JP2017117847A - Method for manufacturing silica fluid dispersion - Google Patents

Method for manufacturing silica fluid dispersion Download PDF

Info

Publication number
JP2017117847A
JP2017117847A JP2015248920A JP2015248920A JP2017117847A JP 2017117847 A JP2017117847 A JP 2017117847A JP 2015248920 A JP2015248920 A JP 2015248920A JP 2015248920 A JP2015248920 A JP 2015248920A JP 2017117847 A JP2017117847 A JP 2017117847A
Authority
JP
Japan
Prior art keywords
mass
silica
dispersion
polishing
silica dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248920A
Other languages
Japanese (ja)
Other versions
JP6646436B2 (en
Inventor
浩司 細川
Koji Hosokawa
浩司 細川
鈴木 誠
Makoto Suzuki
鈴木  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015248920A priority Critical patent/JP6646436B2/en
Publication of JP2017117847A publication Critical patent/JP2017117847A/en
Application granted granted Critical
Publication of JP6646436B2 publication Critical patent/JP6646436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a silica fluid dispersion which is superior in dispersibility and storage stability, and which enables the achievement of a longer life of a filter.SOLUTION: The invention relates to a method for manufacturing a silica fluid dispersion. The method comprises a filtering step for filtering a silica fluid dispersion P to be processed, which includes silica particles A, a nitrogen-containing basic compound B and water. In the method, the content of the compound B is 1-15 pts.mass to 100 pts.mass of the particles A in the fluid dispersion P; and the fluid dispersion P does not include a water-soluble polymer compound, sodium and potassium substantially. Alternatively, the invention relates to a method for manufacturing a silica fluid dispersion. The method is used for manufacturing a polishing liquid composition for a silicon wafer, and comprises a filtering step for filtering a silica fluid dispersion P to be processed, which includes silica particles A, a nitrogen-containing basic compound B and water. In the fluid dispersion P, the content of a compound B is 1-15 pts.mass to 100 pts.mass of the particles A; and the fluid dispersion P does not include a water-soluble polymer compound substantially.SELECTED DRAWING: None

Description

本開示は、シリカ分散液の製造方法、並びに、シリカ分散液を用いた研磨液組成物の製造方法、半導体基板の製造方法、及び研磨液キットに関する。   The present disclosure relates to a method for producing a silica dispersion, a method for producing a polishing composition using the silica dispersion, a method for producing a semiconductor substrate, and a polishing solution kit.

アルカリ金属含有量が極めて低い超高純度シリカは、研磨剤砥粒、コーティング剤、フィラー、セラミックバインダー、触媒担体、吸着剤など、様々な分野で利用されている。特に、シリコンウェーハなどの半導体基板用途には、超高純度のシリカ砥粒が好ましく利用されている。   Ultra high-purity silica having a very low alkali metal content is used in various fields such as abrasive grains, coating agents, fillers, ceramic binders, catalyst carriers, adsorbents, and the like. In particular, ultrapure silica abrasive grains are preferably used for semiconductor substrate applications such as silicon wafers.

近年、半導体メモリの高記録容量化に対する要求の高まりから半導体装置のデザインルールは微細化が進んでいる。このため半導体装置の製造過程で行われるフォトリソグラフィーにおいて焦点深度は浅くなり、シリコンウェーハ(ベアウェーハ)の欠陥低減や平滑性に対する要求はますます厳しくなっている。   In recent years, design rules for semiconductor devices have been increasingly miniaturized due to increasing demand for higher recording capacity of semiconductor memories. For this reason, the depth of focus becomes shallower in photolithography performed in the manufacturing process of a semiconductor device, and the demands for defect reduction and smoothness of silicon wafers (bare wafers) are becoming stricter.

シリコンウェーハの品質を向上する目的で、シリコンウェーハの研磨は多段階で行われている。特に研磨の最終段階で行われる仕上げ研磨は、表面粗さ(ヘイズ)の抑制と、研磨後のシリコンウェーハ表面の濡れ性向上(親水化)によるパーティクルやスクラッチ、ピット等の表面欠陥(LPD:Light point defects)の抑制とを目的として行われている。   In order to improve the quality of silicon wafers, polishing of silicon wafers is performed in multiple stages. In particular, the final polishing performed at the final stage of polishing is a surface defect such as particles, scratches and pits (LPD: Light) due to suppression of surface roughness (haze) and improvement of wettability (hydrophilization) of the polished silicon wafer surface. This is done for the purpose of suppressing point defects.

シリコンウェーハの研磨に用いられる研磨液組成物として、良好な生産性が確保される研磨速度の担保、及び表面欠陥(LPD)と表面粗さ(ヘイズ)の低減を目的とし、シリカ粒子と、含窒素塩基性化合物と、アミド誘導体やセルロース誘導体などの水溶性高分子化合物と、を含むシリコンウェーハの研磨液組成物が開示されている(特許文献1、2)。更に、研磨液組成物をろ過して、研磨液組成物中のシリカ凝集物の含有量を低減させることにより、シリコンウェーハの品質を向上させることが開示されている(特許文献2)。   As a polishing liquid composition used for polishing silicon wafers, silica particles are contained for the purpose of ensuring a polishing rate that ensures good productivity and reducing surface defects (LPD) and surface roughness (haze). A polishing composition for silicon wafers containing a nitrogen basic compound and a water-soluble polymer compound such as an amide derivative or a cellulose derivative has been disclosed (Patent Documents 1 and 2). Furthermore, it is disclosed that the quality of a silicon wafer is improved by filtering the polishing composition and reducing the content of silica aggregates in the polishing composition (Patent Document 2).

一方、コロイダルシリカをデプス型フィルタとプリーツ型フィルタでろ過する工程を含む磁気ディスク基板用研磨液組成物の製造方法が開示されている(特許文献3)。   On the other hand, a method for producing a polishing composition for a magnetic disk substrate including a step of filtering colloidal silica with a depth type filter and a pleat type filter is disclosed (Patent Document 3).

特開2013―222863号公報JP 2013-222863 A 国際公開第2013―108777号International Publication No. 2013-108777 特開2006―136996号公報JP 2006-136996 A

特許文献1〜2に記載のシリコンウェーハ用研磨液組成物では、シリコンウェーハの品質の観点から、改善の余地がある。また、特許文献2記載の研磨液組成物の製造方法では、研磨液組成物、すなわち水溶性高分子化合物を含有するシリカ分散液をろ過するため、ろ過速度が遅く、生産性が低い。特許文献3記載の磁気ディスク基板用研磨液組成物の製造方法では、コロイダルシリカをデプス型フィルタとプリーツ型フィルタでろ過する工程が開示されているが、シリコンウェーハ用研磨液組成物に使用される超高純度コロイダルシリカに対しては、性能、生産性が不十分である。また、コロイダルシリカに粗大粒子が含まれていると、フィルタ寿命が短くなる。   In the polishing composition for silicon wafers described in Patent Documents 1 and 2, there is room for improvement from the viewpoint of the quality of the silicon wafer. Moreover, in the manufacturing method of the polishing liquid composition of patent document 2, since the polishing liquid composition, ie, the silica dispersion containing a water-soluble polymer compound, is filtered, the filtration rate is slow and the productivity is low. In the method for producing a polishing composition for a magnetic disk substrate described in Patent Document 3, a step of filtering colloidal silica with a depth filter and a pleat filter is disclosed, but it is used for a polishing composition for a silicon wafer. For ultra-high purity colloidal silica, performance and productivity are insufficient. Further, when coarse particles are contained in colloidal silica, the filter life is shortened.

そこで、本発明では、分散性及び保存安定性に優れ、フィルタの長寿命化が可能なシリカ分散液の製造方法、並びに、これを用いた研磨液組成物の製造方法、半導体基板の製造方法、及び研磨液キットを提供する。   Therefore, in the present invention, a method for producing a silica dispersion that is excellent in dispersibility and storage stability and can extend the life of a filter, a method for producing a polishing liquid composition using the same, a method for producing a semiconductor substrate, And a polishing liquid kit.

本開示は、シリカ分散液の製造方法であって、シリカ粒子Aと含窒素塩基性化合物Bと水とを含有する被処理シリカ分散液Pをろ過するろ過工程を含み、被処理シリカ分散液Pにおけるシリカ粒子A 100質量部に対する含窒素塩基性化合物Bの含有量が、1質量部以上15質量部以下であり、被処理シリカ分散液Pは、水溶性高分子化合物、ナトリウム及びカリウムを実質的に含まない、シリカ分散液の製造方法に関する。   The present disclosure is a method for producing a silica dispersion, which includes a filtration step of filtering a treated silica dispersion P containing silica particles A, a nitrogen-containing basic compound B, and water, and the treated silica dispersion P The content of the nitrogen-containing basic compound B with respect to 100 parts by mass of the silica particles A is 1 part by mass or more and 15 parts by mass or less, and the silica dispersion P to be treated substantially contains a water-soluble polymer compound, sodium and potassium. It is related with the manufacturing method of the silica dispersion liquid which is not contained in.

本開示は、シリコンウェーハ用研磨液組成物の製造に用いられるシリカ分散液の製造方法であって、シリカ粒子Aと含窒素塩基性化合物Bと水とを含有する被処理シリカ分散液Pをろ過するろ過工程を含み、被処理シリカ分散液Pにおけるシリカ粒子A 100質量部に対する含窒素塩基性化合物Bの含有量が、1質量部以上15質量部以下であり、被処理シリカ分散液Pは、水溶性高分子化合物を実質的に含まない、シリカ分散液の製造方法に関する。   The present disclosure relates to a method for producing a silica dispersion used in the production of a polishing composition for a silicon wafer, in which a treated silica dispersion P containing silica particles A, a nitrogen-containing basic compound B, and water is filtered. The content of the nitrogen-containing basic compound B with respect to 100 parts by mass of silica particles A in the silica dispersion P to be treated is 1 part by mass or more and 15 parts by mass or less, and the silica dispersion P to be treated is The present invention relates to a method for producing a silica dispersion substantially free from water-soluble polymer compounds.

本開示は、本開示に係るシリカ分散液の製造方法により得られるシリカ分散液を用いて研磨液組成物を調製する工程を含む、研磨液組成物の製造方法に関する。   The present disclosure relates to a method for producing a polishing liquid composition, including a step of preparing a polishing liquid composition using a silica dispersion obtained by the method for producing a silica dispersion according to the present disclosure.

本開示は、本開示に係る研磨液組成物の製造方法により得られる研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体基板の製造方法に関する。   The present disclosure relates to a method for manufacturing a semiconductor substrate, including a step of polishing a substrate to be polished using a polishing liquid composition obtained by the method for manufacturing a polishing liquid composition according to the present disclosure.

本開示は、シリカ分散液が容器に充填されたシリカ分散液を含む研磨液キットの製造方法であって、本開示に係るシリカ分散液の製造方法により前記シリカ分散液を製造する工程を含む、研磨液キットの製造方法に関する。   The present disclosure is a manufacturing method of a polishing liquid kit including a silica dispersion in which a silica dispersion is filled in a container, and includes a step of manufacturing the silica dispersion by the method of manufacturing a silica dispersion according to the present disclosure. The present invention relates to a method for producing a polishing liquid kit.

本開示によれば、フィルタの長寿命化を可能にしつつ、分散性及び保存安定性に優れるシリカ分散液を製造できるという効果を奏し得る。そして、前記シリカ分散液を用いることで、研磨後の基板表面の表面粗さ及び表面欠陥を低減可能な研磨液組成物を製造できるという効果を奏し得る。さらに、前記研磨液組成物を用いて、前記表面粗さ及び表面欠陥が低減された半導体基板を製造できるという効果を奏し得る。   According to the present disclosure, it is possible to produce a silica dispersion that is excellent in dispersibility and storage stability while allowing the filter to have a long lifetime. And by using the said silica dispersion liquid, there can exist an effect that the polishing liquid composition which can reduce the surface roughness and surface defect of the board | substrate surface after grinding | polishing can be manufactured. Furthermore, the polishing composition can be used to produce an effect that a semiconductor substrate with reduced surface roughness and surface defects can be produced.

一般的に、超高純度シリカ分散液は、水溶性高分子化合物を実質的に含まず、かつ、ナトリウム及びカリウム等のアルカリ金属を実質的に含まないシリカ分散液のことをいい、シリコンウェーハ等の半導体基板用研磨液組成物の製造に適用可能である。   In general, the ultra-high purity silica dispersion is a silica dispersion substantially free of water-soluble polymer compounds and substantially free of alkali metals such as sodium and potassium, such as silicon wafers. It is applicable to manufacture of the polishing liquid composition for semiconductor substrates.

本開示は、被処理シリカ分散液に含窒素塩基性化合物を含有させてろ過することで、フィルタの長寿命化を可能にしつつ、分散性及び保存安定性に優れるシリカ分散液を製造できるという知見に基づく。   The present disclosure discloses that a silica dispersion excellent in dispersibility and storage stability can be produced while allowing the filter to contain a nitrogen-containing basic compound and filtering, thereby enabling a longer life of the filter. based on.

本開示の効果が発現するメカニズムの詳細は明らかではないが、以下のように推定される。すなわち、被処理シリカ分散液に含窒素塩基性化合物を含有させることで、被処理シリカ分散液中のシリカ粒子の表面状態が変化すると考えられる。シリカ粒子の表面状態は、含窒素塩基性化合物の濃度、すなわち、シリカ粒子に対する含窒素塩基性化合物の含有量により主に支配されると考えられる。シリカ粒子に対する含窒素塩基性化合物の含有量を特定することにより、シリカ粒子の表面の負電荷が大きくなってシリカ粒子同士が電荷反発し、シリカ粒子の分散性が向上し、さらにフィルタの長寿命化につながると推察される。さらに、シリカ粒子の表面のアルカリ溶解が抑制され、シリカ粒子の表面構造が化学的に安定になり、ろ過後のシリカ粒子の再凝集が抑制され、分散性及び保存安定性が良好になると推察される。但し、本開示はこの推定に限定して解釈されなくてもよい。   Details of the mechanism by which the effects of the present disclosure are manifested are not clear, but are estimated as follows. That is, it is considered that the surface state of the silica particles in the treated silica dispersion is changed by adding the nitrogen-containing basic compound to the treated silica dispersion. It is considered that the surface state of the silica particles is mainly governed by the concentration of the nitrogen-containing basic compound, that is, the content of the nitrogen-containing basic compound with respect to the silica particles. By specifying the content of the nitrogen-containing basic compound with respect to the silica particles, the negative charge on the surface of the silica particles increases, the silica particles repel each other, the dispersibility of the silica particles improves, and the filter has a long life It is presumed that this will lead to Furthermore, it is surmised that alkali dissolution on the surface of the silica particles is suppressed, the surface structure of the silica particles is chemically stable, reaggregation of the silica particles after filtration is suppressed, and dispersibility and storage stability are improved. The However, the present disclosure need not be interpreted as being limited to this estimation.

