JP2017122276A - Method of manufacturing heat-resistant component using granules - Google Patents

Method of manufacturing heat-resistant component using granules Download PDF

Info

Publication number
JP2017122276A
JP2017122276A JP2016255353A JP2016255353A JP2017122276A JP 2017122276 A JP2017122276 A JP 2017122276A JP 2016255353 A JP2016255353 A JP 2016255353A JP 2016255353 A JP2016255353 A JP 2016255353A JP 2017122276 A JP2017122276 A JP 2017122276A
Authority
JP
Japan
Prior art keywords
heat
resistant component
metal powder
manufacturing
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016255353A
Other languages
Japanese (ja)
Other versions
JP6373955B2 (en
Inventor
チョン、ジェオク
Jae Ok Jung
クォン、サンク
Sang Koo Kwon
イム、ヨンミン
Young Min Leem
オム、キョンファ
Kyoung Hwa Eum
キム、ミンチョル
Min Chul Kim
パク、サンミン
Sang Min Park
イ、ホジン
Ho Jin Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PIM KOREA CO Ltd
Original Assignee
PIM KOREA CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PIM KOREA CO Ltd filed Critical PIM KOREA CO Ltd
Publication of JP2017122276A publication Critical patent/JP2017122276A/en
Application granted granted Critical
Publication of JP6373955B2 publication Critical patent/JP6373955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a heat-resistant component using granules.SOLUTION: A method includes: a step of preparing granules by spraying a mixture including a metal powder and a slurry material into a housing equipped with a disc and rotating the disc; a step of preparing a molded object by compression-molding the granules; a step of preparing a sintered object by sintering the molded object at 1,000 to 1,600°C; and a step of adjusting dimensions by cutting the sintered object, wherein the housing is sealed and hot air at 70 to 200°C is supplied into the housing.SELECTED DRAWING: Figure 3

Description

本発明は、顆粒を利用した耐熱部品の製造方法に関するものである。   The present invention relates to a method for producing a heat-resistant component using granules.

最近、寸法精度及び機械的特性が優秀な産業用部品に対する要求が増加している。   Recently, there is an increasing demand for industrial parts with excellent dimensional accuracy and mechanical properties.

このような産業用部品は粉末冶金技術又は金属粉末射出成形技術などを利用して製造することができる。前記粉末冶金(powder metallurgy)技術は金属粉末を圧縮成形した後、焼結して所定の形状を有する金属成形体を製造する技術である。   Such industrial parts can be manufactured using powder metallurgy technology or metal powder injection molding technology. The powder metallurgy technique is a technique for producing a metal molded body having a predetermined shape by compressing and molding metal powder.

図1は粉末冶金方法を示した図面である。前記図1を参照すれば、前記粉末冶金方法は成形段階、焼結段階及び切削段階を含んで構成され得る。   FIG. 1 shows a powder metallurgy method. Referring to FIG. 1, the powder metallurgy method may include a forming step, a sintering step, and a cutting step.

例えば、前記粉末冶金方法は、(S1)金属粉末を結合剤であるバインダー(binder)と混合した後圧縮してインゴット(ingot)にした後、切削又はプレス加工を通じて設計通りの形状に製品を製作する成形段階;(S2)前記成形段階を経た製品を焼結炉で加熱する焼結段階;及び(S3)前記焼結段階を経た製品を設計通りの寸法に研削又は切削する切削段階を含むことができる。   For example, in the powder metallurgy method, (S1) a metal powder is mixed with a binder as a binder and then compressed into an ingot, and then a product is manufactured in a shape as designed through cutting or pressing. (S2) a sintering step in which the product subjected to the molding step is heated in a sintering furnace; and (S3) a cutting step in which the product subjected to the sintering step is ground or cut to a designed size. Can do.

前記粉末冶金方法によれば、粒径が50μm〜200μmである粗大粉末を使用するため、製品の機械的性質、すなわち密度、強度及び硬度などを確保することが難しく、自動車のターボチャージャーなどの用途で使用することができない問題点があった。   According to the powder metallurgy method, since a coarse powder having a particle size of 50 μm to 200 μm is used, it is difficult to ensure the mechanical properties of the product, that is, density, strength, hardness, etc. There was a problem that can not be used in.

前記成形段階において、金属粉末を金型に投入して圧縮する時、圧縮強度を上げて機械的性質を向上させることができるが、この場合、金型が破損されるため圧縮強度を上げることに限界があった。したがって、鍛造や熱処理のような後続工程が必要となる問題点があった。   In the molding step, when metal powder is put into a mold and compressed, the compression strength can be increased to improve the mechanical properties, but in this case, the mold is damaged, so that the compression strength is increased. There was a limit. Therefore, there is a problem that a subsequent process such as forging or heat treatment is required.

また、粉末冶金方法では成形性の確保及び均一な製品生産のために粒径が粗大な粉末(50μm〜200μm)を使用せざるを得ない。前記粗大粉末は成形時に成形体に大きな気孔を形成し、このような大きな気孔は成形体の緻密化を低下させる要因として作用する。   In the powder metallurgy method, a powder having a coarse particle size (50 μm to 200 μm) must be used to ensure moldability and produce a uniform product. The coarse powder forms large pores in the compact during molding, and such large pores act as a factor that reduces densification of the compact.

一方、金属粉末射出成形(Metal Powder Injection Molding)技術は約5μm〜約10μmに過ぎない径の微細金属粒子を使用する。前記粉末冶金時、前記金属粉末射出成形に使用される微細金属粒子を適用する試みがなされてきたが、前記径の微細金属粒子を適用すると、粒子間の凝集力によって金型に緻密に充填することができないため、成形時に密度の不均一が発生する問題点があった。また、充填量が一定でないため製品の均一性が低下した。   On the other hand, the metal powder injection molding technique uses fine metal particles having a diameter of only about 5 μm to about 10 μm. Attempts have been made to apply fine metal particles used in the metal powder injection molding during the powder metallurgy, but when the fine metal particles with the diameter are applied, the mold is densely filled by the cohesive force between the particles. Therefore, there is a problem that non-uniform density occurs during molding. Moreover, since the filling amount was not constant, the uniformity of the product was lowered.

そして、微細な粉末であるほど塑性変形を起こすことが難しいので粉末状態で多くの応力を受けてしまい、これは熱処理中にクラックを発生させ得る要因となり、また金型間の公差よりも小さい微細粉末は金型の破損を誘導するため微細粉末で粉末冶金を適用することは問題点が多い。   And the finer the powder, the more difficult it is to cause plastic deformation, so it receives a lot of stress in the powder state, which is a factor that can cause cracks during heat treatment and is smaller than the tolerance between molds. Since powder induces damage to the mold, it is problematic to apply powder metallurgy with fine powder.

図2は金属粉末射出成形方法を示した図面である。前記図2を参照すれば、前記金属粉末射出成形方法は、(S100)混練段階、(S200)射出成形段階、(S300)脱脂段階、(S400)焼結段階及び(S500)切削段階を含むことができる。   FIG. 2 is a view showing a metal powder injection molding method. Referring to FIG. 2, the metal powder injection molding method includes (S100) a kneading step, (S200) an injection molding step, (S300) a degreasing step, (S400) a sintering step, and (S500) a cutting step. Can do.

より具体的には、前記金属粉末射出成形方法は金属粉末と結合剤であるバインダー(binder)を混合機で混合する混合段階;前記混合段階を経た混合物を射出成形機に注入し、圧縮成形して設計通りの形状に製品を作る射出成形段階;前記射出成形段階を経た製品を脱脂炉で加熱してバインダーを除去する脱脂段階;前記脱脂段階を経た製品を焼結炉で加熱する焼結段階;及び前記焼結段階を経た製品を設計通りの寸法に研削又は切削する切削段階を含むことができる。   More specifically, the metal powder injection molding method is a mixing step in which a metal powder and a binder as a binder are mixed by a mixer; the mixture that has passed through the mixing step is injected into an injection molding machine and compression molded. An injection molding stage for producing a product in the shape as designed; a degreasing stage for removing the binder by heating the product after the injection molding stage in a degreasing furnace; a sintering stage for heating the product after the degreasing stage in a sintering furnace And a cutting step of grinding or cutting the product after the sintering step to a designed size.

前記脱脂段階は、射出成形機内で金属粉末の流動性を確保するために含まれる。また、ワックス及び高分子などのバインダーが不活性の雰囲気条件で熱処理時に炭素として残留することもあるため、脱脂段階を通じて除去される。   The degreasing step is included to ensure the fluidity of the metal powder in the injection molding machine. Also, binders such as waxes and polymers may remain as carbon during heat treatment under inert atmosphere conditions and are therefore removed through a degreasing step.

また、金属粉末射出成形方法の遂行時に前記脱脂段階で12時間〜60時間の間常温から1000℃に加熱しなければならない煩わしさがあった。このため、生産性が低下し燃料費が多く増加して生産費用が上昇する問題点があった。このような脱脂段階を含む耐熱鋼部品の製造方法を特許文献1にて提示したことがある。   In addition, when performing the metal powder injection molding method, the degreasing step requires a troublesome heating from room temperature to 1000 ° C. for 12 to 60 hours. For this reason, there has been a problem that productivity is lowered, fuel cost is increased, and production cost is increased. Patent Document 1 has presented a method for manufacturing a heat-resistant steel part including such a degreasing step.

また、前記粉末冶金方法の収縮率は1%〜5%であるのに対し、前記金属粉末射出成形方法の収縮率は12%〜22%と収縮率が非常に大きく、収縮率を3次元的に制御することが困難である問題点があった。   Further, the shrinkage rate of the powder metallurgy method is 1% to 5%, whereas the shrinkage rate of the metal powder injection molding method is 12% to 22%, and the shrinkage rate is very large. There is a problem that it is difficult to control.

韓国登録特許第10−1202462号公報Korean Registered Patent No. 10-120462

本発明の一観点は、顆粒を利用した耐熱部品の製造方法に関するものである。   One aspect of the present invention relates to a method for manufacturing a heat-resistant component using granules.

