heat the heating resistor 5. If the wiring resistance is large, heat generation due to current and power loss increase. In order to reduce this, the wirings 18a and 18b connected to the heating resistor 5 are formed to have a wide wiring width. When the wiring width is wide, the bonding surface between the wiring and the insulating film continuously spreads, and when peeling of the wiring proceeds, peeling occurs in a wide range. Therefore, a high effect can be obtained by forming the wiring removal portion 19a according to the present embodiment in the wirings 18a and 18b connected to the heating resistor 5 in particular.

またモールド樹脂23の形状は図9で示すようになだらかな裾部37を引く形状となる場合があり、露出部端22が明確には定まらないことがある。この場合、特にモールド樹脂23の高さの勾配の変化が特に大きい点を露出部端22とする。これは、裾部37のように薄く覆われたモールド樹脂のセンサ素子表面を引っ張る力は小さいためであるまた、裾部37は、モールド樹脂23に合成されたフィラーの量が必然的に少なくなり、比較的や柔軟な樹脂になっていると考えられる。   Further, the shape of the mold resin 23 may be a shape in which the gentle skirt portion 37 is drawn as shown in FIG. 9, and the exposed portion end 22 may not be clearly defined. In this case, the exposed portion end 22 is a point where the change in the gradient of the height of the mold resin 23 is particularly large. This is because the force pulling the sensor element surface of the mold resin thinly covered like the skirt portion 37 is small, and the skirt portion inevitably reduces the amount of filler synthesized in the mold resin 23. It is considered that the resin is relatively soft.

次に、本発明のその他の一例として実施例2について説明する。実施例1では、図8に示したような配線除去部19aを設けた構成であるが、以下のように配線除去部19aを設けた構成でも効果が得られる。   Next, Example 2 will be described as another example of the present invention. In the first embodiment, the wiring removing unit 19a as shown in FIG. 8 is provided, but the effect can be obtained by the configuration provided with the wiring removing unit 19a as described below.

図10は、センサ素子1上に形成した配線18aに形成した配線除去部19c、19dを示す平面図である。図10(a)は、露出部端22に位置する配線18aを配線の両側から除去し部分的に配線18aが細くなるように配線除去部19cを形成した実施例である。また、図10(b)は露出部端22に位置する配線18aを配線の片側から除去し部分的に配線18aが細くなるように配線除去部19dを形成した実施例である。図10(a)(b)に示した配線除去部19c、19dを適用する場合、配線18aの配線幅が比較的狭い場合に有効である。配線18aの配線幅が広いものに適用する場合、配線除去部19c、19dによって配線18aが急激に細くなり(抵抗が大きくなり)発熱や電力損失を引き起こす可能性があるためである。したがって、配線幅によって配線除去部19c、19dの除去面積を調整することが望ましい。   FIG. 10 is a plan view showing the wiring removal portions 19 c and 19 d formed on the wiring 18 a formed on the sensor element 1. FIG. 10A shows an embodiment in which the wiring 18a located at the exposed portion end 22 is removed from both sides of the wiring, and the wiring removal portion 19c is formed so that the wiring 18a is partially thinned. FIG. 10B shows an embodiment in which the wiring 18a located at the exposed end 22 is removed from one side of the wiring and the wiring removal portion 19d is formed so that the wiring 18a is partially thinned. The application of the wiring removing units 19c and 19d shown in FIGS. 10A and 10B is effective when the wiring width of the wiring 18a is relatively narrow. This is because when the wiring 18a is applied to a wide wiring width, the wiring removing portions 19c and 19d may cause the wiring 18a to become sharply thin (resistance increases), which may cause heat generation and power loss. Therefore, it is desirable to adjust the removal area of the wiring removal portions 19c and 19d according to the wiring width.

次に、本発明のその他の一例として実施例3について説明する。実施例1及び2におけるセンサ素子1の膜構成では、図2や図9に示したように、基板2の表面に電気絶縁膜3aを形成し、発熱体5や温度センサや配線となる金属膜を形成し、さらに電気絶縁膜3bで覆った構成であるが、以下のような膜構成でも同様な効果が得られる。   Next, Example 3 will be described as another example of the present invention. In the film configuration of the sensor element 1 in the first and second embodiments, as shown in FIGS. 2 and 9, an electrical insulating film 3a is formed on the surface of the substrate 2, and a metal film serving as a heating element 5, a temperature sensor, and wiring. Is formed and further covered with the electrical insulating film 3b, but the same effect can be obtained with the following film structure.