したがって、本開示は、シリカ分散液の製造方法であって、シリカ粒子Aと含窒素塩基性化合物Bと水とを含有する被処理シリカ分散液Pをろ過するろ過工程を含み、被処理シリカ分散液Pにおけるシリカ粒子A 100質量部に対する含窒素塩基性化合物Bの含有量が、1質量部以上15質量部以下であり、被処理シリカ分散液Pは、水溶性高分子化合物、ナトリウム及びカリウムを実質的に含まない、シリカ分散液の製造方法に関する。さらに、本開示は、シリコンウェーハ用研磨液組成物の製造に用いられるシリカ分散液の製造方法であって、シリカ粒子Aと含窒素塩基性化合物Bと水とを含有する被処理シリカ分散液Pをろ過するろ過工程を含み、被処理シリカ分散液Pにおけるシリカ粒子A 100質量部に対する含窒素塩基性化合物Bの含有量が、1質量部以上15質量部以下であり、被処理シリカ分散液Pは、水溶性高分子化合物を実質的に含まない、シリカ分散液の製造方法に関する。本開示によれば、フィルタの長寿命化を可能にしつつ、分散性及び保存安定性に優れるシリカ分散液を得ることができる。そして、該シリカ分散液を用いることで、研磨後の基板表面の表面粗さ及び表面欠陥を低減可能な研磨液組成物を製造できる。さらに、該研磨液組成物を用いて、前記表面粗さ及び表面欠陥が低減された半導体基板を製造できる。   Accordingly, the present disclosure is a method for producing a silica dispersion, which includes a filtration step of filtering a silica dispersion P to be treated containing silica particles A, a nitrogen-containing basic compound B, and water. The content of the nitrogen-containing basic compound B with respect to 100 parts by mass of the silica particles A in the liquid P is 1 part by mass or more and 15 parts by mass or less, and the silica dispersion P to be treated contains a water-soluble polymer compound, sodium and potassium. The present invention relates to a method for producing a silica dispersion which is substantially not contained. Furthermore, the present disclosure relates to a method for producing a silica dispersion used for producing a polishing composition for a silicon wafer, which is a treated silica dispersion P containing silica particles A, a nitrogen-containing basic compound B, and water. The content of the nitrogen-containing basic compound B is from 1 part by mass to 15 parts by mass with respect to 100 parts by mass of the silica particles A in the silica dispersion P to be treated. Relates to a method for producing a silica dispersion substantially free from water-soluble polymer compounds. According to the present disclosure, it is possible to obtain a silica dispersion that is excellent in dispersibility and storage stability while allowing the filter to have a long lifetime. And the polishing liquid composition which can reduce the surface roughness and surface defect of the board | substrate surface after grinding | polishing can be manufactured by using this silica dispersion liquid. Furthermore, a semiconductor substrate with reduced surface roughness and surface defects can be produced using the polishing composition.

本開示において「粗大粒子」とは、粒子径が0.5μm以上の粗大なシリカ粒子であり、シリカ分散液中の粗大粒子数は、後述の実施例に記載の0.45μmフィルタ通液量により評価できる。該通液量が多いほど、シリカ分散液中の粗大粒子数が少なく、分散性及びろ過精度が高いことを意味する。本開示において、シリカ分散液中のシリカ粒子は、一次粒子のみならず、一次粒子が凝集した凝集粒子をも含むものとする。   In the present disclosure, the term “coarse particles” refers to coarse silica particles having a particle diameter of 0.5 μm or more, and the number of coarse particles in the silica dispersion is determined by the 0.45 μm filter flow rate described in Examples below. Can be evaluated. It means that the larger the flow rate, the smaller the number of coarse particles in the silica dispersion and the higher the dispersibility and filtration accuracy. In the present disclosure, the silica particles in the silica dispersion liquid include not only primary particles but also aggregated particles obtained by aggregating primary particles.

本開示において「超高純度シリカ分散液」とは、シリカ粒子を含有するシリカ分散液であって、水溶性高分子化合物を実質的に含まず、かつ、ナトリウム及びカリウムを実質的に含まない分散液をいう。本開示において「水溶性高分子化合物を実質的に含まない」とは、シリカ粒子100質量部に対する水溶性高分子化合物の量が1×10-2質量部以下であることをいう。本開示において「ナトリウム及びカリウムを実質的に含まない」とは、シリカ粒子100質量部に対するナトリウム及びカリウムの合計量が1×10-3質量部以下であることをいう。 In the present disclosure, the “ultra-high purity silica dispersion” is a silica dispersion containing silica particles, which is substantially free of water-soluble polymer compounds and substantially free of sodium and potassium. Refers to liquid. In the present disclosure, “substantially free of water-soluble polymer compound” means that the amount of the water-soluble polymer compound relative to 100 parts by mass of silica particles is 1 × 10 −2 parts by mass or less. In the present disclosure, “substantially free of sodium and potassium” means that the total amount of sodium and potassium with respect to 100 parts by mass of silica particles is 1 × 10 −3 parts by mass or less.

[被処理シリカ分散液P]
本開示に係るシリカ分散液の製造方法は、被処理シリカ分散液Pをろ過するろ過工程を含む。本開示において「被処理シリカ分散液」は、ろ過処理に供される前のシリカスラリー(シリカ分散液)をいう。本開示における被処理シリカ分散液P(以下、分散液Pともいう)は、シリカ粒子A、含窒素塩基性化合物B及び水を含有する。分散液P及び該分散液Pをろ過後に得られるシリカ分散液としては、高研磨速度の確保、並びに、表面粗さ(ヘイズ)及び表面欠陥(LPD)低減の観点から、前記超高純度シリカ分散液であることが好ましい。
[Treatment silica dispersion P]
The method for producing a silica dispersion according to the present disclosure includes a filtration step of filtering the treated silica dispersion P. In the present disclosure, the “silica dispersion to be treated” refers to a silica slurry (silica dispersion) before being subjected to a filtration treatment. The treated silica dispersion P (hereinafter also referred to as dispersion P) in the present disclosure contains silica particles A, a nitrogen-containing basic compound B, and water. As the silica dispersion obtained by filtering the dispersion P and the dispersion P, the ultra-high purity silica dispersion is used from the viewpoints of ensuring a high polishing rate and reducing surface roughness (haze) and surface defects (LPD). A liquid is preferred.

[シリカ粒子A]
分散液Pに含まれるシリカ粒子A(以下、粒子Aともいう)としては、例えば、コロイダルシリカ、フュームドシリカ等が挙げられ、コロイダルシリカが好ましい。粒子Aの使用形態としては、操作性の観点から、スラリー状が好ましい。粒子Aは、超高純度シリカであることが好ましい。本開示において「超高純度シリカ」は、純度が99.99質量%以上のシリカをいう。超高純度シリカの純度としては、99.999質量%以上が好ましく、99.9999質量%以上がさらに好ましい。
[Silica particle A]
Examples of the silica particles A (hereinafter also referred to as particles A) contained in the dispersion liquid P include colloidal silica and fumed silica, and colloidal silica is preferable. The usage form of the particles A is preferably a slurry from the viewpoint of operability. The particles A are preferably ultra high purity silica. In the present disclosure, “ultra-high purity silica” refers to silica having a purity of 99.99% by mass or more. The purity of the ultra high purity silica is preferably 99.999% by mass or more, and more preferably 99.9999% by mass or more.

粒子Aの平均一次粒子径は、高研磨速度の確保の観点から、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは15nm以上、更により好ましくは30nm以上であり、そして、高研磨速度の確保、表面粗さ(ヘイズ)の低減、及び表面欠陥(LPD)の低減の観点から、好ましくは50nm以下、より好ましくは45nm以下、更に好ましくは40nm以下である。   The average primary particle size of the particles A is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and even more preferably 30 nm or more, from the viewpoint of ensuring a high polishing rate, From the viewpoints of securing, reduction of surface roughness (haze), and reduction of surface defects (LPD), it is preferably 50 nm or less, more preferably 45 nm or less, and further preferably 40 nm or less.

本開示において、粒子Aの平均一次粒子径は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて算出される。比表面積は、例えば、実施例に記載の方法により測定できる。 In the present disclosure, the average primary particle diameter of the particles A is calculated using a specific surface area S (m 2 / g) calculated by a BET (nitrogen adsorption) method. A specific surface area can be measured by the method as described in an Example, for example.

粒子Aの平均二次粒子径は、高研磨速度の確保の観点から、好ましくは10nm以上、より好ましくは30nm以上、更に好ましくは60nm以上であり、そして、高研磨速度の確保、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは200nm以下、より好ましくは100nm以下、更に好ましくは80nm以下である。本開示においてシリカ粒子の平均二次粒子径は、実施例に記載の方法により測定できる。   The average secondary particle diameter of the particles A is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 60 nm or more from the viewpoint of ensuring a high polishing rate, and ensuring a high polishing rate and surface roughness ( From the viewpoint of reducing haze) and surface defects (LPD), the thickness is preferably 200 nm or less, more preferably 100 nm or less, and still more preferably 80 nm or less. In the present disclosure, the average secondary particle diameter of the silica particles can be measured by the method described in Examples.

粒子Aの会合度は、高研磨速度の確保、表面粗さ(ヘイズ)の低減、及び表面欠陥(LPD)の低減の観点から、好ましくは1.1以上、より好ましくは1.8以上、更に好ましくは2.0以上、そして、好ましくは3.0以下、より好ましくは2.5以下、更に好ましくは2.3以下である。   The degree of association of the particles A is preferably 1.1 or more, more preferably 1.8 or more, from the viewpoint of securing a high polishing rate, reducing surface roughness (haze), and reducing surface defects (LPD). It is preferably 2.0 or more, and preferably 3.0 or less, more preferably 2.5 or less, and still more preferably 2.3 or less.

本開示において粒子Aの会合度とは、シリカ粒子の形状を表す係数であり、下記式により算出される。平均二次粒子径は、動的光散乱法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。
会合度=平均二次粒子径/平均一次粒子径
In the present disclosure, the degree of association of the particles A is a coefficient representing the shape of the silica particles, and is calculated by the following formula. The average secondary particle diameter is a value measured by a dynamic light scattering method, and can be measured using, for example, the apparatus described in the examples.
Degree of association = average secondary particle size / average primary particle size

本開示においてシリカ粒子の会合度の調整方法としては、例えば、特開平6−254383号公報、特開平11−214338号公報、特開平11−60232号公報、特開2005−060217号公報、特開2005−060219号公報等に記載の方法を採用することができる。   Examples of the method for adjusting the degree of association of silica particles in the present disclosure include, for example, JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, JP-A-2005-060217. The method described in JP 2005-060219 A can be employed.

粒子Aの単位質量あたりのシラノール基量は、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは1.0mmoL/g以上、より好ましくは1.3mmoL/g以上、更に好ましくは1.5mmoL/g以上であり、そして、好ましくは10mmoL/g以下、より好ましくは5mmoL/g以下、更に好ましくは2mmoL/g以下である。本開示において粒子Aの単位質量あたりのシラノール基量は、後述の実施例に記載の方法により測定できる。   The amount of silanol groups per unit mass of the particles A is preferably 1.0 mmol / g or more, more preferably 1.3 mmol / g or more, from the viewpoint of reducing surface roughness (haze) and surface defects (LPD). Preferably it is 1.5 mmoL / g or more, and preferably 10 mmoL / g or less, more preferably 5 mmoL / g or less, and still more preferably 2 mmoL / g or less. In the present disclosure, the amount of silanol groups per unit mass of the particles A can be measured by the method described in Examples described later.

分散液P中の粒子Aの含有量は、経済性の観点、並びに、分散性及び保存安定性向上の観点から、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下、更に好ましくは20質量%以下である。   The content of the particles A in the dispersion P is preferably 1% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass from the viewpoints of economy and improvement in dispersibility and storage stability. % Or more, more preferably 15% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, and further preferably 20% by mass or less.

[含窒塩基性化合物B]
分散液Pに含まれる含窒素塩基性化合物B(以下、化合物Bともいう)としては、分散性及び保存安定性向上、並びにフィルタの長寿命化の観点から、例えば、アンモニア、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種が挙げられる。化合物Bの具体例としては、例えば、アンモニア;水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム等の無機アンモニウム化合物;水酸化テトラメチルアンモニウム等の有機アンモニウム化合物;ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、ジエチレントリアミン等のアルキルアミン化合物;及び、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N−メチル−N,N一ジエタノ−ルアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジブチルエタノールアミン、N−(β−アミノエチル)エタノ−ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン等のアルカノールアミン化合物から選ばれる少なくとも1種が挙げられる。これらの化合物Bは2種以上を混合して用いることができる。これらの中でも、化合物Bとしては、分散性及び保存安定性向上の観点から、アンモニア、アンモニアとアルカノールアミン化合物との混合物が好ましく、アンモニアがより好ましい。
[Nitrogen-containing basic compound B]
Nitrogen-containing basic compound B (hereinafter also referred to as compound B) contained in dispersion P includes, for example, ammonia, amine compounds, and ammonium compounds from the viewpoint of improving dispersibility and storage stability, and extending the life of filters. At least one selected from the group consisting of: Specific examples of compound B include, for example, ammonia; inorganic ammonium compounds such as ammonium hydroxide, ammonium carbonate and ammonium hydrogen carbonate; organic ammonium compounds such as tetramethylammonium hydroxide; dimethylamine, trimethylamine, diethylamine, triethylamine, ethylenediamine, Alkylamine compounds such as hexamethylenediamine, piperazine hexahydrate, anhydrous piperazine, 1- (2-aminoethyl) piperazine, N-methylpiperazine, diethylenetriamine; and monoethanolamine, diethanolamine, triethanolamine, N Methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutyl ether Noruamin, N-(beta-aminoethyl) ethanolamine - triethanolamine, monoisopropanolamine, diisopropanolamine, at least one can be cited are selected from alkanolamine compounds such as triisopropanolamine. These compounds B can be used as a mixture of two or more. Among these, as the compound B, from the viewpoint of improving dispersibility and storage stability, ammonia, a mixture of ammonia and an alkanolamine compound is preferable, and ammonia is more preferable.

分散液P中の化合物Bの含有量は、経済性の観点、並びに、分散性及び保存安定性向上の観点から、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、そして、好ましくは3.0質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.8質量%以下、更に好ましくは1.0質量%以下である。   The content of the compound B in the dispersion P is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, from the viewpoints of economy, and improvement of dispersibility and storage stability. Preferably it is 0.3% by mass or more, more preferably 0.5% by mass or more, and preferably 3.0% by mass or less, more preferably 2.0% by mass or less, still more preferably 1.8% by mass. Hereinafter, it is more preferably 1.0% by mass or less.

分散液P中の粒子A 100質量部に対する化合物Bの含有量は、分散性及び保存安定性向上、並びにフィルタの長寿命化の観点から、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上、そして、好ましくは15質量部以下、より好ましくは12質量部以下、更に好ましくは10質量部以下、更に好ましくは6質量部以下である。   The content of the compound B with respect to 100 parts by mass of the particles A in the dispersion P is preferably 1 part by mass or more, more preferably 2 parts by mass or more, from the viewpoints of dispersibility and storage stability improvement and longer filter life. More preferably, it is 3 parts by mass or more, and preferably 15 parts by mass or less, more preferably 12 parts by mass or less, still more preferably 10 parts by mass or less, and further preferably 6 parts by mass or less.

[水]
分散液Pに含まれる水としては、イオン交換水、蒸留水、超純水等が挙げられる。分散液P中の水の含有量は、100質量%から粒子A、化合物B及び必要に応じて添加される下記任意成分を除いた残余とすることができる。
[water]
Examples of water contained in the dispersion P include ion exchange water, distilled water, and ultrapure water. The content of water in the dispersion P can be the remainder excluding the particles A, the compound B and the following optional components added as necessary from 100% by mass.

[その他の成分]
分散液Pは、さらにその他の成分を含むことができる。その他の成分としては、防腐剤、pH調整剤等が挙げられる。防腐剤としては、例えば、過酸化水素、有機臭素系化合物、有機窒素硫黄系化合物、有機ヨウ素系化合物、有機硫黄系化合物及びトリアジン系化合物から選ばれる少なくとも1種が挙げられ、防腐性能及びシリカ分散液の分散性の観点から、好ましくは過酸化水素である。pH調整剤としては、例えば、酸性化合物が挙げられる。酸性化合物としては、塩酸、硝酸、硫酸等の無機酸;酢酸、シュウ酸、クエン酸、リンゴ酸等の有機酸;等が挙げられる。これらの酸は、化合物Bとの塩として存在してもよい。
[Other ingredients]
The dispersion P can further contain other components. Examples of other components include preservatives and pH adjusters. Examples of the preservative include at least one selected from hydrogen peroxide, organic bromine compounds, organic nitrogen sulfur compounds, organic iodine compounds, organic sulfur compounds, and triazine compounds, and include antiseptic performance and silica dispersion. From the viewpoint of dispersibility of the liquid, hydrogen peroxide is preferable. Examples of the pH adjuster include acidic compounds. Examples of the acidic compound include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid; organic acids such as acetic acid, oxalic acid, citric acid and malic acid; These acids may exist as salts with compound B.

分散液PのpHは、化合物Bの量で調整することができ、分散液Pは、前記pH調整剤を含まなくてもよい。また、分散液Pは、防腐剤を含まなくてもよい。分散液Pが防腐剤を含む場合、その含有量は0ppm超であり、そして、好ましくは1000ppm以下、より好ましくは10ppm以下である。   The pH of the dispersion liquid P can be adjusted by the amount of the compound B, and the dispersion liquid P may not contain the pH adjusting agent. Moreover, the dispersion P does not need to contain a preservative. When dispersion P contains a preservative, its content is greater than 0 ppm and is preferably 1000 ppm or less, more preferably 10 ppm or less.

[分散液Pの調製]
本開示における分散液Pは、例えば、前記粒子A、前記化合物B、前記水及び任意成分を上述の範囲で配合することにより調製できる。本開示において「配合する」とは、粒子A、化合物B及び水、並びに必要に応じて任意成分を同時に又は任意の順に混合することを含む。分散液Pの調製における各成分の配合量は、上述の本開示に係る分散液P中の各成分の含有量と同じとすることができる。
[Preparation of Dispersion P]
The dispersion P in the present disclosure can be prepared, for example, by blending the particles A, the compound B, the water, and an optional component in the above range. In the present disclosure, “mixing” includes mixing the particles A, the compound B and water, and optionally the optional components simultaneously or in any order. The blending amount of each component in the preparation of the dispersion P can be the same as the content of each component in the dispersion P according to the present disclosure.

[分散液P]
分散液PのpHは、分散性及びフィルタの長寿命化の観点から、好ましくは8.0以上、より好ましくは9.0以上、更に好ましくは9.5以上、更に好ましくは10.0以上であり、そして、保存安定性の観点から、好ましくは11.5以下、より好ましくは11.3以下、更に好ましくは11.0以下、更に好ましくは10.8以下である。本開示においてpHは25℃における値であって、pHメータを用いて測定した値である。具体的には、実施例に記載の方法で測定できる。
[Dispersion P]
The pH of the dispersion P is preferably 8.0 or more, more preferably 9.0 or more, still more preferably 9.5 or more, and still more preferably 10.0 or more, from the viewpoint of dispersibility and longer filter life. From the viewpoint of storage stability, it is preferably 11.5 or less, more preferably 11.3 or less, still more preferably 11.0 or less, and still more preferably 10.8 or less. In the present disclosure, the pH is a value at 25 ° C. and is a value measured using a pH meter. Specifically, it can be measured by the method described in the examples.

分散液Pは、分散性及び保存安定性向上、並びにフィルタの長寿命化の観点から、水溶性高分子化合物を実質的に含まないことが好ましい。すなわち、分散液P中の粒子A 100質量部に対する水溶性高分子化合物の量は、同様の観点から、好ましくは1×10-2質量部以下、より好ましくは1×10-3質量部以下、更に好ましくは0質量部である。本開示においてシリカ分散液中の水溶性高分子化合物の含有量は、後述の実施例に記載の方法により測定できる。 It is preferable that the dispersion P does not substantially contain a water-soluble polymer compound from the viewpoints of improving dispersibility and storage stability and extending the life of the filter. That is, the amount of the water-soluble polymer compound with respect to 100 parts by mass of the particles A in the dispersion P is preferably 1 × 10 −2 parts by mass or less, more preferably 1 × 10 −3 parts by mass or less, from the same viewpoint. More preferably, it is 0 mass part. In the present disclosure, the content of the water-soluble polymer compound in the silica dispersion can be measured by the method described in Examples described later.

分散液Pは、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点、並びに、半導体基板の品質向上の観点から、ナトリウム(Na)及びカリウム(K)を実質的に含まないことが好ましい。すなわち、分散液P中の粒子A 100質量部に対するNa及びKの合計量は、同様の観点から、好ましくは1×10-3質量部以下、より好ましくは8×10-4質量部以下、更に好ましくは0質量部である。 Dispersion P may be substantially free of sodium (Na) and potassium (K) from the viewpoint of reducing surface roughness (haze) and surface defects (LPD) and improving the quality of semiconductor substrates. preferable. That is, the total amount of Na and K with respect to 100 parts by mass of the particles A in the dispersion P is preferably 1 × 10 −3 parts by mass or less, more preferably 8 × 10 −4 parts by mass or less, more preferably from the same viewpoint. Preferably it is 0 mass part.

さらに分散液Pは、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点、並びに、半導体基板の品質向上の観点から、Na及びK以外の金属も実質的に含まないことが好ましい。すなわち、分散液P中の粒子A 100質量部に対する金属の合計量は、好ましくは1×10-3質量部以下、より好ましくは1×10-4質量部以下であり、更に好ましくは0質量部である。上記Na及びK以外の金属としては、Na及びK以外のアルカリ金属;Mg、Ca等のアルカリ土類金属;Al等の第III族金属;Fe、Zn、Ti、Cr、Mn、Ni、Cu等の遷移金属;Ag、Pb等の重金属;等が挙げられる。本開示においてシリカ分散液中の金属含有量は、後述の実施例に記載の方法により測定できる。 Furthermore, it is preferable that the dispersion liquid P is substantially free of metals other than Na and K from the viewpoints of reducing surface roughness (haze) and surface defects (LPD) and improving the quality of the semiconductor substrate. That is, the total amount of the metal with respect to 100 parts by mass of the particles A in the dispersion P is preferably 1 × 10 −3 parts by mass or less, more preferably 1 × 10 −4 parts by mass or less, and further preferably 0 parts by mass. It is. Examples of the metal other than Na and K include alkali metals other than Na and K; alkaline earth metals such as Mg and Ca; Group III metals such as Al; Fe, Zn, Ti, Cr, Mn, Ni, Cu, and the like Transition metals; heavy metals such as Ag and Pb; and the like. In the present disclosure, the metal content in the silica dispersion can be measured by the method described in Examples below.

[ろ過工程]
本開示におけるろ過工程は、生産性の観点から、フィルタを用いてろ過処理する工程を含むことが好ましい。フィルタとしては、従来から用いられているプリーツ型フィルタ、デプス型フィルタ、ろ過助剤含有フィルタ等が挙げられ、これらを組み合わせて用いることができる。粗大粒子の低減の観点からは、プリーツ型フィルタが好ましく、より好ましくはデプス型フィルタとプリーツ型フィルタの組み合わせである。
[Filtration process]
It is preferable that the filtration process in this indication includes the process of filtering using a filter from a viewpoint of productivity. Examples of the filter include conventionally used pleated type filters, depth type filters, filter aid-containing filters, and the like, and these can be used in combination. From the viewpoint of reducing coarse particles, a pleated filter is preferable, and a combination of a depth filter and a pleated filter is more preferable.

プリーツ型フィルタとしては、一般にろ過材をひだ状(プリーツ状)に成形加工して、中空円筒形状のカートリッジタイプにしたもの(アドバンテック東洋社、日本ポール社、CUNO社、ダイワボウ社等)を用いることができる。プリーツ型フィルタは、厚み方向の各部分で捕集するデプス型フィルタとは異なり、ろ過材の厚みが薄く、フィルタ表面での捕集が主体といわれており、一般的にろ過精度が高いことが特徴である。プリーツ型フィルタは1段で用いてもよいし、多段(例えば直列配列)で用いてもよい。   As a pleated filter, generally a filter material is formed into a pleated shape and made into a hollow cylindrical cartridge type (Advantech Toyo, Nippon Pole, CUNO, Daiwabo, etc.). Can do. Unlike depth filters that collect in each part in the thickness direction, pleated filters are said to have a thin filter material and are mainly collected on the filter surface, and generally have high filtration accuracy. It is a feature. The pleated filter may be used in a single stage or may be used in multiple stages (for example, in a series arrangement).

デプス型フィルタの具体例としては、バッグ式(住友スリーエム社等)のフィルタや、カートリッジ式(アドバンテック東洋社、日本ポール社、CUNO社、ダイワボウ社等)のフィルタが挙げられる。デプス型フィルタとは、ろ過材の孔構造が、入口側で粗く、出口側で細かく、かつ、入口側から出口側に向かうにつれて連続的又は段階的に細かくなる特徴を有するフィルタである。よって、粗大粒子の中でも大きな粒子は入口側付近で捕集され、小さな粒子は出口側付近で捕集される。デプス型フィルタの形状としては、袋状のバッグタイプや、中空円筒形状のカートリッジタイプが挙げられる。また、前記特徴を有するろ過材を単にひだ状に成形加工したものは、デプス型フィルタの機能を有するため、デプス型フィルタに分類される。デプス型フィルタは、1段で用いてもよいし、多段(例えば直接配列)で組み合わせて用いてもよいし、孔径の異なるフィルタを孔が大きい順に多段に組み合わせて用いてもよい。さらに、バッグタイプとカートリッジタイプを組み合わせて用いてもよい。   Specific examples of the depth type filter include a bag type filter (Sumitomo 3M Co., Ltd.) and a cartridge type filter (Advantech Toyo Co., Ltd., Nippon Pole Co., CUNO Co., Daiwabo Co., Ltd.). The depth type filter is a filter having a feature that the pore structure of the filter medium is coarse on the inlet side, fine on the outlet side, and finer continuously or stepwise from the inlet side to the outlet side. Therefore, among the coarse particles, large particles are collected near the inlet side, and small particles are collected near the outlet side. Examples of the shape of the depth filter include a bag-like bag type and a hollow cylindrical cartridge type. In addition, a filter medium having the above-described characteristics that is simply processed into a pleat shape has a function of a depth filter, and is therefore classified as a depth filter. Depth filters may be used in a single stage, may be used in combination in multiple stages (for example, directly arranged), or filters having different hole diameters may be combined in multiple stages in the order of larger holes. Furthermore, you may use combining a bag type and a cartridge type.

ろ過助剤含有フィルタは、ろ過助剤を含むフィルタである。ろ過助剤としては、例えば、二酸化ケイ素、カオリン、酸性白土、珪藻土、パーライト、ベントナイト、タルク等の不溶性の鉱物性物質が挙げられる。前記ろ過助剤のうち、分散性向上の観点から、二酸化ケイ素、珪藻土、パーライトが好ましく、珪藻土、パーライトがより好ましく、珪藻土がさらに好ましい。ろ過助剤含有フィルタは、前記ろ過助剤をフィルタ表面及びフィルタ内部のいずれか一方若しくは両方に含有するものとすることができる。   The filter aid-containing filter is a filter containing a filter aid. Examples of the filter aid include insoluble mineral substances such as silicon dioxide, kaolin, acid clay, diatomaceous earth, perlite, bentonite, and talc. Among the filter aids, from the viewpoint of improving dispersibility, silicon dioxide, diatomaceous earth and pearlite are preferable, diatomaceous earth and pearlite are more preferable, and diatomaceous earth is more preferable. The filter aid-containing filter may contain the filter aid on one or both of the filter surface and the filter interior.

フィルタ孔径は、生産性、及びフィルタの長寿命化の観点から、0.1μm以上が好ましく、そして、分散性向上の観点から、1μm以下が好ましく、0.8μm以下がより好ましく、0.5μm以下が更に好ましく、0.3μm以下が更に好ましい。   The filter pore diameter is preferably 0.1 μm or more from the viewpoints of productivity and long life of the filter, and is preferably 1 μm or less, more preferably 0.8 μm or less, and 0.5 μm or less from the viewpoint of improving dispersibility. Is more preferable, and 0.3 μm or less is more preferable.

ろ過流速は、生産性の観点から、好ましくは20kg/(m2・分)以上、より好ましくは30kg/(m2・分)以上、更に好ましくは40kg/(m2・分)以上であり、そして、分散性向上、及びフィルタの長寿命化の観点から、好ましくは100kg/(m2・分)以下、より好ましくは80kg/(m2・分)以下、更に好ましくは65kg/(m2・分)以下である。本開示におけるろ過流速とは、単位面積当たりにろ過される時間あたりの重量であって、ろ過出口である2次側の弁を調整することにより調節できる。 From the viewpoint of productivity, the filtration flow rate is preferably 20 kg / (m 2 · min) or more, more preferably 30 kg / (m 2 · min) or more, further preferably 40 kg / (m 2 · min) or more, Then, to improve dispersibility, and from the viewpoint of long life of the filter, preferably 100kg / (m 2 · min) or less, more preferably 80kg / (m 2 · min) or less, more preferably 65kg / (m 2 · Min) or less. The filtration flow rate in the present disclosure is a weight per unit time that is filtered, and can be adjusted by adjusting a secondary valve that is a filtration outlet.

ろ過方法としては、繰り返しろ過する循環式でもよく、1パス方式でもよい。また、1パス方式を繰り返すバッチ式を用いてもよい。通液方法は、加圧するために、循環式では好ましくはポンプが用いられ、1パス方式ではポンプを用いる他に、タンクに空気圧等を導入することでフィルタ入口圧力の変動幅が小さい加圧ろ過法を用いることができる。   The filtration method may be a circulation type that repeatedly filters or a one-pass method. Alternatively, a batch method that repeats the one-pass method may be used. In order to pressurize, the circulation method preferably uses a pump in the circulation type, and uses a pump in the one-pass system. In addition, a pressure filtration with a small fluctuation range of the filter inlet pressure by introducing air pressure or the like into the tank. Can be used.

(ろ過後のシリカ分散液)
前記被処理シリカ分散液Pが前記ろ過工程を経ることにより得られるシリカ分散液、すなわち、ろ過後のシリカ分散液のpHは、分散性及び品質安定性の観点から、好ましくは8.0以上、より好ましくは9.0以上、更に好ましくは9.5以上、更に好ましくは10.0以上であり、そして、好ましくは11.5以下、より好ましくは11.3以下、更に好ましくは11.0以下、更に好ましくは10.8以下である。pHは前記分散液Pと同様の方法で測定できる。
(Silica dispersion after filtration)
The silica dispersion obtained by passing the treated silica dispersion P through the filtration step, that is, the pH of the silica dispersion after filtration is preferably 8.0 or more from the viewpoint of dispersibility and quality stability. More preferably, it is 9.0 or more, More preferably, it is 9.5 or more, More preferably, it is 10.0 or more, Preferably it is 11.5 or less, More preferably, it is 11.3 or less, More preferably, it is 11.0 or less. More preferably, it is 10.8 or less. The pH can be measured by the same method as in the dispersion P.

ろ過後のシリカ分散液中の各成分(粒子A、化合物B、水、任意成分)の含有量は、前記分散液Pと同様とすることができる。   The content of each component (particle A, compound B, water, optional component) in the silica dispersion after filtration can be the same as that of the dispersion P.

ろ過後のシリカ分散液中の粒子A 100質量部に対する化合物Bの含有量は、分散性及び保存安定性の向上、並びにフィルタの長寿命化の観点から、前記分散液Pと同様の値が好ましい。   The content of the compound B with respect to 100 parts by mass of the particle A in the silica dispersion after filtration is preferably the same value as that of the dispersion P from the viewpoints of improvement in dispersibility and storage stability and extension of the filter life. .

ろ過後のシリカ分散液は、分散性及び保存安定性向上、並びにフィルタの長寿命化の観点から、前記分散液Pと同様、水溶性高分子化合物を実質的に含まないことが好ましく、ろ過後のシリカ分散液中の粒子A 100質量部に対する水溶性高分子化合物の量は、前記分散液Pと同様の値とすることができる。   The silica dispersion after filtration is preferably substantially free of a water-soluble polymer compound, like the dispersion P, from the viewpoint of improving dispersibility and storage stability and extending the life of the filter. The amount of the water-soluble polymer compound with respect to 100 parts by mass of the particle A in the silica dispersion can be the same value as that of the dispersion P.

ろ過後のシリカ分散液は、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点、並びに、半導体基板の品質向上の観点から、前記分散液Pと同様、Na及びKを実質的に含まないことが好ましく、金属を実質的に含まないことがより好ましい。ろ過後のシリカ分散液中の粒子A 100質量部に対するNa及びKの合計量は、前記分散液Pと同様の値とすることができる。   From the viewpoint of reducing surface roughness (haze) and surface defects (LPD) and improving the quality of the semiconductor substrate, the silica dispersion after filtration substantially contains Na and K as in the case of the dispersion P. It is preferable that it does not contain, and it is more preferable that it does not contain a metal substantially. The total amount of Na and K with respect to 100 parts by mass of the particle A in the silica dispersion after filtration can be the same value as the dispersion P.

ろ過後の分散液中の粗大粒子の含有量は、フィルタの長寿命化の観点、表面粗さ(ヘイズ)及び表面欠陥(LPD)低減の観点、並びに、半導体基板の品質向上の観点から、好ましくは0個/mL以上、より好ましくは1×104個/mL以上であり、そして、100×104個/mL以下が好ましく、70×104個/mL以下がより好ましく、50×104個/mL以下が更に好ましく、40×104個/mL以下が更により好ましい。本開示において、粗大粒子の含有量は、PSS社製の「アキュサイザー780APS」を用いて検出される0.5μm以上のサイズの粒子数により算出される。 The content of coarse particles in the dispersion after filtration is preferably from the viewpoint of extending the filter life, reducing the surface roughness (haze) and surface defects (LPD), and improving the quality of the semiconductor substrate. Is not less than 0 / mL, more preferably not less than 1 × 10 4 / mL, and is preferably not more than 100 × 10 4 / mL, more preferably not more than 70 × 10 4 / mL, and 50 × 10 4 Pieces / mL or less are more preferable, and 40 × 10 4 pieces / mL or less are even more preferable. In the present disclosure, the content of coarse particles is calculated by the number of particles having a size of 0.5 μm or more detected using “Accurizer 780APS” manufactured by PSS.

ろ過後の分散液の0.45μmフィルタの通液量は、フィルタの長寿命化の観点、並びに、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは10g/分以上、より好ましくは20g/分以上、更に好ましくは70g/分以上、更に好ましくは100g/分以上であり、そして、生産性の観点からは、好ましくは500g/分以下である。本開示において、0.45μmフィルタの通液量は、実施例に記載の方法に算出できる。   The flow rate of the 0.45 μm filter of the dispersion after filtration is preferably 10 g / min or more from the viewpoint of extending the filter life and reducing the surface roughness (haze) and surface defects (LPD). More preferably, it is 20 g / min or more, more preferably 70 g / min or more, still more preferably 100 g / min or more, and from the viewpoint of productivity, it is preferably 500 g / min or less. In the present disclosure, the flow rate of the 0.45 μm filter can be calculated by the method described in the examples.

(研磨液組成物の製造方法)
前記ろ過後のシリカ分散液は、研磨剤砥粒、コーティング剤、フィラー、セラミックバインダー、触媒担体、吸着剤など、様々な分野に応用可能である。さらに、前記ろ過後のシリカ分散液は、半導体基板、磁気ディスク基板等の被研磨基板の研磨に用いられる研磨液組成物の原料シリカとして使用できる。したがって、本開示は、前記ろ過後のシリカ分散液を用いて研磨液組成物を調製する工程を含む、研磨液組成物の製造方法に関する。
(Method for producing polishing liquid composition)
The silica dispersion after filtration can be applied to various fields such as abrasive grains, coating agents, fillers, ceramic binders, catalyst carriers, adsorbents, and the like. Furthermore, the silica dispersion after filtration can be used as a raw material silica for a polishing liquid composition used for polishing a substrate to be polished such as a semiconductor substrate or a magnetic disk substrate. Therefore, this indication is related with the manufacturing method of a polish liquid composition including the process of preparing a polish liquid composition using the silica dispersion after the above-mentioned filtration.

一般的に、研磨液組成物は、原料シリカ、水及び必要に応じて添加剤を配合してなるものである。したがって、本開示に係る研磨液組成物の製造方法は、前記ろ過後のシリカ分散液と水と添加剤とを公知の方法で配合する工程を含むことができる。本開示において「配合する」とは、前記ろ過後のシリカ分散液、水及び必要に応じて添加剤を同時に又は任意の順序で混合することを含む。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本開示において添加剤とは、被研磨基板の研磨に用いる研磨液組成物に配合され得る、原料シリカ以外の他の成分をいう。原料シリカ以外の他の成分としては、水溶性高分子化合物、酸、酸化剤、複素環芳香族化合物、脂肪族アミン化合物、脂環式アミン化合物等が挙げられる。   In general, the polishing liquid composition is formed by blending raw material silica, water and, if necessary, additives. Therefore, the manufacturing method of the polishing liquid composition concerning this indication can include the process of blending the silica dispersion after filtration, water, and an additive by a publicly known method. In the present disclosure, “compounding” includes mixing the silica dispersion after filtration, water and, if necessary, additives simultaneously or in any order. The said mixing | blending can be performed using mixers, such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill, for example. In the present disclosure, the additive means a component other than the raw material silica that can be blended in the polishing liquid composition used for polishing the substrate to be polished. Examples of components other than the raw material silica include water-soluble polymer compounds, acids, oxidizing agents, heterocyclic aromatic compounds, aliphatic amine compounds, and alicyclic amine compounds.

本開示における研磨液組成物中の粒子Aの平均二次粒子径は、高研磨速度の確保の観点から、好ましくは70nm以上、より好ましくは90nm以上、更に好ましくは100nm以上であり、そして、高研磨速度の確保、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは150nm以下、より好ましくは140nm以下、更に好ましくは130nm以下である。本開示において研磨液組成物中のシリカ粒子の平均二次粒子径は、実施例に記載の方法により測定できる。研磨液組成物中の粒子Aの平均二次粒子径が、上述の分散液中の粒子Aの平均二次粒子径よりも大きくなる理由は、定かではないが、研磨液組成物中の水溶性高分子化合物の存在により粒子Aが架橋凝集すること等が考えられる。本開示における研磨液組成物中の粒子Aの一次粒子径は、上述の分散液中の粒子Aの一次粒子径と同様の値とすることができる。   The average secondary particle diameter of the particles A in the polishing liquid composition in the present disclosure is preferably 70 nm or more, more preferably 90 nm or more, still more preferably 100 nm or more, from the viewpoint of ensuring a high polishing rate. From the viewpoint of ensuring the polishing rate, reducing the surface roughness (haze) and surface defects (LPD), it is preferably 150 nm or less, more preferably 140 nm or less, and even more preferably 130 nm or less. In the present disclosure, the average secondary particle size of the silica particles in the polishing liquid composition can be measured by the method described in Examples. The reason why the average secondary particle diameter of the particles A in the polishing liquid composition is larger than the average secondary particle diameter of the particles A in the above-mentioned dispersion is not clear, but is water-soluble in the polishing liquid composition. It is conceivable that the particles A are cross-linked and aggregated due to the presence of the polymer compound. The primary particle diameter of the particles A in the polishing liquid composition in the present disclosure can be set to the same value as the primary particle diameter of the particles A in the above-described dispersion.

本開示における研磨液組成物中の粒子Aの含有量は、高研磨速度の確保の観点から、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、そして、分散性及び保存安定性向上の観点から、好ましくは10質量%以下、より好ましくは7.5質量%以下、更に好ましくは5質量%以下、更により好ましくは1質量%以下、更により好ましくは0.5質量%以下である。   The content of the particles A in the polishing composition in the present disclosure is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.2% from the viewpoint of securing a high polishing rate. From the viewpoint of improving dispersibility and storage stability, it is preferably 10% by mass or less, more preferably 7.5% by mass or less, still more preferably 5% by mass or less, and even more preferably 1% by mass. % Or less, still more preferably 0.5% by mass or less.

本開示における研磨液組成物中の化合物Bの含有量は、分散性及び保存安定性の向上の観点から、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.02質量%以上であり、そして、好ましくは0.1質量%以下、より好ましくは0.05質量%以下、更に好ましくは0.03質量%以下である。   The content of Compound B in the polishing composition in the present disclosure is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and still more preferably, from the viewpoint of improving dispersibility and storage stability. It is 0.02% by mass or more, and preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.03% by mass or less.

本開示における研磨液組成物は、高研磨速度の確保、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減効果を損なわない範囲で、その他の成分を含有することができる。その他の成分としては、pH調整剤、防腐剤、アルコール類、キレート剤及び非イオン性界面活性剤から選ばれる少なくとも1種が挙げられる。これら任意成分の含有量は、研磨速度確保の観点から、0.0001質量%以上が好ましく、0.0025質量%以上がより好ましく、0.01質量%以上が更に好ましく、そして、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。   The polishing liquid composition in the present disclosure can contain other components as long as the high polishing rate is ensured and the effect of reducing surface roughness (haze) and surface defects (LPD) is not impaired. Examples of other components include at least one selected from pH adjusters, preservatives, alcohols, chelating agents, and nonionic surfactants. The content of these optional components is preferably 0.0001% by mass or more, more preferably 0.0025% by mass or more, still more preferably 0.01% by mass or more, and 1% by mass or less from the viewpoint of ensuring the polishing rate. Is preferable, 0.5 mass% or less is more preferable, and 0.1 mass% or less is still more preferable.

上記において説明した各成分の含有量は、研磨工程での使用時における含有量であり、本開示における研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストをさらに低くできる点で好ましい。研磨液組成物の濃縮液は、必要に応じて前述の水で適宜希釈して研磨工程で使用することができる。希釈割合は5〜100倍とすることができる。   The content of each component described above is the content at the time of use in the polishing step, and the polishing composition in the present disclosure is stored and supplied in a concentrated state as long as its storage stability is not impaired. May be. In this case, it is preferable in that the production and transportation costs can be further reduced. The concentrated liquid of the polishing liquid composition can be appropriately diluted with the above-mentioned water as necessary and used in the polishing process. The dilution ratio can be 5 to 100 times.

本開示に係る研磨液組成物の濃縮液の粘度は、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減、並びに高研磨速度の確保の観点から、1〜10mPa.sが好ましく、2〜9mPa.sがより好ましく、5〜8mPa.sが更に好ましい。本開示において、研磨液組成物の濃縮液の粘度は、実施例に記載の方法により測定できる。   The viscosity of the concentrated liquid of the polishing composition according to the present disclosure is 1 to 10 mPa.s from the viewpoints of reducing surface roughness (haze) and surface defects (LPD) and ensuring a high polishing rate. s is preferable, and 2 to 9 mPa.s. s is more preferable, and 5 to 8 mPa.s. s is more preferable. In the present disclosure, the viscosity of the concentrated liquid of the polishing composition can be measured by the method described in the examples.

本開示における研磨液組成物の25℃におけるpHは、高研磨速度の確保の観点から、好ましくは8以上、より好ましくは9以上、更に好ましくは10以上であり、安全性の観点から、好ましくは12以下、より好ましくは11以下である。本開示において、研磨液組成物のpHは、前記分散液Pと同様の方法により測定できる。   The pH at 25 ° C. of the polishing composition in the present disclosure is preferably 8 or more, more preferably 9 or more, still more preferably 10 or more from the viewpoint of ensuring a high polishing rate, and preferably from the viewpoint of safety. 12 or less, more preferably 11 or less. In the present disclosure, the pH of the polishing composition can be measured by the same method as the dispersion P.

本開示における研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型であってもよいし、使用時に混合される、いわゆる2液型であってもよい。   The embodiment of the polishing composition in the present disclosure may be a so-called one-component type that is supplied to the market in a state where all components are premixed, or a so-called two-component type that is mixed at the time of use. There may be.

(研磨液キットの製造方法)
前記ろ過後のシリカ分散液は、上述したとおり、研磨液組成物の原料シリカとして使用でき、原料シリカは容器に充填されることで、研磨液キットの製造に用いることが可能である。したがって、本開示は、シリカ分散液が容器に充填されたシリカ分散液を含む研磨液キットの製造方法であって、本開示に係るシリカ分散液の製造方法により前記シリカ分散液を製造する工程を含む、研磨液キットの製造方法に関する。本開示によれば、研磨後の基板表面の表面粗さ及び表面欠陥を低減できる研磨液組成物を製造可能な研磨液キットを提供できる。
(Production method of polishing liquid kit)
As described above, the silica dispersion after filtration can be used as the raw silica of the polishing composition, and the raw silica can be used for manufacturing a polishing liquid kit by filling a container. Therefore, the present disclosure is a method for producing a polishing liquid kit including a silica dispersion in which a silica dispersion is filled in a container, and the step of producing the silica dispersion by the method for producing a silica dispersion according to the present disclosure The manufacturing method of the polishing liquid kit containing. According to the present disclosure, it is possible to provide a polishing liquid kit capable of manufacturing a polishing liquid composition that can reduce the surface roughness and surface defects of the substrate surface after polishing.

本開示における研磨液キットは、例えば、上記ろ過後のシリカ分散液(第1液)と、被研磨物の研磨に用いる研磨液組成物に配合され得る添加剤を含有する溶液を含む添加剤水溶液(第2液)とが、相互に混合されていない状態で保存されており、これらが使用時に混合される研磨液キット(2液型研磨液組成物)が挙げられる。添加剤としては、例えば、水溶性高分子化合物、酸、酸化剤、複素環芳香族化合物、脂肪族アミン化合物、脂環式アミン化合物等が挙げられる。前記第1液及び第2液には、各々必要に応じて任意成分が含まれていてもよい。任意成分としては、例えば、増粘剤、防錆剤、界面活性剤等が挙げられる。前記第1液と第2液における各成分の含有量は、これらを混合し、更に必要に応じて水系媒体を添加することにより得られる研磨液組成物中の各成分の含有量、研磨液組成物の25℃におけるpHが、前記1液型研磨液組成物におけるそれと同じになるように設定されればよい。第1液と第2液の混合は、研磨対象面への供給前に行われてもよいし、これらは別々に供給されて被研磨基板の表面上で混合されてもよい。2液型の研磨液組成物では、第1液と第2液とが、互いに分けて保管されるので、第1液と第2液との混合時に、例えば、第2液の使用量を調整することにより、研磨液組成物中の添加剤の濃度を調整でき、種々の研磨液組成物を調整できる。   The polishing liquid kit in the present disclosure includes, for example, an aqueous solution of an additive containing a solution containing an additive that can be blended in the silica dispersion (first liquid) after the filtration and a polishing liquid composition used for polishing an object to be polished. (Second liquid) is stored in a state where it is not mixed with each other, and a polishing liquid kit (two-component polishing liquid composition) in which these are mixed at the time of use is mentioned. Examples of the additive include a water-soluble polymer compound, an acid, an oxidizing agent, a heterocyclic aromatic compound, an aliphatic amine compound, and an alicyclic amine compound. The first liquid and the second liquid may each contain an optional component as necessary. As an arbitrary component, a thickener, a rust preventive agent, surfactant, etc. are mentioned, for example. Content of each component in said 1st liquid and 2nd liquid is content of each component in polishing liquid composition obtained by mixing these, and also adding an aqueous medium as needed, polishing liquid composition What is necessary is just to set so that pH in 25 degreeC of a thing may become the same as that in the said 1 liquid type polishing liquid composition. The first liquid and the second liquid may be mixed before being supplied to the surface to be polished, or they may be separately supplied and mixed on the surface of the substrate to be polished. In the two-component polishing liquid composition, the first liquid and the second liquid are stored separately from each other. For example, when the first liquid and the second liquid are mixed, the amount of the second liquid used is adjusted. By doing, the density | concentration of the additive in polishing liquid composition can be adjusted, and various polishing liquid compositions can be adjusted.

(半導体基板の製造方法)
本開示における研磨液組成物は、例えば、半導体基板の製造方法における、被研磨シリコンウェーハを研磨する研磨工程や、被研磨シリコンウェーハを研磨する研磨工程を含む被研磨シリコンウェーハの研磨方法に用いられる。すなわち、本開示は、本開示に係る研磨液組成物の製造方法により得られる研磨液組成物を用いて被研磨基板を研磨する研磨工程を含む、半導体基板の製造方法に関する。研磨工程では、例えば、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、30〜200gf/cm2の研磨圧力で被研磨基板を研磨する。本開示において研磨圧力とは、研磨時に被研磨基板の被研磨面に加えられる定盤の圧力をいう。被研磨基板としては、例えば、シリコンウェーハが挙げられる。
(Semiconductor substrate manufacturing method)
The polishing composition in the present disclosure is used, for example, in a method for polishing a silicon wafer to be polished, including a polishing step for polishing a silicon wafer to be polished and a polishing step for polishing a silicon wafer to be polished in a method for manufacturing a semiconductor substrate. . That is, this indication is related with the manufacturing method of a semiconductor substrate including the polish process which polishes a substrate to be polished using the polishing liquid composition obtained by the manufacturing method of the polishing liquid composition concerning this indication. In the polishing step, for example, the substrate to be polished is sandwiched with a surface plate to which a polishing pad is attached, and the substrate to be polished is polished with a polishing pressure of 30 to 200 gf / cm 2 . In the present disclosure, the polishing pressure refers to the pressure of the surface plate applied to the surface to be polished of the substrate to be polished at the time of polishing. Examples of the substrate to be polished include a silicon wafer.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

1.各種パラメータの測定方法
<研磨材(シリカ粒子)の平均一次粒子径>
研磨材の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
1. Measuring method of various parameters <Average primary particle diameter of abrasive (silica particles)>
The average primary particle diameter (nm) of the abrasive was calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
Average primary particle diameter (nm) = 2727 / S

研磨材の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。
[前処理]
(a)スラリー状の研磨材を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の研磨材をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルタ上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルタをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(砥粒)をフィルタ屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
The specific surface area of the abrasive is subjected to the following [pretreatment], and then approximately 0.1 g of a measurement sample is accurately weighed to 4 digits after the decimal point in a measurement cell, and immediately under the measurement at a specific temperature of 110 ° C. for 30 minutes. After drying, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device Flowsorb III 2305, manufactured by Shimadzu Corporation).
[Preprocessing]
(A) The slurry-like abrasive is adjusted to pH 2.5 ± 0.1 with an aqueous nitric acid solution.
(B) A slurry-like abrasive adjusted to pH 2.5 ± 0.1 is placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour.
(C) After drying, the obtained sample is finely ground in an agate mortar.
(D) The pulverized sample is suspended in ion exchange water at 40 ° C. and filtered through a membrane filter having a pore size of 1 μm.
(E) The filtrate on the filter is washed 5 times with 20 g of ion exchange water (40 ° C.).
(F) The filter with the filtrate attached is taken in a petri dish and dried in an atmosphere of 110 ° C. for 4 hours.
(G) The dried filtrate (abrasive grains) was taken so that filter waste was not mixed and finely pulverized with a mortar to obtain a measurement sample.

<研磨材(シリカ粒子)の平均二次粒子径>
研磨材の平均二次粒子径(nm)は、研磨材の濃度が0.25質量%となるように研磨材をイオン交換水に添加した後、得られた水溶液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:ゼータサイザーNano ZS、シスメックス(株)製)を用いて測定した。
<Average secondary particle diameter of abrasive (silica particles)>
The average secondary particle diameter (nm) of the abrasive is such that the abrasive is added to ion-exchanged water so that the concentration of the abrasive is 0.25% by mass, and then the obtained aqueous solution is disposable sizing cuvette (polystyrene 10 mm). The cell was measured up to a height of 10 mm from the bottom and measured using a dynamic light scattering method (device name: Zetasizer Nano ZS, manufactured by Sysmex Corporation).

<シリカ粒子のシラノール基量の測定>
シリカ粒子の単位質量あたりのシラノール基量は、差動型示差熱天秤(TG−DTA)(理学電機工業株式会社製、商品名:Thermo Plus TG8120)を用いて測定した。シリカ粒子乾燥粉末を、エアーフロー(300mL/min)下、25〜700℃まで10℃/分の速度で昇温し、200℃で測定した質量の残分をSiO2の質量(g)、200〜700℃までの加熱の間の質量の減量をシラノール由来の水の質量(g)として測定し、下記の式を用いてシラノール基量(mmoL/g)を算出した。
シラノール基量(mmoL/g)=(2×水の質量×1000/18)/SiO2の質量
<Measurement of Silanol Group Amount of Silica Particle>
The amount of silanol groups per unit mass of silica particles was measured using a differential type differential thermal balance (TG-DTA) (trade name: Thermo Plus TG8120, manufactured by Rigaku Corporation). The silica particle dry powder was heated at a rate of 10 ° C./min to 25 to 700 ° C. under an air flow (300 mL / min), and the remainder of the mass measured at 200 ° C. was the SiO 2 mass (g), 200 The weight loss during heating to ˜700 ° C. was measured as the mass (g) of water derived from silanol, and the amount of silanol groups (mmoL / g) was calculated using the following formula.
Silanol group amount (mmoL / g) = (2 × mass of water × 1000/18) / mass of SiO 2

<シリカ分散液の金属含有量>
シリカ分散液の金属含有量は、JIS−K0133に準拠し、ICP−MS(アジレント製7700S)を用いて測定した。フッ化水素酸によりシリカ粒子を完全溶解させた水溶液を用いた。ここでは、シリカ分散液に含まれるNaとKとの合計量を、シリカ分散液の金属含有量とした。
<Metal content of silica dispersion>
The metal content of the silica dispersion was measured using ICP-MS (Agilent 7700S) in accordance with JIS-K0133. An aqueous solution in which silica particles were completely dissolved with hydrofluoric acid was used. Here, the total amount of Na and K contained in the silica dispersion was defined as the metal content of the silica dispersion.

<シリカ分散液の水溶性高分子化合物含有量>
シリカ分散液の遠心分離(ベックマンコールター製Allegra64R遠心機、25000rpm(54502G)、60分間、25℃)により、該シリカ分散液からシリカ粒子を除去した透明上澄み液を得た。そして、得られた透明上澄み液において、全炭素分析(島津製作所製「TOC−L CPH」,測定限界値:1ppm)を行うことにより炭素量を検出し、該炭素量から、シリカ100質量部に対する炭素の量を算出した。そして、該算出結果から、シリカ分散液の水溶性高分子化合物含有量(すなわち、シリカ100質量部に対する水溶性高分子化合物の量)を求めた。
<Water-soluble polymer compound content of silica dispersion>
A transparent supernatant liquid in which silica particles were removed from the silica dispersion liquid was obtained by centrifugation of the silica dispersion liquid (Allegra 64R centrifuge manufactured by Beckman Coulter, 25000 rpm (54502G), 60 minutes, 25 ° C.). And in the obtained transparent supernatant liquid, the amount of carbon is detected by performing total carbon analysis (“TOC-L CPH” manufactured by Shimadzu Corporation, measurement limit value: 1 ppm), and from the amount of carbon to 100 parts by mass of silica. The amount of carbon was calculated. From the calculation results, the content of the water-soluble polymer compound in the silica dispersion (that is, the amount of the water-soluble polymer compound relative to 100 parts by mass of silica) was determined.

<シリカ分散液及び研磨液組成物のpH測定>
シリカ分散液又は研磨液組成物の25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定した値であり、電極のシリカ分散液又は研磨液組成物への浸漬後1分後の数値である。
<PH measurement of silica dispersion and polishing composition>
The pH of the silica dispersion or polishing composition at 25 ° C. is a value measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and the electrode is immersed in the silica dispersion or polishing composition. It is a numerical value after one minute.

<研磨液組成物の濃縮液の粘度>
研磨液組成物の濃縮液の粘度は、JIS−Z8803に準拠し、B型粘度計(東機産業製BMII、ローターNo.1、60rpm)を用い、測定温度25℃で測定した。
<Viscosity of polishing liquid composition concentrate>
The viscosity of the concentrated liquid of the polishing liquid composition was measured at a measurement temperature of 25 ° C. using a B-type viscometer (BMII manufactured by Toki Sangyo, rotor No. 1, 60 rpm) in accordance with JIS-Z8803.

<研磨液組成物中の研磨材(シリカ粒子)の平均二次粒子径>
研磨液組成物中の研磨材の平均二次粒子径(nm)は、研磨材の濃度が0.25質量%となるように研磨材をイオン交換水に添加した後、得られた水溶液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:ゼータサイザーNano ZS、シスメックス(株)製)を用いて25℃、積算10回、平衡時間0分の条件で測定した。粒子パラメータとしてシリカの屈折率1.45、吸収係数0.01、溶媒パラメータとして水の屈折率1.333、吸収係数0を用い、Z平均値を平均二次粒子径とした。
<Average secondary particle diameter of abrasive (silica particles) in the polishing composition>
The average secondary particle diameter (nm) of the abrasive in the polishing composition is such that the concentration of the abrasive is 0.25% by mass, and the resulting aqueous solution is disposable after adding the abrasive to ion-exchanged water. It is placed in a sizing cuvette (polystyrene 10 mm cell) up to a height of 10 mm from the bottom, and a dynamic light scattering method (apparatus name: Zetasizer Nano ZS, manufactured by Sysmex Corporation) is used at 25 ° C., integrated 10 times, equilibrated The measurement was performed under the condition of time 0 minutes. Silica has a refractive index of 1.45 and an absorption coefficient of 0.01 as particle parameters, a water refractive index of 1.333 and an absorption coefficient of 0 as solvent parameters, and the Z average value is defined as the average secondary particle diameter.

<重量平均分子量の測定>
水溶性高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づいて算出した。
装置:HLC−8320 GPC(東ソー株式会社、検出器一体型)
カラム:TSKgel α−M+TSKgel α−M(カチオン、東ソー株式会社製)
溶離液:エタノール/水(=3/7)に対して、LiBr(50mmoL/L(0.43質量%))、CH3COOH(166.7mmoL/L(1.0質量%))を添加
流量:0.6mL/分
カラム温度:40℃
検出器:RI 検出器
標準物質:分子量既知の単分散ポリエチレングリコール
<Measurement of weight average molecular weight>
The weight average molecular weight of the water-soluble polymer compound was calculated based on the peak in the chromatogram obtained by applying the gel permeation chromatography (GPC) method under the following conditions.
Apparatus: HLC-8320 GPC (Tosoh Corporation, detector integrated type)
Column: TSKgel α-M + TSKgel α-M (cation, manufactured by Tosoh Corporation)
Eluent: LiBr (50 mmol / L (0.43% by mass)) and CH 3 COOH (166.7 mmol / L (1.0% by mass)) are added to ethanol / water (= 3/7). : 0.6 mL / min Column temperature: 40 ° C
Detector: RI Detector Reference material: Monodispersed polyethylene glycol with known molecular weight

2.シリカ分散液の調製
実施例1〜6、比較例1〜4のシリカ分散液の製造方法の詳細は下記のとおりである。
2. Preparation of Silica Dispersion The details of the method for producing the silica dispersions of Examples 1 to 6 and Comparative Examples 1 to 4 are as follows.

(実施例1)
室温下で撹拌しながら、粒子Aとしてのコロイダルシリカスラリー(シリカ粒子含有量:19.5質量%、pH7.1、平均一次粒子径:35nm、平均二次粒子径:70nm、会合度:2、単位質量当たりのシラノール基量:1.8mmoL/g) 50kgに、化合物Bとしてのアンモニア水(NH3=29質量%) 1.3kgを添加し、更に30分間撹拌し、実施例1の分散液P(ろ過前)を得た。
実施例1の分散液P(ろ過前)は、シリカ粒子含有量が19.0質量%、粒子A100質量部に対する化合物Bの量が4質量部であった。そして、実施例1の分散液Pは、粒子A100質量部に対するNa及びKの合計量が1×10-4質量部未満であり、Na及びKを実質的に含まない。さらに、実施例1の分散液Pは、粒子A100質量部に対する炭素量が5×10-4質量部未満であった。該炭素量から換算される、粒子A100質量部に対する水溶性高分子化合物の量が1×10-2質量部未満であり、実施例1の分散液Pは、水溶性高分子化合物を実質的に含まない。すなわち、実施例1の分散液P(ろ過前)は、超高純度シリカ分散液であった。そして、実施例1の分散液PのpHは10.4であった。
Example 1
While stirring at room temperature, colloidal silica slurry as particles A (silica particle content: 19.5 mass%, pH 7.1, average primary particle size: 35 nm, average secondary particle size: 70 nm, degree of association: 2, Silanol group amount per unit mass: 1.8 mmol / g) To 50 kg, 1.3 kg of ammonia water (NH 3 = 29 mass%) as compound B was added, and the mixture was further stirred for 30 minutes. P (before filtration) was obtained.
In the dispersion P of Example 1 (before filtration), the silica particle content was 19.0% by mass, and the amount of the compound B with respect to 100 parts by mass of the particles A was 4 parts by mass. And the dispersion liquid P of Example 1 is less than 1 * 10 < -4 > mass part of Na and K with respect to 100 mass parts of particle | grains A, and does not contain Na and K substantially. Furthermore, the dispersion P of Example 1 had a carbon content of less than 5 × 10 −4 parts by mass with respect to 100 parts by mass of the particles A. The amount of the water-soluble polymer compound converted from the amount of carbon with respect to 100 parts by mass of the particles A is less than 1 × 10 −2 parts by mass, and the dispersion P of Example 1 substantially contains the water-soluble polymer compound. Not included. That is, the dispersion P (before filtration) of Example 1 was an ultra-high purity silica dispersion. And the pH of the dispersion P of Example 1 was 10.4.

そして、室温下で、分散液Pをフィルタでろ過し、実施例1の超高純度シリカ分散液(ろ過後)を得た。フィルタには、1段目に孔径0.2μmデプス型フィルタ(ポール社製、プロファイII RM1F002H21)、2段目に孔径0.2μmプリーツ型フィルタ(アドバンテック社製、MCS−020−C10S、膜面積0.045m2)を直列接続した2段フィルタを用いた。ろ過工程におけるろ過流速は、ダイアフラムポンプ(ヤマダ製、DP−10F、元圧0.2MPa)を用いて調節した。実施例1において、プリーツ型フィルタ膜面積当りの平均ろ過流速(以下、単にろ過流速という)は50kg/(m2・分)であった。また、実施例1の分散液P:35kgをろ過した時にプリーツ型フィルタが閉塞したことから、フィルタ寿命は780kg/m2と算出した。 And dispersion liquid P was filtered with the filter at room temperature, and the ultra high purity silica dispersion liquid (after filtration) of Example 1 was obtained. The filter has a pore size 0.2 μm depth type filter (Pole, Profil II RM1F002H21) in the first stage, and a pore size 0.2 μm pleated type filter (Advantech, MCS-020-C10S, membrane area 0 in the second stage. 0.045 m 2 ) in series connection was used. The filtration flow rate in the filtration step was adjusted using a diaphragm pump (manufactured by Yamada, DP-10F, original pressure 0.2 MPa). In Example 1, the average filtration flow rate (hereinafter simply referred to as filtration flow rate) per pleated filter membrane area was 50 kg / (m 2 · min). Further, since the pleated filter was clogged when 35 kg of the dispersion P of Example 1 was filtered, the filter life was calculated as 780 kg / m 2 .

(実施例2)
化合物Bとしてのアンモニア水(NH3=29質量%)の添加量を3.1kgに変更したこと以外は、前記実施例1と同様にして、実施例2の超高純度シリカ分散液(ろ過後)を得た。
実施例2の分散液P(ろ過前)は、シリカ粒子含有量が18.5質量%、粒子A100質量部に対する化合物Bの量が9質量部であった。そして、実施例2の分散液Pは、粒子A 100質量部に対するNa及びKの合計量が1×10-4質量部未満であり、Na及びKを含まない。さらに、実施例2の分散液Pは、粒子A100質量部に対する炭素量が5×10-4質量部未満であった。該炭素量から換算される、粒子A100質量部に対する水溶性高分子化合物の量が1×10-2質量部未満であり、実施例2の分散液Pは、水溶性高分子化合物を実質的に含まない。すなわち、実施例2の分散液P(ろ過前)は、超高純度シリカ分散液であった。そして、実施例2の分散液PのpHが11.0であった。
実施例2のろ過工程において、ろ過流速は60kg/(m2・分)であった。また、実施例2の分散液P:41kgをろ過した時にプリーツ型フィルタが閉塞したことから、フィルタ寿命は900kg/m2と算出した。
(Example 2)
The ultra-high-purity silica dispersion of Example 2 (after filtration) in the same manner as in Example 1 except that the amount of ammonia water (NH 3 = 29% by mass) added as Compound B was changed to 3.1 kg. )
In the dispersion P of Example 2 (before filtration), the silica particle content was 18.5% by mass, and the amount of the compound B relative to 100 parts by mass of the particles A was 9 parts by mass. And the dispersion liquid P of Example 2 is less than 1 * 10 <-4> mass part of Na and K with respect to 100 mass parts of particle | grains A, and does not contain Na and K. FIG. Furthermore, in the dispersion P of Example 2, the amount of carbon with respect to 100 parts by mass of the particles A was less than 5 × 10 −4 parts by mass. The amount of the water-soluble polymer compound converted from the amount of carbon with respect to 100 parts by mass of the particle A is less than 1 × 10 −2 parts by mass. Not included. That is, the dispersion P (before filtration) of Example 2 was an ultra-high purity silica dispersion. And pH of the dispersion liquid P of Example 2 was 11.0.
In the filtration step of Example 2, the filtration flow rate was 60 kg / (m 2 · min). Further, since the pleated filter was clogged when the dispersion P of Example 2 (41 kg) was filtered, the filter life was calculated to be 900 kg / m 2 .

(実施例3)
2段目のフィルタを、孔径0.45μmのプリーツ型フィルタ(アドバンテック製、MCS−045−C10S、膜面積0.045m2)に変更したこと以外は、前記実施例1と同様にして、実施例3の超高純度シリカ分散液(ろ過後)を得た。
実施例3の分散液P(ろ過前)は、実施例1の分散液Pと同じ組成及びpHの超高純度シリカ分散液であった。
実施例3のろ過工程において、ろ過流速は50kg/(m2・分)であった。また、実施例3の分散液P:38kgをろ過した時にプリーツ型フィルタが閉塞したことから、フィルタ寿命は850kg/m2と算出した。
(Example 3)
Example 2 The same as Example 1 except that the second stage filter was changed to a pleated filter (Advantech, MCS-045-C10S, membrane area 0.045 m 2 ) having a pore diameter of 0.45 μm. 3 ultra-high purity silica dispersion (after filtration) was obtained.
The dispersion P (before filtration) of Example 3 was an ultra-high purity silica dispersion having the same composition and pH as the dispersion P of Example 1.
In the filtration step of Example 3, the filtration flow rate was 50 kg / (m 2 · min). Further, since the pleated filter was clogged when 38 kg of the dispersion P in Example 3 was filtered, the filter life was calculated as 850 kg / m 2 .

(実施例4)
化合物Bとしてのアンモニア水(NH3=29質量%)の添加量を3.1kgに変更したこと以外は、実施例3と同様にして、実施例4の超高純度シリカ分散液(ろ過後)を得た。
実施例4の分散液P(ろ過前)は、実施例2の分散液Pと同じ組成及びpHの超高純度シリカ分散液であった。
実施例4のろ過工程において、ろ過流速は60kg/(m2・分)であった。フィルタ閉塞はなかったので、フィルタ寿命は1000kg/m2以上と判断した。
Example 4
The ultra-high purity silica dispersion of Example 4 (after filtration) in the same manner as in Example 3 except that the amount of ammonia water (NH 3 = 29% by mass) added as Compound B was changed to 3.1 kg. Got.
The dispersion P of Example 4 (before filtration) was an ultra-high purity silica dispersion having the same composition and pH as the dispersion P of Example 2.
In the filtration step of Example 4, the filtration flow rate was 60 kg / (m 2 · min). Since there was no filter blockage, the filter life was determined to be 1000 kg / m 2 or more.

(実施例5)
化合物Bとしてのアンモニア水(NH3=29質量%)の添加量を0.67kgに変更したこと以外は、実施例3と同様にして、実施例5の超高純度シリカ分散液(ろ過後)を得た。
実施例5の分散液P(ろ過前)は、シリカ粒子含有量が19.2質量%、粒子A100質量部に対する化合物Bの量が2質量部であった。そして、実施例5の分散液Pは、粒子A100質量部に対するNa及びKの合計量が1×10-4質量部未満であり、Na及びKを実質的に含まない。さらに、実施例5の分散液Pは、粒子A100質量部に対する炭素量が5×10-4質量部未満であった。該炭素量から換算される、粒子A100質量部に対する水溶性高分子化合物の量が1×10-2質量部未満であり、実施例5の分散液Pは、水溶性高分子化合物を実質的に含まない。すなわち、実施例5の分散液P(ろ過前)は、超高純度シリカ分散液であった。そして、実施例5の分散液PのpHが10.2であった。
実施例5のろ過工程において、ろ過流速は40kg/(m2・分)であった。また、実施例5の分散液P:32kgをろ過した時にプリーツ型フィルタが閉塞したため、フィルタ寿命は700kg/m2と算出した。
(Example 5)
The ultra-high purity silica dispersion of Example 5 (after filtration) in the same manner as in Example 3 except that the amount of ammonia water (NH 3 = 29% by mass) added as Compound B was changed to 0.67 kg. Got.
In the dispersion P of Example 5 (before filtration), the silica particle content was 19.2% by mass, and the amount of the compound B with respect to 100 parts by mass of the particles A was 2 parts by mass. And the dispersion liquid P of Example 5 is less than 1 * 10 < -4 > mass part of Na and K with respect to 100 mass parts of particle | grains A, and does not contain Na and K substantially. Furthermore, in the dispersion P of Example 5, the amount of carbon with respect to 100 parts by mass of the particles A was less than 5 × 10 −4 parts by mass. The amount of the water-soluble polymer compound converted from the amount of carbon with respect to 100 parts by mass of the particles A is less than 1 × 10 −2 parts by mass, and the dispersion P of Example 5 is substantially composed of the water-soluble polymer compound. Not included. That is, the dispersion P (before filtration) of Example 5 was an ultrahigh purity silica dispersion. And pH of the dispersion liquid P of Example 5 was 10.2.
In the filtration step of Example 5, the filtration flow rate was 40 kg / (m 2 · min). Further, since the pleated filter was clogged when 32 kg of the dispersion P of Example 5 was filtered, the filter life was calculated as 700 kg / m 2 .

(比較例1)
化合物Bとしてのアンモニア水(NH3=29質量%)1.3kgを添加しなかったこと以外は、実施例1と同様に、比較例1の超高純度シリカ分散液(ろ過後)を得た。
比較例1の分散液P(ろ過前)は、シリカ粒子含有量が19.5質量%、粒子A100質量部に対する化合物Bの量が0質量部であった。そして、比較例1の分散液Pは、粒子A100質量部に対するNa及びKの合計量が1×10-4質量部未満であり、Na及びKを実質的に含まない。さらに、比較例1の分散液Pは、粒子A100質量部に対する炭素量が5×10-4質量部未満であった。該炭素量から換算される、粒子A100質量部に対する水溶性高分子化合物の量が1×10-2質量部未満であり、比較例1の分散液Pは、水溶性高分子化合物を実質的に含まない。すなわち、比較例1の分散液P(ろ過前)は、超高純度シリカ分散液であった。そして、比較例1の分散液PのpHが7.1であった。
比較例1では、比較例1の分散液P:0.2kgをろ過した時に、プリーツ型フィルタが閉塞したので、フィルタ寿命は4kg/m2と算出した。なお、得られたシリカ分散液が少なかったため、ろ過流速及びフィルタ通液量を測定できなかった。
(Comparative Example 1)
The ultra-high purity silica dispersion (after filtration) of Comparative Example 1 was obtained in the same manner as in Example 1 except that 1.3 kg of ammonia water (NH 3 = 29% by mass) as Compound B was not added. .
In the dispersion P of Comparative Example 1 (before filtration), the silica particle content was 19.5% by mass, and the amount of the compound B relative to 100 parts by mass of the particles A was 0 parts by mass. And the dispersion liquid P of the comparative example 1 is less than 1 * 10 < -4 > mass part of Na and K with respect to 100 mass parts of particle | grains A, and does not contain Na and K substantially. Furthermore, the dispersion P of Comparative Example 1 had a carbon content of less than 5 × 10 −4 parts by mass with respect to 100 parts by mass of the particles A. The amount of the water-soluble polymer compound converted from the amount of carbon with respect to 100 parts by mass of the particle A is less than 1 × 10 −2 parts by mass, and the dispersion P of Comparative Example 1 substantially contains the water-soluble polymer compound. Not included. That is, the dispersion P (before filtration) of Comparative Example 1 was an ultra-high purity silica dispersion. And pH of the dispersion liquid P of the comparative example 1 was 7.1.
In Comparative Example 1, since the pleated filter was clogged when 0.2 kg of dispersion P of Comparative Example 1 was filtered, the filter life was calculated to be 4 kg / m 2 . In addition, since there was little silica dispersion liquid obtained, the filtration flow rate and the filter flow volume could not be measured.

(比較例2)
化合物Bとしてのアンモニア水(NH3=29質量%)1.3kgを添加しなかったこと以外は、実施例3と同様に、比較例2の超高純度シリカ分散液(ろ過後)を得た。
比較例2の分散液P(ろ過前)は、比較例1の分散液Pと同じ組成及びpHの超高純度シリカ分散液であった。
比較例2のろ過工程において、ろ過流速は14kg/(m2・分)であった。また、比較例2の分散液P:11kgをろ過した時にプリーツ型フィルタが閉塞したため、フィルタ寿命は250kg/m2と算出した。
(Comparative Example 2)
The ultra-high purity silica dispersion (after filtration) of Comparative Example 2 was obtained in the same manner as in Example 3 except that 1.3 kg of aqueous ammonia (NH 3 = 29% by mass) as Compound B was not added. .
The dispersion P of Comparative Example 2 (before filtration) was an ultra-high purity silica dispersion having the same composition and pH as the dispersion P of Comparative Example 1.
In the filtration step of Comparative Example 2, the filtration flow rate was 14 kg / (m 2 · min). Further, since the pleated filter was clogged when 11 kg of the dispersion P of Comparative Example 2 was filtered, the filter life was calculated to be 250 kg / m 2 .

(比較例3)
化合物Bとしてのアンモニア水(NH3=29質量%)の添加量を6.7kgとしたこと以外は、実施例3と同様に、比較例3の超高純度シリカ分散液(ろ過後)を得た。
比較例3の分散液P(ろ過前)は、シリカ粒子含有量が18.0質量%、粒子A100質量部に対する化合物Bの量が20質量部であった。そして、比較例3の分散液Pは、粒子A100質量部に対するNa及びKの合計量が1×10-4質量部未満であり、Na及びKを実質的に含まない。さらに、比較例3の分散液Pは、粒子A100質量部に対する炭素量が5×10-4質量部未満であった。該炭素量から換算される、粒子A100質量部に対する水溶性高分子化合物の量が1×10-2質量部未満であり、比較例3の分散液Pは、水溶性高分子化合物を実質的に含まない。すなわち、比較例3の分散液P(ろ過前)は、超高純度シリカ分散液であった。そして、比較例3の分散液PのpHが12.0であった。
比較例3のろ過工程において、ろ過流速は70kg/(m2・分)であった。フィルタ閉塞がなかったため、フィルタ寿命は1000kg/m2以上と評価した。ただし、局所排気を使用しても、アンモニア臭が充満し、作業環境が悪かった。
(Comparative Example 3)
The ultra-high purity silica dispersion (after filtration) of Comparative Example 3 was obtained in the same manner as in Example 3 except that the amount of ammonia water (NH 3 = 29% by mass) added as Compound B was 6.7 kg. It was.
In the dispersion P of Comparative Example 3 (before filtration), the silica particle content was 18.0% by mass, and the amount of the compound B relative to 100 parts by mass of the particles A was 20 parts by mass. And the dispersion liquid P of the comparative example 3 is less than 1 * 10 < -4 > mass part of Na and K with respect to 100 mass parts of particle | grains A, and does not contain Na and K substantially. Furthermore, the dispersion P of Comparative Example 3 had a carbon content of less than 5 × 10 −4 parts by mass with respect to 100 parts by mass of the particles A. The amount of the water-soluble polymer compound converted from the amount of carbon with respect to 100 parts by mass of the particles A is less than 1 × 10 −2 parts by mass, and the dispersion P of Comparative Example 3 substantially contains the water-soluble polymer compound. Not included. That is, the dispersion P (before filtration) of Comparative Example 3 was an ultra-high purity silica dispersion. And pH of the dispersion liquid P of the comparative example 3 was 12.0.
In the filtration step of Comparative Example 3, the filtration flow rate was 70 kg / (m 2 · min). Since there was no filter blockage, the filter life was evaluated as 1000 kg / m 2 or more. However, even if local exhaust was used, the ammonia odor was filled and the working environment was bad.

(比較例4)
フィルタによるろ過処理をしなかったこと以外は、実施例1と同様に、比較例4の超高純度シリカ分散液を得た。すなわち、実施例1の分散液Pを、比較例4の超高純度シリカ分散液とした。
(Comparative Example 4)
An ultra-high purity silica dispersion of Comparative Example 4 was obtained in the same manner as in Example 1 except that the filtration treatment with a filter was not performed. That is, the dispersion P of Example 1 was used as the ultra-high purity silica dispersion of Comparative Example 4.

3.シリカ分散液の評価
<シリカ分散液の分散性>
シリカ分散液の分散性は、室温下、0.45μmフィルタ通液量(g/分)により評価し、表1に結果を示した。圧力計、エアーライン、スクリューコックを接続した耐圧容器(アドバンテック製、商品名:コンパクトカートリッジハウジングPSF−2000P)にシリカ分散液500gを入れ、孔径:0.45μm、材質:親水化ポリテトラフルオロエチレン(PTFE)、サイズ:25mmのフィルタ(アドバンテック製、商品名:DISMIC 25HP045AN、膜面積0.0004m2)で0.2MPaの加圧ろ過した時、ろ過開始4分間でフィルタを通液したシリカ分散液の質量(g)から1分当りのフィルタ通液量(g/分)を測定した。なお、実施例1、2においてのみ、ろ過開始1分間でフィルタを通液したシリカ分散液の質量を測定した。
3. Evaluation of silica dispersion <Dispersibility of silica dispersion>
The dispersibility of the silica dispersion was evaluated based on the 0.45 μm filter flow rate (g / min) at room temperature, and the results are shown in Table 1. 500 g of silica dispersion is put into a pressure vessel (manufactured by Advantech, product name: compact cartridge housing PSF-2000P) connected with a pressure gauge, air line, screw cock, pore size: 0.45 μm, material: hydrophilized polytetrafluoroethylene ( PTFE), a size of 25 mm filter (manufactured by Advantech, trade name: DISMIC 25HP045AN, membrane area 0.0004 m 2 ), when 0.2 MPa pressure filtration is performed, filtration of the silica dispersion liquid that has passed through the filter in 4 minutes from the start of filtration The filter flow rate per minute (g / min) was measured from the mass (g). Only in Examples 1 and 2, the mass of the silica dispersion that passed through the filter was measured for 1 minute from the start of filtration.

<シリカ分散液の保存安定性>
シリカ分散液の保存安定性は、室温(25℃)で2週間静置保存後のシリカ分散液のフィルタ通液量を測定し、保存前のフィルタ通液量に対する保存後のフィルタ通液量の低下割合(%)により評価した、表1に示した。
<Storage stability of silica dispersion>
The storage stability of the silica dispersion is determined by measuring the filter flow rate of the silica dispersion after standing at room temperature (25 ° C.) for 2 weeks, and the filter flow rate after storage relative to the filter flow rate before storage. The results are shown in Table 1, evaluated by the rate of decrease (%).

Figure 2017117847
Figure 2017117847

表1に示されるように、実施例1〜5では、シリカ粒子 100質量部に対する化合物Bの含有量が1質量部未満の比較例1及び2、ろ過処理しない比較例4に比べて、分散性に優れる超高純度シリカ分散液が得られ、また、フィルタ寿命が長かった。実施例1〜5の超高純度シリカ分散液は、シリカ粒子100質量部に対する化合物Bの含有量が15質量部を超える比較例3に比べて、保存安定性に優れていた。   As shown in Table 1, in Examples 1 to 5, the dispersibility of Comparative Example 1 and 2 in which the content of Compound B with respect to 100 parts by mass of silica particles is less than 1 part by mass, and Comparative Example 4 in which filtration treatment is not performed is greater. An ultra-high purity silica dispersion having excellent filter life was obtained, and the filter life was long. The ultra high purity silica dispersions of Examples 1 to 5 were superior in storage stability as compared with Comparative Example 3 in which the content of Compound B with respect to 100 parts by mass of silica particles exceeded 15 parts by mass.

4.水溶性高分子化合物の詳細
下記の実施例6〜8、比較例5の研磨液組成物の調製に用いた水溶性高分子化合物の詳細は下記のとおりである。
4). Details of the water-soluble polymer compound The details of the water-soluble polymer compound used in the preparation of the polishing liquid compositions of Examples 6 to 8 and Comparative Example 5 below are as follows.

[HEAA単独重合体]
ヒドロキシエチルアクリルアミド150g(1.30moL KJケミカルズ興人社製、純分99.25質量%、水分0.35質量%、重合禁止剤メチルヒドロキノン0.10質量%、APHA色相30)を100gのイオン交換水に溶解し、モノマー水溶液を調製した。また、別に、2,2’−アゾビス(2‐メチルプロピオンアミジン)ジヒドロクロリド 0.035g(重合開始剤、V−50 1.30mmoL 和光純薬製)を70gのイオン交換水に溶解し、重合開始剤水溶液を調製した。ジムロート冷却管、温度計および三日月形PTFE製撹拌翼を備えた2Lセパラブルフラスコに、イオン交換水1180gを投入した後、セパラブルフラスコ内を窒素置換した。次いで、オイルバスを用いてセパラブルフラスコ内の温度を68℃に昇温した後、予め調製したモノマー水溶液と重合開始剤水溶液を各々3.5時間かけて滴下し、重合を行った。滴下終了後、温度及び撹拌を4時間保持し、無色透明の10質量%ポリヒドロキシエチルアクリルアミド水溶液(HEAA単独重合体)1500gを得た。
[HEAA homopolymer]
100 g of ion exchange of 150 g of hydroxyethyl acrylamide (manufactured by 1.30 mol LJ Chemicals Kojin Co., Ltd., 99.25% by mass, moisture 0.35% by mass, polymerization inhibitor methylhydroquinone 0.10% by mass, APHA hue 30) It melt | dissolved in water and prepared monomer aqueous solution. Separately, 0.035 g of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (polymerization initiator, V-50, 1.30 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 70 g of ion-exchanged water, and polymerization was started. An aqueous agent solution was prepared. After putting 1180 g of ion-exchanged water into a 2 L separable flask equipped with a Dimroth condenser, thermometer, and crescent PTFE stirring blade, the inside of the separable flask was purged with nitrogen. Subsequently, after raising the temperature in a separable flask to 68 degreeC using the oil bath, the monomer aqueous solution and polymerization initiator aqueous solution which were prepared previously were dripped over 3.5 hours, respectively, and superposition | polymerization was performed. After completion of the dropping, the temperature and stirring were maintained for 4 hours to obtain 1500 g of a colorless and transparent 10% by mass polyhydroxyethylacrylamide aqueous solution (HEAA homopolymer).

調製されたHEAA単独重合体の重量平均分子量(Mw)は720000、数平均分子量(Mn)は150000、分子量分布(Mw/Mn)は4.8、残存モノマー濃度は0.1質量%、金属濃度は、Na=740ppb、Mg=100ppb、Al=18ppb、K=150ppb、Ca=130ppb、Ti=2ppb、Cr=3ppb、Mn=3ppb、Fe=43ppb、Ni=3ppb、Cu=2ppb、Zn=14ppb、Ag<1ppb、Pb=7ppbであった。   The prepared HEAA homopolymer has a weight average molecular weight (Mw) of 720000, a number average molecular weight (Mn) of 150,000, a molecular weight distribution (Mw / Mn) of 4.8, a residual monomer concentration of 0.1% by mass, and a metal concentration. Na = 740 ppb, Mg = 100 ppb, Al = 18 ppb, K = 150 ppb, Ca = 130 ppb, Ti = 2 ppb, Cr = 3 ppb, Mn = 3 ppb, Fe = 43 ppb, Ni = 3 ppb, Cu = 2 ppb, Zn = 14 ppb, Ag <1 ppb and Pb = 7 ppb.

[ポリグリセリン]
ポリグリセリン(重量平均分子量2981)は、ダイセル化学社製のポリグリセリン40(PGLX、40重量体)を用いた。
[Polyglycerin]
As polyglycerin (weight average molecular weight 2981), polyglycerin 40 (PGLX, 40 weight body) manufactured by Daicel Chemical Industries, Ltd. was used.

[HEC]
ヒドロキシエチルセルロース(HEC、重量平均分子量250000)は、ダイセルファインケム社製のSE−400を用いた。
[HEC]
As the hydroxyethyl cellulose (HEC, weight average molecular weight 250,000), SE-400 manufactured by Daicel Finechem was used.

5.研磨液組成物の調製
実施例3または比較例4で得られた超高純度シリカ分散液と、表2に示す水溶性高分子化合物と、ポリエチレングリコール((EO平均付加モル数=25、Mw:1000(カタログ値)、和光純薬(株))、含窒素塩基性化合物(29質量%、アンモニア水、関東化学(株)、電子工業用))、及び超純水(電気抵抗率18MΩ.cm)を用いて、実施例7〜9及び比較例5の研磨液組成物の濃縮液を製造した。該濃縮液を40倍に希釈して得た研磨液組成物中の各成分の含有量は、シリカ粒子の含有量が0.25質量%、水溶性高分子化合物の含有量が0.02質量%、アンモニアの含有量が0.023質量%、ポリエチレングリコールの含有量が0.0002質量%である。シリカ粒子、水溶性高分子化合物、ポリエチレングリコール、含窒素塩基性化合物を除いた残余は超純水である。
5. Preparation of Polishing Liquid Composition The ultra-high purity silica dispersion obtained in Example 3 or Comparative Example 4, the water-soluble polymer compound shown in Table 2, and polyethylene glycol ((EO average added mole number = 25, Mw: 1000 (catalog value), Wako Pure Chemical Industries, Ltd.), nitrogen-containing basic compound (29% by mass, ammonia water, Kanto Chemical Co., Ltd., for electronics industry)), and ultrapure water (electric resistivity 18 MΩ.cm) ) Was used to prepare concentrated liquids of the polishing liquid compositions of Examples 7 to 9 and Comparative Example 5. The content of each component in the polishing composition obtained by diluting the concentrated liquid 40 times is 0.25% by mass of silica particles, and 0.02% by mass of water-soluble polymer compound. %, The ammonia content is 0.023 mass%, and the polyethylene glycol content is 0.0002 mass%. The remainder excluding silica particles, water-soluble polymer compound, polyethylene glycol and nitrogen-containing basic compound is ultrapure water.

<研磨方法>
実施例6〜8及び比較例5の研磨液組成物の濃縮液をイオン交換水で40倍に希釈して得た研磨液組成物(pH10.6±0.1(25℃))について、研磨直前にフィルタ(コンパクトカートリッジフィルタ MCP−LX−C10S アドバンテック株式会社)にてろ過を行い、下記の研磨条件で下記のシリコンウェーハ(直径200mmのシリコン片面鏡面ウェーハ(伝導型:P、結晶方位:100、抵抗率0.1Ω・cm以上100Ω・cm未満))に対して仕上げ研磨を行った。当該仕上げ研磨に先立ってシリコンウェーハに対して市販の研磨液組成物を用いてあらかじめ粗研磨を実施した。粗研磨を終了し仕上げ研磨に供したシリコンウェーハの表面粗さ(ヘイズ)は、2.680(ppm)であった。表面粗さ(ヘイズ)は、KLA Tencor社製のSurfscan SP1−DLS(商品名)を用いて測定される暗視野ワイド斜入射チャンネル(DWO)での値である。
<Polishing method>
Polishing was carried out on polishing liquid compositions (pH 10.6 ± 0.1 (25 ° C.)) obtained by diluting the concentrated liquids of the polishing liquid compositions of Examples 6 to 8 and Comparative Example 5 40 times with ion-exchanged water. Immediately before the filtration (compact cartridge filter MCP-LX-C10S Advantech Co., Ltd.), the following silicon wafer (silicon single-sided mirror wafer having a diameter of 200 mm (conduction type: P, crystal orientation: 100) under the following polishing conditions. Final polishing was performed for resistivity 0.1 Ω · cm or more and less than 100 Ω · cm)). Prior to the final polishing, rough polishing was performed on the silicon wafer in advance using a commercially available polishing composition. The surface roughness (haze) of the silicon wafer subjected to the final polishing after the completion of the rough polishing was 2.680 (ppm). The surface roughness (haze) is a value in a dark field wide oblique incidence channel (DWO) measured using Surfscan SP1-DLS (trade name) manufactured by KLA Tencor.

<仕上げ研磨条件>
研磨機:片面8インチ研磨機GRIND-X SPP600s(岡本工作製)
研磨パッド:スエードパッド(東レ コーテックス社製、アスカー硬度64、厚さ 1.37mm ナップ長450um 開口径60um)
シリコンウェーハ研磨圧力:100g/cm2
定盤回転速度:60rpm
研磨時間:5分
研磨液組成物の供給速度:150g/cm2
研磨液組成物の温度:23℃
キャリア回転速度:60rpm
<Finishing polishing conditions>
Polishing machine: Single-sided 8-inch polishing machine GRIND-X SPP600s (manufactured by Okamoto)
Polishing pad: Suede pad (Toray Cortex, Asker hardness 64, thickness 1.37 mm, nap length 450 um, opening diameter 60 um)
Silicon wafer polishing pressure: 100 g / cm 2
Surface plate rotation speed: 60 rpm
Polishing time: 5 minutes Feed rate of the polishing composition: 150 g / cm 2
Polishing liquid composition temperature: 23 ° C.
Carrier rotation speed: 60rpm

仕上げ研磨後、シリコンウェーハに対して、オゾン洗浄と希フッ酸洗浄を下記のとおり行った。オゾン洗浄では、20ppmのオゾンを含んだ水溶液をノズルから流速1L/分で回転(600rpm)するシリコンウェーハの中央に向かって3分間噴射した。このときオゾン水の温度は常温とした。次に希フッ酸洗浄を行った。希フッ酸洗浄では、0.5質量%のフッ化水素アンモニウム(特級:ナカライテクス株式会社)を含んだ水溶液をノズルから流速1L/分で回転(600rpm)するシリコンウェーハの中央に向かって6秒間噴射した。上記オゾン洗浄と希フッ酸洗浄を1セットとして計2セット行い、最後にスピン乾燥を行った。スピン乾燥では1500rpmでシリコンウェーハを回転させた。   After finish polishing, the silicon wafer was subjected to ozone cleaning and dilute hydrofluoric acid cleaning as follows. In ozone cleaning, an aqueous solution containing 20 ppm of ozone was sprayed from a nozzle toward the center of a silicon wafer rotating (600 rpm) at a flow rate of 1 L / min for 3 minutes. At this time, the temperature of the ozone water was normal temperature. Next, dilute hydrofluoric acid cleaning was performed. In dilute hydrofluoric acid cleaning, an aqueous solution containing 0.5 mass% ammonium hydrogen fluoride (special grade: Nacalai Tex Co., Ltd.) is rotated from the nozzle at a flow rate of 1 L / min (600 rpm) toward the center of the silicon wafer for 6 seconds. Jetted. The above ozone cleaning and dilute hydrofluoric acid cleaning were performed as a set, for a total of 2 sets, and finally spin drying was performed. In spin drying, the silicon wafer was rotated at 1500 rpm.

7.研磨評価
<シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の評価>
洗浄後のシリコンウェーハ表面の表面粗さ(ヘイズ)(ppm)の評価には、KLA Tencor社製のSurfscan SP1−DLS(商品名)を用いて測定される、暗視野ワイド斜入射チャンネル(DWO)での値を用いた。表面欠陥(LPD)(個)は、Haze測定時に同時に測定され、シリコンウェーハ表面の粒子径が45nm以上のパーティクル数を測定することによって評価した。Hazeの数値は小さいほど、表面の平坦性が高いことを示す。LPDの数値(パーティクル数)が小さいほど、表面欠陥が少ないことを示す。表面粗さ(ヘイズ)及び表面欠陥(LPD)の結果を表1に示した。表面粗さ(ヘイズ)及び表面欠陥(LPD)の測定は、各々2枚のシリコンウェーハに対して行い、各々平均値を表2に示した。表面欠陥(LPD)の評価基準は下記のとおりである。
A:表面欠陥(LPD)が400未満の場合
B:表面欠陥(LPD)が400以上1000未満の場合
C:表面欠陥(LPD)が1000以上の場合
7). Polishing evaluation <Evaluation of surface roughness (haze) and surface defect (LPD) of silicon wafer>
For evaluation of the surface roughness (haze) (ppm) of the cleaned silicon wafer surface, a dark field wide oblique incidence channel (DWO) measured using Surfscan SP1-DLS (trade name) manufactured by KLA Tencor. The value at was used. Surface defects (LPD) (pieces) were measured at the same time as the Haze measurement, and evaluated by measuring the number of particles having a particle diameter of 45 nm or more on the silicon wafer surface. The smaller the value of Haze, the higher the flatness of the surface. It shows that there are few surface defects, so that the numerical value (number of particles) of LPD is small. Table 1 shows the results of surface roughness (haze) and surface defects (LPD). The surface roughness (haze) and surface defect (LPD) were measured on two silicon wafers, and the average values are shown in Table 2. Evaluation criteria for surface defects (LPD) are as follows.
A: When surface defect (LPD) is less than 400 B: When surface defect (LPD) is 400 or more and less than 1000 C: When surface defect (LPD) is 1000 or more

<研磨速度の評価>
研磨速度は以下の方法で評価した。研磨前後の各シリコンウェーハの重さを精密天秤(Sartorius社製「BP−210S」)を用いて測定し、得られた重量差をシリコンウェーハの密度、面積及び研磨時間で除して、単位時間当たりの片面研磨速度を求めた。実施例8の研磨液組成物を用いた場合の研磨速度を100とした相対値を表2に示した。
<Evaluation of polishing rate>
The polishing rate was evaluated by the following method. The weight of each silicon wafer before and after polishing was measured using a precision balance ("BP-210S" manufactured by Sartorius), and the obtained weight difference was divided by the density, area and polishing time of the silicon wafer, and unit time The single-side polishing rate per hit was determined. Table 2 shows the relative values with the polishing rate of 100 when using the polishing composition of Example 8.

Figure 2017117847
Figure 2017117847

表2に示されるように、実施例3の超高純度シリカ分散液(ろ過処理したもの)を用いて製造された実施例6〜8の研磨液組成物は、比較例4の超高純度シリカ分散液(ろ過処理していないもの)を用いて製造された比較例5の研磨液組成物に比べて、表面粗さ(ヘイズ)及び表面欠陥(LPD)が低減されていた。   As shown in Table 2, the polishing liquid compositions of Examples 6 to 8 manufactured using the ultra-high purity silica dispersion (filtered) of Example 3 were the ultra-high purity silica of Comparative Example 4. Surface roughness (haze) and surface defects (LPD) were reduced as compared with the polishing composition of Comparative Example 5 produced using a dispersion (not filtered).

本開示に係るシリカ分散液を用いた研磨液組成物は、様々な半導体基板の製造過程で用いられる研磨液組成物として有用であり、なかでも、シリコンウェーハの仕上げ研磨用の研磨液組成物として有用である。   The polishing liquid composition using the silica dispersion according to the present disclosure is useful as a polishing liquid composition used in various semiconductor substrate manufacturing processes, and in particular, as a polishing liquid composition for final polishing of a silicon wafer. Useful.

Claims (10)

シリカ分散液の製造方法であって、
シリカ粒子Aと含窒素塩基性化合物Bと水とを含有する被処理シリカ分散液Pをろ過するろ過工程を含み、
被処理シリカ分散液Pにおけるシリカ粒子A 100質量部に対する含窒素塩基性化合物Bの含有量が、1質量部以上15質量部以下であり、
被処理シリカ分散液Pは、水溶性高分子化合物、ナトリウム及びカリウムを実質的に含まない、シリカ分散液の製造方法。
A method for producing a silica dispersion, comprising:
Including a filtration step of filtering the treated silica dispersion P containing the silica particles A, the nitrogen-containing basic compound B, and water,
The content of the nitrogen-containing basic compound B with respect to 100 parts by mass of the silica particles A in the silica dispersion P to be treated is 1 part by mass or more and 15 parts by mass or less,
The silica dispersion P to be treated is a method for producing a silica dispersion which does not substantially contain a water-soluble polymer compound, sodium and potassium.
シリコンウェーハ用研磨液組成物の製造に用いられるシリカ分散液の製造方法であって、
シリカ粒子Aと含窒素塩基性化合物Bと水とを含有する被処理シリカ分散液Pをろ過するろ過工程を含み、
被処理シリカ分散液Pにおけるシリカ粒子A 100質量部に対する含窒素塩基性化合物Bの含有量が、1質量部以上15質量部以下であり、
被処理シリカ分散液Pは、水溶性高分子化合物を実質的に含まない、シリカ分散液の製造方法。
A method for producing a silica dispersion used for producing a polishing composition for a silicon wafer,
Including a filtration step of filtering the treated silica dispersion P containing the silica particles A, the nitrogen-containing basic compound B, and water,
The content of the nitrogen-containing basic compound B with respect to 100 parts by mass of the silica particles A in the silica dispersion P to be treated is 1 part by mass or more and 15 parts by mass or less,
The silica dispersion P to be treated is a method for producing a silica dispersion that does not substantially contain a water-soluble polymer compound.
被処理シリカ分散液PのpHが、8.0以上11.5以下である、請求項1又は2に記載の製造方法。   The manufacturing method of Claim 1 or 2 whose pH of the to-be-processed silica dispersion P is 8.0 or more and 11.5 or less. 含窒素塩基性化合物Bが、アンモニアである、請求項1から3のいずれかに記載の製造方法。   The manufacturing method in any one of Claim 1 to 3 whose nitrogen-containing basic compound B is ammonia. 前記ろ過工程が、プリーツ型フィルタでろ過する工程を含む、請求項1から4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the filtration step includes a step of filtering with a pleated filter. 前記ろ過工程におけるろ過流速が、20kg/(m2・分)以上100kg/(m2・分)以下である、請求項1から5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein a filtration flow rate in the filtration step is 20 kg / (m 2 · min) or more and 100 kg / (m 2 · min) or less. 請求項1から6のいずれかに記載の製造方法により得られるシリカ分散液を用いて研磨液組成物を調製する工程を含む、研磨液組成物の製造方法。   A method for producing a polishing composition comprising a step of preparing a polishing composition using a silica dispersion obtained by the production method according to claim 1. 請求項7に記載の研磨液組成物の製造方法により得られる研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体基板の製造方法。   The manufacturing method of a semiconductor substrate including the process of grind | polishing a to-be-polished substrate using the polishing liquid composition obtained by the manufacturing method of the polishing liquid composition of Claim 7. 被研磨基板が、シリコンウェーハである、請求項8に記載の半導体基板の製造方法。   The method for manufacturing a semiconductor substrate according to claim 8, wherein the substrate to be polished is a silicon wafer. シリカ分散液が容器に充填されたシリカ分散液を含む研磨液キットの製造方法であって、
請求項1から6のいずれかに記載の製造方法により前記シリカ分散液を製造する工程を含む、研磨液キットの製造方法。
A method for producing a polishing liquid kit comprising a silica dispersion filled in a container with a silica dispersion,
A method for producing a polishing liquid kit, comprising the step of producing the silica dispersion by the production method according to claim 1.
JP2015248920A 2015-12-21 2015-12-21 Method for producing silica dispersion Active JP6646436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248920A JP6646436B2 (en) 2015-12-21 2015-12-21 Method for producing silica dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248920A JP6646436B2 (en) 2015-12-21 2015-12-21 Method for producing silica dispersion

Publications (2)

Publication Number Publication Date
JP2017117847A true JP2017117847A (en) 2017-06-29
JP6646436B2 JP6646436B2 (en) 2020-02-14

Family

ID=59231982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248920A Active JP6646436B2 (en) 2015-12-21 2015-12-21 Method for producing silica dispersion

Country Status (1)

Country Link
JP (1) JP6646436B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127511A (en) * 2018-01-23 2019-08-01 ニッタ・ハース株式会社 Polishing composition
JP2020109835A (en) * 2018-12-28 2020-07-16 花王株式会社 Polishing liquid composition
WO2021117689A1 (en) 2019-12-13 2021-06-17 Cmcマテリアルズ株式会社 Chemical-mechanical polishing composition and chemical-mechanical polishing method in which same is used
KR20230075389A (en) 2020-10-01 2023-05-31 사카이 가가쿠 고교 가부시키가이샤 Boron-containing silica dispersion and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277380A (en) * 1998-03-26 1999-10-12 Asahi Denka Kogyo Kk Surface polishing system for semiconductor product
JP2003218069A (en) * 2002-01-23 2003-07-31 Fujimi Inc Composition for polishing for selectively polishing silicon used in manufacture of semiconductor device
WO2007018069A1 (en) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. Deformed silica sol and process for producing the same
WO2010052983A1 (en) * 2008-11-10 2010-05-14 旭硝子株式会社 Abrasive composition and method for manufacturing semiconductor integrated circuit device
WO2012039428A1 (en) * 2010-09-24 2012-03-29 花王株式会社 Process for producing polishing liquid composition
JP2015155523A (en) * 2014-01-15 2015-08-27 株式会社フジミインコーポレーテッド Kit for production of polishing composition and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277380A (en) * 1998-03-26 1999-10-12 Asahi Denka Kogyo Kk Surface polishing system for semiconductor product
JP2003218069A (en) * 2002-01-23 2003-07-31 Fujimi Inc Composition for polishing for selectively polishing silicon used in manufacture of semiconductor device
WO2007018069A1 (en) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. Deformed silica sol and process for producing the same
WO2010052983A1 (en) * 2008-11-10 2010-05-14 旭硝子株式会社 Abrasive composition and method for manufacturing semiconductor integrated circuit device
WO2012039428A1 (en) * 2010-09-24 2012-03-29 花王株式会社 Process for producing polishing liquid composition
JP2015155523A (en) * 2014-01-15 2015-08-27 株式会社フジミインコーポレーテッド Kit for production of polishing composition and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127511A (en) * 2018-01-23 2019-08-01 ニッタ・ハース株式会社 Polishing composition
JP2020109835A (en) * 2018-12-28 2020-07-16 花王株式会社 Polishing liquid composition
JP7405567B2 (en) 2018-12-28 2023-12-26 花王株式会社 polishing liquid composition
WO2021117689A1 (en) 2019-12-13 2021-06-17 Cmcマテリアルズ株式会社 Chemical-mechanical polishing composition and chemical-mechanical polishing method in which same is used
KR20230075389A (en) 2020-10-01 2023-05-31 사카이 가가쿠 고교 가부시키가이샤 Boron-containing silica dispersion and manufacturing method thereof

Also Published As

Publication number Publication date
JP6646436B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP5893706B2 (en) Polishing liquid composition for silicon wafer
JP5822356B2 (en) Polishing liquid composition for silicon wafer
TWI718998B (en) Polishing composition
JP6655354B2 (en) Polishing composition for silicon wafer or polishing composition kit for silicon wafer
JP6646436B2 (en) Method for producing silica dispersion
JP6087143B2 (en) Polishing liquid composition for silicon wafer
JP6039419B2 (en) Polishing liquid composition for silicon wafer
JP6489690B2 (en) Polishing liquid composition for silicon wafer
JP2018074048A (en) Polishing liquid composition for silicon wafer
JP6951933B2 (en) Finish polishing liquid composition for silicon wafer
JP6893835B2 (en) Finish polishing liquid composition for silicon wafer
JP2018006538A (en) Polishing liquid composition for silicon wafer
JP6086725B2 (en) Polishing liquid composition for silicon wafer
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP6245939B2 (en) Polishing liquid composition for silicon wafer
JP6265542B2 (en) Manufacturing method of semiconductor substrate
JP6403324B2 (en) Polishing liquid composition for silicon wafer
JP2018039934A (en) Abrasive grain dispersion, composition kit for polishing containing the same, manufacturing method of composition for polishing using the same, composition for polishing, polishing method and manufacturing method of substrate for magnetic disk
JP6792413B2 (en) Abrasive liquid composition for silicon wafer
JP6168984B2 (en) Polishing liquid composition for silicon wafer
JP6366139B2 (en) Method for producing polishing composition for silicon wafer
JP2014090100A (en) Polishing liquid composition for silicon wafers
JP2016119418A (en) Polishing liquid composition for silicon wafer
JP6169938B2 (en) Polishing liquid composition for silicon wafer
JP6418941B2 (en) Polishing liquid composition for silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200110

R151 Written notification of patent or utility model registration

Ref document number: 6646436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250