一実施形態において、前記耐熱部品の製造方法は、金属粉末及びスラリー材料を含む混合物をディスクが具備されたハウジングの中に噴射し、前記ディスクを回転させて顆粒を製造する段階;前記顆粒を圧縮成形して成形体を製造する段階;前記成形体を1000℃〜1600℃で焼結して焼結体を製造する段階;並びに前記焼結体を切削して寸法を調節する段階;を含み、前記ハウジングは密閉されて70℃〜200℃の熱風が供給される。   In one embodiment, the method for manufacturing a heat-resistant component includes a step of injecting a mixture including a metal powder and a slurry material into a housing provided with a disk, and rotating the disk to produce a granule; Forming a molded body by molding; sintering the molded body at 1000 ° C. to 1600 ° C. to produce a sintered body; and cutting the sintered body to adjust the dimensions; The housing is sealed and supplied with hot air of 70 ° C to 200 ° C.

一実施形態において、前記金属粉末は、炭素(C):0.1重量%〜3重量%、シリコン(Si):0超過5重量%以下、マンガン(Mn):0超過15重量%以下、リン(P):0超過1重量%以下、硫黄(S):0超過1重量%以下、ニッケル(Ni):0超過90重量%以下、鉄(Fe):0超過50重量%以下、及びクロム(Cr):0超過50重量%以下を含むことができる。   In one embodiment, the metal powder includes carbon (C): 0.1 wt% to 3 wt%, silicon (Si): more than 0 and less than 5 wt%, manganese (Mn): more than 0 and less than 15 wt%, phosphorus (P): 0 over 1% by weight, sulfur (S): over 0 over 1% by weight, nickel (Ni): over 0 over 90% by weight, iron (Fe): over 0 over 50% by weight, and chromium ( Cr): More than 0 and 50 wt% or less can be included.

一実施形態において、前記顆粒は平均径が20μm〜200μmであり得る。   In one embodiment, the granules may have an average diameter of 20 μm to 200 μm.

一実施形態において、前記金属粉末の平均径は0.01μm〜50μmであり、前記金属粉末の径分布は0.001μm〜100μmであり得る。   In one embodiment, the metal powder may have an average diameter of 0.01 μm to 50 μm, and the metal powder may have a diameter distribution of 0.001 μm to 100 μm.

一実施形態において、前記混合物は固相率(S/L)が10体積%〜45体積%であり得る。   In one embodiment, the mixture may have a solid phase ratio (S / L) of 10% to 45% by volume.

一実施形態において、前記ディスクの回転速度は4000rpm〜20000rpmであり得る。   In one embodiment, the rotational speed of the disk may be 4000 rpm to 20000 rpm.

一実施形態において、前記スラリー材料は溶媒及びバインダーを含むことができる。   In one embodiment, the slurry material may include a solvent and a binder.

一実施形態において、前記溶媒は水、ヘキサン、アセトン及び炭素数1〜10のアルコールのうち一つ以上を含むことができる。   In one embodiment, the solvent may include one or more of water, hexane, acetone, and alcohol having 1 to 10 carbon atoms.

一実施形態において、前記バインダーはポリビニルブチラール(polyvinyl butyral、PVB)、ポリビニルアルコール(polyvinyl alcohol、PVA)、ワックス(Wax)、及びポリエチレングリコール(polyethylene glycol、PEG)のうち一つ以上を含むことができる。   In one embodiment, the binder may include one or more of polyvinyl butyral (PVB), polyvinyl alcohol (PVA), wax (Wax), and polyethylene glycol (PEG). .

一実施形態において、前記圧縮成形は0.1ton/cm〜10ton/cmの圧力で遂行され得る。 In one embodiment, the compression molding may be performed at a pressure of 0.1ton / cm 2 ~10ton / cm 2 .

本発明の目的は、球形顆粒の製造が可能で、前記顆粒を金型内部に均一に充填できる耐熱部品の製造方法を提供することである。   An object of the present invention is to provide a method for producing a heat-resistant component capable of producing spherical granules and filling the granules uniformly into the mold.

本発明の他の目的は、プレス成形性が優秀で、焼結された焼結体の機械的強度が優秀な耐熱部品の製造方法を提供することである。   Another object of the present invention is to provide a method for producing a heat-resistant component having excellent press formability and excellent mechanical strength of a sintered sintered body.

本発明のさらに他の目的は、製品の表面及び内部品質、成形密度が優秀で、製品収縮率を最小化できる耐熱部品の製造方法を提供することである。   Still another object of the present invention is to provide a method for manufacturing a heat-resistant component that has excellent product surface and internal quality and molding density, and that can minimize product shrinkage.

本発明のさらに他の目的は、生産性が優秀で、工程時間及びエネルギー面で有利な耐熱部品の製造方法を提供することである。   Still another object of the present invention is to provide a method for producing a heat-resistant component that is excellent in productivity and advantageous in terms of process time and energy.

図1は粉末冶金方法を示した図面である。FIG. 1 shows a powder metallurgy method. 図2は金属粉末射出成形方法を示した図面である。FIG. 2 is a view showing a metal powder injection molding method. 図3は本発明の一実施形態に係る耐熱部品の製造方法を示した図面である。FIG. 3 is a view showing a method for manufacturing a heat-resistant component according to an embodiment of the present invention. 図4は本発明の一実施形態に係る顆粒製造方法を示した図面である。FIG. 4 is a view showing a granule manufacturing method according to an embodiment of the present invention. 図5は本発明の一実施形態に係る顆粒製造方法を示した図面である。FIG. 5 is a view showing a granule manufacturing method according to an embodiment of the present invention. 図6は本発明の一実施形態に係る顆粒を製造するための成形機を示した図面である。FIG. 6 is a view showing a molding machine for producing granules according to an embodiment of the present invention. 図7(a)は本発明の実施例に使用された金属粉末を示した光学顕微鏡写真であり、図7(b)は本発明の実施例により製造された顆粒を示した光学顕微鏡写真である。FIG. 7A is an optical micrograph showing the metal powder used in the example of the present invention, and FIG. 7B is an optical micrograph showing the granule produced by the example of the present invention. . 図8(a)は本発明に係る実施例の顆粒の光学顕微鏡写真であり、図8(b)は本発明に対する比較例の顆粒の光学顕微鏡写真であり、図8(c)は本発明に対する比較例の顆粒の光学顕微鏡写真である。FIG. 8 (a) is an optical micrograph of the granule of the example according to the present invention, FIG. 8 (b) is an optical micrograph of the granule of the comparative example for the present invention, and FIG. 8 (c) is for the present invention. It is an optical microscope photograph of the granule of a comparative example. 図9(a)は本発明に係る実施例の顆粒の光学顕微鏡写真であり、図9(b)は本発明に対する比較例の顆粒の光学顕微鏡写真である。FIG. 9A is an optical micrograph of the granule of the example according to the present invention, and FIG. 9B is an optical micrograph of the granule of the comparative example with respect to the present invention. 図10(a)は本発明に係る実施例の耐熱部品の写真であり、図10(b)は図10(a)の耐熱部品のX線写真である。FIG. 10A is a photograph of the heat-resistant component of the example according to the present invention, and FIG. 10B is an X-ray photograph of the heat-resistant component of FIG. 10A. 図11(a)は本発明に係る実施例の耐熱部品を示した写真であり、図11(b)は本発明に対する比較例の耐熱部品を示した写真である。FIG. 11A is a photograph showing a heat-resistant component of an example according to the present invention, and FIG. 11B is a photograph showing a heat-resistant component of a comparative example with respect to the present invention. 図12(a)は本発明に対する比較例の耐熱部品を示した写真であり、図12(b)は本発明に係る実施例の耐熱部品を示した写真であり、図12(c)は図12(a)の比較例の耐熱部品を熱処理した写真であり、図12(d)は図12(b)の実施例の耐熱部品を熱処理した写真である。12A is a photograph showing a heat-resistant component of a comparative example for the present invention, FIG. 12B is a photograph showing a heat-resistant component of an embodiment according to the present invention, and FIG. 12 (a) is a photograph obtained by heat-treating the heat-resistant component of the comparative example, and FIG. 12 (d) is a photograph obtained by heat-treating the heat-resistant component of the embodiment of FIG. 12 (b). 図13(a)は本発明に対する比較例の耐熱部品の微細組織を示した電子顕微鏡写真であり、図13(b)は本発明に係る実施例の耐熱部品の微細組織を示した電子顕微鏡写真であり、図13(c)は前記比較例の耐熱部品を熱処理した後の微細組織を示した電子顕微鏡写真であり、図13(d)は前記実施例の耐熱部品を熱処理した後の微細組織を示した電子顕微鏡写真である。FIG. 13A is an electron micrograph showing the microstructure of the heat-resistant component of the comparative example of the present invention, and FIG. 13B is an electron micrograph showing the microstructure of the heat-resistant component of the example according to the present invention. FIG. 13C is an electron micrograph showing the microstructure after heat-treating the heat-resistant component of the comparative example, and FIG. 13D is the microstructure after heat-treating the heat-resistant component of the example. It is the electron micrograph which showed. 図14(a)は本発明に係る実施例の耐熱部品を大気条件で熱処理後に形成された表面酸化層を示した電子顕微鏡写真であり、図14(b)は前記実施例の耐熱部品を連続アニール炉で熱処理後に形成された表面酸化層を示した電子顕微鏡写真である。FIG. 14A is an electron micrograph showing a surface oxide layer formed after heat-treating a heat-resistant component of an example according to the present invention under atmospheric conditions, and FIG. 14B is a continuous view of the heat-resistant component of the example. 4 is an electron micrograph showing a surface oxide layer formed after heat treatment in an annealing furnace.

以下、添付した図面を参照して実施例について本発明が属する技術分野で通常の知識を有した者が容易に実施できるように詳細に説明する。本発明は相違する多様な形態で具現され得、ここで説明する実施例に限定されない。図面で本発明を明確に説明するために説明と関係のない部分は省略し、明細書全体を通して同一又は類似の構成要素に対しては同じ図面符号を付した。   Hereinafter, embodiments will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily carry out the embodiments. The present invention may be embodied in various different forms and is not limited to the embodiments described herein. In order to clearly describe the present invention in the drawings, portions not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.

[顆粒を利用した耐熱部品の製造方法]
本発明の一観点は顆粒を利用した耐熱部品の製造方法に関するものである。図3は本発明の一実施形態に係る耐熱部品の製造方法を示した図面である。前記図3を参照すれば、前記耐熱部品の製造方法は、(S10)顆粒製造段階;(S20)成形体製造段階;(S30)焼結体製造段階;及び(S40)切削段階;を含む。
[Method of manufacturing heat-resistant parts using granules]
One aspect of the present invention relates to a method for manufacturing a heat-resistant component using granules. FIG. 3 is a view showing a method for manufacturing a heat-resistant component according to an embodiment of the present invention. Referring to FIG. 3, the heat-resistant component manufacturing method includes (S10) granule manufacturing stage; (S20) molded body manufacturing stage; (S30) sintered body manufacturing stage; and (S40) cutting stage.

より具体的には、前記耐熱部品の製造方法は、(S10)金属粉末及びスラリー材料を含む混合物をディスクが具備されたハウジングの中に噴射し、前記ディスクを回転させて顆粒を製造する段階;(S20)前記顆粒を金型に充填して圧縮成形して成形体を製造する段階;(S30)前記成形体を焼結炉で1000℃〜1600℃で焼結させた後冷却して焼結体を製造する段階;及び(S40)前記焼結体を切削して寸法を調節する段階;を含む。   More specifically, in the method for producing the heat-resistant component, (S10) a step of injecting a mixture containing a metal powder and a slurry material into a housing provided with a disk, and rotating the disk to produce a granule; (S20) A step of filling the granule into a mold and compression-molding to produce a molded body; (S30) sintering the molded body at 1000 ° C. to 1600 ° C. in a sintering furnace and then cooling and sintering. Manufacturing the body; and (S40) cutting the sintered body and adjusting the dimensions.

以下、前記耐熱部品の製造方法を段階別に詳細に説明する。   Hereinafter, the method for manufacturing the heat-resistant component will be described in detail step by step.

[(S10)顆粒製造段階]
前記段階は金属粉末及びスラリー材料を含む混合物をディスクが具備されたハウジングの中に噴射し、前記ディスクを回転させて顆粒を製造する段階である。
[(S10) Granule production stage]
The step is a step of injecting a mixture containing metal powder and slurry material into a housing provided with a disk, and rotating the disk to produce granules.

図4は本発明の一実施形態に係る顆粒製造方法を示した図面である。前記図4を参照すれば、前記顆粒は(S11)混合物製造段階;及び(S12)乾燥段階;を含めて製造され得る。   FIG. 4 is a view showing a granule manufacturing method according to an embodiment of the present invention. Referring to FIG. 4, the granules may be manufactured including (S11) a mixture manufacturing stage; and (S12) a drying stage.

[(S11)混合物製造段階]
前記段階は金属粉末及びスラリー材料を含む混合物を製造する段階である。
[(S11) Mixture production stage]
The step is a step of manufacturing a mixture including a metal powder and a slurry material.

[金属粉末]
一実施形態において、前記金属粉末の平均径は0.01μm〜50μmであり得る。一方、本発明で前記「径」は前記金属粉末の最大長さと定義する。前記平均径の金属粉末を適用する時、球形の顆粒を容易に製造することができ、前記顆粒を金型に均一に充填可能であり、機械的物性が優秀な耐熱製品の製造が可能である。
[Metal powder]
In one embodiment, the metal powder may have an average diameter of 0.01 μm to 50 μm. On the other hand, in the present invention, the “diameter” is defined as the maximum length of the metal powder. When applying the metal powder having the average diameter, spherical granules can be easily manufactured, and the granules can be uniformly filled in a mold, and a heat-resistant product having excellent mechanical properties can be manufactured. .

前記金属粉末の径分布は0.001μm〜100μm(粉末の90%以上)であり得る。前記径分布で顆粒を容易に製造することができる。   The diameter distribution of the metal powder may be 0.001 μm to 100 μm (90% or more of the powder). Granules can be easily produced with the diameter distribution.

一実施形態において、前記金属粉末はディーゼル及びガソリンターボチャージャーエンジンなどに適用される耐熱部品用金属粉末を使用することができる。前記耐熱部品用金属粉末はクロムを18%以上含むことができる。   In one embodiment, the metal powder may be a metal powder for heat-resistant parts applied to diesel and gasoline turbocharger engines. The metal powder for heat-resistant parts can contain 18% or more of chromium.

一実施形態において、前記金属粉末は、炭素(C):0.1重量%〜3重量%、シリコン(Si):0超過5重量%以下、マンガン(Mn):0超過15重量%以下、リン(P):0超過1重量%以下、硫黄(S):0超過1重量%以下、ニッケル(Ni):0超過90重量%以下、鉄(Fe):0超過50重量%以下、及びクロム(Cr):0超過50重量%以下を含むことができる。前記範囲で含む時、本発明の耐熱部品の機械的強度が優秀であり得る。   In one embodiment, the metal powder includes carbon (C): 0.1 wt% to 3 wt%, silicon (Si): more than 0 and less than 5 wt%, manganese (Mn): more than 0 and less than 15 wt%, phosphorus (P): 0 over 1% by weight, sulfur (S): over 0 over 1% by weight, nickel (Ni): over 0 over 90% by weight, iron (Fe): over 0 over 50% by weight, and chromium ( Cr): More than 0 and 50 wt% or less can be included. When included in the above range, the mechanical strength of the heat-resistant component of the present invention can be excellent.

例えば、前記金属粉末は、炭素(C):0.2重量%〜0.5重量%、シリコン(Si):0.75重量%〜1.3重量%、マンガン(Mn):0超過1.5重量%以下、モリブデン(Mo):0.2重量%〜0.3重量%、クロム(Cr):24重量%〜27重量%、ニッケル(Ni):19重量%〜22重量%、ニオビウム(Nb):1重量%〜1.75重量%及び残部の鉄(Fe)とその他不可避不純物を含むことができる。前記範囲で含む時、本発明の耐熱部品の機械的強度が優秀であり得る。   For example, the metal powder includes carbon (C): 0.2 wt% to 0.5 wt%, silicon (Si): 0.75 wt% to 1.3 wt%, manganese (Mn): more than 0. 5 wt% or less, molybdenum (Mo): 0.2 wt% to 0.3 wt%, chromium (Cr): 24 wt% to 27 wt%, nickel (Ni): 19 wt% to 22 wt%, niobium ( Nb): 1% by weight to 1.75% by weight and the balance iron (Fe) and other inevitable impurities. When included in the above range, the mechanical strength of the heat-resistant component of the present invention can be excellent.

一実施形態において、前記金属粉末としてはHK−30(ASTM規格)を使用することができる。前記HK−30は耐熱性が優秀であるため、特に高温の化学装置や熱処理用ポートに使用され得る。   In one embodiment, HK-30 (ASTM standard) can be used as the metal powder. Since HK-30 has excellent heat resistance, it can be used for a high-temperature chemical apparatus or a heat treatment port.

一実施形態において、前記金属粉末は固相率(Solid Loading、S/L)が10体積%〜45体積%であり得る。一方、前記固相率は、前記混合物全体体積に対する金属粉末の体積比率で表わされる。前記範囲の固相率で、混合性及び成形性が優秀であるため、顆粒を容易に製造することができる。例えば、13体積%〜40体積%であり得る。   In one embodiment, the metal powder may have a solid loading (S / L) of 10% by volume to 45% by volume. On the other hand, the solid phase ratio is represented by the volume ratio of the metal powder to the total volume of the mixture. Since the mixing ratio and the moldability are excellent at the solid phase ratio in the above range, the granules can be easily produced. For example, it may be 13 volume% to 40 volume%.

[スラリー材料]
前記スラリー材料は、前記混合物の流動性を確保して前記金属粉末をハウジングに噴射できるようにする。
[Slurry material]
The slurry material ensures fluidity of the mixture so that the metal powder can be injected into the housing.

一実施形態において、前記スラリー材料は溶媒及びバインダーを含むことができる。   In one embodiment, the slurry material may include a solvent and a binder.

[溶媒]
前記溶媒は前記混合物の流動性及び混合性を確保する目的で含まれ得る。一実施形態において、前記溶媒は揮発性であり得る。本明細書で、前記用語「揮発性」は、溶媒が後述する熱風を利用した乾燥の時、70℃〜200℃の温度範囲で蒸発することを意味する。
[solvent]
The solvent may be included for the purpose of ensuring fluidity and mixing properties of the mixture. In one embodiment, the solvent can be volatile. In the present specification, the term “volatile” means that the solvent evaporates in a temperature range of 70 ° C. to 200 ° C. when drying using hot air described later.

一実施形態において、前記溶媒は水、ヘキサン、アセトン及び炭素数1〜10のアルコールのうち一つ以上を含むことができる。前記溶媒を使用する時に流動性及び混合性が優秀であり、顆粒を容易に製造することができる。   In one embodiment, the solvent may include one or more of water, hexane, acetone, and alcohol having 1 to 10 carbon atoms. When the solvent is used, the fluidity and mixing properties are excellent, and granules can be easily produced.

一実施形態において、前記炭素数1〜10のアルコールとしては、メタノール、エタノール、ブタノール、ペンタノール、ヘキサノールなどの1価アルコール、1,2−ペンタンジオール、1,5−ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、デカンジオールなどの2価アルコール、及びプロピレングリコール、1,3−ブチレングリコール、グリセリンなどの3価アルコールなどが使用され得る。これらは単独又は二種以上混合して使用され得る。   In one embodiment, the alcohol having 1 to 10 carbon atoms includes monohydric alcohols such as methanol, ethanol, butanol, pentanol, and hexanol, 1,2-pentanediol, 1,5-pentanediol, hexanediol, and heptane. Dihydric alcohols such as diol, octanediol and decanediol, and trihydric alcohols such as propylene glycol, 1,3-butylene glycol and glycerin can be used. These may be used alone or in combination of two or more.

他の実施形態において、前記溶媒は前記混合されたスラリー100体積部に対して50体積部〜90体積部含まれ得る。例えば、60体積部〜70体積部含まれ得る。例えば、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89又は90体積部含まれ得る。   In another embodiment, the solvent may be included in an amount of 50 to 90 parts by volume with respect to 100 parts by volume of the mixed slurry. For example, 60 to 70 volume parts may be included. For example, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 or 90 volumes may be included.

[バインダー]
前記バインダーは、前記金属粉末がかたまって顆粒を形成する目的で含まれ得る。一実施形態において、前記バインダーはポリビニルブチラール(polyvinyl butyral、PVB)、ポリビニルアルコール(polyvinyl alcohol、PVA)、ワックス(Wax)、及びポリエチレングリコール(polyethylene glycol、PEG)のうち一つ以上を含むことができる。前記バインダーを含む時顆粒形成効果が優秀であり得る。
[binder]
The binder may be included for the purpose of forming the metal powder into granules. In one embodiment, the binder may include one or more of polyvinyl butyral (PVB), polyvinyl alcohol (PVA), wax (Wax), and polyethylene glycol (PEG). . When the binder is included, the granule formation effect can be excellent.

一実施形態において、前記バインダーは前記金属粉末100重量部に対して0.01重量部〜5重量部含まれ得る。前記体積範囲で含む時球形顆粒を容易に製造することができる。例えば、0.5重量部〜5重量部含まれ得る。例えば、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.5、1、1.5、2、2.5、3、4又は5重量部含まれ得る。   In one embodiment, the binder may be included in an amount of 0.01 to 5 parts by weight with respect to 100 parts by weight of the metal powder. Spherical granules containing in the above volume range can be easily produced. For example, 0.5 to 5 parts by weight may be included. For example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.5, 1, 1. 5, 2, 2.5, 3, 4 or 5 parts by weight may be included.

一実施形態において、前記溶媒としてはエタノールを含むことができる。一実施形態において、前記バインダーはポリビニルブチラール(polyvinyl butyral、PVB)を含むことができる。前記溶媒及びバインダーを含むスラリー材料を適用する時、前記金属粉末の酸化を防止する効果が優秀であり得る。   In one embodiment, the solvent may include ethanol. In one embodiment, the binder may include polyvinyl butyral (PVB). When applying a slurry material including the solvent and a binder, the effect of preventing oxidation of the metal powder may be excellent.

他の実施形態において、前記金属粉末及びバインダーは100:0.01〜100:6の重量比で含まれ得る。前記重量比で含む時、混合性、作業性及び成形性が優秀であり、顆粒を容易に製造することができる。例えば、100:0.5〜100:2重量比で含まれ得る。   In another embodiment, the metal powder and the binder may be included in a weight ratio of 100: 0.01 to 100: 6. When included in the weight ratio, the mixing property, workability, and moldability are excellent, and the granules can be easily produced. For example, it may be included in a weight ratio of 100: 0.5 to 100: 2.

図5は本発明の一実施形態に係る顆粒製造方法を示した図面である。前記図5を参照すれば、一実施形態において、前記混合物は溶媒20に金属粉末10を投入して分散し、バインダー12を投入して製造することができる。   FIG. 5 is a view showing a granule manufacturing method according to an embodiment of the present invention. Referring to FIG. 5, in one embodiment, the mixture may be prepared by adding metal powder 10 to a solvent 20 and dispersing the mixture, and adding a binder 12.

他の実施形態において、容器に溶媒20を投入し、その後バインダー12を溶媒20に混合(溶解)することで、金属粉末10を混合するスラリーを製造することができる。又は前記溶媒、バインダー及び金属粉末をボールが収容されたボールミル(ball mill)の中に投入し混合して混合物を製造することができる。また、前記スラリーは前記ボールミル以外の通常の混合機を使用して製造することができる。一実施形態において、前記混合物は1〜2時間の間混合機を使って混合して製造することができる。   In another embodiment, a slurry in which the metal powder 10 is mixed can be manufactured by adding the solvent 20 to the container and then mixing (dissolving) the binder 12 in the solvent 20. Alternatively, the solvent, the binder, and the metal powder may be charged into a ball mill containing balls and mixed to produce a mixture. Further, the slurry can be produced using a normal mixer other than the ball mill. In one embodiment, the mixture may be prepared by mixing using a mixer for 1-2 hours.

[(S12)乾燥段階]
前記段階はディスクが具備されたハウジングに前記混合物を噴射し、前記ディスクを回転させて前記溶媒を乾燥させて顆粒を製造する段階である。
[(S12) Drying stage]
The step is a step of injecting the mixture into a housing provided with a disk, and rotating the disk to dry the solvent to produce granules.

図6は本発明の一実施形態に係る顆粒を製造するための成形機1000を示した図面である。前記図6を参照すれば、成形機1000は回転可能なディスク300が具備されたハウジング200を含むことができる。   FIG. 6 is a view showing a molding machine 1000 for producing granules according to an embodiment of the present invention. Referring to FIG. 6, the molding machine 1000 may include a housing 200 having a rotatable disk 300.

例えば、ディスク300が具備されたハウジング200に前記混合物を噴射し、ディスク300を回転させて前記混合物に含まれた溶媒を乾燥させて顆粒を製造することができる。一実施形態において、ハウジング200は密閉されたもので、内部に熱風が供給されて排気され得る。   For example, the mixture can be sprayed onto the housing 200 provided with the disk 300, and the disk 300 can be rotated to dry the solvent contained in the mixture to produce granules. In one embodiment, the housing 200 is hermetically sealed and can be exhausted by supplying hot air therein.

前記図5(d)及び図5(e)のように、噴射された混合物はディスク300が回転しながら、表面張力によって球形の粒子の塊りが形成され、溶媒が乾燥されて顆粒100が形成される。   As shown in FIGS. 5 (d) and 5 (e), the jetted mixture forms a lump of spherical particles due to surface tension while the disk 300 rotates, and the solvent is dried to form granules 100. Is done.

一実施形態において、ハウジング200に70℃〜200℃の熱風が供給される。前記条件の熱風を供給しながらディスクを回転させる時、バインダーが分解されず、顆粒の形成速度及び顆粒形成率が優秀であり得る。前記ハウジングに70℃未満の熱風が供給されると、前記混合物が完全に乾燥されなかったため顆粒の形状が不良となって耐熱部品の機械的性質及び外観性が低下し、前記ハウジングに200℃を超過する熱風が供給されると、前記混合物中のバインダー成分が分解されて、顆粒の形状が不良となって耐熱部品の機械的性質及び外観性が低下する可能性がある。例えば、80℃〜150℃の熱風が供給され得る。例えば、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、160、170、180、190又は200℃の熱風が供給され得る。   In one embodiment, hot air of 70 ° C. to 200 ° C. is supplied to the housing 200. When the disk is rotated while supplying hot air under the above conditions, the binder is not decomposed and the granule formation rate and granule formation rate can be excellent. When hot air of less than 70 ° C. is supplied to the housing, the mixture is not completely dried, so that the shape of the granules becomes poor and the mechanical properties and appearance of the heat-resistant parts are reduced. When excessive hot air is supplied, the binder component in the mixture is decomposed, and the shape of the granule becomes poor, which may deteriorate the mechanical properties and appearance of the heat-resistant component. For example, hot air of 80 ° C. to 150 ° C. can be supplied. For example, hot air of 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 160, 170, 180, 190 or 200 ° C. is supplied Can be done.

一実施形態において、前記ディスクの回転速度は、4000rpm〜20000rpmであり得る。前記回転速度で効率的な乾燥がなされ、球形の顆粒形成率が優秀であり得る。例えば、4000、4500、5000、5500、6000、6500、7000、7500、8000、8500、9000、9500、10000、11000、12000、13000、14000、15000、16000、17000、18000、19000又は20000rpmであり得る。   In one embodiment, the rotational speed of the disk may be 4000 rpm to 20000 rpm. Efficient drying can be performed at the rotation speed, and the spherical granule formation rate can be excellent. For example, it can be 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000 or 20000 rpm. .

一実施形態において、前記顆粒は平均径が20μm〜200μmであり得る。前記範囲で形成時に金型充填性及び耐熱部品の機械的特性が優秀であり得る。例えば、30μm〜150μmであり得る。又は、30μm〜90μmであり得る。例えば、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、160、170、180、190又は200μmであり得る。   In one embodiment, the granules may have an average diameter of 20 μm to 200 μm. The mold filling property and the mechanical properties of the heat-resistant component can be excellent when formed in the above range. For example, it may be 30 μm to 150 μm. Or it may be 30 micrometers-90 micrometers. For example, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, It can be 140, 145, 150, 160, 170, 180, 190 or 200 μm.

前記図6を参照すれば、前記混合物はディスク300の回転によって発生する遠心力によってハウジング200上部から下部方向に(又は下部から上部方向に)水滴の形態で分散され得る。この時、球の形状に形成された混合物で溶媒が乾燥されて、球の形状の顆粒が形成され得る。一実施形態において、前記顆粒はバインダーの結合力と前記金属粉末の凝集力(ファンデルワールス力)によって、金属粉末粒子が複数個結合されて、球形の形態で形成され得る。   Referring to FIG. 6, the mixture may be dispersed in the form of water droplets from the top to the bottom of the housing 200 (or from the bottom to the top) by centrifugal force generated by the rotation of the disk 300. At this time, the solvent may be dried with the mixture formed in the shape of a sphere to form a sphere-shaped granule. In one embodiment, the granule may be formed in a spherical shape by combining a plurality of metal powder particles by a binding force of a binder and a cohesive force (van der Waals force) of the metal powder.

[(S20)成形体製造段階]
前記段階は前記顆粒を金型に充填し圧縮成形して成形体を製造する段階である。一実施形態において、プレス金型に所定形態のインゴットとなるように充填して圧縮成形することができる。
[(S20) Molded article manufacturing stage]
The step is a step of producing a molded body by filling the granule in a mold and compression molding. In one embodiment, the press mold can be filled and compressed into a predetermined form of ingot.

一実施形態において、前記圧縮成形は、0.1ton/cm〜10ton/cmの圧力で遂行され得る。前記顆粒の径は前記金属粉末の径より10倍以上大きく、球形の形状を有するため、重力によって流動性が優秀となる。したがって、金型内部に均一に充填され得る。これは、金型内部に小麦粉を充填するより米粒を充填する時にさらに均一に充填されるのと同じである。 In one embodiment, the compression molding may be performed at a pressure of 0.1ton / cm 2 ~10ton / cm 2 . Since the diameter of the granule is 10 times larger than the diameter of the metal powder and has a spherical shape, the fluidity is excellent by gravity. Therefore, the mold can be uniformly filled. This is the same as filling even more uniformly when filling rice grains than filling the mold with flour.

一実施形態において、前記顆粒が充填された金型をプレス成形して耐熱製品の形状に合わせて成形体を製造することができる。例えば、前記インゴットはブロック又は円板形状となるように顆粒を金型に充填することができる。   In one embodiment, a mold filled with the granule can be press-molded to produce a molded body according to the shape of the heat-resistant product. For example, the mold may be filled with granules so that the ingot has a block or disk shape.

実施形態において、前記顆粒をプレス機の金型に所定の形態のインゴットとなるように充填して圧縮成形する時、前記顆粒は顆粒の形状が破れながら分割された微細な金属粉末が金型内部に均一に充填され得る。   In an embodiment, when the granule is filled into a mold of a press machine so as to form an ingot of a predetermined form and compression-molded, the granule is divided into fine metal powders while the shape of the granule is broken. Can be uniformly filled.

[(S30)焼結体製造段階]
前記段階は前記成形体を焼結炉で焼結させた後冷却して焼結体を製造する段階である。
[(S30) Sintered body manufacturing stage]
The step is a step of manufacturing the sintered body by sintering the molded body in a sintering furnace and then cooling.

一実施形態において、前記焼結は1000℃〜1600℃で実施することができる。前記範囲で前記混合物に含まれたバインダー成分が容易に除去されて、焼結体の機械的強度及び表面特性が優秀であり得る。前記焼結がこの1000℃未満で実施される場合、未焼結による密度低下、前記焼結体の表面特性及び機械的特性が低下し、1600℃を超過して実施される場合、溶融による形状不良が発生し、前記焼結体の機械的特性が低下され得る。例えば、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550又は1600℃で実施することができる。   In one embodiment, the sintering may be performed at 1000 ° C to 1600 ° C. Within this range, the binder component contained in the mixture can be easily removed, and the mechanical strength and surface characteristics of the sintered body can be excellent. When the sintering is carried out at less than 1000 ° C., the density reduction due to unsintering, the surface characteristics and mechanical properties of the sintered body are reduced, and when the sintering is carried out above 1600 ° C., the shape due to melting Defects can occur and the mechanical properties of the sintered body can be reduced. For example, it can be carried out at 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550 or 1600 ° C.

一実施形態において、前記成形体を焼結炉で前述した温度で加熱した後、常温で冷却して焼結体を製造することができる。   In one embodiment, the compact may be heated at the temperature described above in a sintering furnace and then cooled at room temperature to produce a sintered compact.

前記バインダー成分は、前記焼結時に分解及び除去され得る。一実施形態において、前記バインダーにポリビニルブチラールを適用するとき、焼結炉で容易に除去されて工程効率性が優秀であり、焼結体の機械的強度及び表面特性が優秀であり得る。   The binder component can be decomposed and removed during the sintering. In one embodiment, when polyvinyl butyral is applied to the binder, it can be easily removed in a sintering furnace and process efficiency is excellent, and the mechanical strength and surface characteristics of the sintered body can be excellent.

一実施形態において、前記焼結は水素、窒素及びアルゴンの中の一つ以上を含むガスの雰囲気でなされ得る。前記ガスの雰囲気で焼結するとき酸素の流入による酸化現象が防止され得る。一実施形態において、前記焼結はAr−N又はN−H雰囲気で焼結され得る。 In one embodiment, the sintering may be performed in an atmosphere of a gas including one or more of hydrogen, nitrogen, and argon. Oxidation due to inflow of oxygen can be prevented when sintering in the gas atmosphere. In one embodiment, the sintering may be performed in an Ar—N 2 or N 2 —H 2 atmosphere.

[(S40)切削段階]
前記段階は、前記焼結体を切削して寸法を調節する段階である。一実施形態において、焼結体製造段階で製造された焼結体を目的とする寸法を有するように切削して前記焼結体の寸法を調整することができる。
[(S40) Cutting Stage]
The step is a step of adjusting the dimensions by cutting the sintered body. In one embodiment, the size of the sintered body can be adjusted by cutting the sintered body manufactured in the stage of manufacturing the sintered body to have a target size.

[耐熱部品の製造方法によって製造された耐熱部品]
本発明の他の観点は前記顆粒を利用した耐熱部品の製造方法によって製造された耐熱部品に関するものである。
[Heat-resistant parts manufactured by the heat-resistant parts manufacturing method]
Another aspect of the present invention relates to a heat-resistant component manufactured by a method for manufacturing a heat-resistant component using the granules.

本発明による顆粒を利用した粉末冶金方法を適用するとき、製造された顆粒の形状が球形に近く、前記顆粒の粒径は20μm〜200μmであり、前記顆粒の流動度は40sec/50g未満となり、粉末冶金用粉末と類似の特性を有し、金型内部への充填が容易であり得る。   When applying the powder metallurgy method using the granule according to the present invention, the shape of the produced granule is nearly spherical, the particle size of the granule is 20 μm to 200 μm, and the fluidity of the granule is less than 40 sec / 50 g, It has characteristics similar to powder for powder metallurgy and can be easily filled into the mold.

また、顆粒化された粉末がプレス成形されながら顆粒が破れ、微細粉末を金型内部に均一に充填することができ、焼結後の相対密度を99%以上に高めることができ、機械的特性が優秀な耐熱部品を製造することができる。   Moreover, the granulated powder is broken while the granulated powder is pressed, the fine powder can be uniformly filled inside the mold, the relative density after sintering can be increased to 99% or more, and the mechanical properties Can manufacture excellent heat-resistant parts.

そして、微細な金属粉末の粒子が顆粒化されてかたまってから成形段階で圧縮されるので、金属粉末を圧縮する時よりも内部の均一性を高めることができ、相対的に大きな焼結駆動力によって焼結後高い密度を得ることができるため、粉末冶金方法を用いながらも金属粉末射出成形方法(Metal Powder Injection Molding)又は鋳造の方法で製造された製品以上の優秀な機械的性質を具備した製品を得ることができる。   And since the fine metal powder particles are granulated and compressed, they are compressed in the molding stage, so that the internal uniformity can be improved compared to when the metal powder is compressed, and a relatively large sintering driving force is achieved. Since high density can be obtained after sintering, it has excellent mechanical properties over products manufactured by metal powder injection molding or casting method while using powder metallurgy method. You can get a product.

また、金属粉末射出成形方法でのように脱脂工程を必要としないため製造工程が単純であり、脱脂のための加熱が不要であるためエネルギーを節約することができ、時間の節約効果もある。このため、生産性を向上させることができ、生産費用を低減させることができる効果がある。   In addition, since the degreasing process is not required as in the metal powder injection molding method, the manufacturing process is simple, and since heating for degreasing is unnecessary, energy can be saved, and there is also a time saving effect. For this reason, productivity can be improved and production cost can be reduced.

また、成形密度が高いほど焼結段階後の収縮率が小さいことが分かる。本発明は微細な金属粉末を用い、顆粒を圧縮して成形するため既存の粉末冶金法より成形密度を向上させることができ、金属粉末射出成形方法に比べて収縮率の制御が容易であり、焼結後に設計寸法に近接する寸法に焼結させることができる。したがって、前記切削加工だけで作業が完了するので加工費及び生産費の節減効果が優秀である。   It can also be seen that the higher the molding density, the smaller the shrinkage after the sintering step. Since the present invention uses fine metal powder and compresses and forms granules, the molding density can be improved over existing powder metallurgy methods, and the shrinkage rate can be easily controlled as compared with metal powder injection molding methods. It can be sintered to dimensions close to the design dimensions after sintering. Therefore, since the work is completed only by the cutting process, the effect of reducing the processing cost and the production cost is excellent.

以下、本発明の好ましい実施例を通じて本発明の構成及び作用をさらに詳細に説明する。ただし、これは本発明の好ましい例示として提示されたものに過ぎず、本発明はこれによって制限されるものではない。   Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is merely presented as a preferred example of the present invention, and the present invention is not limited thereby.

[実施例及び比較例]
[実施例1]
下記の表1のような含量の金属粉末、ポリビニルブチラール及びエタノールを含む混合物を製造した。体積が1000mlである容器とボールミルを用意した。前記金属粉末とポリブチラール及びエタノールを下記の表1の条件で適用して常温で1時間の間混合して混合物を製造した。
[Examples and Comparative Examples]
[Example 1]
A mixture containing metal powder, polyvinyl butyral and ethanol in the contents shown in Table 1 below was prepared. A container having a volume of 1000 ml and a ball mill were prepared. The metal powder, polybutyral and ethanol were applied under the conditions shown in Table 1 below and mixed at room temperature for 1 hour to prepare a mixture.

前記金属粉末は、平均径が5μm〜9μmであるParmaco社のHK−30製品を使用した。前記HK−30は炭素(C):0.20〜0.50重量%、クロム(Cr):24〜27重量%、ニッケル(Ni):19〜22重量%、シリコン(Si):0.75〜1.30重量%、マンガン(Mn):0超過1.5重量%以下、モリブデン(Mo):0.2〜0.3重量%、ニオビウム(Nb):1〜1.75重量%及び残部の鉄(Fe)とその他不可避不純物を含む。   As the metal powder, HK-30 product of Parmaco having an average diameter of 5 μm to 9 μm was used. The HK-30 is carbon (C): 0.20 to 0.50 wt%, chromium (Cr): 24 to 27 wt%, nickel (Ni): 19 to 22 wt%, silicon (Si): 0.75 To 1.30% by weight, manganese (Mn): more than 0 and 1.5% by weight or less, molybdenum (Mo): 0.2 to 0.3% by weight, niobium (Nb): 1-1.75% by weight and the balance Iron (Fe) and other inevitable impurities.

前記図6のように内部に回転可能なディスクが具備され密閉されたハウジングを含む成形機に前記混合物を注入した後、ディスクを6000rpmの回転速度で回転させながら、前記ハウジングに130℃の熱風を供給して顆粒を製造した。   As shown in FIG. 6, the mixture is injected into a molding machine including a hermetically sealed disk having a rotatable disk inside, and hot air at 130 ° C. is applied to the housing while rotating the disk at a rotation speed of 6000 rpm. Feed to produce granules.

前記顆粒を成形機に充填し、100MPa(1.01ton/cm)の圧力で圧縮成形して、ターボチャージャーに使用されるべーンリング(vane ring)部品形態の成形体を製造した。 The granules were filled into a molding machine and compression molded at a pressure of 100 MPa (1.01 ton / cm 2 ) to produce a molded body in the form of a vane ring part used for a turbocharger.

前記成形体を高温炉(バッチ炉又は連続炉で可能)で焼結し、焼結温度は液相が形成される前の温度である1240℃の温度で2〜3時間の間焼結し、バッチ炉では真空雰囲気、連続炉では水素雰囲気で焼結して焼結体を製造した後、前記焼結体を切削して寸法を調節して耐熱部品を製造した。   The molded body is sintered in a high-temperature furnace (possible in a batch furnace or a continuous furnace), and the sintering temperature is sintered at a temperature of 1240 ° C., which is a temperature before the liquid phase is formed, for 2 to 3 hours. A sintered body was manufactured by sintering in a vacuum atmosphere in a batch furnace and in a hydrogen atmosphere in a continuous furnace, and then the sintered body was cut and the dimensions were adjusted to manufacture a heat resistant part.

[実施例2]
下記の表2のような条件の成分及び含量を適用した混合物を適用したことを除いては前記実施例1と同じ方法で耐熱部品を製造した。
[Example 2]
A heat-resistant component was manufactured in the same manner as in Example 1 except that a mixture to which the components and contents under the conditions shown in Table 2 below were applied was applied.

[実施例3]
前記圧縮成形時に600MPa(6.12ton/cm)の圧力で圧縮成形したことを除いては前記実施例1と同じ方法で耐熱部品を製造した。
[Example 3]
A heat-resistant part was produced in the same manner as in Example 1 except that the compression molding was performed at a pressure of 600 MPa (6.12 ton / cm 2 ) during the compression molding.

[実施例4]
前記圧縮成形時に600MPa(6.12ton/cm)の圧力で圧縮成形したことを除いては前記実施例2と同じ方法で耐熱部品を製造した。
[Example 4]
A heat-resistant component was manufactured in the same manner as in Example 2 except that the compression molding was performed at a pressure of 600 MPa (6.12 ton / cm 2 ) during the compression molding.

[比較例1]
前記ハウジングに65℃の熱風を供給して顆粒を製造したことを除いては前記実施例1と同じ方法で耐熱部品を製造した。
[Comparative Example 1]
A heat-resistant component was produced in the same manner as in Example 1 except that 65 ° C. hot air was supplied to the housing to produce granules.

[比較例2]
前記ハウジングに215℃の熱風を供給して顆粒を製造したことを除いては前記実施例1と同じ方法で耐熱部品を製造した。
[Comparative Example 2]
A heat-resistant component was produced in the same manner as in Example 1 except that granules were produced by supplying hot air of 215 ° C. to the housing.

[耐熱部品の物性評価]
(1)相対密度、収縮率、見かけ密度及び顆粒回収率測定:前記実施例1〜4及び比較例1〜2に対して、製造された耐熱部品の相対密度(relative density)、収縮率(linear shrinkage)、見かけ密度(g/cc)及び顆粒回収率(%)を下記の表3に示した。
[Physical property evaluation of heat-resistant parts]
(1) Relative density, shrinkage rate, apparent density, and granule recovery rate measurement: relative density (relative density) and shrinkage rate (linear) of manufactured heat-resistant parts with respect to Examples 1-4 and Comparative Examples 1-2. Shrinkage), apparent density (g / cc) and granule recovery (%) are shown in Table 3 below.

前記表3を参照すれば、前記実施例1〜4は顆粒を圧縮して成形するため、金型充填時に既存金属(微粉)粉末よりも充填密度を高めることができ、収縮率の制御が容易であるため焼結後に設計寸法に近接する寸法に焼結することができ、焼結体を最小限に切削して耐熱部品を製造することが可能であることが分かった。   Referring to Table 3, since Examples 1 to 4 are formed by compressing granules, the packing density can be higher than that of existing metal (fine powder) powder when filling the mold, and the shrinkage rate can be easily controlled. Therefore, after sintering, it was possible to sinter to a dimension close to the design dimension, and it was found that a heat-resistant part can be manufactured by cutting the sintered body to the minimum.

反面、比較例1の場合、乾燥がなされなかったため顆粒粉末が形成されず、比較例2の場合、実施例1〜4に比べて顆粒回収率が大きく低下することが分かった。   On the other hand, in the case of the comparative example 1, since it was not dried, granule powder was not formed, and in the case of the comparative example 2, it turned out that a granule collection rate falls large compared with Examples 1-4.

下記の図7(a)は前記実施例1に使用された金属粉末を1000倍拡大した光学顕微鏡写真で、図7(b)は本発明の実施例1により製造された顆粒を100倍拡大した光学顕微鏡写真である。前記図7を参照すれば、前記金属粉末の平均径は5μm〜9μmであり、前記実施例1〜3により製造された顆粒は平均径が30μm〜90μmの粒子で製造されたことが分かった。   FIG. 7A is an optical micrograph obtained by enlarging the metal powder used in Example 1 by 1000 times, and FIG. 7B is an enlarged 100 times granule manufactured by Example 1 of the present invention. It is an optical micrograph. Referring to FIG. 7, it was found that the average diameter of the metal powder was 5 μm to 9 μm, and the granules prepared according to Examples 1 to 3 were manufactured with particles having an average diameter of 30 μm to 90 μm.

図8(a)は前記実施例1の顆粒で、図8(b)は前記比較例1の顆粒で、図8(c)は前記比較例2の顆粒の光学顕微鏡写真である。また、図9(a)は前記実施例1の顆粒で、図9(b)は前記比較例1の顆粒の光学顕微鏡写真である。前記図8及び図9を参照すれば、前記実施例2の顆粒は平均径が30μm〜90μmの粒子で製造されたが、比較例1の顆粒は混合物が完全に乾燥されなかったため顆粒の形状が不良であり、比較例2の顆粒はバインダーが分解されたため顆粒の形状が不良であったことが分かった。   8A is a granule of Example 1, FIG. 8B is a granule of Comparative Example 1, and FIG. 8C is an optical micrograph of the granule of Comparative Example 2. FIG. 9A is an optical micrograph of the granule of Example 1, and FIG. 9B is an optical micrograph of the granule of Comparative Example 1. Referring to FIGS. 8 and 9, the granule of Example 2 was prepared with particles having an average diameter of 30 μm to 90 μm, but the granule of Comparative Example 1 had a granule shape because the mixture was not completely dried. The granule of Comparative Example 2 was found to have a poor granule shape because the binder was decomposed.

図10(a)は本発明の実施例1の耐熱部品の写真であり、図10(b)は前記実施例1の耐熱部品のX線写真である。前記図10を参照すれば、前記実施例1の耐熱部品は外観性が優秀で、耐熱部品内部にも欠陥が発生しないことが分かった。   FIG. 10A is a photograph of the heat-resistant component of Example 1 of the present invention, and FIG. 10B is an X-ray photograph of the heat-resistant component of Example 1 described above. Referring to FIG. 10, it was found that the heat-resistant component of Example 1 had excellent appearance and no defects were generated inside the heat-resistant component.

図11(a)は前記実施例1の耐熱部品であり、図11(b)は前記比較例1の耐熱部品を示した写真である。前記図11を参照すれば、本発明の実施例1は外観性が優秀であるが、比較例1はクラックが発生するなど、外観性が低下することが分かった。   FIG. 11A is a heat-resistant component of Example 1, and FIG. 11B is a photograph showing the heat-resistant component of Comparative Example 1. Referring to FIG. 11, Example 1 of the present invention was excellent in appearance, but Comparative Example 1 was found to deteriorate in appearance such as cracks.

(2)耐熱性評価:本発明により製造された耐熱部品の耐熱性を評価するために下記のように評価した。前記実施例1の金属粉末を利用して鋳造(casting)して耐熱部品を製造し(比較例3)、前記実施例1と比較例3を820℃で50時間熱処理して耐熱性を評価した。   (2) Evaluation of heat resistance: In order to evaluate the heat resistance of the heat-resistant component produced according to the present invention, the following evaluation was performed. A heat resistant part was manufactured by casting using the metal powder of Example 1 (Comparative Example 3), and heat resistance was evaluated by heat treating Example 1 and Comparative Example 3 at 820 ° C. for 50 hours. .

下記の図12(a)は前記比較例3の耐熱部品を示したもので、図12(b)は前記実施例1の耐熱部品を示したものであり、図12(c)は前記比較例3の耐熱部品を熱処理したもので、図12(d)は前記実施例1の耐熱部品を熱処理した写真である。   FIG. 12 (a) below shows the heat resistant part of Comparative Example 3, FIG. 12 (b) shows the heat resistant part of Example 1, and FIG. 12 (c) shows the comparative example. FIG. 12D is a photograph of the heat-resistant component of Example 1 heat-treated.

下記の図13(a)は前記比較例3の耐熱部品の微細組織を示したもので、図13(b)は前記実施例1の耐熱部品の微細組織を示したものであり、図13(c)は前記比較例3の耐熱部品を熱処理した後微細組織を示したもので、図13(d)は前記実施例1の耐熱部品を熱処理した後微細組織を示した電子顕微鏡写真である。   FIG. 13 (a) below shows the microstructure of the heat-resistant component of Comparative Example 3, and FIG. 13 (b) shows the microstructure of the heat-resistant component of Example 1. FIG. c) shows the microstructure after heat-treating the heat-resistant component of Comparative Example 3, and FIG. 13 (d) is an electron micrograph showing the microstructure after heat-treating the heat-resistant component of Example 1.

前記図12及び図13を参照すれば、本発明の実施例1の微細組織(図13(b)参照)は、鋳造された比較例3の微細組織(図13(a)参照)に比べて組織が微細に形成され、均質性が優秀で、シグマ相(sigma phase)が検出されないことを確認した。   Referring to FIGS. 12 and 13, the microstructure of Example 1 of the present invention (see FIG. 13B) is compared with the microstructure of the cast Comparative Example 3 (see FIG. 13A). It was confirmed that the structure was finely formed, the homogeneity was excellent, and the sigma phase was not detected.

一方、前記シグマ相は耐熱部品の耐熱特性の低下と耐食性の低下を誘発する。前記耐熱部品はシグマ相形成時に硝酸などの酸化性の強い環境下で顕著に損失され得る。したがってターボチャージャー用の耐熱部品は前記シグマ相の面積率を2%未満に制限している。   On the other hand, the sigma phase induces deterioration of heat resistance characteristics and corrosion resistance of the heat resistant parts. The heat-resistant component can be significantly lost in a highly oxidative environment such as nitric acid during sigma phase formation. Therefore, heat-resistant parts for turbochargers limit the area ratio of the sigma phase to less than 2%.

図14(a)は実施例1の耐熱部品を900℃で500時間の間大気条件で熱処理後に形成された表面酸化層を示したもので、図14(b)は実施例1の耐熱部品を900℃で500時間の間連続アニール炉で熱処理後に形成された表面酸化層を示した電子顕微鏡写真である。   FIG. 14A shows a surface oxide layer formed after heat-treating the heat-resistant component of Example 1 at 900 ° C. for 500 hours under atmospheric conditions. FIG. 14B shows the heat-resistant component of Example 1 4 is an electron micrograph showing a surface oxide layer formed after heat treatment in a continuous annealing furnace at 900 ° C. for 500 hours.

前記図14(a)及び図14(b)を参照すれば、前記実施例1の場合、真空条件で熱処理するとき表面酸化層の厚さが最大12.405μmと測定され、連続アニール炉で熱処理するとき表面線画層の最大厚が15.405μmと測定された。これを通じて前記実施例1はターボチャージャー用の耐熱部品の表面酸化層厚さ制限値である30μm未満を充足することが分かった。   Referring to FIGS. 14A and 14B, in the case of Example 1, when the heat treatment is performed under vacuum conditions, the thickness of the surface oxide layer is measured to be 12.405 μm at the maximum, and the heat treatment is performed in a continuous annealing furnace. The maximum thickness of the surface line drawing layer was measured to be 15.405 μm. As a result, it was found that Example 1 satisfies the surface oxide layer thickness limit value of less than 30 μm, which is a heat-resistant component for turbochargers.

本発明に係る耐熱部品製造時、顆粒の粒子が金属粉末よりも10倍以上大きいので均一な充填がなされ、焼結後の耐熱部品の密度が均一に形成されることが分かった。   At the time of manufacturing the heat-resistant component according to the present invention, it was found that the granule particles were 10 times or more larger than the metal powder, so that uniform filling was achieved and the density of the heat-resistant component after sintering was uniformly formed.

前記金属粉末の粒子が顆粒化されて成形段階で圧縮されるので、粉末冶金工程で粉末を圧縮する時よりも金型に均一に充填され、焼結駆動力が優秀な微細金属粉末を使用するため焼結時に組織の緻密化を誘導することができ、既存粉末冶金工法に比べて相対的に高い密度を得ることができる利点があることが分かった。   Since the particles of the metal powder are granulated and compressed in the molding stage, use a fine metal powder that is evenly filled in the mold and has excellent sintering driving force than when the powder is compressed in the powder metallurgy process. Therefore, it was found that the densification of the structure can be induced during sintering, and there is an advantage that a relatively high density can be obtained as compared with the existing powder metallurgy method.

したがって、本発明に係る耐熱部品を製造時、金属粉末射出成形方法(Metal Powder Injection Molding)のような、優秀な機械的性質を具備した耐熱部品を得ることができることが分かった。   Therefore, it was found that a heat-resistant component having excellent mechanical properties such as a metal powder injection molding method can be obtained when manufacturing the heat-resistant component according to the present invention.

また、本発明は前記金属粉末射出成形方法に要求される脱脂工程を必要としないため工程の単純化が可能であり、脱脂のための加熱が不要であるため生産性が優秀で、工程時間及びエネルギー面で有利であることが分かった。   In addition, the present invention does not require a degreasing process required for the metal powder injection molding method, and thus simplification of the process is possible, and heating for degreasing is unnecessary, so that productivity is excellent, process time and It turned out to be advantageous in terms of energy.

本発明の単純な変形ないし変更はこの分野の通常の知識を有した者であれば容易に実施することができ、このような変形や変更はすべて本発明の領域に含まれるものである。   Simple modifications or changes of the present invention can be easily carried out by those having ordinary knowledge in this field, and all such modifications and changes are included in the scope of the present invention.

本出願は2015年12月28日付で韓国特許庁に出願された韓国特許出願第10−2015−0187154号に基づいた優先権の利益を主張し、該当韓国特許出願の文献に開示されたすべての内容は本明細書の一部として含まれる。   This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0187154 filed with the Korean Patent Office on December 28, 2015, and all of the patents disclosed in the relevant Korean patent application documents The contents are included as part of this specification.

(付記)
(付記1)
金属粉末及びスラリー材料を含む混合物をディスクが具備されたハウジングの中に噴射し、前記ディスクを回転させて顆粒を製造する段階;
前記顆粒を圧縮成形して成形体を製造する段階;
前記成形体を1000℃〜1600℃で焼結して焼結体を製造する段階;並びに
前記焼結体を切削して寸法を調節する段階;を含み、
前記ハウジングは密閉されて70℃〜200℃の熱風が供給される、
ことを特徴とする耐熱部品の製造方法。
(Appendix)
(Appendix 1)
Spraying a mixture comprising metal powder and slurry material into a housing provided with a disk and rotating the disk to produce granules;
Compression molding the granules to produce a shaped body;
Sintering the molded body at 1000 ° C. to 1600 ° C. to produce a sintered body; and cutting the sintered body to adjust the dimensions;
The housing is hermetically sealed and supplied with hot air of 70 ° C. to 200 ° C.,
The manufacturing method of the heat-resistant component characterized by the above-mentioned.

(付記2)
前記金属粉末は、炭素(C):0.1重量%〜3重量%、シリコン(Si):0超過5重量%以下、マンガン(Mn):0超過15重量%以下、リン(P):0超過1重量%以下、硫黄(S):0超過1重量%以下、ニッケル(Ni):0超過90重量%以下、鉄(Fe):0超過50重量%以下、及びクロム(Cr):0超過50重量%以下を含む、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 2)
The metal powder includes carbon (C): 0.1 wt% to 3 wt%, silicon (Si): more than 0 and less than 5 wt%, manganese (Mn): more than 0 and less than 15 wt%, phosphorus (P): 0 Excess 1% by weight or less, Sulfur (S): Excess 0, 1% by weight or less, Nickel (Ni): Exceed 0, 90% by weight or less, Iron (Fe): Exceed 0, 50% by weight or less, and Chromium (Cr): Exceed 0 The method for manufacturing a heat-resistant component according to Appendix 1, wherein the heat-resistant component includes 50% by weight or less.

(付記3)
前記顆粒の平均径が20μm〜200μmである、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 3)
The method for producing a heat-resistant component according to appendix 1, wherein the granule has an average diameter of 20 μm to 200 μm.

(付記4)
前記金属粉末の平均径は0.01μm〜50μmであり、前記金属粉末の径分布は0.001μm〜100μmである、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 4)
The average diameter of the metal powder is 0.01 μm to 50 μm, and the diameter distribution of the metal powder is 0.001 μm to 100 μm.

(付記5)
前記混合物は固相率(S/L)が10体積%〜45体積%である、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 5)
The method for producing a heat-resistant component according to appendix 1, wherein the mixture has a solid phase ratio (S / L) of 10% by volume to 45% by volume.

(付記6)
前記ディスクの回転速度は4000rpm〜20000rpmである、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 6)
The method for manufacturing a heat-resistant component according to appendix 1, wherein the rotational speed of the disk is 4000 rpm to 20000 rpm.

(付記7)
前記スラリー材料は溶媒及びバインダーを含む、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 7)
The method for producing a heat-resistant component according to appendix 1, wherein the slurry material includes a solvent and a binder.

(付記8)
前記溶媒は水、ヘキサン、アセトン及び炭素数1〜10のアルコールのうち一つ以上を含む、ことを特徴とする付記7に記載の耐熱部品の製造方法。
(Appendix 8)
The method for producing a heat-resistant component according to appendix 7, wherein the solvent includes one or more of water, hexane, acetone, and an alcohol having 1 to 10 carbon atoms.

(付記9)
前記バインダーはポリビニルブチラール(polyvinyl butyral、PVB)、ポリビニルアルコール(polyvinyl alcohol、PVA)、ワックス(Wax)及びポリエチレングリコール(polyethylene glycol、PEG)のうち一つ以上を含む、ことを特徴とする付記7に記載の耐熱部品の製造方法。
(Appendix 9)
Appendix 7 characterized in that the binder includes one or more of polyvinyl butyral (PVB), polyvinyl alcohol (PVA), wax (Wax) and polyethylene glycol (PEG). The manufacturing method of the heat-resistant component of description.

(付記10)
前記圧縮成形は0.1ton/cm〜10ton/cmの圧力で遂行される、ことを特徴とする付記1に記載の耐熱部品の製造方法。
(Appendix 10)
It said compression molding is carried out at a pressure of 0.1ton / cm 2 ~10ton / cm 2 , the manufacturing method of the heat-resistant component according to note 1, wherein the.

Claims (10)

金属粉末及びスラリー材料を含む混合物をディスクが具備されたハウジングの中に噴射し、前記ディスクを回転させて顆粒を製造する段階;
前記顆粒を圧縮成形して成形体を製造する段階;
前記成形体を1000℃〜1600℃で焼結して焼結体を製造する段階;並びに
前記焼結体を切削して寸法を調節する段階;を含み、
前記ハウジングは密閉されて70℃〜200℃の熱風が供給される、
ことを特徴とする耐熱部品の製造方法。
Spraying a mixture comprising metal powder and slurry material into a housing provided with a disk and rotating the disk to produce granules;
Compression molding the granules to produce a shaped body;
Sintering the molded body at 1000 ° C. to 1600 ° C. to produce a sintered body; and cutting the sintered body to adjust the dimensions;
The housing is hermetically sealed and supplied with hot air of 70 ° C. to 200 ° C.,
The manufacturing method of the heat-resistant component characterized by this.
前記金属粉末は、炭素(C):0.1重量%〜3重量%、シリコン(Si):0超過5重量%以下、マンガン(Mn):0超過15重量%以下、リン(P):0超過1重量%以下、硫黄(S):0超過1重量%以下、ニッケル(Ni):0超過90重量%以下、鉄(Fe):0超過50重量%以下、及びクロム(Cr):0超過50重量%以下を含む、ことを特徴とする請求項1に記載の耐熱部品の製造方法。   The metal powder includes carbon (C): 0.1 wt% to 3 wt%, silicon (Si): more than 0 and less than 5 wt%, manganese (Mn): more than 0 and less than 15 wt%, phosphorus (P): 0 Excess 1% by weight or less, Sulfur (S): Excess 0, 1% by weight or less, Nickel (Ni): Exceed 0, 90% by weight or less, Iron (Fe): Exceed 0, 50% by weight or less, and Chromium (Cr): Exceed 0 The method for producing a heat-resistant component according to claim 1, comprising 50% by weight or less. 前記顆粒の平均径が20μm〜200μmである、ことを特徴とする請求項1に記載の耐熱部品の製造方法。   The method for producing a heat-resistant component according to claim 1, wherein the granule has an average diameter of 20 μm to 200 μm. 前記金属粉末の平均径は0.01μm〜50μmであり、前記金属粉末の径分布は0.001μm〜100μmである、ことを特徴とする請求項1に記載の耐熱部品の製造方法。   2. The method for manufacturing a heat-resistant component according to claim 1, wherein an average diameter of the metal powder is 0.01 μm to 50 μm, and a diameter distribution of the metal powder is 0.001 μm to 100 μm. 前記混合物は固相率(S/L)が10体積%〜45体積%である、ことを特徴とする請求項1に記載の耐熱部品の製造方法。   The method for producing a heat-resistant component according to claim 1, wherein the mixture has a solid phase ratio (S / L) of 10% by volume to 45% by volume. 前記ディスクの回転速度は4000rpm〜20000rpmである、ことを特徴とする請求項1に記載の耐熱部品の製造方法。   The method for manufacturing a heat-resistant component according to claim 1, wherein a rotational speed of the disk is 4000 rpm to 20000 rpm. 前記スラリー材料は溶媒及びバインダーを含む、ことを特徴とする請求項1に記載の耐熱部品の製造方法。   The method for producing a heat-resistant component according to claim 1, wherein the slurry material includes a solvent and a binder. 前記溶媒は水、ヘキサン、アセトン及び炭素数1〜10のアルコールのうち一つ以上を含む、ことを特徴とする請求項7に記載の耐熱部品の製造方法。   The method for manufacturing a heat-resistant component according to claim 7, wherein the solvent includes one or more of water, hexane, acetone, and an alcohol having 1 to 10 carbon atoms. 前記バインダーはポリビニルブチラール(polyvinyl butyral、PVB)、ポリビニルアルコール(polyvinyl alcohol、PVA)、ワックス(Wax)及びポリエチレングリコール(polyethylene glycol、PEG)のうち一つ以上を含む、ことを特徴とする請求項7に記載の耐熱部品の製造方法。   The binder includes one or more of polyvinyl butyral (PVB), polyvinyl alcohol (PVA), wax, and polyethylene glycol (PEG). The manufacturing method of the heat-resistant component as described in 2. 前記圧縮成形は0.1ton/cm〜10ton/cmの圧力で遂行される、ことを特徴とする請求項1に記載の耐熱部品の製造方法。 Method for producing a heat-resistant component of claim 1 wherein the compression molding is performed at a pressure of 0.1ton / cm 2 ~10ton / cm 2 , it is characterized.
JP2016255353A 2015-12-28 2016-12-28 Method for manufacturing heat-resistant parts using granules Active JP6373955B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0187154 2015-12-28
KR1020150187154A KR101649584B1 (en) 2015-12-28 2015-12-28 Method of heat-resistant parts manufacturing using metal granule powder

Publications (2)

Publication Number Publication Date
JP2017122276A true JP2017122276A (en) 2017-07-13
JP6373955B2 JP6373955B2 (en) 2018-08-15

Family

ID=56875152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255353A Active JP6373955B2 (en) 2015-12-28 2016-12-28 Method for manufacturing heat-resistant parts using granules

Country Status (5)

Country Link
US (1) US20170182559A1 (en)
JP (1) JP6373955B2 (en)
KR (1) KR101649584B1 (en)
CN (1) CN106967935A (en)
DE (1) DE102016125542A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102109596B1 (en) 2018-04-26 2020-05-12 공주대학교 산학협력단 Method for forming pattern on high strength metal surface
KR102130490B1 (en) * 2018-12-18 2020-07-06 주식회사 엔이피 Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel
KR102157340B1 (en) * 2018-12-28 2020-09-18 계림금속 주식회사 Making method for control finger
CN111570814A (en) * 2020-06-05 2020-08-25 西安建筑科技大学 Preparation method of low-cost medium carbon steel spherical powder for 3D printing
KR102345328B1 (en) * 2020-09-28 2022-01-03 한국피아이엠(주) Manufacturing method for titanium parts using granule and titanium part manufactured using the same
US11618075B2 (en) * 2020-11-13 2023-04-04 Garrett Transportation I Inc. Methods for the combined sintering and surface treatment of variable geometry turbocharger vanes
KR20230099261A (en) 2021-12-27 2023-07-04 삼화스틸 주식회사 Process for producing spherical metal powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263199A (en) * 1990-12-20 1993-10-12 Sumitomo Metal Ind Ltd Sintered stainless steel
JPH1187164A (en) * 1997-09-03 1999-03-30 Sumitomo Special Metals Co Ltd Method for forming rare earth sintered magnet in magnetic field
JP2008304059A (en) * 2007-06-01 2008-12-18 Mahle Internatl Gmbh Sealing ring

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9100895D0 (en) * 1991-03-25 1991-03-25 Sandvik Ab MAKE MANUFACTURED CUTS PRESENTLY FOR CUTTING PROCESSING OF HEATHOLD SOLID MATERIALS
SE9202196D0 (en) * 1992-07-17 1992-07-17 Sandvik Ab METHOD OF MANUFACTURING WHISKERREINFORCED CERAMICS
JP4057563B2 (en) * 2004-06-30 2008-03-05 Tdk株式会社 Granule, sintered body
JP4317906B1 (en) * 2008-10-09 2009-08-19 株式会社テクネス Method for manufacturing variable vanes
KR101202462B1 (en) 2010-05-13 2012-11-16 한국피아이엠(주) Heat Resistant Steel Articles and Method for Preparing the Same
TWI522192B (en) * 2012-07-31 2016-02-21 台耀科技股份有限公司 Method of producing pressed-and-sintered workpiece and workpiece thereof
CN104195492B (en) * 2014-09-02 2017-06-20 北京矿冶研究总院 Wear-resistant and corrosion-resistant coating material and preparation method thereof, and coating and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263199A (en) * 1990-12-20 1993-10-12 Sumitomo Metal Ind Ltd Sintered stainless steel
JPH1187164A (en) * 1997-09-03 1999-03-30 Sumitomo Special Metals Co Ltd Method for forming rare earth sintered magnet in magnetic field
JP2008304059A (en) * 2007-06-01 2008-12-18 Mahle Internatl Gmbh Sealing ring

Also Published As

Publication number Publication date
DE102016125542A1 (en) 2017-06-29
US20170182559A1 (en) 2017-06-29
KR101649584B1 (en) 2016-08-19
CN106967935A (en) 2017-07-21
JP6373955B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6373955B2 (en) Method for manufacturing heat-resistant parts using granules
CN103240412B (en) Method for preparing powder super-alloy by near net shape
US11554416B2 (en) Method for producing a sintered component and a sintered component
KR101632381B1 (en) Method of producing an iron-based metal parts using iron-based metal powder granules
JP2008507623A (en) A method for preparing a feedstock of nano-sized metal powder and a method for producing a sintered body using the feedstock.
CN111876642A (en) Hard carbide powder for additive manufacturing
KR101001903B1 (en) Manufacturing method of high-density WC hardmetal
JP2012512962A (en) Method for manufacturing cemented carbide products
CN110983152B (en) Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
JPH0867941A (en) Production of sendust type sintered alloy
JPWO2011136246A1 (en) Electrode applied to discharge surface treatment and manufacturing method thereof
KR102130490B1 (en) Fe-based Metal Parts Producing Method Used For Automobile Steering Wheel
KR102345328B1 (en) Manufacturing method for titanium parts using granule and titanium part manufactured using the same
JP4877997B2 (en) Method for producing sintered hard alloy
KR102271296B1 (en) Fe-cu alloy powder, method for manufacturing of the same, and sintered product using the same
KR20100056164A (en) Method for manufacturing tic alloy by reaction bonded sintering
JPH0222121B2 (en)
JP6299610B2 (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
Zhang et al. Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JP2571231B2 (en) Manufacturing method of metal sintered body
JPH0243330A (en) Production of super hard sintered compact
Chol et al. Microstructure and Property of Sintered M4 High Speed Steels with regard to Evolution of Carbides and Carbonitrides
CN114713819A (en) Superfine tungsten carbide coated high-speed steel composite powder and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6373955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250