図11はセンサ素子1のその他の膜構成において、本発明を適用して成る実施例である。図11に示すように、センサ素子1の基板2はシリコン基板を用いている。基板2上には基板2を熱酸化した酸化シリコン膜3c(SiO2)を形成する。酸化シリコン膜3cの上層にはCVD法により形成した窒化シリコン膜3dを堆積し、さらにCVD法によって形成した酸化シリコン膜からなる下層絶縁膜3aが設けられている。そして下層絶縁膜3aの上層には発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12や配線18a、18bとなる金属膜パターンを形成する。これらの金属膜の上層にはPCVD法によって形成した酸化シリコン膜から成る上層絶縁膜3bが堆積される。さらにPCVD法により形成した窒化シリコン膜3e、酸化シリコン膜3fが順次堆積されている。     FIG. 11 shows an embodiment in which the present invention is applied to other film configurations of the sensor element 1. As shown in FIG. 11, the substrate 2 of the sensor element 1 is a silicon substrate. On the substrate 2, a silicon oxide film 3c (SiO2) obtained by thermally oxidizing the substrate 2 is formed. A silicon nitride film 3d formed by a CVD method is deposited on the silicon oxide film 3c, and a lower insulating film 3a made of a silicon oxide film formed by the CVD method is further provided. On the upper layer of the lower insulating film 3a, the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, the temperature sensitive resistors 10, 11, 12 and the wirings 18a and 18b A metal film pattern is formed. An upper insulating film 3b made of a silicon oxide film formed by the PCVD method is deposited on these metal films. Further, a silicon nitride film 3e and a silicon oxide film 3f formed by the PCVD method are sequentially deposited.

図12に、本実施例のような膜構成において部分露出モールドしたセンサパッケージの露出部端22の断面図を示す。露出部端22における配線18aを部分的に除去した配線除去部19aを形成している。配線除去部19aにおいて、上層絶縁膜3bと下層絶縁膜3aが接する構成である。本実施例のセンサ素子の膜構成の各層の界面は、酸化シリコン膜と窒化シリコン、金属膜(配線18a)と酸化シリコン膜の界面が存在する。酸化シリコン膜と窒化シリコンは、両膜ともにシリコンを材料として形成されていることから密着力は強い。本膜構成の各層において密着力が弱くなるのは金属膜(配線18a)と酸化シリコン膜から成る下層絶縁膜3a及び上層絶縁膜3bの界面である。したがって、配線18aを部分的に除去した配線除去部19aを形成することにより配線除去部19aにおいて上層絶縁膜3bと下層絶縁膜3aを密着させることができる。本実施例の膜構成における上層絶縁膜3bと下層絶縁膜3aは両膜とも酸化シリコン膜で同一材料であることから金属材料である配線18aと密着させたときと比べ密着力を強くすることができる。また上層絶縁膜3bと下層絶縁膜3aの線膨張係数をほぼ等しくすることから、温度変化による配線除去部19aにおける上層絶縁膜3bと下層絶縁膜3aの接着面の応力を非常に小さくすることができる。   FIG. 12 is a cross-sectional view of the exposed portion end 22 of the sensor package that is partially exposed molded in the film configuration as in this embodiment. A wiring removal portion 19a is formed by partially removing the wiring 18a at the exposed end 22. In the wiring removal portion 19a, the upper insulating film 3b and the lower insulating film 3a are in contact with each other. The interface of each layer of the film configuration of the sensor element of the present embodiment is an interface between a silicon oxide film and silicon nitride, and a metal film (wiring 18a) and a silicon oxide film. The silicon oxide film and the silicon nitride have strong adhesion because both films are formed using silicon as a material. In each layer of the present film configuration, the adhesion is weak at the interface between the lower insulating film 3a and the upper insulating film 3b made of the metal film (wiring 18a) and the silicon oxide film. Therefore, the upper layer insulating film 3b and the lower layer insulating film 3a can be brought into close contact with each other in the wiring removing portion 19a by forming the wiring removing portion 19a from which the wiring 18a is partially removed. Since the upper insulating film 3b and the lower insulating film 3a in the film configuration of the present embodiment are both silicon oxide films and the same material, the adhesion can be increased compared with the case where they are in close contact with the metal wiring 18a. it can. Further, since the linear expansion coefficients of the upper insulating film 3b and the lower insulating film 3a are made substantially equal, the stress on the bonding surface between the upper insulating film 3b and the lower insulating film 3a in the wiring removal portion 19a due to temperature change can be made extremely small. it can.

上記のように露出部端22に位置する配線18aに、配線18aを部分的に除去した配線除去部19aすることにより、特に配線18aの剥がれが発生しやすい露出部端22の配線18aの密着を維持することができる。これによりセンサ素子1の信頼性を向上する。また、金型36の押しつけ圧力を強くしても配線18aの剥がれが抑制される構造であるため、部分露出モールドを備えたセンサパッケージ1の成形を簡易にすることができる。   As described above, the wiring 18a located at the exposed portion end 22 is partly removed from the wiring 18a, whereby the wiring 18a at the exposed portion end 22 where the wiring 18a is liable to be peeled can be adhered. Can be maintained. Thereby, the reliability of the sensor element 1 is improved. In addition, the sensor package 1 including the partially exposed mold can be easily formed because the wiring 18a is prevented from being peeled even when the pressing force of the mold 36 is increased.

次に、本発明のその他の一例として実施例4について説明する。図13は、センサ素子1のその他の膜構成において、本発明を適用して成る実施例である。図13に示すように、センサ素子1の基板2はシリコン基板を用いている。基板2上には、基板2を熱酸化した酸化シリコン(SiO2)膜3c、CVD法により形成した窒化シリコン(Si3N4)膜3d、CVD法によって形成した酸化シリコン膜3g、CVD法により形成した窒化シリコン膜3h、CVD法によって形成した酸化シリコン膜からなる下層絶縁膜3aを順に堆積している。そして下層絶縁膜3aの上層には発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12や配線18a、18bとなる金属膜を形成する。これらの金属膜の上層にはプラズマCVD法によって形成した酸化シリコン膜から成る上層絶縁膜3b、プラズマCVD法により形成した窒化シリコン膜3e、プラズマCVD法により形成した酸化シリコン膜3fが順に堆積している。     Next, Example 4 will be described as another example of the present invention. FIG. 13 shows an embodiment in which the present invention is applied to other film configurations of the sensor element 1. As shown in FIG. 13, the substrate 2 of the sensor element 1 uses a silicon substrate. On the substrate 2, a silicon oxide (SiO2) film 3c obtained by thermally oxidizing the substrate 2, a silicon nitride (Si3N4) film 3d formed by a CVD method, a silicon oxide film 3g formed by a CVD method, and a silicon nitride formed by a CVD method A film 3h and a lower insulating film 3a made of a silicon oxide film formed by a CVD method are sequentially deposited. On the upper layer of the lower insulating film 3a, the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, the temperature sensitive resistors 10, 11, 12 and the wirings 18a and 18b Forming a metal film. An upper insulating film 3b made of a silicon oxide film formed by a plasma CVD method, a silicon nitride film 3e formed by a plasma CVD method, and a silicon oxide film 3f formed by a plasma CVD method are sequentially deposited on the upper layers of these metal films. Yes.

