JP6893835B2 - Finish polishing liquid composition for silicon wafer - Google Patents
Finish polishing liquid composition for silicon wafer Download PDFInfo
- Publication number
- JP6893835B2 JP6893835B2 JP2017123487A JP2017123487A JP6893835B2 JP 6893835 B2 JP6893835 B2 JP 6893835B2 JP 2017123487 A JP2017123487 A JP 2017123487A JP 2017123487 A JP2017123487 A JP 2017123487A JP 6893835 B2 JP6893835 B2 JP 6893835B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- silicon wafer
- liquid composition
- polishing liquid
- polishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims description 189
- 239000007788 liquid Substances 0.000 title claims description 115
- 239000000203 mixture Substances 0.000 title claims description 106
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 99
- 229910052710 silicon Inorganic materials 0.000 title claims description 99
- 239000010703 silicon Substances 0.000 title claims description 99
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 45
- 229920003169 water-soluble polymer Polymers 0.000 claims description 31
- 238000005530 etching Methods 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 150000007514 bases Chemical class 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 12
- 239000006185 dispersion Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 150000005215 alkyl ethers Chemical class 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 87
- -1 HEC Chemical compound 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 239000000243 solution Substances 0.000 description 21
- 230000009467 reduction Effects 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000013078 crystal Substances 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 10
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 9
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 9
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 239000012736 aqueous medium Substances 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 238000007865 diluting Methods 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 239000011164 primary particle Substances 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000002296 dynamic light scattering Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- SBVKVAIECGDBTC-UHFFFAOYSA-N 4-hydroxy-2-methylidenebutanamide Chemical compound NC(=O)C(=C)CCO SBVKVAIECGDBTC-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000008119 colloidal silica Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000000961 QCM-D Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 238000003380 quartz crystal microbalance Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229930014626 natural product Natural products 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000010421 standard material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 150000003868 ammonium compounds Chemical class 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IWSZDQRGNFLMJS-UHFFFAOYSA-N 2-(dibutylamino)ethanol Chemical compound CCCCN(CCO)CCCC IWSZDQRGNFLMJS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- WKVMOQXBMPYPGK-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].OC(=O)CN(CC(O)=O)CC(O)=O WKVMOQXBMPYPGK-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- QSVOWVXHKOQYIP-UHFFFAOYSA-N 2-dodecylsulfanylcarbothioylsulfanyl-2-methylpropanenitrile Chemical compound CCCCCCCCCCCCSC(=S)SC(C)(C)C#N QSVOWVXHKOQYIP-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-ISLYRVAYSA-N V-65 Substances CC(C)CC(C)(C#N)\N=N\C(C)(C#N)CC(C)C WYGWHHGCAGTUCH-ISLYRVAYSA-N 0.000 description 1
- RUSUZAGBORAKPY-UHFFFAOYSA-N acetic acid;n'-[2-(2-aminoethylamino)ethyl]ethane-1,2-diamine Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.NCCNCCNCCN RUSUZAGBORAKPY-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- QRTCASNUSVDIEL-UHFFFAOYSA-N azane;2-[bis(carboxymethyl)amino]acetic acid Chemical compound N.OC(=O)CN(CC(O)=O)CC(O)=O QRTCASNUSVDIEL-UHFFFAOYSA-N 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-O azanium;hydrofluoride Chemical compound [NH4+].F LDDQLRUQCUTJBB-UHFFFAOYSA-O 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical class OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 239000012897 dilution medium Substances 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- VXZOOXXSYPYWEP-UHFFFAOYSA-H hexasodium hexaacetate Chemical compound C(C)(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].C(C)(=O)[O-].C(C)(=O)[O-].C(C)(=O)[O-].C(C)(=O)[O-].C(C)(=O)[O-] VXZOOXXSYPYWEP-UHFFFAOYSA-H 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Description
本発明は、シリコンウェーハ用仕上げ研磨液組成物、これを用いた研磨方法、並びに半導体基板の製造方法に関する。 The present invention relates to a finish polishing liquid composition for a silicon wafer, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
近年、半導体メモリの高記録容量化に対する要求の高まりから半導体装置のデザインルールは微細化が進んでいる。このため半導体装置の製造過程で行われるフォトリソグラフィーにおいて焦点深度は浅くなり、シリコンウェーハ(ベアウェーハ)の表面欠陥(LPD:Light point defects)や表面粗さ(ヘイズ)の低減に対する要求はますます厳しくなっている。 In recent years, the design rules for semiconductor devices have been miniaturized due to the increasing demand for higher recording capacities of semiconductor memories. For this reason, the depth of focus becomes shallower in photolithography performed in the manufacturing process of semiconductor devices, and the demand for reducing surface defects (LPD: Light point defects) and surface roughness (haze) of silicon wafers (bare wafers) is becoming more and more stringent. It has become.
シリコンウェーハの品質を向上する目的で、シリコンウェーハの研磨は多段階で行われている。特に研磨の最終段階で行われる仕上げ研磨は、ヘイズの低減とパーティクルやスクラッチ、ピット等の表面欠陥の低減とを目的として行われている。 For the purpose of improving the quality of silicon wafers, polishing of silicon wafers is performed in multiple stages. In particular, finish polishing performed in the final stage of polishing is performed for the purpose of reducing haze and reducing surface defects such as particles, scratches, and pits.
シリコンウェーハの研磨に用いられる研磨液組成物として、保存安定性の向上、良好な生産性が確保される研磨速度の担保、及びLPDとヘイズの低減を目的とし、シリカ粒子と、含窒素塩基性化合物と、ヒドロキシエチルアクリルアミド(HEAA)等のアクリルアミド誘導体に由来する構成単位を含む水溶性高分子とを含むシリコンウェーハの研磨液組成物が開示されている(特許文献1)。また、ヘイズレベルの改善を目的とし、シリカ粒子と、ヒドロキシエチルセルロース(HEC)と、ポリエチレンオキサイドと、アルカリ化合物とを含む研磨用液成物が開示されている(特許文献2)。また、ヘイズレベルを低下させることなくウェーハ表面に付着するパーティクルを低減することを目的とし、シリカ粒子、アンモニア等の塩基性化合物、HEC等の水溶性高分子、アルコール性水酸基を1〜10個有する化合物を含む研磨液組成物が開示されている(特許文献3)。さらに、LPDの低減を目的とし、ポリビニルピロリドン及びポリN−ビニルホルムアルデヒドから選ばれる少なくとも1種の水溶性高分子と、アルカリとを含有する、予備研磨用(すなわち粗研磨用)の研磨液組成物が開示されている(特許文献4)。 As a polishing liquid composition used for polishing silicon wafers, silica particles and nitrogen-containing basics are used for the purpose of improving storage stability, ensuring polishing speed to ensure good productivity, and reducing LPD and haze. A polishing liquid composition for a silicon wafer containing a compound and a water-soluble polymer containing a structural unit derived from an acrylamide derivative such as hydroxyethyl acrylamide (HEAA) is disclosed (Patent Document 1). Further, for the purpose of improving the haze level, a polishing liquid product containing silica particles, hydroxyethyl cellulose (HEC), polyethylene oxide, and an alkaline compound is disclosed (Patent Document 2). Further, for the purpose of reducing particles adhering to the wafer surface without lowering the haze level, it has 1 to 10 silica particles, basic compounds such as ammonia, water-soluble polymers such as HEC, and alcoholic hydroxyl groups. A polishing liquid composition containing a compound is disclosed (Patent Document 3). Further, for the purpose of reducing LPD, a polishing liquid composition for pre-polishing (that is, for rough polishing) containing at least one water-soluble polymer selected from polyvinylpyrrolidone and polyN-vinylformaldehyde and an alkali. Is disclosed (Patent Document 4).
しかし、従来の研磨液組成物を用いた仕上げ研磨では、研磨されたシリコンウェーハ表面の更なるヘイズの低減が望まれていた。 However, in the finish polishing using the conventional polishing liquid composition, it has been desired to further reduce the haze of the polished silicon wafer surface.
そこで、本発明は、研磨されたシリコンウェーハ表面のヘイズを低減できるシリコンウェーハ用仕上げ研磨液組成物、及びこれを用いた研磨方法、並びに半導体基板の製造方法を提供する。 Therefore, the present invention provides a finish polishing liquid composition for a silicon wafer capable of reducing haze on the surface of a polished silicon wafer, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
本発明は、シリカ粒子A、塩基性化合物B、及び水溶性高分子Cを含むシリコンウェーハ用仕上げ研磨液組成物であって、水溶性高分子Cのシリコンウェーハに対する吸着量が750ng/cm2以上である、シリコンウェーハ用仕上げ研磨液組成物に関する。 The present invention is a finish polishing liquid composition for a silicon wafer containing silica particles A, a basic compound B, and a water-soluble polymer C, and the amount of the water-soluble polymer C adsorbed on a silicon wafer is 750 ng / cm 2 or more. The present invention relates to a finish polishing liquid composition for a silicon wafer.
本発明は、本発明のシリコンウェーハ用仕上げ研磨液組成物を用いて被研磨シリコンウェーハを研磨する工程を含む、研磨方法に関する。 The present invention relates to a polishing method including a step of polishing a silicon wafer to be polished using the finish polishing liquid composition for a silicon wafer of the present invention.
本発明は、本発明のシリコンウェーハ用仕上げ研磨液組成物を用いて被研磨シリコンウェーハを研磨する工程を含む、半導体基板の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor substrate, which comprises a step of polishing a silicon wafer to be polished using the finish polishing liquid composition for a silicon wafer of the present invention.
本発明によれば、研磨されたシリコンウェーハ表面のヘイズを低減できる、シリコンウェーハ用仕上げ研磨液組成物、及び当該シリコンウェーハ用仕上げ研磨液組成物を用いた研磨方法、並びに半導体基板の製造方法を提供できる。 According to the present invention, a finish polishing liquid composition for a silicon wafer, a polishing method using the finish polishing liquid composition for a silicon wafer, and a method for manufacturing a semiconductor substrate, which can reduce haze on the surface of a polished silicon wafer, are provided. Can be provided.
本発明は、シリカ粒子A(以下、「成分A」ともいう)、塩基性化合物B(以下、「成分B」ともいう)、及び所定の水溶性高分子C(以下、「成分C」ともいう)を含む研磨液組成物をシリコンウェーハの仕上げ研磨に用いることにより、ヘイズを低減できるという知見に基づく。 The present invention also refers to silica particles A (hereinafter, also referred to as “component A”), basic compound B (hereinafter, also referred to as “component B”), and a predetermined water-soluble polymer C (hereinafter, also referred to as “component C”). ) Is used for finish polishing of silicon wafers to reduce haze.
すなわち、本発明は、一態様において、シリカ粒子A、塩基性化合物B、及び水溶性高分子Cを含むシリコンウェーハ用仕上げ研磨液組成物であって、水溶性高分子Cのシリコンウェーハに対する吸着量が750ng/cm2以上である、シリコンウェーハ用仕上げ研磨液組成物に関する。さらに、本発明は、その他の態様において、シリカ粒子A、塩基性化合物B、及び水溶性高分子Cを含むシリコンウェーハ用仕上げ研磨液組成物であって、水溶性高分子Cがポリビニルアルキルエーテルである、シリコンウェーハ用仕上げ研磨液組成物に関する。以下の説明において、これらシリコンウェーハ用仕上げ研磨液組成物をまとめて「本発明の研磨液組成物」ともいう。 That is, in one embodiment, the present invention is a finish polishing liquid composition for a silicon wafer containing silica particles A, a basic compound B, and a water-soluble polymer C, and the amount of the water-soluble polymer C adsorbed on the silicon wafer. The present invention relates to a finish polishing liquid composition for a silicon wafer, which has a weight of 750 ng / cm 2 or more. Further, in another embodiment, the present invention is a finish polishing liquid composition for a silicon wafer containing silica particles A, a basic compound B, and a water-soluble polymer C, wherein the water-soluble polymer C is a polyvinyl alkyl ether. Regarding a finish polishing liquid composition for a silicon wafer. In the following description, these finish polishing liquid compositions for silicon wafers are also collectively referred to as "polishing liquid composition of the present invention".
本発明の効果発現機構の詳細は明らかではないが、以下のように推察される。
本発明では、水溶性高分子Cは、シリカ粒子への吸着が抑制される一方で、被研磨シリコンウェーハに吸着する。これにより、ヘイズの悪化の原因となるシリカ粒子Aが直接被研磨シリコンウェーハに接触することが抑制され、且つ、ヘイズの悪化の原因となる塩基性化合物Bによるウェーハ表面の腐食が抑制され、エッチング速度が抑制されると考えられる。故に、水溶性高分子Cは、研磨されたシリコンウェーハの洗浄工程におけるパーティクル(シリカ粒子や研磨くず)の脱離性向上、エッチング速度の低減、及びヘイズの低減にも寄与すると考えられる。
ただし、本発明はこれらのメカニズムに限定して解釈されなくてもよい。
The details of the effect expression mechanism of the present invention are not clear, but it is presumed as follows.
In the present invention, the water-soluble polymer C is adsorbed on the silicon wafer to be polished while being suppressed from being adsorbed on the silica particles. As a result, the silica particles A that cause deterioration of haze are suppressed from coming into direct contact with the silicon wafer to be polished, and the corrosion of the wafer surface by the basic compound B that causes deterioration of haze is suppressed, and etching is performed. It is believed that the speed is suppressed. Therefore, it is considered that the water-soluble polymer C also contributes to the improvement of the detachability of particles (silica particles and polishing debris) in the cleaning process of the polished silicon wafer, the reduction of the etching rate, and the reduction of haze.
However, the present invention does not have to be construed as being limited to these mechanisms.
本発明において、「エッチング速度」とは、研磨されるシリコンウェーハが研磨液組成物に溶解する速度をいう。シリコンウェーハの腐食抑制及びヘイズ低減の観点から、エッチング速度は低いことが好ましい。 In the present invention, the "etching rate" refers to the rate at which the silicon wafer to be polished dissolves in the polishing liquid composition. From the viewpoint of suppressing corrosion of the silicon wafer and reducing haze, it is preferable that the etching rate is low.
[シリカ粒子A(成分A)]
本発明の研磨液組成物には、研磨材としてシリカ粒子A(成分A)が含まれる。成分Aの具体例としては、コロイダルシリカ、フュームドシリカ等が挙げられ、ヘイズ低減の観点から、コロイダルシリカが好ましい。
[Silica particles A (component A)]
The polishing liquid composition of the present invention contains silica particles A (component A) as an abrasive. Specific examples of the component A include colloidal silica, fumed silica, and the like, and colloidal silica is preferable from the viewpoint of haze reduction.
成分Aの使用形態としては、操作性の観点から、スラリー状が好ましい。本発明の研磨液組成物に含まれる成分Aがコロイダルシリカである場合、アルカリ金属やアルカリ土類金属等によるシリコンウェーハの汚染を防止する観点から、コロイダルシリカは、アルコキシシランの加水分解物から得たものであることが好ましい。アルコキシシランの加水分解物から得られるシリカ粒子は、例えば、従来から公知の方法によって作製できる。 As the usage form of the component A, a slurry is preferable from the viewpoint of operability. When the component A contained in the polishing liquid composition of the present invention is colloidal silica, colloidal silica is obtained from a hydrolyzate of alkoxysilane from the viewpoint of preventing contamination of the silicon wafer by alkali metals, alkaline earth metals and the like. It is preferable that the material is silica. Silica particles obtained from a hydrolyzate of alkoxysilane can be produced, for example, by a conventionally known method.
成分Aの平均一次粒子径は、研磨速度の確保の観点から、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましく、30nm以上が更により好ましく、そして、研磨速度の確保及びヘイズ低減の観点から、50nm以下が好ましく、40nm以下がより好ましく、38nm以下が更に好ましい。 From the viewpoint of ensuring the polishing rate, the average primary particle size of the component A is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, further preferably 30 nm or more, and securing the polishing rate and reducing haze. From the viewpoint of the above, 50 nm or less is preferable, 40 nm or less is more preferable, and 38 nm or less is further preferable.
特に、成分Aとしてコロイダルシリカを用いた場合、成分Aの平均一次粒子径は、研磨速度の確保及びヘイズ低減の観点から、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましく、そして、同様の観点から、40nm以下が好ましく、35nm以下がより好ましく、30nm以下が更に好ましい。 In particular, when colloidal silica is used as the component A, the average primary particle size of the component A is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, and further preferably 20 nm or more, from the viewpoint of ensuring the polishing rate and reducing haze. From the same viewpoint, 40 nm or less is preferable, 35 nm or less is more preferable, and 30 nm or less is further preferable.
本発明において、成分Aの平均一次粒子径は、窒素吸着(BET)法によって算出される比表面積S(m2/g)を用いて算出される。比表面積は、例えば、実施例に記載の方法により測定できる。 In the present invention, the average primary particle size of the component A is calculated using the specific surface area S (m 2 / g) calculated by the nitrogen adsorption (BET) method. The specific surface area can be measured, for example, by the method described in Examples.
成分Aの平均二次粒子径は、研磨速度の確保の観点から、40nm以上が好ましく、50nm以上がより好ましく、60nm以上が更に好ましく、そして、研磨速度の確保及びヘイズ低減の観点から、100nm以下が好ましく、80nm以下がより好ましく、75nm以下が更に好ましい。 The average secondary particle size of the component A is preferably 40 nm or more, more preferably 50 nm or more, further preferably 60 nm or more from the viewpoint of ensuring the polishing rate, and 100 nm or less from the viewpoint of ensuring the polishing rate and reducing haze. Is preferable, 80 nm or less is more preferable, and 75 nm or less is further preferable.
本発明において、平均二次粒子径は、動的光散乱(DLS)法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。 In the present invention, the average secondary particle size is a value measured by a dynamic light scattering (DLS) method, and can be measured using, for example, the apparatus described in the examples.
成分Aの会合度は、研磨速度の確保及びヘイズ低減の観点から、5.0以下が好ましく、3.0以下がより好ましく、2.5以下が更に好ましく、そして、同様の観点から、1.1以上が好ましく、1.5以上がより好ましく、1.8以上が更に好ましい。成分Aがコロイダルシリカである場合、その会合度は、研磨速度の確保及びヘイズ低減の観点から、3.0以下が好ましく、2.5以下がより好ましく、2.3以下が更に好ましく、そして、同様の観点から、1.1以上が好ましく、1.5以上がより好ましく、1.8以上が更に好ましい。 The degree of association of component A is preferably 5.0 or less, more preferably 3.0 or less, further preferably 2.5 or less, from the viewpoint of ensuring the polishing rate and reducing haze, and from the same viewpoint, 1. 1 or more is preferable, 1.5 or more is more preferable, and 1.8 or more is further preferable. When the component A is colloidal silica, the degree of association thereof is preferably 3.0 or less, more preferably 2.5 or less, further preferably 2.3 or less, and more preferably 2.3 or less, from the viewpoint of ensuring the polishing rate and reducing haze. From the same viewpoint, 1.1 or more is preferable, 1.5 or more is more preferable, and 1.8 or more is further preferable.
本発明において、成分Aの会合度とは、成分Aの形状を表す係数であり、下記式により算出される。
会合度=平均二次粒子径/平均一次粒子径
In the present invention, the degree of association of the component A is a coefficient representing the shape of the component A, and is calculated by the following formula.
Association = average secondary particle size / average primary particle size
成分Aの会合度の調整方法としては、例えば、特開平6−254383号公報、特開平11−214338号公報、特開平11−60232号公報、特開2005−060217号公報、特開2005−060219号公報等に記載の方法を採用することができる。 Examples of the method for adjusting the degree of association of the component A include JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, and JP-A-2005-060219. The method described in the publication of the publication can be adopted.
研磨液組成物中に存在する成分Aの平均粒径d(以下、「研磨液組成物中での成分Aの平均粒径d」ともいう)と、研磨液組成物と同じ濃度で成分A及び成分Bを含有する水分散液中に存在する成分Aの平均粒径d0(以下、「成分A及び成分Bの水分散液中での成分Aの平均粒径d0」ともいう)との比d/d0は、ヘイズ低減の観点から、1.1以下が好ましく、1.09以下がより好ましく、1.02以下が更に好ましく、そして、1.00以上が好ましい。本発明において、比d/d0は、分散度合いを意味する。比d/d0の値が1に近いほど、分散の度合いがよいことを示す。平均粒径d及びd0はそれぞれ、動的光散乱法により測定される値であり、具体的には、実施例に記載の方法により測定できる。 The average particle size d of the component A present in the polishing liquid composition (hereinafter, also referred to as “the average particle size d of the component A in the polishing liquid composition”) and the component A and the same concentration as the polishing liquid composition. Ratio d with the average particle size d0 of the component A existing in the aqueous dispersion containing the component B (hereinafter, also referred to as “the average particle size d0 of the component A in the aqueous dispersion of the component A and the component B”). From the viewpoint of haze reduction, / d0 is preferably 1.1 or less, more preferably 1.09 or less, further preferably 1.02 or less, and preferably 1.00 or more. In the present invention, the ratio d / d0 means the degree of dispersion. The closer the value of the ratio d / d0 is to 1, the better the degree of dispersion. The average particle diameters d and d0 are values measured by a dynamic light scattering method, respectively, and can be specifically measured by the method described in Examples.
研磨液組成物中の成分Aのゼータ電位は、ヘイズ低減の観点から、−30mV以下が好ましく、−35mV以下がより好ましく、−40mV以下が更に好ましく、そして、研磨速度の観点から、−100mV以上が好ましく、−80mV以上が好ましく、−60mV以上が更に好ましい。 The zeta potential of the component A in the polishing liquid composition is preferably −30 mV or less, more preferably −35 mV or less, further preferably −40 mV or less, and −100 mV or more from the viewpoint of polishing speed, from the viewpoint of haze reduction. Is preferable, -80 mV or more is preferable, and -60 mV or more is more preferable.
成分Aの形状は、いわゆる球型及び/又はいわゆるマユ型であることが好ましい。 The shape of the component A is preferably a so-called spherical shape and / or a so-called eyebrows shape.
本発明の研磨液組成物に含まれる成分Aの含有量は、研磨速度の確保の観点から、SiO2換算で、0.04質量%以上が好ましく、0.09質量%以上がより好ましく、0.13質量%以上が更に好ましく、そして、ヘイズ低減の観点から、0.5質量%以下が好ましく、0.4質量%以下がより好ましく、0.3質量%以下が更に好ましい。 The content of the component A contained in the polishing liquid composition of the present invention is preferably 0.04% by mass or more, more preferably 0.09% by mass or more, and 0, in terms of SiO 2, from the viewpoint of ensuring the polishing speed. .13% by mass or more is further preferable, and from the viewpoint of haze reduction, 0.5% by mass or less is more preferable, 0.4% by mass or less is more preferable, and 0.3% by mass or less is further preferable.
[塩基性化合物B(成分B)]
本発明の研磨液組成物は、保存安定性の向上、研磨速度の確保及びヘイズ低減の観点から、塩基性化合物B(成分B)を含む。そして、同様の観点から、成分Bは、水溶性であることが好ましく、すなわち水溶性の塩基性化合物であることが好ましい。本発明において、「水溶性」とは、水(20℃)に対して0.5g/100mL以上の溶解度、好ましくは2g/100mL以上の溶解度を有することをいい、「水溶性の塩基性化合物」とは、水に溶解したとき、塩基性を示す化合物をいう。
[Basic compound B (component B)]
The polishing liquid composition of the present invention contains a basic compound B (component B) from the viewpoint of improving storage stability, ensuring polishing speed, and reducing haze. From the same viewpoint, the component B is preferably water-soluble, that is, a water-soluble basic compound. In the present invention, "water-soluble" means having a solubility of 0.5 g / 100 mL or more, preferably 2 g / 100 mL or more in water (20 ° C.), and is a "water-soluble basic compound". Refers to a compound that exhibits basicity when dissolved in water.
成分Bとしては、例えば、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種の含窒素塩基性化合物が挙げられる。アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種の含窒素塩基性化合物としては、例えば、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルエタノールアミン、N−メチル−N,N−ジエタノ−ルアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジブチルエタノールアミン、N−(β−アミノエチル)エタノ−ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、ジエチレントリアミン、及び水酸化テトラメチルアンモニウムから選ばれる1種又は2種以上の組合せが挙げられる。本発明に係る研磨液組成物に含まれうる含窒素塩基性化合物としては、ヘイズ低減、保存安定性の向上及び研磨速度の確保の観点から、アンモニアが好ましい。 Examples of the component B include at least one nitrogen-containing basic compound selected from an amine compound and an ammonium compound. Examples of at least one nitrogen-containing basic compound selected from amine compounds and ammonium compounds include ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogencarbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, and mono. Ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-methyl-N, N-dietanoramine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine , N- (β-aminoethyl) ethaneolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenediamine, piperazine / hexahydrate, piperazine anhydride, 1- (2-aminoethyl) piperazine , N-Methylpiperazin, diethylenetriamine, and tetramethylammonium hydroxide. As the nitrogen-containing basic compound that can be contained in the polishing liquid composition according to the present invention, ammonia is preferable from the viewpoint of reducing haze, improving storage stability, and ensuring polishing rate.
本発明の研磨液組成物に含まれる成分Bの含有量は、ヘイズ低減、保存安定性の向上及び研磨速度の確保の観点から、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましく、そして、ヘイズ低減の観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.025質量%以下が更に好ましい。 The content of component B contained in the polishing liquid composition of the present invention is preferably 0.001% by mass or more, preferably 0.005% by mass or more, from the viewpoint of reducing haze, improving storage stability, and ensuring polishing speed. More preferably, 0.01% by mass or more is further preferable, and from the viewpoint of haze reduction, 0.1% by mass or less is preferable, 0.05% by mass or less is more preferable, and 0.025% by mass or less is further preferable.
本発明の研磨液組成物に含まれる成分Bの含有量に対する成分Aの含有量の比A/Bは、ヘイズ低減の観点から、0.5以上が好ましく、1.0以上がより好ましく、5.0以上が更に好ましく、そして、同様の観点から、300以下が好ましく、100以下がより好ましく、30以下が更に好ましい。 From the viewpoint of haze reduction, the ratio A / B of the content of the component A to the content of the component B contained in the polishing liquid composition of the present invention is preferably 0.5 or more, more preferably 1.0 or more, and 5 .0 or more is more preferable, and from the same viewpoint, 300 or less is preferable, 100 or less is more preferable, and 30 or less is further preferable.
[水溶性高分子C(成分C)]
本発明の研磨液組成物は、ヘイズ低減、保存安定性の向上及び研磨速度の確保の観点から、水溶性高分子C(成分C)を含有する。本発明において、成分Cの「水溶性」とは、水(20℃)に対して0.5g/100mL以上の溶解度、好ましくは2g/100mL以上の溶解度を有することをいう。成分Cは、天然物を原料とする水溶性高分子であってもよいし、天然物を原料としない合成系の水溶性高分子であってもよい。天然物を原料とする水溶性高分子としては、例えば、従来から使用されているHECが挙げられる。通常、HECは天然物のセルロースを原料とするものであり、セルロール由来の水不溶物が含まれるため、HECを含有する研磨液組成物では、表面欠陥や表面粗さ等の低減効果が十分ではない。また、エッチング速度の低減効果も十分ではない。よって、成分Cは、品質安定性及びエッチング速度の抑制の観点から、合成系の水溶性高分子が好ましい。
[Water-soluble polymer C (component C)]
The polishing liquid composition of the present invention contains a water-soluble polymer C (component C) from the viewpoint of reducing haze, improving storage stability, and ensuring polishing speed. In the present invention, the "water-soluble" component C means having a solubility of 0.5 g / 100 mL or more, preferably 2 g / 100 mL or more, in water (20 ° C.). The component C may be a water-soluble polymer made from a natural product or a synthetic water-soluble polymer not made from a natural product. Examples of the water-soluble polymer made from a natural product include HEC, which has been conventionally used. Normally, HEC is made from natural cellulose and contains a water-insoluble substance derived from cell roll. Therefore, the polishing liquid composition containing HEC is not sufficiently effective in reducing surface defects and surface roughness. Absent. Moreover, the effect of reducing the etching rate is not sufficient. Therefore, the component C is preferably a synthetic water-soluble polymer from the viewpoint of quality stability and suppression of etching rate.
成分Cの一実施形態としては、エッチング速度の抑制及びヘイズ低減の観点から、例えば、シリコンウェーハに対する吸着量が750ng/cm2以上の水溶性高分子が挙げられる。成分Cのその他の実施形態としては、エッチング速度の抑制及びヘイズ低減の観点から、例えば、ポリビニルアルキルエーテルが挙げられ、具体的には、下記式(1)で表される構成単位aを含む水溶性高分子が挙げられる。シリコンウェーハに対する吸着量については後述する。成分Cは、1種又は2種以上組み合わせて用いることができる。 One embodiment of component C includes, for example, a water-soluble polymer having an adsorption amount of 750 ng / cm 2 or more on a silicon wafer from the viewpoint of suppressing the etching rate and reducing haze. As another embodiment of the component C, for example, polyvinyl alkyl ether can be mentioned from the viewpoint of suppressing the etching rate and reducing the haze, and specifically, water-soluble containing the structural unit a represented by the following formula (1). Examples include sex polymers. The amount of adsorption to the silicon wafer will be described later. Component C can be used alone or in combination of two or more.
上記式(1)において、Rは、アルキル基であり、エッチング速度の抑制及びヘイズ低減の観点から、炭素数1以上4以下のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等が挙げられる。 In the above formula (1), R is an alkyl group, and from the viewpoint of suppressing the etching rate and reducing haze, an alkyl group having 1 or more and 4 or less carbon atoms is preferable, and specifically, a methyl group, an ethyl group, and a propyl group. Examples include a group, an isopropyl group, a butyl group, an isobutyl group and the like.
前記式(1)で表される構成単位aの供給源である単量体としては、例えば、ビニルメチルエーテル、ビニルエチルエーテル等が挙げられ、エッチング速度の抑制及びヘイズ低減の観点から、ビニルメチルエーテルが好ましい。これらは、1種単独または2種以上組み合わせて用いることができる。 Examples of the monomer that is the source of the structural unit a represented by the formula (1) include vinyl methyl ether and vinyl ethyl ether. From the viewpoint of suppressing the etching rate and reducing haze, vinyl methyl is used. Ether is preferred. These can be used individually by 1 type or in combination of 2 or more types.
式(1)で表される構成単位aを含む水溶性高分子は、構成単位a以外に他の構成単位bを含む共重合体であってもよい。構成単位bを形成する単量体成分としては、アニオン性モノマー、ノニオン性モノマーが好ましく、例えば、アクリル酸、メタクリル酸、ビニルスルホン酸、ナフタレンスルホン酸、フェニルスルホン酸、アリルスルホン酸、アリルポリエチレングリコールエーテル、スチレン、及びその誘導体等が挙げられる。前記誘導体としては、ステアリルメタクリレート、ラウリルメタクリレート、ブチルメタクリレート、ベンジルメタクリレート等の炭素数1以上18以下の炭化水素基を有するメタクリル酸エステル、及びポリエチレングリコールメタクリレート等が挙げられる。 The water-soluble polymer containing the structural unit a represented by the formula (1) may be a copolymer containing another structural unit b in addition to the structural unit a. As the monomer component forming the structural unit b, an anionic monomer and a nonionic monomer are preferable, and for example, acrylic acid, methacrylic acid, vinyl sulfonic acid, naphthalene sulfonic acid, phenyl sulfonic acid, allyl sulfonic acid, and allyl polyethylene glycol are preferable. Examples thereof include ether, styrene, and derivatives thereof. Examples of the derivative include methacrylic acid esters having a hydrocarbon group having 1 to 18 carbon atoms such as stearyl methacrylate, lauryl methacrylate, butyl methacrylate and benzyl methacrylate, and polyethylene glycol methacrylate.
成分Cが構成単位a及びbを含む共重合体である場合、構成単位aと構成単位bとの質量比(a/b)は、エッチング速度の抑制及びヘイズ低減の観点からは、50/50以上が好ましく、70/30以上がより好ましく、80/20以上が更に好ましく、90/10以上が更により好ましい。 When the component C is a copolymer containing the constituent units a and b, the mass ratio (a / b) of the constituent unit a and the constituent unit b is 50/50 from the viewpoint of suppressing the etching rate and reducing the haze. The above is preferable, 70/30 or more is more preferable, 80/20 or more is further preferable, and 90/10 or more is even more preferable.
成分Cが構成単位a及びbを含む共重合体である場合、構成単位aと構成単位bの配列は、ブロックでもランダムでもよく、エッチング速度の抑制及びヘイズ低減の観点から、ランダムが好ましい。 When the component C is a copolymer containing the constituent units a and b, the arrangement of the constituent units a and b may be block or random, and is preferably random from the viewpoint of suppressing the etching rate and reducing haze.
成分Cの重量平均分子量は、エッチング速度の抑制、ヘイズ低減及び研磨速度の確保の観点から、20万未満が好ましく、15万以下がより好ましく、10万以下が更に好ましく、そして、同様の観点から、500以上が好ましく、1000以上がより好ましい。成分Cの重量平均分子量は後の実施例に記載の方法により測定される。 The weight average molecular weight of the component C is preferably less than 200,000, more preferably 150,000 or less, further preferably 100,000 or less, and from the same viewpoint, from the viewpoint of suppressing the etching rate, reducing haze, and ensuring the polishing rate. , 500 or more is preferable, and 1000 or more is more preferable. The weight average molecular weight of component C is measured by the method described in later examples.
本発明の研磨液組成物に含まれる成分Cの含有量は、エッチング速度の抑制及びヘイズ低減の観点から、0.0005質量%以上が好ましく、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましく、そして、同様の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましく、0.05質量%以下が更により好ましい。 The content of the component C contained in the polishing liquid composition of the present invention is preferably 0.0005% by mass or more, preferably 0.001% by mass or more, and 0.005% by mass from the viewpoint of suppressing the etching rate and reducing haze. % Or more is more preferable, 0.01% by mass or more is further preferable, and from the same viewpoint, 1% by mass or less is more preferable, 0.5% by mass or less is more preferable, and 0.1% by mass or less is further preferable. Even more preferably 0.05% by mass or less.
本発明の研磨液組成物に含まれる成分Cの含有量に対する成分Aの含有量の比A/Cは、エッチング速度の抑制及びヘイズ低減の観点から、0.1以上が好ましく、0.5以上がより好ましく、1.0以上が更に好ましく、3.0以上が更により好ましく、5.0以上が更により好ましく、そして、同様の観点から、250以下が好ましく、200以下がより好ましく、170以下が更に好ましく、150以下が更により好ましく、50以下が更により好ましく、30以下が更により好ましい。 The ratio A / C of the content of the component A to the content of the component C contained in the polishing liquid composition of the present invention is preferably 0.1 or more, preferably 0.5 or more, from the viewpoint of suppressing the etching rate and reducing the haze. Is more preferable, 1.0 or more is further preferable, 3.0 or more is even more preferable, 5.0 or more is even more preferable, and from the same viewpoint, 250 or less is more preferable, 200 or less is more preferable, 170 or less. Is even more preferable, 150 or less is even more preferable, 50 or less is even more preferable, and 30 or less is even more preferable.
本発明の研磨液組成物における成分Cの成分Aへの吸着量は、エッチング速度の抑制及びヘイズ低減の観点から、3質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましく、1質量%未満が更により好ましく、0.5質量%未満が更により好ましい。本発明において、成分Cの成分Aへの吸着量は、全有機体炭素(Total Organic Carbon;以下、「TOC」ともいう)法により算出でき、具体的には実施例に記載の方法により測定できる。
ここで、成分Cの成分Aへの吸着量の測定方法の一例を示す。
研磨液組成物を遠心分離処理して成分Aを含む沈殿物と上澄み液に分離し、全有機体炭素計を用いて上澄み液の全有機体炭素量(以下、「TOC値」ともいう)を測定する。また、研磨液組成物と同じ濃度で成分Cを含有する水溶液のTOC値を測定する。そして、これらTOC値の差を、シリカへ吸着した成分Cの吸着量として算出する。
The amount of component C adsorbed on component A in the polishing liquid composition of the present invention is preferably 3% by mass or less, more preferably 2% by mass or less, and 1% by mass or less from the viewpoint of suppressing the etching rate and reducing haze. Even more preferably, less than 1% by mass is even more preferable, and less than 0.5% by mass is even more preferable. In the present invention, the amount of component C adsorbed on component A can be calculated by the total organic carbon (hereinafter, also referred to as “TOC”) method, and specifically, can be measured by the method described in Examples. ..
Here, an example of a method for measuring the amount of component C adsorbed on component A is shown.
The polishing liquid composition is centrifuged to separate it into a precipitate containing component A and a supernatant liquid, and the total organic carbon content (hereinafter, also referred to as “TOC value”) of the supernatant liquid is determined using a total organic carbon meter. Measure. In addition, the TOC value of the aqueous solution containing the component C at the same concentration as the polishing liquid composition is measured. Then, the difference between these TOC values is calculated as the amount of adsorption of the component C adsorbed on silica.
本発明の研磨液組成物における成分Cのシリコンウェーハに対する吸着量は、エッチング速度の抑制及びヘイズ低減の観点から、750ng/cm2以上が好ましく、800ng/cm2以上がより好ましく、850ng/cm2以上が更に好ましく、900ng/cm2以上が更に好ましく、そして、研磨速度の観点から、2000ng/cm2以下が好ましく、1500ng/cm2以下がより好ましく、1200ng/cm2以下が更に好ましい。成分Cのシリコンウェーハに対する吸着量は、例えば、水晶振動子マイクロバランス(quartz crystal microbalance with dissipation、QCM-D)法により水晶振動子センサーを用いて測定でき、具体的には、実施例に記載の方法により測定できる。水晶振動子センサーとは、一般的に、水晶振動子(測定基板)の両面にそれぞれ形成された電極に電圧を印加して発振させ、その振動数と波長を測定するセンサーである。
ここで、成分Cのシリコンウェーハに対する吸着量の測定方法の一例を示す。
成分Cの水溶液を水晶振動子センサーに接触させ、水晶振動子センサーの共振周波数を測定する。水晶振動子センサーとしては、水晶振動子の表面がシリコン系材料(例えば、ポリシリコン、単結晶シリコン等)でコーティングされているセンサー(例えば、polysiliconセンサー、siliconセンサー等)が挙げられる。そして、センサー表面への成分Cの吸着により生じる水晶振動子センサーの振動数変化量及び減衰定数変化量を用いて、Sauerbreyの式又はKelvin-Voightの式によってセンサー表面の質量変化量を算出する。この質量変化量を、成分Cのシリコンウェーハに対する吸着量として求めることができる。
Adsorption amount to the silicon wafer of component C in the polishing composition of the present invention, from the viewpoint of suppression of the etching rate and haze reduction, preferably 750 ng / cm 2 or more, 800 ng / cm 2 or more, more preferably, 850 ng / cm 2 or more, and more preferably from 900 ng / cm 2 or more, and, from the viewpoint of polishing rate, preferably 2000 ng / cm 2 or less, more preferably 1500 ng / cm 2 or less, more preferably 1200 ng / cm 2 or less. The amount of component C adsorbed on a silicon wafer can be measured using a quartz crystal microbalance (QCM-D) method, for example, by using a quartz crystal microbalance (QCM-D) method. It can be measured by the method. The crystal oscillator sensor is generally a sensor that applies a voltage to electrodes formed on both sides of a crystal oscillator (measurement substrate) to oscillate the crystal oscillator and measure its frequency and wavelength.
Here, an example of a method for measuring the amount of component C adsorbed on a silicon wafer is shown.
The aqueous solution of the component C is brought into contact with the crystal oscillator sensor, and the resonance frequency of the crystal oscillator sensor is measured. Examples of the crystal oscillator sensor include a sensor (for example, a polysilicon sensor, a silicon sensor, etc.) in which the surface of the crystal oscillator is coated with a silicon-based material (for example, polysilicon, single crystal silicon, etc.). Then, the mass change amount of the sensor surface is calculated by Sauerbrey's formula or Kelvin-Voight's formula using the frequency change amount and the attenuation constant change amount of the crystal oscillator sensor generated by the adsorption of the component C on the sensor surface. This mass change amount can be obtained as the adsorption amount of the component C on the silicon wafer.
本発明の研磨液組成物の限定されない一実施形態において、成分Cは、ポリビニルアルコール(PVA)を含まない。 In one unrestricted embodiment of the abrasive composition of the present invention, component C does not contain polyvinyl alcohol (PVA).
[水系媒体(成分D)]
本発明の研磨液組成物は、水系媒体(以下、「成分D」ともいう)を含んでいてもよい。成分Dとしては、例えば、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。成分Dとしては、なかでも、ヘイズ低減の観点から、イオン交換水又は超純水がより好ましく、超純水が更に好ましい。成分Dが水と溶媒との混合媒体である場合、混合媒体全体に対する水の割合は、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましい。
[Aqueous medium (component D)]
The polishing liquid composition of the present invention may contain an aqueous medium (hereinafter, also referred to as “component D”). Examples of the component D include water such as ion-exchanged water and ultrapure water, a mixed medium of water and a solvent, and the like, and examples of the solvent include a solvent that can be mixed with water (for example, an alcohol such as ethanol). Is preferable. As the component D, ion-exchanged water or ultrapure water is more preferable, and ultrapure water is even more preferable, from the viewpoint of haze reduction. When the component D is a mixed medium of water and a solvent, the ratio of water to the whole mixed medium is preferably 95% by mass or more, more preferably 98% by mass or more, and substantially 100% by mass from the viewpoint of economy. Is more preferable.
本発明の研磨液組成物中の成分Dの含有量は、成分A、成分B、成分C及び後述するその他の任意成分の残余とすることができる。 The content of the component D in the polishing liquid composition of the present invention can be the residue of the component A, the component B, the component C and other optional components described later.
本発明の研磨液組成物の25℃におけるpHは、研磨速度の確保の観点から、9.0以上が好ましく、9.5以上がより好ましく、10.0以上が更に好ましく、そして、同様の観点から、12.0以下が好ましく、11.5以下がより好ましく、11.0以下が更に好ましい。pHの調整は、成分B及び後述するpH調整剤から選ばれる1種以上を適宜添加して行うことができる。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定でき、pHメータの電極を研磨液組成物へ浸漬して1分後の数値とすることができる。 The pH of the polishing liquid composition of the present invention at 25 ° C. is preferably 9.0 or higher, more preferably 9.5 or higher, further preferably 10.0 or higher, and the same viewpoint from the viewpoint of ensuring the polishing speed. Therefore, 12.0 or less is preferable, 11.5 or less is more preferable, and 11.0 or less is further preferable. The pH can be adjusted by appropriately adding one or more selected from the component B and the pH adjuster described later. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and the value after 1 minute of immersing the electrode of the pH meter in the polishing liquid composition can be obtained. it can.
本発明の研磨液組成物は、シリコンウェーハの腐食抑制及びヘイズ低減の観点から、シリコンウェーハのエッチング速度が、30nm/h未満が好ましく、10nm/h以下がより好ましく、5nm/h以下が更に好ましい。 In the polishing liquid composition of the present invention, the etching rate of the silicon wafer is preferably less than 30 nm / h, more preferably 10 nm / h or less, still more preferably 5 nm / h or less, from the viewpoint of suppressing corrosion and reducing haze of the silicon wafer. ..
[その他の任意成分]
本発明の研磨液組成物は、本発明の効果が妨げられない範囲で、更に、成分C以外の水溶性高分子(以下「成分E」ともいう)、pH調整剤、防腐剤、アルコール類、キレート剤、アニオン性界面活性剤、及びノニオン性界面活性剤から選ばれる少なくとも1種のその他任意成分が含まれてもよい。前記その他の任意成分は、本発明の効果を損なわない範囲で研磨液組成物中に含有されることが好ましく、研磨液組成物中の前記その他の任意成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.1質量%以上が更に好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。
[Other optional ingredients]
The polishing liquid composition of the present invention further comprises a water-soluble polymer other than the component C (hereinafter, also referred to as “component E”), a pH adjuster, a preservative, alcohols, etc. At least one other optional component selected from chelating agents, anionic surfactants, and nonionic surfactants may be included. The other optional component is preferably contained in the polishing liquid composition as long as the effect of the present invention is not impaired, and the content of the other optional component in the polishing liquid composition is 0% by mass or more. More than 0% by mass is more preferable, 0.1% by mass or more is further preferable, 10% by mass or less is preferable, and 5% by mass or less is more preferable.
成分Eとしては、ヘイズ低減の観点から、例えば、ポリオキシアルキレン化合物が挙げられる。ポリオキシアルキレン化合物としては、例えば、ポリエチレングリコール(PEG)及びポリプロピレングリコール等のアルキレングリコールアルキレンオキシド付加物;グリセリンアルキレンオキシド付加物;及びペンタエリスリトールアルキレンオキシド付加物から選ばれる1種以上が挙げられ、これらの中でも、ヘイズ低減の観点から、エチレングリコールアルキレンオキシド付加物が好ましく、PEGがより好ましい。 As the component E, for example, a polyoxyalkylene compound can be mentioned from the viewpoint of haze reduction. Examples of the polyoxyalkylene compound include one or more selected from alkylene glycol alkylene oxide adducts such as polyethylene glycol (PEG) and polypropylene glycol; glycerin alkylene oxide adducts; and pentaerythritol alkylene oxide adducts. Among them, ethylene glycol alkylene oxide adduct is preferable, and PEG is more preferable, from the viewpoint of haze reduction.
pH調整剤としては、例えば、酸性化合物が挙げられる。酸性化合物としては、硫酸、塩酸、硝酸、リン酸等の無機酸;酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸、安息香酸等の有機酸;から選ばれる1種以上が挙げられる。 Examples of the pH adjuster include acidic compounds. Examples of the acidic compound include one or more selected from inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid; and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid; Be done.
防腐剤としては、例えば、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2−ベンズイソチアゾリン−3−オン、(5−クロロ−)2−メチル−4−イソチアゾリン−3−オン、過酸化水素、及び次亜塩素酸塩から選ばれる1種以上が挙げられる。 Preservatives include, for example, benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, and the following: One or more selected from chlorites can be mentioned.
アルコール類としては、例えば、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、2−メチル−2−プロパノオール、エチレングリコール、プロピレングリコール、ポリエチレングリコール及びグリセリンから選ばれる1種以上が挙げられる。 Examples of alcohols include one or more selected from methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanol, ethylene glycol, propylene glycol, polyethylene glycol and glycerin.
キレート剤としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、トリエチレンテトラミン六酢酸、及びトリエチレンテトラミン六酢酸ナトリウムから選ばれる1種以上が挙げられる。 Chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetic acid, ammonium nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, triethylenetetramine hexaacetic acid, and triethylene. One or more selected from tetramine sodium hexaacetate can be mentioned.
アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩;アルキルリン酸エステル等のリン酸エステル塩;から選ばれる1種以上が挙げられる。 Examples of the anionic surfactant include carboxylic acid salts such as fatty acid soaps and alkyl ether carboxylates; sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates; higher alcohol sulfates and alkyl ether sulfates. , Etc.; one or more selected from a phosphate ester salt such as an alkyl phosphate ester;
ノニオン性界面活性剤としては、例えば、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン(硬化)ヒマシ油等のポリエチレングリコール型;ショ糖脂肪酸エステル、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステル、アルキルグリコシド等の多価アルコール型;及び脂肪酸アルカノールアミド;から選ばれる1種以上が挙げられる。 Examples of the nonionic surfactant include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, and polyoxyethylene alkyl phenyl ether. One or more selected from polyethylene glycol type such as polyoxyalkylene (hardened) castor oil; polyhydric alcohol type such as sucrose fatty acid ester, polyglycerin alkyl ether, polyglycerin fatty acid ester, alkyl glycoside; and fatty acid alkanolamide; Can be mentioned.
上記において説明した研磨液組成物中の各成分の含有量は、研磨液組成物の使用時における含有量である。本発明の研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストをさらに低くできる点で好ましい。本発明の研磨液組成物の濃縮液は、使用時に、必要に応じて前述の水系媒体で適宜希釈して使用すればよい。 The content of each component in the polishing liquid composition described above is the content when the polishing liquid composition is used. The polishing liquid composition of the present invention may be stored and supplied in a concentrated state as long as its storage stability is not impaired. In this case, it is preferable in that the manufacturing and transportation costs can be further reduced. The concentrated solution of the polishing liquid composition of the present invention may be appropriately diluted with the above-mentioned aqueous medium as necessary at the time of use.
次に、前記研磨液組成物の濃縮液の調製方法の一例について説明する。 Next, an example of a method for preparing a concentrated solution of the polishing solution composition will be described.
前記研磨液組成物の濃縮液は、例えば、成分A、成分B及び成分Cと、必要に応じて上述した成分D及びその他の任意成分とを混合することによって調製できる。 The concentrated solution of the polishing liquid composition can be prepared, for example, by mixing component A, component B and component C with the above-mentioned component D and other optional components, if necessary.
成分Aの水系媒体への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。成分Aの凝集等により生じた粗大粒子が水系媒体中に含まれる場合、遠心分離やフィルターを用いたろ過等により、当該粗大粒子を除去すると好ましい。成分Aの水系媒体への分散は、成分Cの存在下で行うと好ましい。 Dispersion of the component A in an aqueous medium can be performed using, for example, a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill. When the coarse particles generated by the aggregation of the component A are contained in the aqueous medium, it is preferable to remove the coarse particles by centrifugation, filtration using a filter, or the like. Dispersion of component A in an aqueous medium is preferably carried out in the presence of component C.
[半導体基板の製造方法及び研磨方法]
本発明の研磨液組成物は、例えば、半導体基板の製造方法における、被研磨シリコンウェーハを研磨する研磨工程や、被研磨シリコンウェーハを研磨する研磨工程を含む研磨方法に用いられうる。本発明の研磨液組成物の研磨対象である被研磨シリコンウェーハとしては、例えば、単結晶100面シリコンウェーハ、111面シリコンウェーハ、110面シリコンウェーハ等が挙げられ、ヘイズ低減の観点から、単結晶100面シリコンウェーハが好ましい。また、前記シリコンウェーハの抵抗率としては、ヘイズ低減の観点から、好ましくは0.0001Ω・cm以上、より好ましくは0.001Ω・cm以上、更に好ましくは0.01Ω・cm以上、更により好ましくは0.1Ω・cm以上であり、そして、好ましくは100Ω・cm以下、より好ましくは50Ω・cm以下、更に好ましくは20Ω・cm以下である。
[Manufacturing method and polishing method of semiconductor substrate]
The polishing liquid composition of the present invention can be used, for example, in a polishing method including a polishing step of polishing a silicon wafer to be polished and a polishing step of polishing a silicon wafer to be polished in a method for manufacturing a semiconductor substrate. Examples of the silicon wafer to be polished of the polishing liquid composition of the present invention include a single crystal 100-sided silicon wafer, a 111-sided silicon wafer, a 110-sided silicon wafer, and the like, and from the viewpoint of haze reduction, a single crystal A 100-sided silicon wafer is preferable. Further, the resistance of the silicon wafer is preferably 0.0001 Ω · cm or more, more preferably 0.001 Ω · cm or more, still more preferably 0.01 Ω · cm or more, still more preferably 0.01 Ω · cm or more, from the viewpoint of haze reduction. It is 0.1 Ω · cm or more, and preferably 100 Ω · cm or less, more preferably 50 Ω · cm or less, still more preferably 20 Ω · cm or less.
前記被研磨シリコンウェーハを研磨する研磨工程は、例えば、単結晶シリコンインゴットを薄円板状にスライスすることにより得られた単結晶シリコンウェーハを平面化するラッピング(粗研磨)工程と、ラッピングされた単結晶シリコンウェーハをエッチングした後、単結晶シリコンウェーハ表面を鏡面化する仕上げ研磨工程とを含むことができる。本発明の研磨液組成物は、ヘイズ低減の観点から、上記仕上げ研磨工程で用いられるとより好ましい。 The polishing steps for polishing the silicon wafer to be polished include, for example, a wrapping (rough polishing) step for flattening a single crystal silicon wafer obtained by slicing a single crystal silicon ingot into a thin disk shape, and wrapping. After etching the single crystal silicon wafer, a finish polishing step of mirroring the surface of the single crystal silicon wafer can be included. The polishing liquid composition of the present invention is more preferably used in the above-mentioned finish polishing step from the viewpoint of haze reduction.
本発明の半導体基板の製造方法(以下、「本発明の製造方法」と略称する場合もある。)及び本発明の研磨方法(以下、「本発明の研磨方法」と略称する場合もある。)は、被研磨シリコンウェーハを研磨する研磨工程の前に、本発明の研磨液組成物の濃縮液を希釈する希釈工程を含んでいてもよい。希釈媒には、例えば、成分Dを用いることができる。希釈倍率は、希釈した後の研磨時の濃度を確保できれば特に限定されなくてもよく、製造及び輸送コストをさらに低くできる観点から、2倍以上が好ましく、10倍以上がより好ましく、30倍以上が更に好ましく、55倍以上が更により好ましく、そして、保存安定性の観点から、160倍以下が好ましく、120倍以下がより好ましく、100倍以下が更に好ましく、60倍以下が更により好ましい。 The method for manufacturing a semiconductor substrate of the present invention (hereinafter, may be abbreviated as "the manufacturing method of the present invention") and the polishing method of the present invention (hereinafter, may be abbreviated as "the polishing method of the present invention"). May include a diluting step of diluting the concentrated solution of the polishing liquid composition of the present invention before the polishing step of polishing the silicon wafer to be polished. As the dilution medium, for example, component D can be used. The dilution ratio does not have to be particularly limited as long as the concentration at the time of polishing after dilution can be secured, and from the viewpoint of further reducing the production and transportation costs, it is preferably 2 times or more, more preferably 10 times or more, and 30 times or more. Is even more preferable, 55 times or more is even more preferable, and from the viewpoint of storage stability, 160 times or less is more preferable, 120 times or less is more preferable, 100 times or less is further preferable, and 60 times or less is even more preferable.
前記希釈工程で希釈される研磨液組成物の濃縮液は、製造及び輸送コスト低減、保存安定性の向上の観点から、例えば、成分Aを1〜20質量%、成分Bを0.1〜5質量%、成分Cを0.1〜10量%含んでいると好ましい。 The concentrated solution of the polishing solution composition diluted in the dilution step contains, for example, 1 to 20% by mass of component A and 0.1 to 5 by mass of component B from the viewpoint of reducing production and transportation costs and improving storage stability. It is preferable that the component C is contained in an amount of 0.1 to 10% by mass.
前記希釈工程で希釈される研磨液組成物の濃縮液は、表面欠陥低減の観点から、ニッケル含有量が、100ppb以下が好ましく、20ppb以下がより好ましく、5ppb以下が更に好ましく、1ppb以下が更により好ましく、そして、コスト低減の観点から、0ppbより大きいことが好ましい。同様の観点から、研磨液組成物の濃縮液中に含まれる鉄、銅、銀の各含有量も、100ppb以下が好ましく、20ppb以下がより好ましく、5ppb以下が更に好ましく、そして、0ppbより大きいことが好ましい。 The concentrated solution of the polishing liquid composition diluted in the dilution step preferably has a nickel content of 100 ppb or less, more preferably 20 ppb or less, further preferably 5 ppb or less, still more preferably 1 ppb or less, from the viewpoint of reducing surface defects. It is preferable, and from the viewpoint of cost reduction, it is preferably larger than 0 ppb. From the same viewpoint, the content of iron, copper, and silver contained in the concentrated solution of the polishing liquid composition is preferably 100 ppb or less, more preferably 20 ppb or less, further preferably 5 ppb or less, and larger than 0 ppb. Is preferable.
前記被研磨シリコンウェーハを研磨する工程では、例えば、研磨パッドを貼り付けた定盤で被研磨シリコンウェーハを挟み込み、3〜20kPaの研磨圧力で被研磨シリコンウェーハを研磨することができる。 In the step of polishing the silicon wafer to be polished, for example, the silicon wafer to be polished can be sandwiched between a platen to which a polishing pad is attached, and the silicon wafer to be polished can be polished at a polishing pressure of 3 to 20 kPa.
上記研磨圧力とは、研磨時に被研磨シリコンウェーハの被研磨面に加えられる定盤の圧力をいう。研磨圧力は、研磨速度を向上させ経済的に研磨を行う観点から、3kPa以上が好ましく、4kPa以上がより好ましく、5kPa以上が更に好ましく、5.5kPa以上が更により好ましい。そして、表面品質を向上させ、且つ研磨されたシリコンウェーハにおける残留応力を緩和する観点から、研磨圧力は、20kPa以下が好ましく、18kPa以下がより好ましく、16kPa以下が更に好ましい。 The polishing pressure refers to the pressure of the surface plate applied to the surface to be polished of the silicon wafer to be polished during polishing. The polishing pressure is preferably 3 kPa or more, more preferably 4 kPa or more, further preferably 5 kPa or more, still more preferably 5.5 kPa or more, from the viewpoint of improving the polishing speed and economically polishing. From the viewpoint of improving the surface quality and relaxing the residual stress in the polished silicon wafer, the polishing pressure is preferably 20 kPa or less, more preferably 18 kPa or less, and further preferably 16 kPa or less.
前記被研磨シリコンウェーハを研磨する工程では、例えば、研磨パッドを貼り付けた定盤で被研磨シリコンウェーハを挟み込み、15℃以上40℃以下の研磨液組成物及び研磨パッド表面温度で被研磨シリコンウェーハを研磨することができる。研磨液組成物の温度及び研磨パッド表面温度としては、表面欠陥低減の観点から、15℃以上が好ましく、20℃以上がより好ましく、そして、ヘイズ低減の観点から、40℃以下が好ましく、30℃以下がより好ましく、25℃以下が更に好ましい。 In the step of polishing the silicon wafer to be polished, for example, the silicon wafer to be polished is sandwiched between a platen to which a polishing pad is attached, and the silicon wafer to be polished is prepared at a polishing liquid composition of 15 ° C. or higher and 40 ° C. Can be polished. The temperature of the polishing liquid composition and the surface temperature of the polishing pad are preferably 15 ° C. or higher, more preferably 20 ° C. or higher, and preferably 40 ° C. or lower, preferably 30 ° C. or lower, from the viewpoint of reducing haze. The following is more preferable, and 25 ° C. or lower is further preferable.
本発明の製造方法及び本発明の研磨方法は、前記研磨液組成物を用いて被研磨シリコンウェーハを研磨する工程の後に、研磨された被研磨シリコンウェーハを洗浄する工程を更に含むことができる。 The production method of the present invention and the polishing method of the present invention can further include a step of cleaning the polished silicon wafer to be polished after the step of polishing the silicon wafer to be polished using the polishing liquid composition.
[研磨液キット]
本発明は、本発明の研磨液組成物を製造するための研磨液キットであって、成分Aを含有する分散液が容器に収納された容器入りシリカ分散液を含む、研磨液キット(以下、「本発明のキット」と略称する場合もある。)に関する。本発明のキットによれば、ヘイズを低減可能な研磨液組成物が得られうる。
本発明のキットの一実施形態としては、例えば、成分A、成分B及び成分Dを含むシリカ分散液と、成分C及び成分Dを含む添加剤水溶液とを相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水系媒体を用いて希釈される研磨液キット(2液型研磨液組成物)が挙げられる。本発明のキットの他の実施形態としては、例えば、成分A、成分B及び成分Dを含むシリカ分散液と、成分B、成分C及び成分Dを含む添加剤水溶液と、を相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水系媒体を用いて希釈される研磨液キット(2液型研磨液組成物)が挙げられる。前記シリカ分散液及び添加剤水溶液にはそれぞれ、必要に応じて上述した任意成分が含まれていてもよい。
[Abrasive liquid kit]
The present invention is a polishing liquid kit for producing the polishing liquid composition of the present invention, which comprises a silica dispersion liquid in a container in which a dispersion liquid containing component A is stored (hereinafter referred to as a polishing liquid kit). It may be abbreviated as "the kit of the present invention"). According to the kit of the present invention, a polishing liquid composition capable of reducing haze can be obtained.
One embodiment of the kit of the present invention includes, for example, a silica dispersion containing component A, component B and component D, and an aqueous additive solution containing component C and component D in a state in which they are not mixed with each other. Examples thereof include a polishing liquid kit (two-component polishing liquid composition) that is mixed at the time of use and diluted with an aqueous medium if necessary. In another embodiment of the kit of the present invention, for example, a silica dispersion containing component A, component B and component D and an aqueous additive solution containing component B, component C and component D are not mixed with each other. Examples thereof include a polishing liquid kit (two-component polishing liquid composition) containing the above, which are mixed at the time of use and diluted with an aqueous medium if necessary. The silica dispersion liquid and the additive aqueous solution may each contain the above-mentioned optional components, if necessary.
以下、実施例により本発明をさらに詳細に説明するが、これらは例示的なものであって、本発明はこれら実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but these are exemplary, and the present invention is not limited to these Examples.
1.水溶性高分子C(成分C)の合成又はその詳細
(1)実施例1〜3、比較例2及び参考例1の成分C
実施例1〜3の成分Cには、ポリビニルメチルエーテル(PVME、重量平均分子量:80,000、東京化成工業社製)を用いた。比較例2の成分Cには、ポリビニルピロリドン(PVP、重量平均分子量:36万、東京化成工業社製、「K−60」)を用いた。
参考例1の成分Cには、ヒドロキシエチルセルロース(HEC、重量平均分子量:24万、ダイセルファインケム社製「SE−400」)を用いた。
1. 1. Synthesis of water-soluble polymer C (component C) or details thereof (1) Component C of Examples 1 to 3, Comparative Example 2 and Reference Example 1
Polyvinyl methyl ether (PVME, weight average molecular weight: 80,000, manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the component C of Examples 1 to 3. Polyvinylpyrrolidone (PVP, weight average molecular weight: 360,000, manufactured by Tokyo Chemical Industry Co., Ltd., “K-60”) was used as the component C of Comparative Example 2.
Hydroxyethyl cellulose (HEC, weight average molecular weight: 240,000, "SE-400" manufactured by Daicel FineChem) was used as the component C of Reference Example 1.
(2)比較例3の成分C
比較例3の成分Cには、下記のようにして合成したHEAA単独重合体(pHEAA)を用いた。
ヒドロキシエチルアクリルアミド150g(1.30mol、興人社製)を100gのイオン交換水に溶解し、モノマー水溶液を調製した。また、別に、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド 0.035g(重合開始剤、「V−50」、1.30mmol、和光純薬社製)を70gのイオン交換水に溶解し、重合開始剤水溶液を調製した。ジムロート冷却管、温度計及び三日月形テフロン(登録商標)製撹拌翼を備えた2Lセパラブルフラスコに、イオン交換水1,180gを投入した後、セパラブルフラスコ内を窒素置換した。次いで、オイルバスを用いてセパラブルフラスコ内の温度を68℃に昇温した後、予め調製した上記モノマー水溶液と上記重合開始剤水溶液を各々3.5時間かけて撹拌を行っているセパラブルフラスコ内に滴下した。滴下終了後、反応溶液の温度及び撹拌を4時間保持し、無色透明の10質量%ポリヒドロキシエチルアクリルアミド(pHEAA、重量平均分子量:700,000)水溶液1,500gを得た。
(2) Component C of Comparative Example 3
As the component C of Comparative Example 3, a HEAA homopolymer (pHEAA) synthesized as described below was used.
150 g (1.30 mol, manufactured by Kojin Co., Ltd.) of hydroxyethyl acrylamide was dissolved in 100 g of ion-exchanged water to prepare an aqueous monomer solution. Separately, add 0.035 g of 2,2'-azobis (2-methylpropion amidine) dihydrochloride (polymerization initiator, "V-50", 1.30 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) to 70 g of ion-exchanged water. It was dissolved to prepare an aqueous polymerization initiator solution. After putting 1,180 g of ion-exchanged water into a 2 L separable flask equipped with a Dimroth condenser, a thermometer and a crescent-shaped Teflon (registered trademark) stirring blade, the inside of the separable flask was replaced with nitrogen. Next, after raising the temperature inside the separable flask to 68 ° C. using an oil bath, the above-mentioned monomer aqueous solution and the above-mentioned polymerization initiator aqueous solution prepared in advance are each stirred for 3.5 hours. Dropped inside. After completion of the dropwise addition, the temperature and stirring of the reaction solution were maintained for 4 hours to obtain 1,500 g of a colorless and transparent 10% by mass polyhydroxyethylacrylamide (pHEAA, weight average molecular weight: 700,000) aqueous solution.
(3)比較例4の成分C
比較例4の成分Cには、下記のようにして合成したHEAA単独重合体(pHEAA)を用いた。
300mLナスフラスコにヒドロキシエチルアクリルアミド(KJケミカルズ社製)15g、2−シアノ−2−プロピルドデシルトリチオカルボネート(シグマアルドリッチ社製)0.073g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)(重合開始剤、「V−65」、和光純薬社製)0.005g、メタノール(和光純薬社製)150g、スターラーチップを入れ、三方コックとジムロート冷却管を取り付けた。30分間窒素バブリングを行なった後、オイルバスを用いてフラスコ内の温度を51℃に昇温し、重合を5時間行った。そして、前記フラスコ内の混合液を氷冷して重合を終了し、ポリマー溶液を得た。次いで、アセトン/n−ヘキサン(=50/50vol比)にポリマー溶液を滴下し、ポリマーを析出させ、ポリマーを取り出し乾燥によりポリマー固体(pHEAA、重量平均分子量:48,000)を得た。
(3) Component C of Comparative Example 4
As the component C of Comparative Example 4, a HEAA homopolymer (pHEAA) synthesized as described below was used.
In a 300 mL eggplant flask, 15 g of hydroxyethyl acrylamide (manufactured by KJ Chemicals), 0.073 g of 2-cyano-2-propyldodecyltrithiocarbonate (manufactured by Sigma Aldrich), 2,2'-azobis (2,4-dimethylvalero) Nitrile) (polymerization initiator, "V-65", manufactured by Wako Pure Chemical Industries, Ltd.) 0.005 g, methanol (manufactured by Wako Pure Chemical Industries, Ltd.) 150 g, stirrer chips were added, and a three-way cock and a Dimroth condenser were attached. After nitrogen bubbling for 30 minutes, the temperature inside the flask was raised to 51 ° C. using an oil bath, and polymerization was carried out for 5 hours. Then, the mixed solution in the flask was ice-cooled to complete the polymerization, and a polymer solution was obtained. Then, the polymer solution was added dropwise to acetone / n-hexane (= 50/50 vol ratio) to precipitate the polymer, and the polymer was taken out and dried to obtain a polymer solid (pHEAA, weight average molecular weight: 48,000).
2.各種パラメータの測定方法
(1)水溶性高分子C(成分C)の重量平均分子量の測定
成分Cの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により得たクロマトグラム中のピークに基づき算出した。各成分Cにおける、GPCの測定条件は以下の通りである。なお、HECの重量平均分子量はカタログ値である。
[実施例1〜3の成分C]
装置:HLC−8320 GPC(東ソー社製、検出器一体型)
カラム:α−M + α−M(アニオン)
溶離液:60mmol/L H3PO4 、 50mmol/L LiBr /DMF
流量:1.0mL/min
カラム温度:40℃
検出器:ショーデックスRI SE−61示差屈折率検出器
標準物質:分子量が既知の単分散ポリスチレン
[比較例3の成分C]
装置:HLC−8320 GPC(東ソー社製、検出器一体型)
カラム:GMPWXL+GMPWXL(アニオン)
溶離液:0.2Mリン酸バッファー/CH3CN=9/1
流量:0.5mL/min
カラム温度:40℃
検出器:ショーデックスRI SE−61示差屈折率検出器
標準物質:分子量が既知の単分散ポリエチレングリコール
[比較例4の成分C]
装置:HLC−8320 GPC(東ソー社製、検出器一体型)
カラム:α−M + α−M (アニオン)
溶離液:50mmol/L LiBr /DMF
流量:1.0mL/min
カラム温度:40℃
検出器:ショーデックスRI SE−61示差屈折率検出器
標準物質:分子量が既知の単分散ポリスチレン
2. Measurement methods of various parameters (1) Measurement of weight average molecular weight of water-soluble polymer C (component C) The weight average molecular weight of component C is based on the peak in the chromatogram obtained by the gel permeation chromatography (GPC) method. Calculated. The measurement conditions of GPC in each component C are as follows. The weight average molecular weight of HEC is a catalog value.
[Component C of Examples 1 to 3]
Equipment: HLC-8320 GPC (manufactured by Tosoh, integrated with detector)
Column: α-M + α-M (anion)
Eluent: 60 mmol / L H 3 PO 4 , 50 mmol / L LiBr / DMF
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detector: Shodex RI SE-61 Differential Refractometer Detector Standard Material: Monodisperse Polystyrene with Known Molecular Weight [Component C of Comparative Example 3]
Equipment: HLC-8320 GPC (manufactured by Tosoh, integrated with detector)
Column: GMPWXL + GMPWXL (anion)
Eluent: 0.2M phosphate buffer / CH 3 CN = 9/1
Flow rate: 0.5 mL / min
Column temperature: 40 ° C
Detector: Shodex RI SE-61 Differential Refractometer Detector Standard Material: Monodisperse Polyethylene Glycol with Known Molecular Weight [Component C of Comparative Example 4]
Equipment: HLC-8320 GPC (manufactured by Tosoh, integrated with detector)
Column: α-M + α-M (anion)
Eluent: 50 mmol / L LiBr / DMF
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detector: Shodex RI SE-61 Differential Refractometer Detector Standard Material: Monodisperse Polystyrene with Known Molecular Weight
(2)シリカ粒子A(成分A)の平均一次粒子径の測定
成分Aの平均一次粒子径(nm)は、BET法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
(2) Measurement of average primary particle size of silica particle A (component A) The average primary particle size (nm) of component A is calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET method. Calculated.
Average primary particle size (nm) = 2727 / S
成分Aの比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置、「フローソーブIII2305」、島津製作所製)を用いてBET法により測定した。
[前処理]
(a)スラリー状の成分Aを硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の成分Aをシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルターをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(成分A)をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
For the specific surface area of component A, after performing the following [pretreatment], about 0.1 g of the measurement sample is concentrated in the measurement cell to 4 digits after the decimal point, and immediately before the measurement of the specific surface area, 30 minutes in an atmosphere of 110 ° C. After drying, it was measured by the BET method using a specific surface area measuring device (micromeritic automatic specific surface area measuring device, "Flowsorb III2305", manufactured by Shimadzu Corporation).
[Preprocessing]
(A) The slurry-like component A is adjusted to pH 2.5 ± 0.1 with an aqueous nitric acid solution.
(B) The slurry-like component A adjusted to pH 2.5 ± 0.1 is taken in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour.
(C) After drying, the obtained sample is finely crushed in an agate mortar.
(D) The crushed sample is suspended in ion-exchanged water at 40 ° C. and filtered through a membrane filter having a pore size of 1 μm.
(E) The filtrate on the filter is washed 5 times with 20 g of ion-exchanged water (40 ° C.).
(F) Take the filter to which the filter material is attached in a petri dish and dry it in an atmosphere of 110 ° C. for 4 hours.
(G) The dried filtrate (component A) was taken so as not to be mixed with filter debris, and finely pulverized in a mortar to obtain a measurement sample.
(3)シリカ粒子A(成分A)の平均二次粒子径
成分Aの平均二次粒子径(nm)は、成分Aの濃度が0.15質量%となるように成分Aをイオン交換水に添加して得られた水分散液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:「ゼータサイザーNano ZS」、シスメックス社製)を用いて測定した。
(3) Average secondary particle size of silica particles A (component A) The average secondary particle size (nm) of component A is such that component A is converted to ion-exchanged water so that the concentration of component A is 0.15% by mass. The aqueous dispersion obtained by adding the particles is placed in a Disposable Sizeing Cuvette (10 mm cell made of polystyrene) up to a height of 10 mm from the bottom, and a dynamic light scattering method (device name: "Zetasizer Nano ZS", manufactured by Sysmex). Was measured using.
(4)平均粒径d、d0、及び比d/d0
研磨液組成物中での成分Aの平均粒径dは、成分Aの濃度が0.15質量%、成分Bの濃度が0.01質量%となるように研磨液組成物の濃縮液をイオン交換水で希釈して得た研磨液組成物をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:「ゼータサイザーNano ZS」、シスメックス社製)を用いて測定した。
成分A及び成分Bの水分散液中での成分Aの平均粒径d0は、成分Aの濃度が0.15質量%、成分Bの濃度が0.01質量%となるように、成分Bの水溶液に成分Aを添加して得られた水分散液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:「ゼータサイザーNano ZS」、シスメックス社製)を用いて測定した。平均粒径d0は69.6nmであった。
そして、得られた平均粒径d及び平均粒径d0を用いて、比d/d0を求めた。
(4) Average particle size d, d0, and ratio d / d0
The average particle size d of the component A in the polishing liquid composition is such that the concentration of the component A is 0.15% by mass and the concentration of the component B is 0.01% by mass. The polishing liquid composition obtained by diluting with exchanged water is placed in a Disposable Sigmaing Cuvette (10 mm cell made of polystyrene) up to a height of 10 mm from the bottom, and is subjected to a dynamic light scattering method (device name: "Zetasizer Nano ZS", Sysmex). It was measured using (manufactured by the company).
The average particle size d0 of the component A in the aqueous dispersion of the component A and the component B is such that the concentration of the component A is 0.15% by mass and the concentration of the component B is 0.01% by mass. The aqueous dispersion obtained by adding the component A to the aqueous solution is placed in a Disposable Sizing Cuvette (10 mm cell made of polystyrene) up to a height of 10 mm from the lower bottom, and is subjected to a dynamic light scattering method (device name: "Zetasizer Nano ZS"). , Manufactured by Sysmex). The average particle size d0 was 69.6 nm.
Then, the ratio d / d0 was determined using the obtained average particle diameter d and the average particle diameter d0.
(5)シリカ粒子A(成分A)のゼータ電位
成分Aのゼータ電位は、成分Aの濃度が0.15質量%となるように研磨液組成物の濃縮液をイオン交換水で希釈して得た研磨液組成物をDisposable folded capillary cellsにいれ、動的光散乱法(装置名:「ゼータサイザーNano ZS」、シスメックス社製)を用いて測定した。
(5) Zeta potential of silica particles A (component A) The zeta potential of component A is obtained by diluting the concentrated solution of the polishing solution composition with ion-exchanged water so that the concentration of component A is 0.15% by mass. The prepared abrasive composition was placed in Disposable folded particle cells and measured using a dynamic light scattering method (device name: "Zetasizer Nano ZS", manufactured by Sysmex).
(6)水溶性高分子C(成分C)のシリコンウェーハに対する吸着量
成分Cのシリコンウェーハに対する吸着量は、下記条件で水晶振動子マイクロバランス(quartz crystal microbalance with dissipation、QCM-D)法により測定した。
[測定条件]
測定装置:水晶振動子マイクロバランスQCM-D(E4、Q-sense社製)
センサー(測定基板):polysilicon (silicon) センサー
参照液:MilliQ水
流量:0.1mL/min
測定温度:25℃
[測定方法]
センサーを、アセトン、5質量%H2O2水溶液、1質量%フッ酸水溶液でそれぞれ5分間超音波洗浄を行い、MilliQ水ですすいでから窒素ブローで乾燥させた。その後、センサーを測定装置にセッティングしてMilliQ水を流し、振動数を安定化させた。そして、ポリマー水溶液(成分Cを0.01質量%となるように水で希釈した溶液)を流し、振動数変化(Δf)及び減衰定数変化(ΔD)を測定した。測定値からsauerbreyの式もしくはKelvin-Voightの式を用いて成分Cのシリコンウェーハに対する吸着量を算出した。
(6) Amount of water-soluble polymer C (component C) adsorbed on a silicon wafer The amount of component C adsorbed on a silicon wafer is measured by the quartz crystal microbalance with emissions (QCM-D) method under the following conditions. did.
[Measurement condition]
Measuring device: Quartz crystal microbalance QCM-D (E4, manufactured by Q-sense)
Sensor (measurement board): polysilicon (silicon) Sensor reference liquid: MilliQ Water flow rate: 0.1 mL / min
Measurement temperature: 25 ° C
[Measuring method]
The sensor was ultrasonically cleaned with acetone, 5% by mass H 2 O 2 aqueous solution and 1 mass% hydrofluoric acid aqueous solution for 5 minutes each, rinsed with MilliQ water, and dried with a nitrogen blow. After that, the sensor was set on the measuring device and MilliQ water was run to stabilize the frequency. Then, a polymer aqueous solution (a solution obtained by diluting component C with water so as to be 0.01% by mass) was flowed, and a frequency change (Δf) and a decay constant change (ΔD) were measured. From the measured values, the amount of component C adsorbed on the silicon wafer was calculated using the sauerbrey formula or the Kelvin-Voight formula.
(7)水溶性高分子C(成分C)のシリカ粒子A(成分A)への吸着量
成分Aの濃度が0.15質量%、成分Bの濃度が0.01質量%、成分Cの濃度が表1に示す含有量となるように研磨液組成物の濃縮液をイオン交換水で希釈して得た研磨液組成物を15分静置した。その後、遠心分離処理(25,000rpm、1時間)を行い、シリカを含む沈降物と上澄み液を分離し、全有機体炭素計(島津製作所製「TOC−L CPH」)を用いて、上澄み液のTOC値を測定した。別途、各濃度の成分Cの水溶液のTOC値から検量線を作成し、この検量線と上澄み液のTOC値からシリカへ吸着した成分Cの吸着量を計算した。
(7) Amount of water-soluble polymer C (component C) adsorbed on silica particles A (component A) The concentration of component A is 0.15% by mass, the concentration of component B is 0.01% by mass, and the concentration of component C. The polishing liquid composition obtained by diluting the concentrated liquid of the polishing liquid composition with ion-exchanged water so as to have the content shown in Table 1 was allowed to stand for 15 minutes. After that, centrifugation (25,000 rpm, 1 hour) is performed to separate the sediment containing silica from the supernatant, and the supernatant is used with a total organic carbon meter (“TOC-L CPH” manufactured by Shimadzu Corporation). The TOC value of was measured. Separately, a calibration curve was prepared from the TOC value of the aqueous solution of the component C having each concentration, and the adsorption amount of the component C adsorbed on silica was calculated from the calibration curve and the TOC value of the supernatant liquid.
3.研磨液組成物の調製
成分A(コロイダルシリカ、平均一次粒子径35nm、平均二次粒子径70nm、会合度2.0)、成分B含有水溶液(28質量%アンモニア水、キシダ化学(株)、試薬特級)、表1に示す成分C、及び超純水を攪拌混合して、実施例1〜3、比較例1〜4及び参考例1の研磨液組成物の濃縮液を得た。表1における各成分A〜Cの含有量は、濃縮液を50倍に希釈して得た研磨液組成物についての値、すなわち、研磨液組成物の使用時における含有量である。成分A、成分B及び成分Cを除いた残余は超純水である。なお、成分Aの含有量は、SiO2換算濃度である。
3. 3. Preparation of polishing liquid composition Component A (coloidal silica, average primary particle size 35 nm, average secondary particle size 70 nm, degree of association 2.0), component B-containing aqueous solution (28 mass% aqueous ammonia, Kishida Chemical Co., Ltd., reagent) Special grade), component C shown in Table 1, and ultrapure water were mixed by stirring to obtain a concentrated solution of the polishing liquid composition of Examples 1 to 3, Comparative Examples 1 to 4, and Reference Example 1. The content of each component A to C in Table 1 is a value for the polishing liquid composition obtained by diluting the concentrated liquid 50 times, that is, the content of the polishing liquid composition at the time of use. The residue excluding component A, component B and component C is ultrapure water. The content of the component A is a SiO 2 equivalent concentration.
4.研磨方法
上記の研磨液組成物の濃縮液をイオン交換水で50倍希釈して得た研磨液組成物(pH10.6±0.1(25℃))について、研磨直前にそれぞれフィルター(コンパクトカートリッジフィルター「MCP−LX−C10S」、アドバンテック社製)にてろ過を行い、下記の研磨条件でシリコンウェーハ[直径200mmのシリコン片面鏡面ウェーハ(伝導型:P、結晶方位:100、抵抗率:0.1Ω・cm以上100Ω・cm未満)]に対して仕上げ研磨を行った。当該仕上げ研磨に先立ってシリコンウェーハに対して市販の研磨液組成物を用いてあらかじめ粗研磨を実施した。粗研磨を終了し仕上げ研磨に供したシリコンウェーハのヘイズは、2〜3ppmであった。ヘイズは、KLA Tencor社製「Surfscan SP1−DLS」を用いて測定される暗視野ワイド斜入射チャンネル(DWO)での値である。
4. Polishing method The polishing liquid composition (pH 10.6 ± 0.1 (25 ° C.)) obtained by diluting the concentrated liquid of the above polishing liquid composition 50 times with ion-exchanged water is filtered (compact cartridge) immediately before polishing. Filtered with a filter "MCP-LX-C10S" (manufactured by Advantech), and under the following polishing conditions, a silicon wafer [silicon single-sided mirror wafer with a diameter of 200 mm (conduction type: P, crystal orientation: 100, resistance: 0. 1Ω ・ cm or more and less than 100Ω ・ cm)] was finish-polished. Prior to the finish polishing, the silicon wafer was subjected to rough polishing in advance using a commercially available polishing liquid composition. The haze of the silicon wafer after rough polishing and subject to finish polishing was 2 to 3 ppm. The haze is a value in the dark field wide oblique incident channel (DWO) measured using "Surfscan SP1-DLS" manufactured by KLA Tencor.
<仕上げ研磨条件>
研磨機:片面8インチ研磨機(岡本工作機械製作所製「SPP600S」)
研磨パッド:スエードパッド(東レ コーテックス社製、アスカー硬度:64、厚さ:1.37mm、ナップ長:450um、開口径:60um)
シリコンウェーハ研磨圧力:100g/cm2
定盤回転速度:60rpm
研磨時間:5分
研磨液組成物の供給速度:150g/分
研磨液組成物の温度:23℃
キャリア回転速度:62rpm
<Finishing conditions>
Polishing machine: Single-sided 8-inch polishing machine ("SPP600S" manufactured by Okamoto Machine Tool Mfg. Co., Ltd.)
Polishing pad: Suede pad (manufactured by Toray Coatex Co., Ltd., Asker hardness: 64, thickness: 1.37 mm, nap length: 450 um, opening diameter: 60 um)
Silicon wafer polishing pressure: 100 g / cm 2
Surface plate rotation speed: 60 rpm
Polishing time: 5 minutes Supply speed of polishing liquid composition: 150 g / minute Temperature of polishing liquid composition: 23 ° C.
Carrier rotation speed: 62 rpm
5.洗浄方法
仕上げ研磨後、シリコンウェーハに対して、オゾン洗浄と希フッ酸洗浄を下記のとおり行った。オゾン洗浄では、20ppmのオゾンを含んだ水溶液をノズルから流速1L/min、600rpmで回転するシリコンウェーハの中央に向かって3分間噴射した。このときオゾン水の温度は常温とした。次に希フッ酸洗浄を行った。希フッ酸洗浄では、0.5質量%のフッ化水素アンモニウム(特級、ナカライテクス社製)を含んだ水溶液をノズルから流速1L/min、600rpmで回転するシリコンウェーハの中央に向かって6秒間噴射した。上記オゾン洗浄と希フッ酸洗浄を1セットとして計2セット行い、最後にスピン乾燥を行った。スピン乾燥では1,500rpmでシリコンウェーハを回転させた。
5. Cleaning method After finish polishing, ozone cleaning and dilute hydrofluoric acid cleaning were performed on the silicon wafer as follows. In ozone cleaning, an aqueous solution containing 20 ppm of ozone was sprayed from a nozzle toward the center of a silicon wafer rotating at a flow rate of 1 L / min and 600 rpm for 3 minutes. At this time, the temperature of ozone water was set to room temperature. Next, dilute hydrofluoric acid washing was performed. In dilute hydrofluoric acid cleaning, an aqueous solution containing 0.5% by mass of ammonium hydrogen fluoride (special grade, manufactured by Nacalai Tesque, Inc.) is injected from a nozzle toward the center of a silicon wafer rotating at a flow rate of 1 L / min and 600 rpm for 6 seconds. did. A total of two sets of the above ozone cleaning and dilute hydrofluoric acid cleaning were performed as one set, and finally spin drying was performed. In spin drying, the silicon wafer was rotated at 1,500 rpm.
6.評価
(1)エッチング速度の測定方法
仕上げ研磨で使用したものと同様のシリコンウェーハを4cm×4cmにカットし、調製した実施例1〜3、比較例1〜4及び参考例1の研磨液組成物30gに全て浸かる状態で40℃の恒温室で24時間浸漬した。浸漬によって減少したシリコンウェーハの厚みを、減少した重量とシリコンウェーハの比重を用いて算出した。算出した厚みと浸漬時間とから、エッチング速度を算出した。
6. Evaluation (1) Method for measuring etching rate Polishing liquid compositions of Examples 1 to 3, Comparative Examples 1 to 4 and Reference Example 1 prepared by cutting a silicon wafer similar to that used in finish polishing into 4 cm × 4 cm. It was immersed in a constant temperature room at 40 ° C. for 24 hours in a state where it was completely immersed in 30 g. The thickness of the silicon wafer reduced by immersion was calculated using the reduced weight and the specific gravity of the silicon wafer. The etching rate was calculated from the calculated thickness and immersion time.
(2)シリコンウェーハのヘイズの評価
洗浄後のシリコンウェーハ表面のヘイズ(ppm)の評価には、KLA Tencor社製「Surfscan SP1−DLS」を用いて測定される、暗視野ワイド斜入射チャンネル(DWO)での値を用いた。ヘイズの数値は小さいほど表面の平坦性が高いことを示す。ヘイズの結果を表1に示した。ヘイズの測定は、各々2枚のシリコンウェーハに対して行い、各々平均値を表1に示した。
(2) Evaluation of haze of silicon wafer The haze (ppm) of the surface of a silicon wafer after cleaning is evaluated using a dark-field wide oblique incident channel (DWO) measured using "Surfscan SP1-DLS" manufactured by KLA Tencor. ) Was used. The smaller the haze value, the higher the flatness of the surface. The results of the haze are shown in Table 1. Haze measurements were performed on two silicon wafers each, and the average values for each were shown in Table 1.
表1に示されるように、実施例1〜3の研磨液組成物を用いた場合、比較例1〜4の研磨液組成物を用いた場合に比べて、研磨されたシリコンウェーハのヘイズが低減されていた。さらに、実施例1〜3の研磨液組成物では、エッチング速度が効果的に抑制されていた。 As shown in Table 1, when the polishing liquid compositions of Examples 1 to 3 are used, the haze of the polished silicon wafer is reduced as compared with the case where the polishing liquid compositions of Comparative Examples 1 to 4 are used. It had been. Further, in the polishing liquid compositions of Examples 1 to 3, the etching rate was effectively suppressed.
本発明の研磨液組成物を用いれば、研磨されたシリコンウェーハ表面のヘイズを低減できる。よって、本発明の研磨液組成物は、様々な半導体基板の製造過程で用いられる研磨液組成物として有用であり、なかでも、シリコンウェーハの仕上げ研磨用の研磨液組成物として有用である。 By using the polishing liquid composition of the present invention, the haze of the polished silicon wafer surface can be reduced. Therefore, the polishing liquid composition of the present invention is useful as a polishing liquid composition used in the manufacturing process of various semiconductor substrates, and above all, is useful as a polishing liquid composition for finish polishing of a silicon wafer.
Claims (10)
前記研磨液組成物中に存在するシリカ粒子Aの平均粒径dと、前記研磨液組成物と同じ濃度でシリカ粒子A及び塩基性化合物Bを含有する水分散液中に存在するシリカ粒子Aの平均粒径d0との比d/d0が1.1以下であり、
水溶性高分子Cのシリコンウェーハに対する吸着量が750ng/cm2以上である、シリコンウェーハ用仕上げ研磨液組成物。 A finish polishing liquid composition for a silicon wafer containing silica particles A, a basic compound B, and a water-soluble polymer C.
The average particle size d of the silica particles A present in the polishing liquid composition and the silica particles A existing in the aqueous dispersion containing the silica particles A and the basic compound B at the same concentration as the polishing liquid composition. The ratio d / d0 to the average particle size d0 is 1.1 or less.
A finish polishing liquid composition for a silicon wafer, wherein the amount of the water-soluble polymer C adsorbed on the silicon wafer is 750 ng / cm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017123487A JP6893835B2 (en) | 2017-06-23 | 2017-06-23 | Finish polishing liquid composition for silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017123487A JP6893835B2 (en) | 2017-06-23 | 2017-06-23 | Finish polishing liquid composition for silicon wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019009278A JP2019009278A (en) | 2019-01-17 |
JP6893835B2 true JP6893835B2 (en) | 2021-06-23 |
Family
ID=65026929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017123487A Active JP6893835B2 (en) | 2017-06-23 | 2017-06-23 | Finish polishing liquid composition for silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6893835B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7512035B2 (en) * | 2019-12-24 | 2024-07-08 | ニッタ・デュポン株式会社 | Polishing composition |
CN114184671B (en) * | 2021-12-09 | 2024-02-06 | 中国石油大学(北京) | Method for determining the number of adsorption layers of a surfactant on a rock surface |
JP7201117B1 (en) | 2022-04-26 | 2023-01-10 | 信越半導体株式会社 | Polishing composition, method for polishing silicon wafer, and polishing apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5371416B2 (en) * | 2008-12-25 | 2013-12-18 | 富士フイルム株式会社 | Polishing liquid and polishing method |
JP2016119418A (en) * | 2014-12-22 | 2016-06-30 | 花王株式会社 | Polishing liquid composition for silicon wafer |
JP6655354B2 (en) * | 2014-12-26 | 2020-02-26 | 花王株式会社 | Polishing composition for silicon wafer or polishing composition kit for silicon wafer |
JP6348927B2 (en) * | 2016-04-27 | 2018-06-27 | 株式会社フジミインコーポレーテッド | Silicon wafer polishing composition |
-
2017
- 2017-06-23 JP JP2017123487A patent/JP6893835B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019009278A (en) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893706B2 (en) | Polishing liquid composition for silicon wafer | |
JP5822356B2 (en) | Polishing liquid composition for silicon wafer | |
JP6836671B2 (en) | Polishing liquid composition for silicon wafer or polishing liquid composition kit for silicon wafer | |
JP6087143B2 (en) | Polishing liquid composition for silicon wafer | |
JP2016213216A (en) | Polishing liquid composition for silicon wafers | |
JP6039419B2 (en) | Polishing liquid composition for silicon wafer | |
JP6678076B2 (en) | Polishing liquid composition for silicon wafer | |
JP6893835B2 (en) | Finish polishing liquid composition for silicon wafer | |
JP6951933B2 (en) | Finish polishing liquid composition for silicon wafer | |
JP2018074048A (en) | Polishing liquid composition for silicon wafer | |
JP6245939B2 (en) | Polishing liquid composition for silicon wafer | |
JP6792413B2 (en) | Abrasive liquid composition for silicon wafer | |
JP6265542B2 (en) | Manufacturing method of semiconductor substrate | |
JP6086725B2 (en) | Polishing liquid composition for silicon wafer | |
JP6403324B2 (en) | Polishing liquid composition for silicon wafer | |
JP6831667B2 (en) | Wetting agent | |
JP5995659B2 (en) | Polishing liquid composition for silicon wafer | |
JP6168984B2 (en) | Polishing liquid composition for silicon wafer | |
JP6366139B2 (en) | Method for producing polishing composition for silicon wafer | |
JP7405567B2 (en) | polishing liquid composition | |
JP6169938B2 (en) | Polishing liquid composition for silicon wafer | |
JP2016119418A (en) | Polishing liquid composition for silicon wafer | |
JP6418941B2 (en) | Polishing liquid composition for silicon wafer | |
JP6367113B2 (en) | Polishing liquid composition for silicon wafer | |
JP2020109864A (en) | Polishing liquid composition for silicon wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210602 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6893835 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |