JP6366139B2 - Method for producing polishing composition for silicon wafer - Google Patents

Method for producing polishing composition for silicon wafer Download PDF

Info

Publication number
JP6366139B2
JP6366139B2 JP2014263497A JP2014263497A JP6366139B2 JP 6366139 B2 JP6366139 B2 JP 6366139B2 JP 2014263497 A JP2014263497 A JP 2014263497A JP 2014263497 A JP2014263497 A JP 2014263497A JP 6366139 B2 JP6366139 B2 JP 6366139B2
Authority
JP
Japan
Prior art keywords
polishing
silicon wafer
mass
component
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014263497A
Other languages
Japanese (ja)
Other versions
JP2016122805A (en
Inventor
浩司 細川
浩司 細川
穣史 三浦
穣史 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2014263497A priority Critical patent/JP6366139B2/en
Publication of JP2016122805A publication Critical patent/JP2016122805A/en
Application granted granted Critical
Publication of JP6366139B2 publication Critical patent/JP6366139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、シリコンウェーハ用研磨液組成物の製造方法、及び当該シリコンウェーハ用研磨液組成物これを用いた半導体基板の製造方法並びに被研磨シリコンウェーハの研磨方法に関する。   The present invention relates to a method for producing a polishing composition for a silicon wafer, a method for producing a semiconductor substrate using the polishing composition for a silicon wafer, and a method for polishing a silicon wafer to be polished.

近年、半導体メモリの高記録容量化に対する要求の高まりから半導体装置のデザインルールは微細化が進んでいる。このため半導体装置の製造過程で行われるフォトリソグラフィーにおいて焦点深度は浅くなり、シリコンウェーハ(ベアウェーハ)の欠陥低減や平滑性に対する要求はますます厳しくなっている。   In recent years, design rules for semiconductor devices have been increasingly miniaturized due to increasing demand for higher recording capacity of semiconductor memories. For this reason, the depth of focus becomes shallower in photolithography performed in the manufacturing process of a semiconductor device, and the demands for defect reduction and smoothness of silicon wafers (bare wafers) are becoming stricter.

シリコンウェーハの品質を向上する目的で、シリコンウェーハの研磨は多段階で行われている。特に研磨の最終段階で行われる仕上げ研磨は、表面粗さ(ヘイズ)の抑制と研磨後のシリコンウェーハ表面のぬれ性向上(親水化)によるパーティクルやスクラッチ、ピット等の表面欠陥(LPD:Light point defects)の抑制とを目的として行われている。   In order to improve the quality of silicon wafers, polishing of silicon wafers is performed in multiple stages. In particular, the final polishing performed in the final stage of polishing is a surface defect (LPD: Light point) such as particles, scratches and pits due to suppression of surface roughness (haze) and improvement of wettability (hydrophilization) of the silicon wafer surface after polishing. This is done to reduce defects).

シリコンウェーハの研磨に用いられる研磨液組成物として、良好な生産性が確保される研磨速度の担保、及び表面欠陥(LPD)と表面粗さ(ヘイズ)の低減を目的とし、シリカ粒子と、含窒素塩基性化合物と、ヒドロキシエチルアクリルアミド(HEAA)等のアクリルアミド誘導体に由来する構成単位を含む水溶性高分子化合物を含むシリコンウェーハ用研磨液組成物が開示されている(特許文献1)。   As a polishing liquid composition used for polishing silicon wafers, silica particles are contained for the purpose of ensuring a polishing rate that ensures good productivity and reducing surface defects (LPD) and surface roughness (haze). A polishing composition for silicon wafers containing a nitrogen basic compound and a water-soluble polymer compound containing a structural unit derived from an acrylamide derivative such as hydroxyethylacrylamide (HEAA) is disclosed (Patent Document 1).

特開2013―222863号公報JP 2013-222863 A

特許文献1に記載の研磨液組成物は、例えば、25℃では、長期間(例えば、1ヶ月)保存しても、シリコンウェーハの低表面粗さ(ヘイズ)及び低表面欠陥(LPD)と高研磨速度とを発現するが、例えば、40℃で長時間(1ヶ月)静置保存した場合、シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と良好な生産性が確保される研磨速度(以下「高研磨速度」と略称する場合もある。)の担保との両立が困難となる。   The polishing composition described in Patent Document 1 has a low surface roughness (haze), a low surface defect (LPD), and a high level even when stored at 25 ° C. for a long period (for example, one month). For example, when stored at 40 ° C. for a long time (1 month), the surface roughness (haze) and surface defects (LPD) of the silicon wafer are reduced and good productivity is ensured. This makes it difficult to achieve both a high polishing rate (hereinafter sometimes abbreviated as “high polishing rate”).

そこで、本発明では、高温での長期保存(以下「高温長期保存」と略称する場合もある。)を経ても、シリコンウェーハの、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と高研磨速度とを両立できる、シリコンウェーハ用研磨液組成物の製造方法、及び当該シリコンウェーハ用研磨液組成物を用いた半導体基板の製造方法、並びに被研磨シリコンウェーハの研磨方法を提供する。   Therefore, in the present invention, even after a long-term storage at a high temperature (hereinafter sometimes abbreviated as “high-temperature long-term storage”), the surface roughness (haze) and surface defects (LPD) of the silicon wafer are reduced and high. Provided are a method for producing a polishing composition for a silicon wafer, a method for producing a semiconductor substrate using the polishing composition for a silicon wafer, and a method for polishing a silicon wafer to be polished, which are compatible with the polishing rate.

本発明のシリコンウェーハ用研磨液組成物の製造方法は、シリカ粒子(成分A)と、含窒素塩基性化合物(成分B)と、水溶性高分子化合物(成分C)とを含有するシリコンウェーハ用研磨液組成物の製造方法であり、前記シリカ粒子(成分A)の含有量が1質量%以上20質量%以下、前記含窒素塩基性化合物(成分B)の含有量が0.1質量%以上5質量%以下、前記水溶性高分子化合物(成分C)の含有量が0.1質量%以上10質量%以下である混合液の温度を、1日以上180日以下の間30℃以上80℃以下に維持する温度維持工程を含む。   The method for producing a polishing composition for a silicon wafer of the present invention is for a silicon wafer containing silica particles (component A), a nitrogen-containing basic compound (component B), and a water-soluble polymer compound (component C). A method for producing a polishing liquid composition, wherein the content of the silica particles (component A) is 1% by mass or more and 20% by mass or less, and the content of the nitrogen-containing basic compound (component B) is 0.1% by mass or more. The temperature of the mixed solution in which the content of the water-soluble polymer compound (component C) is 0.1% by mass or more and 10% by mass or less is 30 ° C. or more and 80 ° C. for 1 day or more and 180 days or less. The temperature maintenance process maintained below is included.

本発明の被研磨シリコンウェーハの研磨方法は、本発明のシリコンウェーハ用研磨液組成物の製造方法により製造されたシリコンウェーハ用研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程を含む。   The polishing method for a silicon wafer to be polished according to the present invention includes a polishing step of polishing the silicon wafer to be polished using the polishing composition for silicon wafer manufactured by the method for manufacturing a polishing liquid composition for silicon wafer according to the present invention. .

本発明の半導体基板の製造方法は、本発明のシリコンウェーハ用研磨液組成物の製造方法により製造されたシリコンウェーハ用研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程を含む。   The manufacturing method of the semiconductor substrate of this invention includes the grinding | polishing process of grind | polishing a to-be-polished silicon wafer using the polishing liquid composition for silicon wafers manufactured by the manufacturing method of the polishing liquid composition for silicon wafers of this invention.

本発明によれば、高温長期保存を経ても、シリコンウェーハの、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と高研磨速度とを両立できる、シリコンウェーハ用研磨液組成物の製造方法、及び当該シリコンウェーハ用研磨液組成物を用いた被研磨シリコンウェーハの研磨方法、並びに半導体基板の製造方法を提供できる。   According to the present invention, a method for producing a polishing composition for a silicon wafer that can achieve both a reduction in surface roughness (haze) and surface defects (LPD) and a high polishing rate even after high-temperature and long-term storage. And the polishing method of the to-be-polished silicon wafer using the said polishing liquid composition for silicon wafers, and the manufacturing method of a semiconductor substrate can be provided.

本発明は、シリカ粒子(成分A)と、含窒素塩基性化合物(成分B)と、水溶性高分子化合物(成分C)とを含有するシリコンウェーハ用研磨液組成物の製造方法(以下「本発明の研磨液組成物の製造方法」と略称する場合もある。)であり、水溶性高分子化合物(成分C)が、好ましくは、下記一般式(1)の構成単位を含む。

Figure 0006366139
ただし、上記一般式(1)において、R1、R2は、それぞれ独立して、水素、炭素数が1〜8のアルキル基、又は炭素数が1〜2のヒドロキシアルキル基を示し、R1、R2の両方が水素であることはない。 The present invention relates to a method for producing a polishing composition for a silicon wafer (hereinafter referred to as “this”) containing silica particles (component A), a nitrogen-containing basic compound (component B), and a water-soluble polymer compound (component C). The water-soluble polymer compound (component C) preferably contains a structural unit represented by the following general formula (1).
Figure 0006366139
However, in the general formula (1), R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 8 carbon atoms, or a hydroxyalkyl group having 1 to 2 carbon atoms, and R 1 , R 2 are not both hydrogen.

本発明の研磨液組成物の製造方法では、前記シリカ粒子(成分A)の含有量が1質量%以上20質量%以下、前記含窒素塩基性化合物(成分B)の含有量が0.1質量%以上5質量%以下、前記水溶性高分子化合物(成分C)の含有量が0.1質量%以上10質量%以下である混合液の温度を、1日以上180日以下の間30℃以上80℃以下に維持する温度維持工程(「エイジング工程」とも言う。)を含むことにより、その後に行われる高温長期保存を経ても、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と高研磨速度とを両立できるという知見に基づく。前記温度維持工程では、30℃以上80℃以下の温度範囲内であれば混合液の温度の変動があってもよいが、混合液の温度は、好ましくは30℃以上80℃以下の範囲内のある所定の温度にほぼ保たれ、好ましくは温度差が20℃以内であり、より好ましくはほぼ一定に保たれる。   In the manufacturing method of the polishing liquid composition of the present invention, the content of the silica particles (component A) is 1% by mass or more and 20% by mass or less, and the content of the nitrogen-containing basic compound (component B) is 0.1% by mass. % To 5% by mass, and the temperature of the liquid mixture in which the content of the water-soluble polymer compound (component C) is 0.1% by mass to 10% by mass is 30 ° C. or more for 1 day to 180 days. By including a temperature maintaining step (also referred to as an “aging step”) that is maintained at 80 ° C. or lower, the surface roughness (haze) and surface defects (LPD) can be reduced and increased even after high-temperature and long-term storage performed thereafter. This is based on the knowledge that both the polishing speed can be achieved. In the temperature maintaining step, the temperature of the mixed solution may vary as long as it is within the temperature range of 30 ° C. or higher and 80 ° C. or lower, but the temperature of the mixed solution is preferably within the range of 30 ° C. or higher and 80 ° C. or lower. The temperature is kept at a certain predetermined temperature, preferably the temperature difference is within 20 ° C., more preferably kept almost constant.

本発明の効果の発現機構の詳細は明らかではないが、以下のように推定している。本発明のシリコンウェーハ用研磨液組成物の製造方法により製造される研磨液組成物(以下「研磨液組成物」と略称する場合もある。)中の水溶性高分子化合物(成分C)は、アルキル基などの疎水部と親水部を有する。親水部はシリカ粒子と相互作用し、疎水部はシリコンウェーハと相互作用する。そのため、水溶性高分子化合物(成分C)がシリコンウェーハ表面に適度に吸着して含窒素塩基性化合物による腐食を抑制することで、良好な表面粗さ(ヘイズ)を達成するとともに、良好なぬれ性を発現し、シリコンウェーハ表面の乾燥によるパーティクルの付着を抑制して表面欠陥(LPD)の低減を可能としている。上記一般式(1)で表わされる構成単位を含む水溶性高分子では、シリカ粒子と相互作用する親水部はアミド基であり、シリコンウェーハと相互作用する部位は疎水部であるアルキル基、或いはヒドロキシル基である。   The details of the mechanism of the effects of the present invention are not clear, but are estimated as follows. The water-soluble polymer compound (component C) in the polishing liquid composition (hereinafter sometimes abbreviated as “polishing liquid composition”) produced by the method for producing a polishing liquid composition for silicon wafers of the present invention, It has a hydrophobic part such as an alkyl group and a hydrophilic part. The hydrophilic part interacts with the silica particles, and the hydrophobic part interacts with the silicon wafer. Therefore, the water-soluble polymer compound (component C) is moderately adsorbed on the silicon wafer surface to suppress corrosion by the nitrogen-containing basic compound, thereby achieving good surface roughness (haze) and good wetting. It is possible to reduce surface defects (LPD) by suppressing adhesion of particles due to drying of the silicon wafer surface. In the water-soluble polymer containing the structural unit represented by the general formula (1), the hydrophilic part that interacts with the silica particles is an amide group, and the site that interacts with the silicon wafer is an alkyl group or hydroxyl group that is a hydrophobic part. It is a group.

また、一般的には、アルカリ条件ではシリカ粒子とシリコンウェーハの表面電荷はともに負に帯電しており、その電荷反発によってシリカ粒子がシリコンウェーハに接近できず、研磨速度が十分に発現できない。しかし、研磨液組成物中に水溶性高分子化合物(成分C)を存在させることにより、水溶性高分子化合物(成分C)が、シリカ粒子とシリコンウェーハの両方の表面に吸着することから、バインダーとして機能する。その結果、シリカ粒子とシリコンウェーハとの相互作用が強くなり、シリカ粒子による研磨が効率的に進行するため、水溶性高分子化合物(成分C)はシリコンウェーハの高研磨速度の確保に寄与しているものと考えられる。   In general, the surface charges of the silica particles and the silicon wafer are both negatively charged under alkaline conditions, and the silica particles cannot approach the silicon wafer due to the charge repulsion, and the polishing rate cannot be fully expressed. However, the presence of the water-soluble polymer compound (component C) in the polishing composition causes the water-soluble polymer compound (component C) to be adsorbed on the surfaces of both the silica particles and the silicon wafer. Function as. As a result, the interaction between the silica particles and the silicon wafer becomes stronger, and the polishing with the silica particles proceeds efficiently, so that the water-soluble polymer compound (component C) contributes to securing a high polishing rate of the silicon wafer. It is thought that there is.

そして、研磨液組成物の高温長期保存の前に、研磨液組成物の製造過程で、前記混合液が、1日以上180日以下の間30℃以上80℃以下の温度で保存される温度維持工程(エイジング工程)を経ておけば、水溶性高分子化合物(成分C)の分子構造が安定状態となる。その結果、水溶性高分子化合物(成分C)の、研磨時のシリカ粒子とシリコンウェーハ表面の両方に吸着するバインダーとしての機能の低下が抑制されることにより、高温長期保存による研磨速度の低下が抑制されている。すなわち、水系媒体(成分D)中での水溶性高分子化合物(成分C)の存在状態が一定となり、最適な吸着状態を形成していると推察される。   And before the high temperature long-term preservation | save of polishing liquid composition, the temperature maintenance by which the said liquid mixture is preserve | saved at the temperature of 30 degreeC or more and 80 degrees C or less for 1 day or more and 180 days or less in the manufacture process of polishing liquid composition. If it passes through a process (aging process), the molecular structure of a water-soluble polymer compound (component C) will be in a stable state. As a result, the function of the water-soluble polymer compound (component C) as a binder that adsorbs to both the silica particles and the silicon wafer surface during polishing is suppressed, so that the polishing rate decreases due to high-temperature long-term storage. It is suppressed. That is, it is presumed that the presence state of the water-soluble polymer compound (component C) in the aqueous medium (component D) is constant, and an optimal adsorption state is formed.

本発明の研磨液組成物の製造方法は、前記温度維持工程の前に、少なくとも、前記シリカ粒子(成分A)と前記含窒素塩基性化合物(成分B)と前記水溶性高分子化合物(成分C)と水系媒体と、必要に応じて任意成分とを混合して、前記シリカ粒子(成分A)の含有量が1質量%以上20質量%以下、前記含窒素塩基性化合物(成分B)の含有量が0.1質量%以上5質量%以下、前記水溶性高分子化合物(成分C)の含有量が0.1質量%以上10質量%以下である混合液を調製する工程を含む。   The method for producing a polishing liquid composition of the present invention comprises at least the silica particles (component A), the nitrogen-containing basic compound (component B), and the water-soluble polymer compound (component C) before the temperature maintaining step. ), An aqueous medium, and optional components as necessary, the content of the silica particles (component A) is 1% by mass to 20% by mass, and the nitrogen-containing basic compound (component B) is contained. A step of preparing a mixed solution having an amount of 0.1% by mass to 5% by mass and a content of the water-soluble polymer compound (component C) of 0.1% by mass to 10% by mass.

シリカ粒子(成分A)の水系媒体(成分D)への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。シリカ粒子の凝集等により生じた粗大粒子が水系媒体(成分D)中に含まれる場合、遠心分離やフィルターを用いたろ過等により、当該粗大粒子を除去すると好ましい。シリカ粒子(成分A)の水系媒体(成分D)への分散は、水溶性高分子化合物(成分C)の存在下で行うと好ましい。   The silica particles (component A) can be dispersed in the aqueous medium (component D) using, for example, a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill. When coarse particles generated by aggregation of silica particles or the like are contained in the aqueous medium (component D), it is preferable to remove the coarse particles by centrifugation or filtration using a filter. The dispersion of the silica particles (component A) in the aqueous medium (component D) is preferably performed in the presence of a water-soluble polymer compound (component C).

[シリカ粒子(成分A)]
前記混合液及び研磨液組成物には、研磨材としてシリカ粒子が含まれる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ等が挙げられるが、シリコンウェーハの表面平滑性を向上させる観点から、コロイダルシリカがより好ましい。
[Silica particles (component A)]
The mixed solution and the polishing composition contain silica particles as an abrasive. Specific examples of the silica particles include colloidal silica and fumed silica. Colloidal silica is more preferable from the viewpoint of improving the surface smoothness of the silicon wafer.

シリカ粒子の使用形態としては、操作性の観点からスラリー状が好ましい。前記混合液及び研磨液組成物に含まれる研磨材がコロイダルシリカである場合、アルカリ金属やアルカリ土類金属等によるシリコンウェーハの汚染を防止する観点から、コロイダルシリカは、アルコキシシランの加水分解物から得たものであることが好ましい。アルコキシシランの加水分解物から得られるシリカ粒子は、従来から公知の方法によって作製できる。   The use form of the silica particles is preferably a slurry from the viewpoint of operability. When the abrasive contained in the mixed solution and the polishing composition is colloidal silica, from the viewpoint of preventing contamination of the silicon wafer by alkali metal or alkaline earth metal, colloidal silica is derived from a hydrolyzate of alkoxysilane. It is preferable that it is what was obtained. Silica particles obtained from the hydrolyzate of alkoxysilane can be produced by a conventionally known method.

前記混合液及び研磨液組成物に含まれるシリカ粒子の平均一次粒子径は、高研磨速度の確保の観点から、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは15nm以上であり、更により好ましくは30nm以上である。また、表面粗さ及び表面欠陥(LPD)の低減と高研磨速度との両立の観点から、好ましくは50nm以下、より好ましくは45nm以下、更に好ましくは40nm以下である。   From the viewpoint of ensuring a high polishing rate, the average primary particle size of the silica particles contained in the mixed solution and polishing solution composition is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and even more. Preferably it is 30 nm or more. Further, from the viewpoint of achieving both reduction in surface roughness and surface defects (LPD) and a high polishing rate, the thickness is preferably 50 nm or less, more preferably 45 nm or less, and further preferably 40 nm or less.

特に、シリカ粒子としてコロイダルシリカを用いた場合には、高研磨速度の確保から、平均一次粒子径は、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは15nm以上であり、更により好ましくは30nm以上である。また、表面粗さ及び表面欠陥(LPD)の低減と高研磨速度との両立の観点から、好ましくは50nm以下、より好ましくは45nm以下、更に好ましくは40nm以下である。   In particular, when colloidal silica is used as the silica particles, the average primary particle diameter is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and still more preferably, in order to ensure a high polishing rate. 30 nm or more. Further, from the viewpoint of achieving both reduction in surface roughness and surface defects (LPD) and a high polishing rate, the thickness is preferably 50 nm or less, more preferably 45 nm or less, and further preferably 40 nm or less.

シリカ粒子の平均一次粒子径は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて算出される。比表面積は、例えば、実施例に記載の方法により測定できる。 The average primary particle diameter of the silica particles is calculated using a specific surface area S (m 2 / g) calculated by a BET (nitrogen adsorption) method. A specific surface area can be measured by the method as described in an Example, for example.

シリカ粒子の会合度は、高研磨速度の確保、及び表面粗さ及び表面欠陥の低減の観点から、3.0以下が好ましく、1.1以上3.0以下がより好ましく、1.8以上2.5以下がさらに好ましく、2.0以上2.3以下が更により好ましい。シリカ粒子の形状はいわゆる球型といわゆるマユ型であることが好ましい。シリカ粒子がコロイダルシリカである場合、その会合度は、高研磨速度の確保、及び表面粗さ及び表面欠陥の低減の観点から、3.0以下が好ましく、1.1以上3.0以下がより好ましく、1.8以上2.5以下が更に好ましく、2.0以上2.3以下が更により好ましい。   The degree of association of the silica particles is preferably 3.0 or less, more preferably 1.1 or more and 3.0 or less, and more preferably 1.8 or more and 2 from the viewpoint of ensuring a high polishing rate and reducing the surface roughness and surface defects. 0.5 or less is more preferable, and 2.0 or more and 2.3 or less is even more preferable. The shape of the silica particles is preferably a so-called spherical type and a so-called mayu type. When the silica particles are colloidal silica, the degree of association is preferably 3.0 or less, more preferably 1.1 or more and 3.0 or less, from the viewpoint of securing a high polishing rate and reducing the surface roughness and surface defects. Preferably, it is 1.8 or more and 2.5 or less, and 2.0 or more and 2.3 or less is still more preferable.

シリカ粒子の会合度とは、シリカ粒子の形状を表す係数であり、下記式により算出される。平均二次粒子径は、動的光散乱法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。
会合度=平均二次粒子径/平均一次粒子径
The association degree of silica particles is a coefficient representing the shape of silica particles, and is calculated by the following formula. The average secondary particle diameter is a value measured by a dynamic light scattering method, and can be measured using, for example, the apparatus described in the examples.
Degree of association = average secondary particle size / average primary particle size

シリカ粒子の会合度の調整方法としては、特に限定されないが、例えば、特開平6−254383号公報、特開平11−214338号公報、特開平11−60232号公報、特開2005−060217号公報、特開2005−060219号公報等に記載の方法を採用することができる。   The method for adjusting the degree of association of the silica particles is not particularly limited. For example, JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, A method described in JP-A-2005-060219 or the like can be employed.

前記混合液中のシリカ粒子の含有量は、製造及び輸送コストを低くする観点から、1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上であり、また、混合液におけるシリカ粒子の凝集抑制及び分散安定性向上の観点から20質量%以下であり、好ましくは15質量%以下、より好ましくは12質量%以下である。   The content of the silica particles in the mixed solution is 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more, from the viewpoint of reducing production and transportation costs. From the viewpoint of suppressing aggregation of particles and improving dispersion stability, it is 20% by mass or less, preferably 15% by mass or less, more preferably 12% by mass or less.

[含窒素塩基性化合物(成分B)]
前記混合液及び研磨液組成物は、研磨液組成物の保存安定性の向上、高研磨速度の確保、及び表面粗さ及び表面欠陥(LPD)の低減の観点から、水溶性の塩基性化合物を含有する。水溶性の塩基性化合物としては、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物である。ここで、「水溶性」とは、水(20℃)に対して2g/100ml以上の溶解度を有することをいい、「水溶性の塩基性化合物」とは、水に溶解したとき、塩基性を示す化合物をいう。
[Nitrogen-containing basic compound (component B)]
The mixed liquid and the polishing liquid composition are prepared from a water-soluble basic compound from the viewpoints of improving the storage stability of the polishing liquid composition, ensuring a high polishing rate, and reducing surface roughness and surface defects (LPD). contains. The water-soluble basic compound is at least one nitrogen-containing basic compound selected from amine compounds and ammonium compounds. Here, “water-soluble” means having a solubility of 2 g / 100 ml or more in water (20 ° C.), and “water-soluble basic compound” means basicity when dissolved in water. Refers to the compound shown.

アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物としては、例えば、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N−メチル−N,N一ジエタノ−ルアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジブチルエタノールアミン、N−(β−アミノエチル)エタノ−ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、ジエチレントリアミン、水酸化テトラメチルアンモニウム、及びヒドロキシアミンが挙げられる。前記ヒドロキシアミンとしては、好ましくは鎖状ヒドロキシアミン、より好ましくはモノヒロドロキシモノアミンであり、更に好ましくは2-アミノエタノールである。これらの含窒素塩基性化合物は2種以上を混合して用いてもよい。前記混合液及び研磨液組成物に含まれ得る含窒素塩基性化合物としては、表面粗さ及び表面欠陥(LPD)の低減、研磨液組成物の保存安定性の向上、及び、高研磨速度の確保の観点から、アンモニア、アンモニアとヒドロキシアミンの混合物が好ましく、アンモニアがより好ましい。   Examples of at least one nitrogen-containing basic compound selected from amine compounds and ammonium compounds include ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, Monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanol Amine, N- (β-aminoethyl) ethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenedia Down, piperazine hexahydrate, anhydrous piperazine, 1- (2-aminoethyl) piperazine, N- methylpiperazine, diethylenetriamine, tetramethylammonium hydroxide, and include hydroxylamine. The hydroxyamine is preferably a chain hydroxyamine, more preferably a monohydroxymonoamine, and even more preferably 2-aminoethanol. These nitrogen-containing basic compounds may be used as a mixture of two or more. Nitrogen-containing basic compounds that can be contained in the mixed liquid and polishing liquid composition include a reduction in surface roughness and surface defects (LPD), an improvement in storage stability of the polishing liquid composition, and a high polishing rate. In view of the above, ammonia, a mixture of ammonia and hydroxyamine is preferable, and ammonia is more preferable.

前記混合液中の含窒素塩基性化合物(成分B)の含有量は、製造及び輸送コストを低くする観点から、0.1質量%以上であり、好ましくは0.2質量%以上であり、さらに好ましくは0.3質量%以上であり、また、保存安定性の向上の観点から、5質量%以下であり、好ましくは3質量%以下であり、さらに好ましくは1質量%以下である。   The content of the nitrogen-containing basic compound (component B) in the mixed solution is 0.1% by mass or more, preferably 0.2% by mass or more, from the viewpoint of reducing production and transportation costs. Preferably, it is 0.3% by mass or more, and from the viewpoint of improving storage stability, it is 5% by mass or less, preferably 3% by mass or less, and more preferably 1% by mass or less.

[水溶性高分子化合物(成分C)]
前記混合液及び研磨液組成物は、研磨液組成物の保存安定性の向上、高研磨速度の確保、及びシリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、水溶性高分子化合物(成分C)を含有する。尚、本発明において、水溶性高分子化合物の「水溶性」とは、水(20℃)に対して0.5g/100ml以上の溶解度、好ましくは2g/100ml以上の溶解度を有することをいう。
[Water-soluble polymer compound (component C)]
The mixed liquid and the polishing liquid composition are water-soluble polymer compounds (components) from the viewpoint of improving the storage stability of the polishing liquid composition, ensuring a high polishing rate, and reducing the surface roughness and surface defects of the silicon wafer. C). In the present invention, “water-soluble” of the water-soluble polymer compound means having a solubility of 0.5 g / 100 ml or more, preferably 2 g / 100 ml or more in water (20 ° C.).

水溶性高分子化合物(成分C)を構成する構成単位の供給源である単量体としては、研磨速度の確保、シリコンウェーハの表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減の観点から、例えば、アミド基、水酸基、カルボキシル基、カルボン酸エステル基、スルホン酸基等の水溶性基を有する単量体が挙げられる。   As a monomer that is a supply source of the structural unit constituting the water-soluble polymer compound (component C), from the viewpoint of ensuring the polishing rate, and reducing the surface defects (LPD) and surface roughness (haze) of the silicon wafer. Examples thereof include monomers having a water-soluble group such as an amide group, a hydroxyl group, a carboxyl group, a carboxylic acid ester group, and a sulfonic acid group.

水溶性高分子化合物(成分C)の具体例は、例えば、ポリアミド、セルロース誘導体、ポリビニルアルコール、アクリルアミド誘導体に由来する構成単位を含む水溶性高分子化合物等が例示できる。ポリアミドとしては、ポリビニルピロリドン、ポリアクリルアミド、ポリオキサゾリン、ポリジメチルアクリルアミド、ポリジエチルアクリルアミド、ポリイソプロピルアクリルアミド、ポリヒドロキシエチルアクリルアミド等が挙げられる。セルロース誘導体としては、カルボキシメチルセルロ−ス、ヒドロキシエチルセルロース(HEC)、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルエチルセルロース、及びカルボキシメチルエチルセルロース等が挙げられる。アクリルアミド誘導体に由来する構成単位を含む水溶性高分子化合物としては、下記一般式(1)で表される構成単位Iを好ましくは75質量%以上含む水溶性高分子化合物が挙げられる。

Figure 0006366139
Specific examples of the water-soluble polymer compound (component C) include water-soluble polymer compounds containing structural units derived from polyamide, cellulose derivatives, polyvinyl alcohol, and acrylamide derivatives. Examples of the polyamide include polyvinyl pyrrolidone, polyacrylamide, polyoxazoline, polydimethylacrylamide, polydiethylacrylamide, polyisopropylacrylamide, polyhydroxyethylacrylamide and the like. Examples of cellulose derivatives include carboxymethyl cellulose, hydroxyethyl cellulose (HEC), hydroxyethyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl ethyl cellulose, and carboxymethyl ethyl cellulose. Examples of the water-soluble polymer compound containing a structural unit derived from an acrylamide derivative include a water-soluble polymer compound containing preferably 75% by mass or more of the structural unit I represented by the following general formula (1).
Figure 0006366139

下記一般式(1)において、R1、R2は、それぞれ独立して、水素、炭素数が1〜8のアルキル基、又は炭素数が1〜2のヒドロキシアルキル基であり、より好ましくは水素原子、炭素数が1〜4のアルキル基、又は炭素数が1〜2のヒドロキシアルキル基であり、特に好ましくは水素原子、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基である。ただし、R1、R2の両方が水素であることはないものが挙げられる。一般式(1)で表される構成単位Iの供給源である単量体としては、N−ヒドロキシエチルアクリルアミド(HEAA)またはN−ヒドロキシメチルアクリルアミド(HMAA)等のアクリルアミド誘導体であるが、これらは、1種単独または2種以上組み合わせて用いることができる。これらの単量体のなかでも、シリコンウェーハの表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減の観点から、HEAAが好ましい。 In the following general formula (1), R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 8 carbon atoms, or a hydroxyalkyl group having 1 to 2 carbon atoms, more preferably hydrogen. An atom, an alkyl group having 1 to 4 carbon atoms, or a hydroxyalkyl group having 1 to 2 carbon atoms, particularly preferably a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, or a hydroxyethyl group. However, those in which both R 1 and R 2 are not hydrogen are mentioned. The monomer that is the supply source of the structural unit I represented by the general formula (1) is an acrylamide derivative such as N-hydroxyethylacrylamide (HEAA) or N-hydroxymethylacrylamide (HMAA). These can be used singly or in combination of two or more. Among these monomers, HEAA is preferable from the viewpoint of reducing surface defects (LPD) and surface roughness (haze) of the silicon wafer.

アクリルアミド誘導体に由来する構成単位を含む水溶性高分子化合物について、「構成単位Iを好ましくは75質量%以上含む」とは、水溶性高分子化合物の1分子中における前記構成単位Iの質量が、水溶性高分子化合物の重量平均分子量(Mw)の好ましくは75%以上であることを意味する。また、本明細書において、水溶性高分子化合物を構成する全構成単位中に占める構成単位Iの含有量(質量%)として、合成条件によっては、水溶性高分子化合物の合成の全工程で反応槽に仕込まれた全構成単位を導入するための化合物中に占める前記反応槽に仕込まれた該構成単位Iを導入するための化合物量(質量%)から計算される値を使用してもよい。   For a water-soluble polymer compound containing a structural unit derived from an acrylamide derivative, “comprising preferably 75% by mass or more of the structural unit I” means that the mass of the structural unit I in one molecule of the water-soluble polymer compound is It means that the weight average molecular weight (Mw) of the water-soluble polymer compound is preferably 75% or more. Further, in this specification, the content (% by mass) of the structural unit I occupying in all the structural units constituting the water-soluble polymer compound may be reacted in all steps of the synthesis of the water-soluble polymer compound depending on the synthesis conditions. A value calculated from the amount (% by mass) of the compound for introducing the structural unit I charged in the reaction tank in the compound for introducing all the structural units charged in the tank may be used. .

アクリルアミド誘導体に由来する構成単位を含む水溶性高分子化合物の全構成単位中における前記構成単位Iの割合は、シリコンウェーハの表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減の観点から、好ましくは75質量%以上であり、より好ましくは80質量%以上、更に好ましくは90質量%以上、更により好ましくは実質的に100質量%である。   The proportion of the structural unit I in all the structural units of the water-soluble polymer compound containing a structural unit derived from an acrylamide derivative is preferably from the viewpoint of reducing surface defects (LPD) and surface roughness (haze) of the silicon wafer. Is 75% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably substantially 100% by mass.

アクリルアミド誘導体に由来する構成単位を含む水溶性高分子化合物は、本発明の効果が奏される限りにおいて、前記構成単位I以外の構成単位を含んでいてもよい。構成単位I以外の構成単位(「構成単位II」ともいう。)を含む場合には、構成単位IIは、シリコンウェーハの表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減の観点から、N−イソプロピルアクリルアミド(NIPAM)、アクリル酸(AA)、メタクリル酸(MAA)、ビニルピロリドン(VP)、ジメチルアクリルアミド(DMAA)及びジエチルアクリルアミド(DEAA)からなる群から選ばれる少なくとも一種のモノマーに由来する構成単位IIが好ましく、N−イソプロピルアクリルアミド(NIPAM)がより好ましい。   The water-soluble polymer compound containing a structural unit derived from an acrylamide derivative may contain a structural unit other than the structural unit I as long as the effect of the present invention is exhibited. When a structural unit other than the structural unit I (also referred to as “structural unit II”) is included, the structural unit II is N from the viewpoint of reducing surface defects (LPD) and surface roughness (haze) of the silicon wafer. -Configuration derived from at least one monomer selected from the group consisting of isopropylacrylamide (NIPAM), acrylic acid (AA), methacrylic acid (MAA), vinylpyrrolidone (VP), dimethylacrylamide (DMAA) and diethylacrylamide (DEAA) Unit II is preferred, and N-isopropylacrylamide (NIPAM) is more preferred.

構成単位Iは、研磨液組成物の保存安定性の向上、高研磨速度の確保、及びシリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、一般式(1)における、R1及びR2が共に炭素数が1〜4のアルキル基である構成単位I―I、R1が水素原子でありR2が炭素数が1〜8のアルキル基である構成単位I―II、R1が水素原子でありR2が炭素数が1〜2のヒドロキシアルキル基である構成単位I―IIIからなる群から選ばれる少なくとも1種であると好ましい。構成単位I―Iにおいて、高研磨速度の確保の観点から、R1及びR2が共にメチル基又はエチル基であると好ましく、エチル基であるとより好ましい。また、表面粗さの低減の観点から、構成単位I―IIにおいてR2がイソプロピル基であると好ましい。また、高研磨速度の確保と、表面欠陥の低減の観点から、構成単位I―IIIにおいてR2はヒドロキシエチル基であると好ましい。 The structural unit I represents R 1 and R 2 in the general formula (1) from the viewpoints of improving the storage stability of the polishing composition, ensuring a high polishing rate, and reducing the surface roughness and surface defects of the silicon wafer. Are structural units I-I and R 1 in which R 1 is a hydrogen atom and R 2 is an alkyl group having 1 to 8 carbon atoms, and R 1 is hydrogen. It is preferable that it is at least one selected from the group consisting of structural units I-III which are atoms and R 2 is a hydroxyalkyl group having 1 to 2 carbon atoms. In the structural unit II, from the viewpoint of securing a high polishing rate, both R 1 and R 2 are preferably a methyl group or an ethyl group, and more preferably an ethyl group. From the viewpoint of reducing the surface roughness, it is preferable that R 2 is an isopropyl group in the structural unit I-II. In view of securing a high polishing rate and reducing surface defects, R 2 in the structural unit I-III is preferably a hydroxyethyl group.

一般式(1)で表される構成単位Iの供給源である単量体としては、N−メチルアクリルアミド、N−エチルアクリルアミド、N−プロピルアクリルアミド、N−イソプロピルアクリルアミド(NIPAM)、N−ブチルアクリルアミド、N−イソブチルアクリルアミド、N−ターシャリブチルアクリルアミド、N−ヘプチルアクリルアミド、N−オクチルアクリルアミド、N−ターシャリオクチルアクリルアミド、N−メチロールアクリルアミド、N−ヒドロキシエチルアクリルアミド(HEAA)、N,N−ジメチルアクリルアミド(DMAA)、N,N−ジエチルアクリルアミド(DEAA)、N,N−ジプロピルアクリルアミド、N,N−ジイソプロピルアクリルアミド、N,N−ジブチルアクリルアミド、N,N−ジイソブチルアクリルアミド、N,N−ジヘプチルアクリルアミド、N,N−ジオクチルアクリルアミド、N,N−ジメチロールアクリルアミド、N,N−ジヒドロキシエチルアクリルアミド等が例示できる。これらは、1種単独又は2種以上組み合わせて用いることができる。これらの単量体のなかでも、表面粗さの低減と高研磨速度の確保の観点から、N−イソプロピルアクリルアミド、N−ヒドロキシエチルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミドが好ましく、N−ヒドロキシエチルアクリルアミド、N,N−ジエチルアクリルアミドがより好ましく、さらに、表面欠陥の低減の観点から、N−ヒドロキシエチルアクリルアミドがさらに好ましい。   As a monomer which is a supply source of the structural unit I represented by the general formula (1), N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-isopropylacrylamide (NIPAM), N-butylacrylamide N-isobutylacrylamide, N-tertiarybutylacrylamide, N-heptylacrylamide, N-octylacrylamide, N-tertiaryoctylacrylamide, N-methylolacrylamide, N-hydroxyethylacrylamide (HEAA), N, N-dimethylacrylamide (DMAA), N, N-diethylacrylamide (DEAA), N, N-dipropylacrylamide, N, N-diisopropylacrylamide, N, N-dibutylacrylamide, N, N-diisobutyla Riruamido, N, N-di-heptyl acrylamide, N, N-dioctyl acrylamide, N, N-dimethylol acrylamide, N, N-dihydroxyethyl acrylamide and the like. These can be used alone or in combination of two or more. Among these monomers, N-isopropylacrylamide, N-hydroxyethylacrylamide, N, N-dimethylacrylamide, and N, N-diethylacrylamide are preferable from the viewpoint of reducing the surface roughness and ensuring a high polishing rate. N-hydroxyethylacrylamide and N, N-diethylacrylamide are more preferable, and N-hydroxyethylacrylamide is more preferable from the viewpoint of reducing surface defects.

水溶性高分子化合物(成分C)を構成する全構成単位中における上記一般式(1)で表される構成単位Iの割合は、R1、R2がいずれも炭素数が1〜2のヒドロキシアルキル基ではない場合には、シリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは40質量%以上であり、高研磨速度の確保の観点から、好ましくは100質量%以下、より好ましくは90質量%以下、更に好ましくは60質量%以下である。R1、R2のいずれか又は両方が炭素数が1〜2のヒドロキシアルキル基である場合には、水溶性高分子化合物(成分C)の全構成単位中における前記構成単位Iの割合は、シリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、好ましくは10質量%以上、より好ましくは60質量%以上、更に好ましくは80質量%以上であり、高研磨速度の確保の観点から、好ましくは100質量%以下である。 The proportion of the structural unit I represented by the general formula (1) in all the structural units constituting the water-soluble polymer compound (component C) is such that R 1 and R 2 are both hydroxy having 1 to 2 carbon atoms. When the alkyl group is not an alkyl group, it is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 40% by mass or more from the viewpoint of reducing the surface roughness and surface defects of the silicon wafer. From the viewpoint of securing the speed, it is preferably 100% by mass or less, more preferably 90% by mass or less, and still more preferably 60% by mass or less. When one or both of R 1 and R 2 is a hydroxyalkyl group having 1 to 2 carbon atoms, the proportion of the structural unit I in all the structural units of the water-soluble polymer compound (component C) is: From the viewpoint of reducing the surface roughness and surface defects of the silicon wafer, it is preferably 10% by mass or more, more preferably 60% by mass or more, still more preferably 80% by mass or more, and from the viewpoint of ensuring a high polishing rate, Is 100 mass% or less.

水溶性高分子化合物(成分C)は、高研磨速度の確保と、表面粗さ及び表面欠陥の低減の観点から、下記一般式(2)で表される構成単位II(アクリルアミド(AAm))を有するものが好ましい。

Figure 0006366139
The water-soluble polymer compound (component C) is composed of the structural unit II (acrylamide (AAm)) represented by the following general formula (2) from the viewpoint of ensuring a high polishing rate and reducing the surface roughness and surface defects. What has is preferable.
Figure 0006366139

水溶性高分子化合物(成分C)が、上記一般式(1)で表される構成単位Iと一般式(2)で表される構成単位IIとを含む共重合体である場合、全構成単位中における前記構成単位Iの割合は、シリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、好ましくは10重量%以上であり、より好ましくは20質量%以上、更に好ましくは40質量%以上であり、高研磨速度の確保の観点から、好ましくは100質量%以下、より好ましくは90質量%以下、更により好ましくは60質量%以下である。   When the water-soluble polymer compound (component C) is a copolymer containing the structural unit I represented by the general formula (1) and the structural unit II represented by the general formula (2), all structural units The proportion of the structural unit I is preferably 10% by weight or more, more preferably 20% by weight or more, and still more preferably 40% by weight or more, from the viewpoint of reducing the surface roughness and surface defects of the silicon wafer. In view of securing a high polishing rate, it is preferably 100% by mass or less, more preferably 90% by mass or less, and even more preferably 60% by mass or less.

また、水溶性高分子化合物(成分C)が、上記一般式(1)で表される構成単位Iと一般式(2)で表される構成単位IIとを含む共重合体である場合、全構成単位中における前記構成単位IIの割合は、研磨速度向上の観点から、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは45質量%以上であり、表面粗さ低減の観点から、好ましくは80質量%以下、より好ましくは55質量%以下である。   When the water-soluble polymer compound (component C) is a copolymer containing the structural unit I represented by the general formula (1) and the structural unit II represented by the general formula (2), The proportion of the structural unit II in the structural unit is preferably 20% by mass or more, more preferably 30% by mass or more, and still more preferably 45% by mass or more, from the viewpoint of improving the polishing rate. Therefore, it is preferably 80% by mass or less, more preferably 55% by mass or less.

水溶性高分子化合物(成分C)は、一般式(1)で表される構成単位I及び一般式(2)で表される構成単位II以外の構成単位を含む共重合体であってもよい。このような構成単位を形成する単量体成分としては、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、スチレン、ビニルピロリドン、オキサゾリンなどが挙げられる。   The water-soluble polymer compound (component C) may be a copolymer containing a structural unit other than the structural unit I represented by the general formula (1) and the structural unit II represented by the general formula (2). . Examples of the monomer component forming such a structural unit include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, styrene, vinyl pyrrolidone, and oxazoline.

尚、水溶性高分子化合物(成分C)が、一般式(1)で表される構成単位Iと当該構成単位I以外の構成単位とを含む共重合体である場合、構成単位Iと構成単位I以外の構成単位の共重合体における配列は、ブロックでもランダムでもよい。   In the case where the water-soluble polymer compound (component C) is a copolymer containing the structural unit I represented by the general formula (1) and a structural unit other than the structural unit I, the structural unit I and the structural unit The arrangement in the copolymer of structural units other than I may be block or random.

水溶性高分子化合物(成分C)の重量平均分子量は、シリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、好ましくは5万以上、より好ましくは10万以上、更に好ましくは20万以上、更により好ましくは50万以上であり、高研磨速度の確保の観点から、好ましくは200万以下、より好ましくは100万以下、更に好ましくは90万以下、更により好ましくは80万以下である。尚、水溶性高分子化合物(成分C)の重量平均分子量は後の実施例に記載の方法により測定される。   The weight average molecular weight of the water-soluble polymer compound (component C) is preferably 50,000 or more, more preferably 100,000 or more, still more preferably 200,000 or more, from the viewpoint of reducing the surface roughness and surface defects of the silicon wafer. More preferably, it is 500,000 or more, and from the viewpoint of securing a high polishing rate, it is preferably 2 million or less, more preferably 1 million or less, still more preferably 900,000 or less, and even more preferably 800,000 or less. In addition, the weight average molecular weight of a water-soluble polymer compound (component C) is measured by the method as described in a later Example.

混合液中の水溶性高分子化合物(成分C)の含有量は、製造及び輸送コストを低くする観点から、0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上であり、保存安定性の向上の観点から、10質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下である。   The content of the water-soluble polymer compound (component C) in the mixed solution is 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3%, from the viewpoint of reducing production and transportation costs. From the viewpoint of improving storage stability, it is 10% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less, and still more preferably 0.8% by mass or more. 5% by mass or less.

[水系媒体(成分D)]
前記混合液及び研磨液組成物に含まれる水系媒体(成分D)としては、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、イオン交換水又は超純水がより好ましく、超純水がさらに好ましい。本発明の成分Dが、水と溶媒との混合媒体である場合、成分Dである混合媒体全体に対する水の割合は、特に限定されるわけではないが、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%がさらに好ましい。
[Aqueous medium (component D)]
Examples of the aqueous medium (component D) contained in the mixed liquid and the polishing liquid composition include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent. Solvents that can be mixed with (for example, alcohols such as ethanol) are preferred. Of these, ion-exchanged water or ultrapure water is more preferable, and ultrapure water is more preferable. When component D of the present invention is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium as component D is not particularly limited, but is 95% by mass or more from the viewpoint of economy. Is preferable, 98 mass% or more is more preferable, and 100 mass% is further substantially preferable.

前記混合液における水系媒体の含有量は、特に限定されるわけではなく、成分A〜成分C、及び、後述する任意成分の残余であってよい。   The content of the aqueous medium in the mixed liquid is not particularly limited, and may be the remainder of Component A to Component C and optional components described later.

前記混合液の25℃におけるpHは、高研磨速度の確保の観点から、好ましくは8.0以上、より好ましくは9.0以上、更に好ましくは9.5以上であり、安全性の観点から、好ましくは12.0以下、より好ましくは11.5以下、更に好ましくは11.0以下である。pHの調整は、含窒素塩基性化合物(成分B)及び/又は後述するpH調整剤を適宜添加して行うことができる。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。   The pH of the mixed solution at 25 ° C. is preferably 8.0 or more, more preferably 9.0 or more, still more preferably 9.5 or more from the viewpoint of ensuring a high polishing rate, and from the viewpoint of safety, Preferably it is 12.0 or less, More preferably, it is 11.5 or less, More preferably, it is 11.0 or less. The pH can be adjusted by appropriately adding a nitrogen-containing basic compound (component B) and / or a pH adjuster described later. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after immersion of the electrode in the polishing composition.

[任意成分]
前記混合液及び本発明の研磨液組成物の製造方法により得られる研磨液組成物には、本発明の効果が妨げられない範囲で、更に、多価アルコールのアルキレンオキシド付加物(成分E)、成分C以外の水溶性高分子化合物、pH調整剤、防腐剤、アルコール類、キレート剤及び非イオン性界面活性剤から選ばれる少なくとも1種の任意成分が含まれてもよい。
[Optional ingredients]
In the polishing liquid composition obtained by the method for producing the mixed liquid and the polishing liquid composition of the present invention, an alkylene oxide adduct (component E) of a polyhydric alcohol is further added as long as the effects of the present invention are not hindered. At least one optional component selected from water-soluble polymer compounds other than Component C, pH adjusters, preservatives, alcohols, chelating agents, and nonionic surfactants may be included.

〈多価アルコールのアルキレンオキシド付加物(成分E)〉
前記混合液及び研磨液組成物は、更に多価アルコールのアルキレンオキシド付加物を含んでいてもよい。成分Eは、被研磨シリコンウェーハに吸着する。その為、成分Eは、含窒素塩基性化合物によるシリコンウェーハ表面の腐食を抑制しつつ、シリコンウェーハ表面に濡れ性を付与することにより、シリコンウェーハ表面の乾燥により生じると考えられるシリコンウェーハ表面へのパーティクルの付着を抑制するよう作用する。
<Alkylene oxide adduct of polyhydric alcohol (component E)>
The mixed liquid and the polishing liquid composition may further contain an alkylene oxide adduct of a polyhydric alcohol. Component E is adsorbed on the silicon wafer to be polished. Therefore, the component E is applied to the silicon wafer surface, which is considered to be generated by drying the silicon wafer surface, by imparting wettability to the silicon wafer surface while suppressing corrosion of the silicon wafer surface by the nitrogen-containing basic compound. It acts to suppress the adhesion of particles.

また、研磨されたシリコンウェーハの洗浄工程において、成分Eが、シリカ粒子とシリコンウェーハとの間におこる相互作用を弱める。したがって、成分Eは、水溶性高分子化合物(成分C)と相まって、表面粗さ(ヘイズ)と表面欠陥(LPD)の低減を増進するものと考えられる。   In addition, in the cleaning process of the polished silicon wafer, the component E weakens the interaction that occurs between the silica particles and the silicon wafer. Therefore, component E, together with the water-soluble polymer compound (component C), is thought to promote the reduction of surface roughness (haze) and surface defects (LPD).

成分Eは、多価アルコールにエチレンオキシドやプロピレンオキシド等のアルキレンオキシドを付加重合させて得られる多価アルコール誘導体である。成分Eは、エチレンオキシ基及びプロピレンオキシ基からなる群から選ばれる少なくとも1種のアルキレンオキシ基を含む。   Component E is a polyhydric alcohol derivative obtained by addition polymerization of a polyhydric alcohol with an alkylene oxide such as ethylene oxide or propylene oxide. Component E contains at least one alkyleneoxy group selected from the group consisting of ethyleneoxy groups and propyleneoxy groups.

成分Eの元(原料)となる多価アルコールの水酸基数は、シリコンウェーハ表面への成分Eの吸着強度を高める観点、シリコンウェーハの表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減の観点から、2個以上が好ましく、高研磨速度の確保の観点から、10個以下が好ましく、8個以下がより好ましく、6個以下が更に好ましく、4個以下が更により好ましい。   The number of hydroxyl groups of the polyhydric alcohol that is the source (raw material) of component E is the viewpoint of increasing the adsorption strength of component E on the silicon wafer surface, and the viewpoint of reducing the surface defects (LPD) and surface roughness (haze) of the silicon wafer. From the viewpoint of securing a high polishing rate, it is preferably 10 or less, more preferably 8 or less, still more preferably 6 or less, and even more preferably 4 or less.

成分Eは、具体的には、ポリエチレングリコール(PEG)及びポリプロピレングリコール等のアルキレングリコールアルキレンオキシド付加物、グリセリンアルキレンオキシド付加物、ペンタエリスリトールアルキレンオキシド付加物等が挙げられるが、これらの中でも、エチレングリコールアルキレンオキシド付加物が好ましい。   Specific examples of Component E include alkylene glycol alkylene oxide adducts such as polyethylene glycol (PEG) and polypropylene glycol, glycerin alkylene oxide adducts, pentaerythritol alkylene oxide adducts, etc. Among these, ethylene glycol Alkylene oxide adducts are preferred.

成分Eは、エチレンオキシ基(EO)及びプロピレンオキシ基(PO)からなる群から選ばれる少なくとも1種のアルキレンオキシ基を含むが、シリコンウェーハの表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減の観点から、成分Eに含まれるアルキレンオキシ基は、EO及びPOからなる群から選ばれる少なくとも1種のアルキレンオキシ基からなると好ましく、EOからなるとより好ましい。成分Eが、EOとPOの両方を含む場合、EOとPOの配列はブロックでもランダムでもよい。   Component E contains at least one alkyleneoxy group selected from the group consisting of ethyleneoxy groups (EO) and propyleneoxy groups (PO), but has a surface defect (LPD) and surface roughness (haze) of the silicon wafer. From the viewpoint of reduction, the alkyleneoxy group contained in Component E is preferably composed of at least one alkyleneoxy group selected from the group consisting of EO and PO, and more preferably composed of EO. When the component E contains both EO and PO, the arrangement of EO and PO may be block or random.

成分Eの重量平均分子量は、成分Eの被研磨シリコンウェーハへの吸着量を増大させて、表面粗さ(ヘイズ)を低減する観点から、500以上が好ましく、700以上がより好ましく、900以上が更に好ましく、成分Eの被研磨シリコンウェーハへの吸着量を増大させて、表面粗さ(ヘイズ)を低減する観点から、25万以下が好ましく、10万以下がより好ましく、2万以下が更に好ましく、1万以下が更により好ましい。   The weight average molecular weight of the component E is preferably 500 or more, more preferably 700 or more, and more preferably 900 or more from the viewpoint of increasing the amount of adsorption of the component E to the polished silicon wafer and reducing the surface roughness (haze). More preferably, from the viewpoint of increasing the amount of component E adsorbed to the polished silicon wafer and reducing the surface roughness (haze), it is preferably 250,000 or less, more preferably 100,000 or less, and even more preferably 20,000 or less. Even more preferably 10,000 or less.

成分Eの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づき算出できる。
〈測定条件〉
装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
カラム:GMPWXL+GMPWXL(アニオン)
溶離液:0.2Mリン酸バッファー/CH3CN=9/1
流量:0.5ml/min
カラム温度:40℃
検出器:RI 検出器
標準物質:分子量が既知の単分散ポリエチレングリコール
The weight average molecular weight of component E can be calculated based on a peak in a chromatogram obtained by applying a gel permeation chromatography (GPC) method under the following conditions.
<Measurement condition>
Equipment: HLC-8320 GPC (Tosoh Corporation, detector integrated type)
Column: GMPWXL + GMPWXL (anion)
Eluent: 0.2M phosphate buffer / CH 3 CN = 9/1
Flow rate: 0.5ml / min
Column temperature: 40 ° C
Detector: RI Detector Reference material: Monodispersed polyethylene glycol with known molecular weight

前記混合液に含まれる成分Eの含有量は、表面粗さ(ヘイズ)と表面欠陥(LPD)の低減の観点から、好ましくは0.0001質量%以上0.5質量%以下、より好ましくは0.001質量%以上0.05質量%以下である。   The content of Component E contained in the liquid mixture is preferably 0.0001% by mass or more and 0.5% by mass or less, more preferably 0, from the viewpoint of reducing surface roughness (haze) and surface defects (LPD). 0.001% by mass or more and 0.05% by mass or less.

〈防腐剤〉
防腐剤としては、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2−ベンズイソチアゾリン−3−オン、(5−クロロ−)2−メチル−4−イソチアゾリン−3−オン、過酸化水素、又は次亜塩素酸塩等が挙げられる。
<Preservative>
Preservatives include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or hypochlorite Examples include acid salts.

〈アルコール類〉
アルコール類としては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、2−メチル−2−プロパノール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。アルコール類の含有量は、前記研磨液組成物の濃縮液を希釈して得られる希釈液において、0.1〜5質量%であると好ましい。
<Alcohols>
Examples of alcohols include methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanol, ethylene glycol, propylene glycol, polyethylene glycol, and glycerin. The content of alcohol is preferably 0.1 to 5% by mass in a diluted solution obtained by diluting the concentrated liquid of the polishing composition.

〈キレート剤〉
キレート剤としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。キレート剤の含有量は、前記研磨液組成物の濃縮液を希釈して得られる希釈液において、0.01〜1質量%であると好ましい。
<Chelating agent>
Chelating agents include: ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, triethylenetetraminehexaacetic acid, triethylenetetramine Examples include sodium hexaacetate. The content of the chelating agent is preferably 0.01 to 1% by mass in a diluted liquid obtained by diluting the concentrated liquid of the polishing liquid composition.

〈非イオン性界面活性剤〉
非イオン性界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン(硬化)ヒマシ油等のポリエチレングリコール型と、ショ糖脂肪酸エステル、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステル、アルキルグリコシド等の多価アルコール型及び脂肪酸アルカノールアミド等が挙げられる。
<Nonionic surfactant>
Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, Examples include polyethylene glycol types such as oxyalkylene (cured) castor oil, polyhydric alcohol types such as sucrose fatty acid ester, polyglycerin alkyl ether, polyglycerin fatty acid ester, alkylglycoside, and fatty acid alkanolamide.

例えば、前記温度維持工程(前記エイジング工程)では、前記混合液は、表面粗さ(ヘイズ)の低減の観点から、可能なかぎり空気及び光が入らないように容器に充填された状態で保存されると好ましい。また、前記温度維持工程の対象とされ前記容器に充填された混合液の保存は好ましくは恒温室で行われ、前記温度維持工程における前記混合液の保存温度は、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と高研磨速度とを両立する観点から、30℃以上、好ましくは35℃以上であり、80℃以下、好ましくは70℃以下、更に好ましくは60℃以下、更により好ましくは45℃以下である。   For example, in the temperature maintaining step (the aging step), the mixed solution is stored in a state where the container is filled so that air and light do not enter as much as possible from the viewpoint of reducing the surface roughness (haze). It is preferable. In addition, the storage of the mixed solution that is the target of the temperature maintaining step and filled in the container is preferably performed in a temperature-controlled room, and the storage temperature of the mixed solution in the temperature maintaining step is the surface roughness (haze) and the surface From the viewpoint of achieving both a reduction in defects (LPD) and a high polishing rate, it is 30 ° C. or higher, preferably 35 ° C. or higher, 80 ° C. or lower, preferably 70 ° C. or lower, more preferably 60 ° C. or lower, even more preferably. It is 45 degrees C or less.

前記温度維持工程において、前記混合液を30℃以上80℃以下の温度に維持する時間は、研磨速度向上の観点から、1日以上、好ましくは10日以上、より好ましくは20日以上、更に好ましくは40日以上であり、シリコンウェーハの表面欠陥(LPD)の低減と濡れ性の向上の観点から、180日以下、好ましくは120日以下、より好ましくは100日以下である。   In the temperature maintaining step, the time for maintaining the mixed solution at a temperature of 30 ° C. or more and 80 ° C. or less is 1 day or more, preferably 10 days or more, more preferably 20 days or more, and further preferably from the viewpoint of improving the polishing rate. Is 40 days or longer, and from the viewpoint of reducing surface defects (LPD) of silicon wafers and improving wettability, it is 180 days or shorter, preferably 120 days or shorter, more preferably 100 days or shorter.

本発明の研磨液組成物の製造方法により得られる研磨液組成物は、例えば、半導体基板の製造方法における、被研磨シリコンウェーハを研磨する研磨工程や、被研磨シリコンウェーハを研磨する研磨工程を含む被研磨シリコンウェーハの研磨方法に用いられる。   The polishing liquid composition obtained by the method for manufacturing a polishing liquid composition of the present invention includes, for example, a polishing step for polishing a silicon wafer to be polished and a polishing step for polishing a silicon wafer to be polished in a method for manufacturing a semiconductor substrate. Used for polishing a silicon wafer to be polished.

本発明の研磨液組成物の製造方法により得られる研磨液組成物については、その製造過程で少なくとも成分A〜成分Dを含む混合液が温度維持工程を経ることにより、例えば、15℃以上55℃以下で長期(例えば、15日以上120日以下)保存することにより起こり得る水溶性高分子化合物(成分C)の加水分解が抑制されている。そのため、前記研磨工程で当該研磨液組成物を用いれば、輸送環境や保存環境の違いにより起こりうる研磨液組成物の品質(特に研磨速度)のバラツキを効果的に低減できる。   About the polishing liquid composition obtained by the manufacturing method of the polishing liquid composition of this invention, when the liquid mixture containing at least component A-component D passes through a temperature maintenance process in the manufacturing process, it is 15 degreeC or more and 55 degreeC, for example. In the following, hydrolysis of the water-soluble polymer compound (component C) that can occur by long-term storage (for example, 15 days or more and 120 days or less) is suppressed. Therefore, if the polishing composition is used in the polishing step, variations in the quality (particularly polishing rate) of the polishing composition that can occur due to differences in transportation environment and storage environment can be effectively reduced.

前記被研磨シリコンウェーハを研磨する研磨工程には、シリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウェーハを平面化するラッピング(粗研磨)工程と、ラッピングされたシリコンウェーハをエッチングした後、シリコンウェーハ表面を鏡面化する仕上げ研磨工程と含まれる。本発明の研磨液組成物は、上記仕上げ研磨工程で用いられるとより好ましい。   The polishing process for polishing the silicon wafer to be polished includes a lapping (rough polishing) process for planarizing a silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape, and a lapped silicon wafer. After the etching, it is included in a finish polishing step of mirror-finishing the silicon wafer surface. The polishing composition of the present invention is more preferably used in the above-described finish polishing step.

本発明の半導体基板の製造方法(以下、「本発明の製造方法」と略称する場合もある。)及び本発明の被研磨シリコンウェーハの研磨方法(以下、「本発明の研磨方法」と略称する場合もある。)は、被研磨シリコンウェーハを研磨する研磨工程の前に、温度維持工程で前記混合液を所定温度下で所定の期間保存することにより得た研磨液組成物(濃縮液)を希釈する希釈工程を含んでいてもよい。即ち、本発明の製造方法及び本発明の研磨方法では、研磨液組成物を、水系媒体で希釈してから被研磨シリコンウェーハの研磨に使用してもよい。希釈媒には、水系媒体を用いればよい。この場合、希釈倍率は、希釈した後の研磨時の濃度を確保できれば、特に限定するものではないが、製造及び輸送コストをさらに低くできる観点から、好ましくは2倍以上、より好ましくは5倍以上、更に好ましくは10倍以上、更により好ましくは20倍以上であり、保存安定性の向上の観点から好ましくは100倍以下、より好ましくは90倍以下、更に好ましくは80倍以下、更により好ましくは60倍以下である。   The semiconductor substrate manufacturing method of the present invention (hereinafter sometimes abbreviated as “the manufacturing method of the present invention”) and the silicon wafer polishing method of the present invention (hereinafter abbreviated as “the polishing method of the present invention”). In some cases, a polishing liquid composition (concentrated liquid) obtained by storing the mixed liquid at a predetermined temperature at a predetermined temperature for a predetermined period before the polishing process for polishing the silicon wafer to be polished. A dilution step for dilution may be included. That is, in the production method of the present invention and the polishing method of the present invention, the polishing composition may be diluted with an aqueous medium and then used for polishing a silicon wafer to be polished. An aqueous medium may be used as the diluent. In this case, the dilution factor is not particularly limited as long as the concentration at the time of polishing after dilution can be ensured, but it is preferably at least 2 times, more preferably at least 5 times, from the viewpoint of further reducing production and transportation costs. More preferably, it is 10 times or more, still more preferably 20 times or more, and from the viewpoint of improving storage stability, it is preferably 100 times or less, more preferably 90 times or less, still more preferably 80 times or less, still more preferably. 60 times or less.

本発明の製造方法及び本発明の研磨方法で、前記希釈工程において研磨液組成物(濃縮液)を水系媒体で希釈して得たシリコンウェーハ用研磨液組成物中に粗大粒子等が含まれる場合、当該シリコンウェーハ用研磨液組成物を遠心分離やフィルターを用いてろ過して、当該粗大粒子を除去すると好ましい。即ち、本発明の製造方法及び本発明の研磨方法では、研磨液組成物を、水系媒体で好ましくは2倍以上100倍以下に希釈し、次いで、ろ過してから被研磨シリコンウェーハの研磨に使用してもよい。   In the production method of the present invention and the polishing method of the present invention, when the polishing composition for silicon wafer obtained by diluting the polishing composition (concentrated solution) with an aqueous medium in the dilution step contains coarse particles or the like. It is preferable to remove the coarse particles by filtering the silicon wafer polishing composition using a centrifugal separator or a filter. That is, in the production method of the present invention and the polishing method of the present invention, the polishing liquid composition is preferably diluted 2 to 100 times with an aqueous medium, then filtered and used for polishing a silicon wafer to be polished. May be.

水系媒体で希釈されたシリコンウェーハ用研磨液組成物中のシリカ粒子(成分A)の含有量は、高研磨速度の確保の観点から、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましい。また、経済性、及び研磨液組成物におけるシリカ粒子の凝集抑制及び分散安定性向上の観点から10質量%以下が好ましく、7.5質量%以下がより好ましく、5質量%以下が更に好ましく、1質量%以下が更により好ましく、0.5質量%以下が更により好ましい。   The content of silica particles (component A) in the polishing composition for silicon wafer diluted with an aqueous medium is preferably 0.05% by mass or more, and 0.1% by mass or more from the viewpoint of securing a high polishing rate. Is more preferable, and 0.2 mass% or more is still more preferable. Further, from the viewpoints of economy and suppression of aggregation of silica particles in the polishing composition and improvement of dispersion stability, it is preferably 10% by mass or less, more preferably 7.5% by mass or less, still more preferably 5% by mass or less. The mass% or less is still more preferable, and 0.5 mass% or less is still more preferable.

水系媒体で希釈されたシリコンウェーハ用研磨液組成物中の含窒素塩基性化合物(成分B)の含有量は、シリコンウェーハの表面粗さ及び表面欠陥の低減、研磨液組成物の保存安定性の向上、及び高研磨速度の確保の観点から、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.007質量%以上が更に好ましく、0.010質量%以上が更により好ましい。また、シリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましく、0.05質量%以下が更により好ましく、0.025質量%以下が更により好ましく、0.018質量%以下が更により好ましく、0.014質量%以下が更により好ましい。   The content of the nitrogen-containing basic compound (component B) in the polishing composition for silicon wafers diluted with an aqueous medium reduces the surface roughness and surface defects of the silicon wafer, and the storage stability of the polishing composition. From the viewpoint of improving and ensuring a high polishing rate, 0.001% by mass or more is preferable, 0.005% by mass or more is more preferable, 0.007% by mass or more is further preferable, and 0.010% by mass or more is even more. preferable. Further, from the viewpoint of reducing the surface roughness and surface defects of the silicon wafer, it is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, and 0.05% by mass or less. Is still more preferable, 0.025 mass% or less is further more preferable, 0.018 mass% or less is still more preferable, and 0.014 mass% or less is still more preferable.

水系媒体で希釈されたシリコンウェーハ用研磨液組成物中の水溶性高分子化合物(成分C)の含有量は、シリコンウェーハの表面粗さの低減の観点から、好ましくは0.002質量%以上、より好ましくは0.003質量%以上、更に好ましくは0.005質量%以上、更により好ましくは0.008質量%以上であり、研磨液組成物の保存安定性の向上の観点から、好ましくは0.050質量%以下、より好ましくは0.03質量%以下、更に好ましくは0.02質量%以下、更により好ましくは0.012質量%以下である。   The content of the water-soluble polymer compound (component C) in the polishing composition for silicon wafer diluted with an aqueous medium is preferably 0.002% by mass or more from the viewpoint of reducing the surface roughness of the silicon wafer. More preferably 0.003% by mass or more, still more preferably 0.005% by mass or more, still more preferably 0.008% by mass or more, and preferably 0 from the viewpoint of improving the storage stability of the polishing composition. 0.050% by mass or less, more preferably 0.03% by mass or less, further preferably 0.02% by mass or less, and still more preferably 0.012% by mass or less.

水系媒体で希釈されたシリコンウェーハ用研磨液組成物中の多価アルコールのアルキレンオキシド付加物(成分E)の含有量は、表面粗さ(ヘイズ)と表面欠陥(LPD)の低減の観点から、好ましくは0.00001質量%以上、より好ましくは0.0001質量%以上であり、好ましくは0.005質量%以下、より好ましくは0.001質量%以下である。   The content of the polyhydric alcohol alkylene oxide adduct (component E) in the silicon wafer polishing liquid composition diluted with an aqueous medium is from the viewpoint of reducing surface roughness (haze) and surface defects (LPD). Preferably it is 0.00001 mass% or more, More preferably, it is 0.0001 mass% or more, Preferably it is 0.005 mass% or less, More preferably, it is 0.001 mass% or less.

前記被研磨シリコンウェーハを研磨する工程では、例えば、研磨パッドを貼り付けた定盤で被研磨シリコンウェーハを挟み込み、3〜20kPaの研磨圧力で被研磨シリコンウェーハを研磨する。   In the step of polishing the silicon wafer to be polished, for example, the silicon wafer to be polished is sandwiched between a surface plate to which a polishing pad is attached and the silicon wafer to be polished is polished at a polishing pressure of 3 to 20 kPa.

上記研磨圧力とは、研磨時に被研磨シリコンウェーハの被研磨面に加えられる定盤の圧力をいう。研磨圧力は、研磨速度を向上させ経済的に研磨を行う観点から、好ましくは3kPa以上、より好ましくは4kPa以上、更に好ましくは5kPa以上、更により好ましくは5.5kPa以上である。また、表面品質を向上させ、且つ研磨されたシリコンウェーハにおける残留応力を緩和する観点から、研磨圧力は、好ましくは20kPa以下、より好ましくは18kPa以下、更に好ましくは16kPa以下である。   The polishing pressure refers to the pressure of the surface plate applied to the surface to be polished of the silicon wafer to be polished at the time of polishing. The polishing pressure is preferably 3 kPa or more, more preferably 4 kPa or more, still more preferably 5 kPa or more, and even more preferably 5.5 kPa or more from the viewpoint of improving the polishing rate and economically polishing. Further, from the viewpoint of improving the surface quality and relaxing the residual stress in the polished silicon wafer, the polishing pressure is preferably 20 kPa or less, more preferably 18 kPa or less, and even more preferably 16 kPa or less.

本発明の製造方法及び本発明の研磨方法は、前記研磨液組成物(希釈液)を用いて被研磨シリコンウェーハを研磨する工程の後に、研磨された被研磨シリコンウェーハを洗浄する工程を更に含む。   The production method of the present invention and the polishing method of the present invention further include a step of cleaning the polished silicon wafer after the step of polishing the silicon wafer to be polished using the polishing composition (diluent). .

下記の実施例1、2及び比較例1〜3の研磨液組成物の調製に用いた表1の水溶性高分子化合物の詳細は下記のとおりである。   The details of the water-soluble polymer compounds in Table 1 used for the preparation of the polishing liquid compositions of Examples 1 and 2 and Comparative Examples 1 to 3 below are as follows.

<水溶性高分子化合物の合成>
[HEAA単独重合体、重量平均分子量72万]
ヒドロキシエチルアクリルアミド150 g(1.30 mol 興人製)を100 gのイオン交換水に溶解し、モノマー水溶液を調製した。また、別に、2,2’-アゾビス(2‐メチルプロピオンアミジン)ジヒドロクロリド 0.035g(重合開始剤、V-50 1.30 mmol 和光純薬製)を70 gのイオン交換水に溶解し、重合開始剤水溶液を調製した。ジムロート冷却管、温度計及び三日月形テフロン(登録商標)製撹拌翼を備えた2Lセパラブルフラスコに、イオン交換水1180 gを投入した後、セパラブルフラスコ内を窒素置換した。次いで、オイルバスを用いてセパラブルフラスコ内の温度を68℃に昇温した後、予め調製したモノマー水溶液と重合開始剤水溶液を各々3.5時間かけて滴下し、重合を行った。滴下終了後、温度及び撹拌を4時間保持し、無色透明10質量%ポリヒドロキシエチルアクリルアミド水溶液1500 gを得た。
<Synthesis of water-soluble polymer compound>
[HEAA homopolymer, weight average molecular weight 720,000]
Hydroxyethyl acrylamide 150 g (1.30 mol manufactured by Kojin Co., Ltd.) was dissolved in 100 g of ion exchange water to prepare an aqueous monomer solution. Separately, 0.035 g of 2,2'-azobis (2-methylpropionamidine) dihydrochloride (polymerization initiator, V-50 1.30 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 70 g of ion-exchanged water, and the polymerization initiator was dissolved. An aqueous solution was prepared. After putting 1180 g of ion-exchanged water into a 2 L separable flask equipped with a Dimroth condenser, thermometer, and crescent Teflon (registered trademark) stirring blade, the inside of the separable flask was purged with nitrogen. Next, after the temperature in the separable flask was raised to 68 ° C. using an oil bath, a monomer aqueous solution and a polymerization initiator aqueous solution prepared in advance were added dropwise over 3.5 hours to perform polymerization. After completion of the dropping, the temperature and stirring were maintained for 4 hours to obtain 1500 g of a colorless and transparent 10% by mass polyhydroxyethylacrylamide aqueous solution.

<重量平均分子量の測定>
(1)水溶性高分子化合物の重合平均分子量
水溶性高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づいて算出した。
装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
カラム:TSKgel α−M+TSKgel α−M(カチオン、東ソー株式会社製)
溶離液:エタノール/水(=3/7)に対して、LiBr (50mmol/L(0.43重量%))、CH3COOH(166.7mmol/L(1.0重量%))を添加
流量:0.6mL/min
カラム温度:40℃
検出器:RI 検出器
標準物質:分子量既知の単分散ポリエチレングリコール
<Measurement of weight average molecular weight>
(1) Polymerization average molecular weight of water-soluble polymer compound The weight average molecular weight of the water-soluble polymer compound is based on the peak in the chromatogram obtained by applying the gel permeation chromatography (GPC) method under the following conditions. Calculated.
Equipment: HLC-8320 GPC (Tosoh Corporation, detector integrated type)
Column: TSKgel α-M + TSKgel α-M (cation, manufactured by Tosoh Corporation)
Eluent: LiBr (50 mmol / L (0.43 wt%)) and CH3COOH (166.7 mmol / L (1.0 wt%)) are added to ethanol / water (= 3/7) Flow rate: 0.6 mL / min
Column temperature: 40 ° C
Detector: RI Detector Reference material: Monodispersed polyethylene glycol with known molecular weight

<研磨材(シリカ粒子)の平均一次粒子径>
研磨材の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
<Average primary particle diameter of abrasive (silica particles)>
The average primary particle diameter (nm) of the abrasive was calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
Average primary particle diameter (nm) = 2727 / S

研磨材の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。   The specific surface area of the abrasive is subjected to the following [pretreatment], and then approximately 0.1 g of a measurement sample is accurately weighed to 4 digits after the decimal point in a measurement cell, and immediately under the measurement at a specific temperature of 110 ° C. for 30 minutes. After drying, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device Flowsorb III 2305, manufactured by Shimadzu Corporation).

[前処理]
(a)スラリー状の研磨材を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の研磨材をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルターをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(砥粒)をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
[Preprocessing]
(A) The slurry-like abrasive is adjusted to pH 2.5 ± 0.1 with an aqueous nitric acid solution.
(B) A slurry-like abrasive adjusted to pH 2.5 ± 0.1 is placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour.
(C) After drying, the obtained sample is finely ground in an agate mortar.
(D) The pulverized sample is suspended in ion exchange water at 40 ° C. and filtered through a membrane filter having a pore size of 1 μm.
(E) The filtrate on the filter is washed 5 times with 20 g of ion exchange water (40 ° C.).
(F) The filter with the filtrate attached is taken in a petri dish and dried in an atmosphere of 110 ° C. for 4 hours.
(G) The dried filtrate (abrasive grains) was taken so as not to be mixed with filter waste, and finely pulverized with a mortar to obtain a measurement sample.

<研磨材(シリカ粒子)の平均二次粒子径>
研磨材の平均二次粒子径(nm)は、研磨材の濃度が0.25質量%となるように研磨材をイオン交換水に添加した後、得られた水溶液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:ゼータサイザーNano ZS、シスメックス(株)製)を用いて測定した。
<Average secondary particle diameter of abrasive (silica particles)>
The average secondary particle diameter (nm) of the abrasive is such that the abrasive is added to ion-exchanged water so that the concentration of the abrasive is 0.25% by mass, and then the obtained aqueous solution is disposable sizing cuvette (polystyrene 10 mm). The cell was measured up to a height of 10 mm from the bottom and measured using a dynamic light scattering method (device name: Zetasizer Nano ZS, manufactured by Sysmex Corporation).

<混合液の製造>
シリカ粒子(コロイダルシリカ、平均一次粒子径35nm、平均二次粒子径70nm、会合度2)、水溶性高分子化合物、ポリエチレングリコール(EO平均付加モル数=25、Mw1000(カタログ値)、和光純薬(株))、28質量%アンモニア水(キシダ化学(株)試薬特級)、及び超純水を攪拌混合して、混合液(pH10.6±0.1(25℃))を得た。混合液中の各成分の濃度は、シリカ粒子10質量%、アンモニア0.4質量%、水溶性高分子化合物0.4質量%、ポリエチレングリコール0.008質量%である。上記混合液を、表1に記載の管理条件(混合液の温度、期間)で保存する温度維持工程の対象とした。温度維持工程では、混合液を可能なかぎり空気及び光が入らないように容器に充填した状態とした。
<Production of liquid mixture>
Silica particles (colloidal silica, average primary particle size 35 nm, average secondary particle size 70 nm, association degree 2), water-soluble polymer compound, polyethylene glycol (EO average added mole number = 25, Mw1000 (catalog value), Wako Pure Chemical Industries, Ltd. Co.), 28 mass% ammonia water (Kishida Chemical Co., Ltd. reagent special grade), and ultrapure water were mixed with stirring to obtain a mixed solution (pH 10.6 ± 0.1 (25 ° C.)). The concentration of each component in the mixed solution is 10% by mass of silica particles, 0.4% by mass of ammonia, 0.4% by mass of the water-soluble polymer compound, and 0.008% by mass of polyethylene glycol. The liquid mixture was subjected to a temperature maintenance process in which the liquid mixture was stored under the management conditions (temperature of liquid mixture, period) described in Table 1. In the temperature maintaining step, the mixture was filled in the container so that air and light did not enter as much as possible.

<研磨方法>
温度維持工程を経て得た研磨液組成物(濃縮液)を、40℃1ヶ月間保存し、次いで、イオン交換水で40倍に希釈して試験液(pH10.6±0.1(25℃))を得、これを研磨直前にフィルター(コンパクトカートリッジフィルター MCP−LX−C10S アドバンテック株式会社)にてろ過した後、下記の研磨条件でシリコンウェーハ(直径200mmのシリコン片面鏡面ウェーハ(伝導型:P、結晶方位:100、抵抗率0.1Ω・cm以上100Ω・cm未満))の仕上げ研磨に用いた。当該仕上げ研磨に先立ってシリコンウェーハに対して市販の研磨液組成物を用いてあらかじめ粗研磨を実施した。粗研磨を終了し仕上げ研磨に供したシリコンウェーハの表面粗さ(ヘイズ)は、2.680(ppm)であった。この表面粗さ(ヘイズ)は、KLA Tencor社製のSurfscan SP1−DLS(商品名)を用いて測定される暗視野ワイド斜入射チャンネル(DWO)での値である。
<Polishing method>
The polishing liquid composition (concentrated liquid) obtained through the temperature maintaining process is stored at 40 ° C. for one month, and then diluted 40 times with ion-exchanged water to give a test liquid (pH 10.6 ± 0.1 (25 ° C.)). This was filtered with a filter (compact cartridge filter MCP-LX-C10S Advantech Co., Ltd.) immediately before polishing, and then a silicon wafer (silicon single-sided mirror wafer with a diameter of 200 mm (conductivity type: P, crystal) under the following polishing conditions Azimuth: 100, resistivity 0.1 Ω · cm or more and less than 100 Ω · cm)). Prior to the final polishing, rough polishing was performed on the silicon wafer in advance using a commercially available polishing composition. The surface roughness (haze) of the silicon wafer subjected to the final polishing after finishing the rough polishing was 2.680 (ppm). This surface roughness (haze) is a value in a dark field wide oblique incidence channel (DWO) measured using Surfscan SP1-DLS (trade name) manufactured by KLA Tencor.

<仕上げ研磨条件>
研磨機:片面8インチ研磨機GRIND-X SPP600s(岡本工作製)
研磨パッド:スエードパッド(東レ コーテックス社製 アスカー硬度64 厚さ 1.37mm ナップ長450um 開口径60um)
シリコンウェーハ研磨圧力:100g/cm2
定盤回転速度:60rpm
研磨時間:5分
研磨液組成物の供給速度:150g/cm2
研磨液組成物の温度:23℃
キャリア回転速度:60rpm
<Finishing polishing conditions>
Polishing machine: Single-sided 8-inch polishing machine GRIND-X SPP600s (manufactured by Okamoto)
Polishing pad: Suede pad (Toray Cortex, Asker hardness 64, thickness 1.37mm, nap length 450um, opening diameter 60um)
Silicon wafer polishing pressure: 100 g / cm 2
Surface plate rotation speed: 60 rpm
Polishing time: 5 minutes Supply rate of polishing liquid composition: 150 g / cm 2
Polishing liquid composition temperature: 23 ° C.
Carrier rotation speed: 60rpm

仕上げ研磨後、シリコンウェーハに対して、オゾン洗浄と希フッ酸洗浄を下記のとおり行った。オゾン洗浄では、20ppmのオゾンを含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって3分間噴射した。このときオゾン水の温度は常温とした。次に希フッ酸洗浄を行った。希フッ酸洗浄では、0.5質量%のフッ化水素アンモニウム(特級:ナカライテクス株式会社)を含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって6秒間噴射した。上記オゾン洗浄と希フッ酸洗浄を1セットとして計2セット行い、最後にスピン乾燥を行った。スピン乾燥では1500rpmでシリコンウェーハを回転させた。   After finish polishing, the silicon wafer was subjected to ozone cleaning and dilute hydrofluoric acid cleaning as follows. In ozone cleaning, an aqueous solution containing 20 ppm ozone was sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 3 minutes. At this time, the temperature of the ozone water was normal temperature. Next, dilute hydrofluoric acid cleaning was performed. In dilute hydrofluoric acid cleaning, an aqueous solution containing 0.5% by mass of ammonium hydrogen fluoride (special grade: Nacalai Tex Co., Ltd.) was sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 6 seconds. The above ozone cleaning and dilute hydrofluoric acid cleaning were performed as a set, for a total of 2 sets, and finally spin drying was performed. In the spin drying, the silicon wafer was rotated at 1500 rpm.

<シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の評価>
洗浄後のシリコンウェーハ表面の表面粗さ(ヘイズ)(ppm)の評価には、KLA Tencor社製のSurfscan SP1−DLS(商品名)を用いて測定される、暗視野ワイド斜入射チャンネル(DWO)での値を用いた。また、表面欠陥(LPD)(個)は、Haze測定時に同時に測定され、シリコンウェーハ表面の粒子径が45nm以上のパーティクル数を測定することによって評価した。Hazeの数値は小さいほど表面の平坦性が高いことを示す。また、LPDの数値(パーティクル数)が小さいほど表面欠陥が少ないことを示す。表面粗さ(ヘイズ)及び表面欠陥(LPD)の結果を表1に示した。表面粗さ(ヘイズ)及び表面欠陥(LPD)の測定は、各々2枚のシリコンウェーハに対して行い、各々平均値を表1に示した。
<Evaluation of surface roughness (haze) and surface defect (LPD) of silicon wafer>
For the evaluation of the surface roughness (haze) (ppm) of the cleaned silicon wafer surface, the dark field wide oblique incident channel (DWO) measured using Surfscan SP1-DLS (trade name) manufactured by KLA Tencor. The value at was used. Further, surface defects (LPD) (pieces) were measured at the same time as the Haze measurement, and evaluated by measuring the number of particles having a particle diameter of 45 nm or more on the surface of the silicon wafer. A smaller Haze value indicates higher surface flatness. Moreover, it shows that there are few surface defects, so that the numerical value (particle number) of LPD is small. Table 1 shows the results of surface roughness (haze) and surface defects (LPD). The surface roughness (haze) and surface defect (LPD) were measured on two silicon wafers, and the average values are shown in Table 1.

<40℃1ヶ月間保存前後の研磨速度比(%)>
温度維持工程を経て得た研磨液組成物の濃縮液を40℃で1ヶ月間静置保存した。40℃1ヶ月間保存前後の研磨液組成物の濃縮液を40倍に希釈して得た研磨液組成物について研磨速度を求め、下記式より保存前後の研磨速度比(%)を算出した。研磨速度は、下記の<研磨速度の評価>に従って測定した。
研磨速度比(%)=(保存後の研磨液組成物を用いた場合の研磨速度/保存前の研磨液組成物を用いた場合の研磨速度)×100
<Polishing rate ratio before and after storage at 40 ° C. for one month (%)>
The concentrate of the polishing composition obtained through the temperature maintenance step was stored at 40 ° C. for 1 month. The polishing rate was determined for the polishing composition obtained by diluting the concentrated solution of the polishing composition before and after storage at 40 ° C. for one month 40 times, and the polishing rate ratio (%) before and after storage was calculated from the following formula. The polishing rate was measured according to the following <Evaluation of polishing rate>.
Polishing rate ratio (%) = (polishing rate when using the polishing liquid composition after storage / polishing speed when using the polishing liquid composition before storage) × 100

<研磨速度の評価>
研磨速度は以下の方法で評価した。研磨前後の各シリコンウェーハの重さを精密天秤(Sartorius社製「BP−210S」)を用いて測定し、得られた重量差をシリコンウェーハの密度、面積及び研磨時間で除して、単位時間当たりの片面研磨速度を求めた。
<Evaluation of polishing rate>
The polishing rate was evaluated by the following method. The weight of each silicon wafer before and after polishing was measured using a precision balance ("BP-210S" manufactured by Sartorius), and the obtained weight difference was divided by the density, area and polishing time of the silicon wafer, and unit time The single-side polishing rate per hit was determined.

<濡れ性の評価>
仕上げ研磨直後のシリコンウェーハ(直径200mm)鏡面の親水化部(濡れている部分)の面積を目視により観察し、下記の評価基準に従って濡れ性を評価し、その結果を表1に示した。
(評価基準)
○:濡れ部分面積の割合が60%以上
△:濡れ部分面積の割合が40%以上60%未満
×:濡れ部分面積の割合が40%未満
<Evaluation of wettability>
The area of the hydrophilized part (wet part) on the mirror surface of the silicon wafer (diameter 200 mm) immediately after the finish polishing was visually observed, the wettability was evaluated according to the following evaluation criteria, and the results are shown in Table 1.
(Evaluation criteria)
○: Ratio of wet part area is 60% or more Δ: Ratio of wet part area is 40% or more and less than 60% ×: Ratio of wet part area is less than 40%

Figure 0006366139
Figure 0006366139

表1に示されるように、1日以上180日以下の間、混合液の温度を30℃以上80℃以下の範囲内の温度に保つ温度維持工程を経て得た実施例1、2の研磨液組成物は、比較例1〜3の研磨液組成物に比べて、高温長期保存を経ても、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と高研磨速度とが良好に両立できる。   As shown in Table 1, the polishing liquids of Examples 1 and 2 obtained through a temperature maintaining step for maintaining the temperature of the mixed liquid at a temperature in the range of 30 ° C. to 80 ° C. for 1 day or more and 180 days or less. Compared with the polishing liquid compositions of Comparative Examples 1 to 3, the composition can satisfactorily achieve both a reduction in surface roughness (haze) and surface defects (LPD) and a high polishing rate even after high-temperature and long-term storage.

本発明の研磨液組成物の製造方法で製造された研磨液組成物を用いれば、高温長期保存を経ても、シリコンウェーハの、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と高研磨速度とを両立できる。よって、本発明の製造方法により得られた研磨液組成物は、様々な半導体基板の製造過程で用いられる研磨液組成物として有用であり、なかでも、シリコンウェーハの仕上げ研磨用の研磨液組成物として有用である。   By using the polishing composition produced by the method for producing the polishing composition of the present invention, the surface roughness (haze) and surface defects (LPD) of the silicon wafer can be reduced and high polishing even after high-temperature and long-term storage. You can balance speed. Therefore, the polishing liquid composition obtained by the manufacturing method of the present invention is useful as a polishing liquid composition used in the manufacturing process of various semiconductor substrates, and in particular, a polishing liquid composition for finish polishing of a silicon wafer. Useful as.

Claims (8)

シリカ粒子(成分A)と、含窒素塩基性化合物(成分B)と、水溶性高分子化合物(成分C)とを含有するシリコンウェーハ用研磨液組成物の製造方法であり、
前記シリカ粒子(成分A)の含有量が1質量%以上20質量%以下、前記含窒素塩基性化合物(成分B)の含有量が0.1質量%以上5質量%以下、前記水溶性高分子化合物(成分C)の含有量が0.1質量%以上10質量%以下の混合液の温度を、10日以上180日以下の間35℃以上80℃以下に維持する温度維持工程を含む、シリコンウェーハ用研磨液組成物の製造方法。
A method for producing a polishing composition for silicon wafers comprising silica particles (component A), a nitrogen-containing basic compound (component B), and a water-soluble polymer compound (component C);
The content of the silica particles (component A) is 1% by mass to 20% by mass, the content of the nitrogen-containing basic compound (component B) is 0.1% by mass to 5% by mass, and the water-soluble polymer. Including a temperature maintaining step of maintaining the temperature of the mixed liquid having a compound (component C) content of 0.1% by mass or more and 10% by mass or less at 35 ° C. or more and 80 ° C. or less for 10 days or more and 180 days or less. Manufacturing method of polishing liquid composition for wafers.
前記水溶性高分子化合物(成分C)が一般式(1)で表される構成単位を含む、請求項1記載のシリコンウェーハ用研磨液組成物の製造方法。
Figure 0006366139
ただし、上記一般式(1)において、R1、R2は、それぞれ独立して、水素、炭素数が1〜8のアルキル基、又は炭素数が1〜2のヒドロキシアルキル基を示し、R1、R2の両方が水素であることはない。
The manufacturing method of the polishing liquid composition for silicon wafers of Claim 1 in which the said water-soluble polymer compound (component C) contains the structural unit represented by General formula (1).
Figure 0006366139
However, in the general formula (1), R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 8 carbon atoms, or a hydroxyalkyl group having 1 to 2 carbon atoms, and R 1 , R 2 are not both hydrogen.
請求項1又は2に記載のシリコンウェーハ用研磨液組成物の製造方法により製造されたシリコンウェーハ用研磨液組成物を用いて被研磨シリコンウェーハを研磨する工程を含む、被研磨シリコンウェーハの研磨方法。   A method for polishing a silicon wafer to be polished, comprising a step of polishing the silicon wafer to be polished using the polishing composition for a silicon wafer manufactured by the method for manufacturing a polishing liquid composition for a silicon wafer according to claim 1 or 2. . 前記シリコンウェーハ用研磨液組成物を、水系媒体で希釈してから前記被研磨シリコンウェーハの研磨に使用する、請求項3に記載の被研磨シリコンウェーハの研磨方法。   The method for polishing a silicon wafer to be polished according to claim 3, wherein the polishing composition for silicon wafer is diluted with an aqueous medium and then used for polishing the silicon wafer to be polished. 前記シリコンウェーハ用研磨液組成物を、水系媒体で2倍以上100倍以下に希釈し、次いで、ろ過してから前記被研磨シリコンウェーハの研磨に使用する、請求項4に記載の被研磨シリコンウェーハの研磨方法。   5. The silicon wafer to be polished according to claim 4, wherein the silicon wafer polishing liquid composition is diluted to 2 to 100 times with an aqueous medium and then used for polishing the silicon wafer to be polished after filtration. Polishing method. 請求項1又は2に記載のシリコンウェーハ用研磨液組成物の製造方法により製造されたシリコンウェーハ用研磨液組成物を用いて被研磨シリコンウェーハを研磨する工程を含む、半導体基板の製造方法。   A method for manufacturing a semiconductor substrate, comprising a step of polishing a silicon wafer to be polished using the polishing composition for a silicon wafer manufactured by the method for manufacturing a polishing composition for a silicon wafer according to claim 1. 前記シリコンウェーハ用研磨液組成物を、水系媒体で希釈してから前記被研磨シリコンウェーハの研磨に使用する、請求項6に記載の半導体基板の製造方法。   The method for manufacturing a semiconductor substrate according to claim 6, wherein the polishing composition for a silicon wafer is diluted with an aqueous medium and then used for polishing the silicon wafer to be polished. 前記シリコンウェーハ用研磨液組成物を、水系媒体で2倍以上100倍以下に希釈し、次いで、ろ過してから前記被研磨シリコンウェーハの研磨に使用する、請求項7に記載の半導体基板の製造方法。   The manufacturing method of a semiconductor substrate according to claim 7, wherein the polishing composition for silicon wafer is diluted by 2 to 100 times with an aqueous medium and then used for polishing the polished silicon wafer after filtration. Method.
JP2014263497A 2014-12-25 2014-12-25 Method for producing polishing composition for silicon wafer Active JP6366139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014263497A JP6366139B2 (en) 2014-12-25 2014-12-25 Method for producing polishing composition for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014263497A JP6366139B2 (en) 2014-12-25 2014-12-25 Method for producing polishing composition for silicon wafer

Publications (2)

Publication Number Publication Date
JP2016122805A JP2016122805A (en) 2016-07-07
JP6366139B2 true JP6366139B2 (en) 2018-08-01

Family

ID=56327531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263497A Active JP6366139B2 (en) 2014-12-25 2014-12-25 Method for producing polishing composition for silicon wafer

Country Status (1)

Country Link
JP (1) JP6366139B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260912B (en) * 2022-07-29 2024-03-26 江苏山水半导体科技有限公司 Polishing solution for reducing corrosion on surface of silicon wafer and preparation and use methods thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP5983978B2 (en) * 2011-03-03 2016-09-06 日立化成株式会社 CMP polishing slurry, CMP polishing solution and polishing method
JP5822356B2 (en) * 2012-04-17 2015-11-24 花王株式会社 Polishing liquid composition for silicon wafer
US20160122591A1 (en) * 2013-06-07 2016-05-05 Fujimi Incorporated Silicon wafer polishing composition

Also Published As

Publication number Publication date
JP2016122805A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5822356B2 (en) Polishing liquid composition for silicon wafer
JP5893706B2 (en) Polishing liquid composition for silicon wafer
JP6836671B2 (en) Polishing liquid composition for silicon wafer or polishing liquid composition kit for silicon wafer
JP2016213216A (en) Polishing liquid composition for silicon wafers
JP6039419B2 (en) Polishing liquid composition for silicon wafer
JP6489690B2 (en) Polishing liquid composition for silicon wafer
JP6893835B2 (en) Finish polishing liquid composition for silicon wafer
JP2018074048A (en) Polishing liquid composition for silicon wafer
JP6403324B2 (en) Polishing liquid composition for silicon wafer
JP6245939B2 (en) Polishing liquid composition for silicon wafer
JP6366139B2 (en) Method for producing polishing composition for silicon wafer
JP6086725B2 (en) Polishing liquid composition for silicon wafer
JP6265542B2 (en) Manufacturing method of semiconductor substrate
JP5995659B2 (en) Polishing liquid composition for silicon wafer
JP6418941B2 (en) Polishing liquid composition for silicon wafer
JP6831667B2 (en) Wetting agent
JP6168984B2 (en) Polishing liquid composition for silicon wafer
JP6367113B2 (en) Polishing liquid composition for silicon wafer
JP6792413B2 (en) Abrasive liquid composition for silicon wafer
JP6169938B2 (en) Polishing liquid composition for silicon wafer
JP2016119418A (en) Polishing liquid composition for silicon wafer
JP7405567B2 (en) polishing liquid composition
JP2023008518A (en) Silicon substrate polishing method
JP2023154963A (en) Polishing liquid composition for silicon substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R151 Written notification of patent or utility model registration

Ref document number: 6366139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250