図14に、上記のような膜構成において部分露出モールドしたセンサパッケージの露出部端22の断面図を示す。露出部端22における配線18aを部分的に除去した配線除去部19aを形成している。これにより上層絶縁膜3bと下層絶縁膜3aが接する構成である。本実施例においても密着力が弱くなるのは金属膜(配線18a)と酸化シリコン膜から成る下層絶縁膜3a及び上層絶縁膜cbの界面である。したがって、配線18aを部分的に除去した配線除去部19aを形成することにより配線除去部19aにおいて上層絶縁膜3bと下層絶縁膜3aを密着させることができる。本膜構成における上層絶縁膜3bと下層絶縁膜3aは両膜とも酸化シリコン膜で同一材料であることから金属材料である配線18aと密着させたときと比べ強くすることができる。また上層絶縁膜3bと下層絶縁膜3aの線膨張係数をほぼ等しくすることから、温度変化による配線除去部19aにおける上層絶縁膜3bと下層絶縁膜3aの接着面の応力を非常に小さくすることができる。   FIG. 14 is a cross-sectional view of the exposed portion end 22 of the sensor package that is partially exposed molded in the film configuration as described above. A wiring removal portion 19a is formed by partially removing the wiring 18a at the exposed end 22. Thus, the upper insulating film 3b and the lower insulating film 3a are in contact with each other. Also in this embodiment, the adhesive force is weak at the interface between the lower insulating film 3a and the upper insulating film cb made of the metal film (wiring 18a) and the silicon oxide film. Therefore, the upper layer insulating film 3b and the lower layer insulating film 3a can be brought into close contact with each other in the wiring removing portion 19a by forming the wiring removing portion 19a from which the wiring 18a is partially removed. Since the upper insulating film 3b and the lower insulating film 3a in this film configuration are both silicon oxide films and are made of the same material, the upper insulating film 3b and the lower insulating film 3a can be made stronger than when they are in close contact with the wiring 18a that is a metal material. Further, since the linear expansion coefficients of the upper insulating film 3b and the lower insulating film 3a are made substantially equal, the stress on the bonding surface between the upper insulating film 3b and the lower insulating film 3a in the wiring removal portion 19a due to temperature change can be made extremely small. it can.

上記のように露出部端22に位置する配線18aに、配線18aを部分的に除去した配線除去部19aすることにより、特に配線18aの剥がれが発生しやすい露出部端22の配線18aの密着を維持することができる。これによりセンサ素子1の信頼性を向上する。また、金型36の押しつけ圧力を強くしても配線18aの剥がれが抑制される構造であるため、部分露出モールドを備えたセンサパッケージ1の成形を簡易にすることができる。   As described above, the wiring 18a located at the exposed portion end 22 is partly removed from the wiring 18a, whereby the wiring 18a at the exposed portion end 22 where the wiring 18a is liable to be peeled can be adhered. Can be maintained. Thereby, the reliability of the sensor element 1 is improved. In addition, the sensor package 1 including the partially exposed mold can be easily formed because the wiring 18a is prevented from being peeled even when the pressing force of the mold 36 is increased.

図15は本発明を適用してなるさらに効果的なセンサ素子の一例を示した実施例である。図15に示すように、センサ素子1の基板2はシリコン基板を用いている。基板2には、下層から順に、基板2を熱酸化した酸化シリコン(SiO2)膜3c、CVD法により形成した窒化シリコン(Si3N4)膜3d、CVD法によって形成した酸化シリコン膜3g、CVD法により形成した窒化シリコン膜3h、CVD法によって形成した酸化シリコン膜からなる下層絶縁膜3aを堆積している。そして下層絶縁膜3aの上には発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12や配線18a、18bとなる金属膜を形成する。これらの金属膜の上層にはプラズマCVD法によって形成した酸化シリコン膜から成る上層絶縁膜3bが形成される。本実施例では上層絶縁膜3bを堆積した後に、化学機械研磨(CMP)法により上層絶縁膜3bの表面を平坦化している。上層絶縁膜3bの表面を平坦化した後、プラズマCVD法により形成した窒化シリコン膜3e、プラズマCVD法により形成した酸化シリコン膜3fが順に堆積している。     FIG. 15 is an embodiment showing an example of a more effective sensor element to which the present invention is applied. As shown in FIG. 15, the substrate 2 of the sensor element 1 uses a silicon substrate. In order from the lower layer, the substrate 2 is formed of a silicon oxide (SiO2) film 3c obtained by thermally oxidizing the substrate 2, a silicon nitride (Si3N4) film 3d formed by a CVD method, a silicon oxide film 3g formed by a CVD method, and a CVD method. The lower insulating film 3a made of the silicon nitride film 3h and the silicon oxide film formed by the CVD method is deposited. On the lower insulating film 3a, the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, the temperature sensitive resistors 10, 11, 12 and the wirings 18a and 18b Forming a metal film. An upper insulating film 3b made of a silicon oxide film formed by plasma CVD is formed on the upper layer of these metal films. In this embodiment, after depositing the upper insulating film 3b, the surface of the upper insulating film 3b is flattened by a chemical mechanical polishing (CMP) method. After the surface of the upper insulating film 3b is planarized, a silicon nitride film 3e formed by plasma CVD and a silicon oxide film 3f formed by plasma CVD are sequentially deposited.

上記のように上層絶縁膜3bの表面を平坦化したことによる効果について説明する。図16は上層絶縁膜3bの表面が平坦化されていない場合と、平坦化されている場合とで、金型36の押しつけによる部分露出モールドを形成する時の露出部端部22の断面を比較した図である。図16(a)は、上層絶縁膜3bが平坦化されていない場合の構成を示す。配線18aより上層の各膜には配線18aに形成した配線除去部19aによる段差により表面に凹凸が生じている。この状態で金型36を押しつけると、センサ素子1表面の凸部に押しつけ圧力が集中する。表面の凸部の下層には配線18aが設けられているため、金型36の押しつけ圧力が配線18aに集中することになる。これにより配線18aに損傷を与える可能性がある。   The effect of planarizing the surface of the upper insulating film 3b as described above will be described. FIG. 16 compares the cross section of the exposed portion end 22 when forming the partially exposed mold by pressing the mold 36 between the case where the surface of the upper insulating film 3b is not flattened and the case where the surface is flattened. FIG. FIG. 16A shows a configuration when the upper insulating film 3b is not planarized. Each film above the wiring 18a has unevenness on the surface due to a step formed by the wiring removal portion 19a formed in the wiring 18a. When the mold 36 is pressed in this state, the pressing pressure is concentrated on the convex portion on the surface of the sensor element 1. Since the wiring 18a is provided below the convex portion on the surface, the pressing pressure of the mold 36 is concentrated on the wiring 18a. This may damage the wiring 18a.

また、上層絶縁膜3bに段差38があり、その上層の窒化シリコン膜3eは、段差38に沿うように堆積される。段差38があるとそこに堆積された窒化シリコン膜3eの膜質が低下すことがある。また、窒化シリコン膜3eのつきまわり性も悪化し、上層に形成した酸化シリコン膜3fとの間にボイド等が発生し、強度の低下を招く恐れがある。この状態で、モールド樹脂23からの引っ張りによる応力を受けると、窒化シリコン膜3eや酸化シリコン膜3fが損傷する可能性がある。   Further, the upper insulating film 3 b has a step 38, and the upper silicon nitride film 3 e is deposited along the step 38. If there is a step 38, the film quality of the silicon nitride film 3e deposited there may deteriorate. Further, the throwing power of the silicon nitride film 3e is also deteriorated, and voids or the like are generated between the silicon oxide film 3f formed in the upper layer and the strength may be reduced. In this state, if stress is applied from the mold resin 23, the silicon nitride film 3e and the silicon oxide film 3f may be damaged.

これに対し図16(b)は、上層絶縁膜3bを平坦化している。センサ素子1の表面には配線18aに形成した配線除去部19aによる凹凸が生じない。そのため金型36の押しつけ圧力が均等に分散され、配線18aに加わる圧力を低減できる。また、上層の窒化シリコン膜3e、酸化シリコン膜3fも平坦に堆積されるため膜質の低下が起きない。したがって、配線除去部19aよって配線18aの密着力を維持すると同時に、配線18aの上層の絶縁膜の信頼性の低下を招くことがない。   On the other hand, in FIG. 16B, the upper insulating film 3b is flattened. The surface of the sensor element 1 is not uneven due to the wiring removal portion 19a formed in the wiring 18a. Therefore, the pressing pressure of the mold 36 is evenly distributed, and the pressure applied to the wiring 18a can be reduced. Further, since the upper silicon nitride film 3e and the silicon oxide film 3f are also deposited flat, the film quality does not deteriorate. Therefore, the adhesion of the wiring 18a is maintained by the wiring removing portion 19a, and at the same time, the reliability of the insulating film on the upper layer of the wiring 18a is not lowered.

本発明を適用して成る、より効果的な配線除去部の構成の一例について図17により説明する。配線18aの配線除去部19aを露出部端22に沿って複数個配列している。加えて、配線除去部19aを配列した位置よりも発熱抵抗体側(露出部側)に配線除去部19cを設けた。更に、配線除去部19aと配線除去部19cは互い違いになるように配線除去部19cは露出部端22に沿う方向にずらして設けている。言い換えると、配線除去部19aと配線除去部19bを千鳥状に配置している。   An example of a more effective configuration of the wiring removing unit to which the present invention is applied will be described with reference to FIG. A plurality of wiring removal portions 19 a of the wiring 18 a are arranged along the exposed portion end 22. In addition, the wiring removal part 19c is provided on the heating resistor side (exposed part side) from the position where the wiring removal part 19a is arranged. Furthermore, the wiring removal part 19c is shifted in the direction along the exposed part end 22 so that the wiring removal part 19a and the wiring removal part 19c are alternated. In other words, the wiring removal unit 19a and the wiring removal unit 19b are arranged in a staggered manner.

図18は、図17におけるX1線及びX2線に沿った断面図を示す。図18(a)に示すX1線に沿った断面図において、露出部端22に位置する配線18aには、配線除去部19aが設けられている。図18(b)に示したX2線に沿った断面図では、露出部端22の直下から外れた位置に配線除去部19cが設けられている。図18(b)に示したように複数の配線除去部19aの露出部端22の直下には配線除去部19aが設けられていない。したがって、モールド樹脂23による引っ張りを受ける領域が残ってしまう。モールド樹脂23の材料としてさらに温度による膨張・収縮が大きい材料を用いると複数の配線除去部19aの間に位置する配線18aに剥がれが発生する可能性が出てくる。これを低減するために、本実施例では配線除去部19aの配列に加えて配線除去部19cの配列を千鳥状になるように設けている。これにより、露出部端22の直下の配線18aを配線除去部19aと配線除去部19cの3点で密着をすることができる。また、千鳥状に配線除去部19cを設けているため過酷な環境条件に晒されることにより露出部端22の直下で配線18aの剥がれが発生しても、配線除去部19bにより剥がれの拡大を抑制することができる。   FIG. 18 is a cross-sectional view taken along lines X1 and X2 in FIG. In the cross-sectional view taken along the line X1 shown in FIG. 18A, the wiring 18a located at the exposed portion end 22 is provided with a wiring removing portion 19a. In the cross-sectional view taken along the line X2 shown in FIG. 18B, the wiring removal portion 19c is provided at a position deviated from directly below the exposed portion end 22. As shown in FIG. 18B, the wiring removal portion 19a is not provided immediately below the exposed portion end 22 of the plurality of wiring removal portions 19a. Therefore, a region that receives a pull by the mold resin 23 remains. If a material that further expands and contracts due to temperature is used as the material of the mold resin 23, there is a possibility that the wiring 18a located between the plurality of wiring removing portions 19a may be peeled off. In order to reduce this, in this embodiment, in addition to the arrangement of the wiring removal portions 19a, the arrangement of the wiring removal portions 19c is provided in a staggered manner. As a result, the wiring 18a immediately below the exposed portion end 22 can be brought into close contact with the wiring removing portion 19a and the wiring removing portion 19c. Further, since the wiring removal portion 19c is provided in a staggered manner, even if the wiring 18a is peeled off immediately below the exposed portion end 22 due to exposure to severe environmental conditions, the wiring removal portion 19b suppresses the expansion of peeling. can do.

また本実施例のように配線除去部を設けた場合、配線18aの線幅が広くなっても、それに応じて配線除去部を追加すればよく、図10に示したような配線除去部による急激な抵抗変化を引き起こすことがない。   Further, when the wiring removal portion is provided as in the present embodiment, even if the line width of the wiring 18a is increased, the wiring removal portion may be added accordingly, and the rapid removal by the wiring removal portion as shown in FIG. Does not cause a significant change in resistance.

本実施形態では、配線除去部19cを配線除去部19aの配列よりも発熱抵抗体5側に設けたが、加えて図19に示すようにモールド樹脂23で被覆された側にさらに配線除去部19dの配列を千鳥状に配置することができる。これにより、モールド樹脂23被覆された側に配線18aの剥がれが拡大することを低減することができる。   In the present embodiment, the wiring removing portion 19c is provided on the heating resistor 5 side with respect to the arrangement of the wiring removing portions 19a. In addition, as shown in FIG. 19, the wiring removing portion 19d is further provided on the side covered with the mold resin 23. Can be arranged in a staggered pattern. Thereby, it is possible to reduce an increase in the peeling of the wiring 18a on the side coated with the mold resin 23.

1・・・センサ素子、2・・・基板、3a・・・下層絶縁膜、3b・・・上層絶縁膜、3c、3f、3g・・・酸化シリコン膜、3d、3e、3h・・・窒化シリコン膜、4・・・薄膜部、5・・・発熱抵抗体、6・・・空気流、8a・・・上流側温度センサ、8b・・・上流側温度センサ、9a・・・下流側温度センサ、9b・・・下流側温度センサ、10・・・感温抵抗体、11・・・抵抗体、12・・・抵抗体、13・・・電極パッド、14・・・温度分布、15・・・増幅器、16・・・トランジスタ、17・・・増幅器、18a〜18b・・・配線、19a〜19d・・・配線除去部、21・・・センサパッケージ、22・・・露出部端、24a、24b・・・ボンディングワイヤー、25・・・端子、26・・・アルミボンディングワイヤー、28・・・吸気管路、29・・・ベース部材、30・・・吸気、31・・・副通路、31〜35・・・リード部材、36・・・金型、37・・・裾部、38・・・段差部 DESCRIPTION OF SYMBOLS 1 ... Sensor element, 2 ... Substrate, 3a ... Lower insulating film, 3b ... Upper insulating film, 3c, 3f, 3g ... Silicon oxide film, 3d, 3e, 3h ... Nitriding Silicon film, 4 ... thin film portion, 5 ... heating resistor, 6 ... air flow, 8a ... upstream temperature sensor, 8b ... upstream temperature sensor, 9a ... downstream temperature Sensor, 9b ... downstream temperature sensor, 10 ... temperature sensitive resistor, 11 ... resistor, 12 ... resistor, 13 ... electrode pad, 14 ... temperature distribution, 15 ... ..Amplifier, 16 ... transistor, 17 ... amplifier, 18a-18b ... wiring, 19a-19d ... wiring removal part, 21 ... sensor package, 22 ... exposed part end, 24a 24b ... bonding wire, 25 ... terminal, 26 ... aluminum bondy Gwire, 28 ... intake pipe, 29 ... base member, 30 ... intake, 31 ... sub-passage, 31-35 ... lead member, 36 ... mold, 37 ... Hem, 38 ... Step part

Claims (7)

基板上に形成した下層絶縁膜と、前記下層絶縁膜上に形成した検出部と、前記検出部から引き出された配線と、前記配線上に形成した上層絶縁膜と、からなるセンサ素子と、
前記センサ素子の前記検出部が形成された表面が露出するように部分的に被覆することによって形成した露出部を備えたモールド樹脂と、を備え、
前記露出部の端部における前記配線を部分的に除去した配線除去部を形成したことを特徴とするセンサ装置。
A sensor element comprising: a lower insulating film formed on a substrate; a detection unit formed on the lower insulating film; a wiring drawn from the detection unit; and an upper insulating film formed on the wiring;
A mold resin having an exposed portion formed by partially covering the surface on which the detection portion of the sensor element is formed to be exposed;
A sensor device, wherein a wiring removal portion is formed by partially removing the wiring at an end portion of the exposed portion.
請求項1記載のセンサ装置において、
前記上層絶縁膜と前記下層絶縁膜とは、同一材料からなる絶縁膜で形成され、
前記配線の前記配線除去部において前記上層絶縁膜と下層絶縁膜が接するように設けられたことを特徴とするセンサ装置。
The sensor device according to claim 1,
The upper insulating film and the lower insulating film are formed of an insulating film made of the same material,
The sensor device, wherein the upper insulating film and the lower insulating film are provided in contact with each other in the wiring removing portion of the wiring.
請求項1または2のセンサ装置において、
前記配線除去部が形成された部位の前記センサ素子表面が平坦となるように前記上層絶縁膜を前記配線の厚みよりも段差が小さくなるように平坦化したことを特徴とするセンサ装置。
The sensor device according to claim 1 or 2,
A sensor device, wherein the upper insulating film is flattened so that a step is smaller than a thickness of the wiring so that a surface of the sensor element in a portion where the wiring removal portion is formed is flat.
請求項1乃至3のいずれかのセンサ装置において、
前記配線除去部は、1つの配線内に複数個設けられていることを特徴とするセンサ装置。
The sensor device according to any one of claims 1 to 3,
A sensor device, wherein a plurality of the wiring removal units are provided in one wiring.
請求項4のセンサ装置において、
前記配線除去部は、複数列設けられており、
前記複数列の前記配線除去部は、互い違いに配置されていることを特徴とするセンサ装置。
The sensor device according to claim 4, wherein
The wiring removal portion is provided in a plurality of rows,
The plurality of rows of the wiring removal units are alternately arranged.
請求項1乃至5のいずれかのセンサ装置において、
前記配線は、金属材料で形成されたことを特徴とするセンサ装置。
The sensor device according to any one of claims 1 to 5,
The sensor device, wherein the wiring is made of a metal material.
請求項1乃至6のいずれかのセンサ装置において、
前記配線は、前記検出部に発熱部を備え前記発熱部に電流を流すための配線であることを特徴とするセンサ装置。
The sensor device according to any one of claims 1 to 6,
2. The sensor device according to claim 1, wherein the wiring is a wiring for supplying a current to the heat generating portion with the heat generating portion provided in the detecting portion.
JP2012184849A 2012-08-24 2012-08-24 Sensor device Expired - Fee Related JP5841918B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012184849A JP5841918B2 (en) 2012-08-24 2012-08-24 Sensor device
PCT/JP2013/070268 WO2014030493A1 (en) 2012-08-24 2013-07-26 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184849A JP5841918B2 (en) 2012-08-24 2012-08-24 Sensor device

Publications (2)

Publication Number Publication Date
JP2014044048A JP2014044048A (en) 2014-03-13
JP5841918B2 true JP5841918B2 (en) 2016-01-13

Family

ID=50149804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184849A Expired - Fee Related JP5841918B2 (en) 2012-08-24 2012-08-24 Sensor device

Country Status (2)

Country Link
JP (1) JP5841918B2 (en)
WO (1) WO2014030493A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766749B2 (en) * 2017-05-18 2020-10-14 株式会社豊田自動織機 Comb
JP6990165B2 (en) * 2018-12-05 2022-01-12 日立Astemo株式会社 Thermal sensors and their manufacturing methods and semiconductor devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683192B2 (en) * 2010-09-30 2015-03-11 日立オートモティブシステムズ株式会社 Thermal flow sensor
JP5152292B2 (en) * 2010-10-06 2013-02-27 株式会社デンソー Flow measuring device

Also Published As

Publication number Publication date
WO2014030493A1 (en) 2014-02-27
JP2014044048A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
KR101444867B1 (en) Flow sensor
JP6018903B2 (en) Physical quantity sensor
WO2012117446A1 (en) Heat-type flow meter
JP2880651B2 (en) Thermal micro flow sensor and method of manufacturing the same
EP2789994B1 (en) Airflow measuring apparatus
JP5675716B2 (en) Thermal air flow sensor
JP5916637B2 (en) Flow sensor and manufacturing method thereof
WO2018088019A1 (en) Humidity sensor and method for producing same
JP5841918B2 (en) Sensor device
JP5243348B2 (en) Flow rate detector
JP5768011B2 (en) Thermal air flow sensor
JP5093052B2 (en) Thermal flow sensor
JP5220955B2 (en) Flow sensor
JP2010133865A (en) Method for manufacturing thermal type flow sensor, and thermal type flow sensor
JP4349144B2 (en) Thermal air flow sensor and method for manufacturing thermal air flow sensor
JP5492834B2 (en) Thermal flow meter
JP6215773B2 (en) Flow sensor and manufacturing method thereof
JP5092936B2 (en) Thermal flow sensor and manufacturing method thereof
JP5949573B2 (en) Manufacturing method of physical quantity sensor
JP4968290B2 (en) Manufacturing method of thermal air flow sensor
JP6532810B2 (en) Flow sensor
JP2007311685A (en) Resin sealing structure of element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R150 Certificate of patent or registration of utility model

Ref document number: 5841918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees