JPH11277380A - Surface polishing system for semiconductor product - Google Patents

Surface polishing system for semiconductor product

Info

Publication number
JPH11277380A
JPH11277380A JP7970398A JP7970398A JPH11277380A JP H11277380 A JPH11277380 A JP H11277380A JP 7970398 A JP7970398 A JP 7970398A JP 7970398 A JP7970398 A JP 7970398A JP H11277380 A JPH11277380 A JP H11277380A
Authority
JP
Japan
Prior art keywords
polishing
polishing liquid
regenerated
liquid
polishing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7970398A
Other languages
Japanese (ja)
Inventor
Tadao Takahata
忠雄 高畑
Kazuaki Yanagihara
和明 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP7970398A priority Critical patent/JPH11277380A/en
Publication of JPH11277380A publication Critical patent/JPH11277380A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable stably preferable polishing while maintaining high polishing efficiency by using a polishing solution of an alkaline silica gel composition for the polishing of a semiconductor product surface in a first process, regenerating the polishing solution in a second process, and replacing the regenerated polishing solution with the polishing solution in the first process in a third process. SOLUTION: An alkaline silica gel composition containing low metal is used for surface polishing of the semiconductor product as an alkaline silica gel composition used in the first process. Silica concentration, pH, and a metal content of the used polishing solution generated in the first process is adjusted as a regenerated polishing solution in the second process. Next, a part of the polishing solution in the first process or all thereof is replaced with the regenerated polishing solution obtained in the second process in the third process. Accordingly, the polishing solution is regenerated in the second process according to a batch method, thereby enabling the necessary polishing solution to be repeatedly used in accordance with the desire. The used polishing solution is regenerated without stopping the operation of the system according to a continuous method, thereby enabling efficient polishing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製品の表面
研磨システムに関し、詳細には、LSI等の半導体製品
の表面、例えば絶縁酸化膜などの表面を研磨して平坦化
を行うために適した半導体製品の表面研磨システムに関
する。LSI等の半導体製品表面の、例えば絶縁酸化膜
の平坦化プロセスは、CVD(化学蒸着)法に於いてレ
ベリング性に優れたソースを選択し、平坦性の高い絶縁
酸化膜自体を得る手法と、平坦性をそれほど考慮せずに
一旦絶縁酸化膜を得た後、化学的機械的な研磨によりこ
の絶縁酸化膜を平坦化する手法があり、本発明は後者の
方法に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for polishing a surface of a semiconductor product, and more particularly, to a system for polishing a surface of a semiconductor product such as an LSI, for example, a surface of an insulating oxide film or the like, for flattening. The present invention relates to a surface polishing system for semiconductor products. In the process of flattening, for example, an insulating oxide film on the surface of a semiconductor product such as an LSI, a source having excellent leveling property is selected by a CVD (chemical vapor deposition) method to obtain an insulating oxide film having high flatness. There is a method of once obtaining an insulating oxide film without considering the flatness so much, and then flattening the insulating oxide film by chemical mechanical polishing. The present invention belongs to the latter method.

【0002】[0002]

【従来の技術】従来の化学的機械的な研磨法としては、
研磨剤スラリー(研磨液)を研磨盤に取り付けた研磨布
面に滴下しつつ、これを絶縁酸化膜付きシリコンウェハ
面等に一定荷重をかけて押し付け、研磨加工を施してい
る。この際、シリコン系絶縁膜の研磨に於いては、通常
シリカ系砥粒を成分とするスラリーを用いて研磨するプ
ロセスがとられている。具体的な工程としては研磨ブロ
ックに絶縁酸化膜付きシリコンウェハを貼り付け、この
研磨ブロックを回転研磨盤上に接着した研磨布(ポリッ
シャー)に適切なる圧力で押し付けて、主にpH9〜1
2程度の水に分散した超微粉シリカの磨スラリー液を滴
下することにより、研磨液と絶縁用シリコン酸化膜がメ
カノケミカル作用を起こし研磨が進行される。
2. Description of the Related Art Conventional chemical mechanical polishing methods include:
Polishing is performed by dropping an abrasive slurry (polishing liquid) onto a polishing cloth surface attached to a polishing board and pressing it against a silicon wafer surface with an insulating oxide film while applying a constant load. At this time, in the polishing of the silicon-based insulating film, a process of polishing using a slurry containing silica-based abrasive grains as a component is usually employed. As a specific process, a silicon wafer with an insulating oxide film is attached to a polishing block, and the polishing block is pressed with a suitable pressure onto a polishing cloth (polisher) adhered on a rotary polishing plate to mainly adjust pH 9 to 1.
By dropping a polishing slurry liquid of ultra-fine silica dispersed in about two waters, the polishing liquid and the insulating silicon oxide film have a mechanochemical action, and the polishing proceeds.

【0003】しかし、このように使用される研磨液は所
謂垂れ流しされ、一度使用した研磨液は廃棄されるため
ランニングコストが嵩んだり、廃液処理用の施設が必要
であるなど経済的でなく、工業化適性の高いものではな
かった。
[0003] However, the polishing liquid used in this manner is so-called dripping, and the polishing liquid once used is discarded, so that the running cost increases and a waste liquid treatment facility is required. It was not highly suitable for industrialization.

【0004】[0004]

【発明が解決しようとする課題】このような状況から、
近年、研磨液を廃棄せずに循環使用することが要望され
てきたが、従来の研磨液は、主に超微粉シリカ系スラリ
ー液であるため、経時的に二次凝集を起こし易く、循環
方式による研磨システム等には不向きであり、また、研
磨能力の劣化も著しいものであった。
SUMMARY OF THE INVENTION Under such circumstances,
In recent years, it has been demanded that the polishing liquid be recycled without being discarded. However, since the conventional polishing liquid is mainly an ultrafine silica-based slurry liquid, secondary aggregation is likely to occur over time, and the circulation method However, it is not suitable for a polishing system or the like, and the polishing ability is significantly deteriorated.

【0005】一方、分散安定性を改善する方法として
は、特開昭63−285112号公報、特開平2−27
8822号公報、特開平4−2606号公報等があり、
シリカゾル(コロイダルシリカ)系研磨液を成分とする
研磨剤が開示されている。しかし、該シリカゾル系研磨
剤も経時的に研磨能力の劣化を来し、使用後の研磨液は
前述と同様に垂れ流しされ廃棄され、これも工業化適性
の高いものではない。
On the other hand, as a method for improving the dispersion stability, JP-A-63-285112 and JP-A-2-27.
No. 8822, Japanese Patent Laid-Open No. 4-2606, etc.
An abrasive containing a silica sol (colloidal silica) -based polishing liquid as a component is disclosed. However, the silica sol-based polishing agent also deteriorates in polishing ability over time, and the used polishing liquid is dripped and discarded in the same manner as described above, which is not highly industrially suitable.

【0006】従って本発明の目的は、シリカゾル系研磨
液を用いる半導体製品の表面研磨システムにおいて、使
用済の研磨液を再生し、これを循環使用して高研磨効率
を維持しつつ、且つ安定して良好な研磨を行うことので
きる半導体製品の表面研磨システムを提供することにあ
る。
Accordingly, an object of the present invention is to regenerate a used polishing liquid in a surface polishing system for semiconductor products using a silica sol-based polishing liquid and circulate the used polishing liquid to maintain a high polishing efficiency and stably. It is an object of the present invention to provide a semiconductor product surface polishing system capable of performing good polishing by using the method.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明者らは鋭意研究の結果本発明に到達した。即
ち本発明の第1は、アルカリ性シリカゾル組成物からな
る研磨液を使用して半導体製品表面を研磨する第1工程
と、使用済研磨液のシリカ濃度、pH及び/又は金属含
量を調整して再生研磨液とする第2工程と、前記第2工
程で得られた再生研磨液を第1工程の研磨液の一部若し
くは全部に置換する第3工程と、を備えた半導体製品の
表面研磨システムである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and arrived at the present invention. That is, a first step of the present invention is a first step of polishing a semiconductor product surface using a polishing liquid comprising an alkaline silica sol composition, and a regeneration by adjusting the silica concentration, pH and / or metal content of the used polishing liquid. A semiconductor product surface polishing system, comprising: a second step of using a polishing liquid; and a third step of replacing the regenerated polishing liquid obtained in the second step with a part or all of the polishing liquid of the first step. is there.

【0008】本発明の第2は、第1工程で生じた使用済
研磨液を貯蔵しておき、必要なときに前記使用済研磨液
を再生する第2工程を行い、得られた再生研磨液を前記
第1工程の研磨液の一部若しくは全部に置換するバッチ
法が採用される前記の半導体製品の表面研磨システムで
ある。
A second aspect of the present invention is to store a used polishing liquid generated in the first step, and perform a second step of regenerating the used polishing liquid when necessary, and obtain a regenerated polishing liquid obtained. Is a batch polishing method for replacing a part or all of the polishing liquid of the first step with the polishing liquid of the first step.

【0009】本発明の第3は、第1工程、第2工程及び
第3工程を同時に稼働させる連続法が採用される前記の
半導体製品の表面研磨システムである。
A third aspect of the present invention is the above-mentioned semiconductor product surface polishing system employing a continuous method in which the first step, the second step and the third step are simultaneously operated.

【0010】[0010]

【発明の実施の形態】本発明の第1工程に使用するアル
カリ性シリカゾル組成物は、半導体製品の表面研磨用途
に使用できるものとして従来公知の低金属含量アルカリ
性シリカゾル組成物を使用することができ、例えば、汎
用シリカゾル(コロイダルシリカとも言う)から金属分
を除去し、さらに必要に応じてpHを調整すれば得るこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The alkaline silica sol composition used in the first step of the present invention may be a conventionally known low metal content alkaline silica sol composition which can be used for surface polishing of semiconductor products. For example, it can be obtained by removing a metal component from a general-purpose silica sol (also referred to as colloidal silica) and adjusting the pH as needed.

【0011】ここで言う「低金属含量」とは、金属イオ
ンの含有量の低いものを指す(商取引などでは半導体グ
レードとも言う)。金属イオンが多いと半導体製品を構
成する材料に化学的な悪影響を及ぼすので、金属イオン
の含有量は極力低くするのが好ましいが、特にNaイオ
ンを15ppm未満とするのが良い。汎用シリカゾル
(コロイダルシリカとも言う)の金属分を除去するに
は、カチオン交換樹脂で処理すればよい。カチオン交換
樹脂としては、例えばアンバーライトIR−116、I
R−120B(ローム・アンド・ハース社製)、デュオ
ライトC−20、C−26(住友化学工業製)等ポリス
チレンスルホン酸型が代表的なものとして使用できる。
また、IRA−400、IRA−410(ローム・アン
ド・ハース社製)等のアニオン交換樹脂との併用により
更に精製度を上げることも可能である。
The term "low metal content" as used herein refers to a material having a low content of metal ions (also referred to as a semiconductor grade in commercial transactions). Since a large amount of metal ions has a chemical adverse effect on a material constituting a semiconductor product, it is preferable to minimize the content of metal ions, but it is particularly preferable to make Na ions less than 15 ppm. In order to remove the metal component of the general-purpose silica sol (also referred to as colloidal silica), it may be treated with a cation exchange resin. As the cation exchange resin, for example, Amberlite IR-116, I
Polystyrenesulfonic acid type such as R-120B (manufactured by Rohm and Haas), Duolite C-20 and C-26 (manufactured by Sumitomo Chemical Co., Ltd.) can be used as typical examples.
Further, the degree of purification can be further increased by using in combination with an anion exchange resin such as IRA-400, IRA-410 (manufactured by Rohm and Haas).

【0012】また、水不溶性若しくは水難溶性の金属化
合物等(単体を含む)を含む場合、上記金属イオンのよ
うに化学的な悪影響を及ぼすことは少ないが、水不溶性
若しくは水難溶性の金属化合物等の粒子径がシリカゾル
中のシリカ粒子より大きいと物理的な悪影響を及ぼすこ
とがあるので、概ねシリカ粒子径の150%以上の粒子
径のものは濾別するのが良い。該アルカリ性シリカゾル
組成物中のシリカ粒子径は、平均粒子径15〜100n
mであることが研磨効率及び研磨精度の点で好ましい。
When a water-insoluble or hardly water-soluble metal compound or the like (including a simple substance) is contained, it has little chemical adverse effect as in the case of the above-mentioned metal ions. If the particle size is larger than the silica particles in the silica sol, physical adverse effects may occur. Therefore, it is better to filter those having a particle size of about 150% or more of the silica particle size. The silica particle diameter in the alkaline silica sol composition has an average particle diameter of 15 to 100 n.
m is preferable in terms of polishing efficiency and polishing accuracy.

【0013】pHの調整にはアンモニア及び/又は有機
水溶性アミンを添加すればよいが、上記同様に低金属含
量としたものを使用するのがよく、pHの調整は好まし
くはpH=9.6〜11.5の範囲に調整するのが研磨
効率と研磨精度の点で好ましい。有機水溶性アミンは、
炭素原子数が1〜6の直鎖状、分岐鎖状又は環状のアミ
ン、例えば、N,N−ジエチルエタノールアミン、アミ
ノエチルエタノールアミン、モノエタノールアミン、モ
ノエチルアミン、ヒドラジン、エチレンジアミン、ジエ
チレントリアミン、ベンジルアミン、1−アミノエチル
ピペラジン等を好ましいものとして例示することがで
き、溶液の安定性の点で、上記有機水溶性アミンとして
更に好ましいのはアルカノールアミン及びアルキルアミ
ンであり、特に好ましいのはアミノエチルエタノールア
ミン、モノエタノールアミン、モノメチルアミン、ヒド
ラジン、エチレンジアミン、ジエチレントリアミン、水
酸化テトラメチルアンモニウムである。
To adjust the pH, ammonia and / or an organic water-soluble amine may be added, but it is preferable to use one having a low metal content as described above, and the pH is preferably adjusted to pH = 9.6. Adjustment within the range of 11.5 is preferable in terms of polishing efficiency and polishing accuracy. Organic water-soluble amines
A linear, branched or cyclic amine having 1 to 6 carbon atoms, for example, N, N-diethylethanolamine, aminoethylethanolamine, monoethanolamine, monoethylamine, hydrazine, ethylenediamine, diethylenetriamine, benzylamine , 1-aminoethylpiperazine and the like can be exemplified as preferable ones. From the viewpoint of solution stability, more preferable organic water-soluble amines are alkanolamines and alkylamines, and particularly preferable are aminoethylethanol. Amines, monoethanolamine, monomethylamine, hydrazine, ethylenediamine, diethylenetriamine, and tetramethylammonium hydroxide.

【0014】該アルカリ性シリカゾル組成物中のシリカ
固形分は、良好な研磨効率と安定性の点で10〜50重
量%が良く、好ましくは20〜50重量%が良い。
The silica solid content in the alkaline silica sol composition is preferably from 10 to 50% by weight, and more preferably from 20 to 50% by weight in terms of good polishing efficiency and stability.

【0015】本発明の第1工程は上記アルカリ性シリカ
ゾル組成物を研磨液として通常行われる半導体製品の表
面研磨を行えば良い。
In the first step of the present invention, the surface of a semiconductor product is usually polished by using the above alkaline silica sol composition as a polishing liquid.

【0016】本発明の第2工程は上記第1工程で発生す
る使用済研磨液のシリカ濃度、pH、金属含量を調整し
て再生研磨液とするものである。
The second step of the present invention is to adjust the silica concentration, pH and metal content of the used polishing liquid generated in the first step to obtain a regenerated polishing liquid.

【0017】使用済研磨液のシリカ濃度は、研磨中にお
ける水の混入などにより経時的に低下する。シリカ濃度
が低下すると良好な研磨効率が得られない。シリカ濃度
の調整は、例えばバッチ法であれば研磨液をサンプル抽
出し、シリカ濃度を検出し、所望濃度となるよう濃縮シ
リカゾルを添加したり、連続法であれば限外濾過膜を通
すなどして濃縮すればよい。
The silica concentration of the used polishing liquid decreases over time due to the mixing of water during polishing. If the silica concentration decreases, good polishing efficiency cannot be obtained. To adjust the silica concentration, for example, in the case of a batch method, a polishing solution is sampled, the silica concentration is detected, and concentrated silica sol is added so as to have a desired concentration, or in the case of a continuous method, an ultrafiltration membrane is used. And concentrate.

【0018】使用済研磨液のpHは、前記水の混入によ
り、また、研磨により半導体製品構成材料から削り取ら
れた物質の影響で経時的に低下する。pHが低下すると
良好な研磨効率が得られない。pHの調整は、例えばバ
ッチ法であれば研磨液をサンプル抽出し、pHを検出
し、連続法であれば工程中に設けたpH計によりpHを
検出し、所望濃度となるよう上記同様低金属含量とした
アンモニア及び/又は有機水溶性アミンを添加すればよ
い。
The pH of the used polishing liquid decreases over time due to the mixing of the water and the influence of substances removed from the constituent materials of the semiconductor product by polishing. If the pH is lowered, good polishing efficiency cannot be obtained. For example, in the case of the batch method, the pH is adjusted by extracting a sample of the polishing liquid and detecting the pH. The content of ammonia and / or organic water-soluble amine may be added.

【0019】使用済研磨液の金属含量は、研磨により半
導体製品構成材料から削り取られた物質の混入により増
加する。金属含量が増加すると半導体製品を構成する材
料に化学的な悪影響を及ぼす。金属含量を低下させるに
は、バッチ法にしろ連続法にしろ、使用済研磨液を上記
同様にカチオン交換樹脂で処理すればよい。
The metal content of the used polishing liquid increases due to the incorporation of substances removed from the constituent materials of semiconductor products by polishing. An increase in the metal content has a bad chemical effect on the materials constituting the semiconductor product. To reduce the metal content, the used polishing liquid may be treated with a cation exchange resin in the same manner as described above, regardless of whether it is a batch method or a continuous method.

【0020】本発明において以上の使用済研磨液の調整
とは、シリカ濃度、pH、金属含量のいずれにおいて
も、各々研磨目的によって所望とする許容範囲内に維持
されることを意味するものであり、許容範囲を出ないな
ど、場合によっては各々積極的制御を行わなくとも良い
ことがある。
In the present invention, the adjustment of the used polishing liquid means that the silica concentration, the pH and the metal content are all maintained within desired tolerances depending on the polishing purpose. In some cases, it may not be necessary to perform active control, for example, when the allowable range is not reached.

【0021】尚、研磨により半導体製品構成材料から削
り取られた物質の混入により使用済研磨液にも水不溶性
若しくは水難溶性の金属化合物等が増加するが、上記同
様に、概ねシリカ粒子径の150%以上の粒子径のもの
は濾別するのが良い。
In addition, water-insoluble or hardly water-soluble metal compounds and the like increase in the used polishing liquid due to the incorporation of a substance scraped off from a semiconductor product constituent material by polishing. The particles having the above particle diameters are preferably separated by filtration.

【0022】本発明の第3工程は、前記第1工程の研磨
液の一部若しくは全部を前記第2工程で得た再生研磨液
に置換する工程である。
The third step of the present invention is a step of replacing part or all of the polishing liquid of the first step with the regenerated polishing liquid obtained in the second step.

【0023】尚、研磨後の洗浄性を上げる等のため、金
属含量の低下を図った上で、界面活性剤等を上記各工程
の何れかで添加することもできる。
Incidentally, in order to increase the washing property after polishing, the content of metal may be reduced, and a surfactant or the like may be added in any of the above steps.

【0024】第2発明は、第1工程で生じた使用済研磨
液を貯蔵しておき、必要なときに使用済研磨液を再生す
る第2工程を行い、得られた再生研磨液を第1工程の研
磨液の一部若しくは全部に置換するものである。このシ
ステムはバッチ法であり、バッチ法におけるシステムの
好適な条件は上記した通りである。
According to a second aspect of the invention, the used polishing liquid generated in the first step is stored, and a second step of regenerating the used polishing liquid when necessary is performed. It replaces a part or all of the polishing liquid in the process. This system is a batch method, and preferable conditions of the system in the batch method are as described above.

【0025】第3発明は、第1工程、第2工程及び第3
工程を同時に稼働させるものである。このシステムは連
続法であり、連続法におけるシステムの好適な条件は上
記した通りである。連続法は、第1工程で生じた使用済
研磨液は、第2工程でシリカ濃度、pH及び/又は金属
含量が調整された後、システム全体の稼働を止めること
なく、再生研磨液を第1工程で使用される研磨液の一部
若しくは全部に置換するものである。この連続法におい
て、研磨液の全部を再生研磨液で置換することも不可能
ではないが、好ましくは一部を置換するのが良く、具体
的には連続的に生成する再生研磨液を、連続的に導入さ
れる第1工程の研磨液と混合して行えば良い。
The third invention comprises a first step, a second step and a third step.
The process is operated simultaneously. This system is a continuous process, and suitable conditions for the system in the continuous process are as described above. In the continuous method, after the used polishing liquid generated in the first step is used, the regenerated polishing liquid is used in the first step without stopping the operation of the entire system after the silica concentration, pH and / or metal content are adjusted in the second step. It replaces a part or all of the polishing liquid used in the process. In this continuous method, it is not impossible to replace the entire polishing liquid with the regenerated polishing liquid, but it is preferable to partially replace the polishing liquid. Specifically, a continuously generated regenerated polishing liquid is continuously used. What is necessary is just to mix with the polishing liquid of the 1st process introduce | transduced specifically.

【0026】バッチ法においては上記第2工程で研磨液
が再生されるので、所望により必要なだけ繰り返し研磨
液を再生して使用することができる。また、連続法にお
いては、システムの稼働を止めることなく使用済研磨液
が再生されるので、効率の良い研磨を行うことができ
る。
In the batch method, the polishing liquid is regenerated in the second step, so that the polishing liquid can be regenerated and used as needed as needed. Further, in the continuous method, since the used polishing liquid is regenerated without stopping the operation of the system, efficient polishing can be performed.

【0027】[0027]

【実施例】以下に実施例を挙げて本発明を更に説明する
が、本発明はこれらに限定されるものではない。 (実施例1)平均粒子径25nm、シリカ固形分30重
量%のアルカリ性シリカゾル溶液〔アデライトEX−3
0N:旭電化工業(株)製〕をカチオン交換樹脂(ロー
ムアンドハース製、商品名アンバーライトIR−11
6)により処理し、低金属含量アンモニアによりpH1
0.5に調整した組成物(液中の金属分は、Fe0.3
ppm、Al 25ppm、Ca0.1ppm、Mg
0.2ppm、Na10ppm)を研磨液として使用し
て以下の条件で絶縁酸化膜付きのシリコンウェハの研磨
を行った。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples. (Example 1) An alkaline silica sol solution having an average particle diameter of 25 nm and a silica solid content of 30% by weight [Adeleite EX-3]
0N: manufactured by Asahi Denka Kogyo Co., Ltd.] and a cation exchange resin (manufactured by Rohm and Haas, trade name: Amberlite IR-11)
6), pH 1 with low metal content ammonia
0.5 (the metal component in the liquid is Fe0.3
ppm, Al 25 ppm, Ca 0.1 ppm, Mg
(0.2 ppm, Na 10 ppm) was used as a polishing liquid to polish a silicon wafer with an insulating oxide film under the following conditions.

【0028】研磨機:ラップマスター社製LPH−15
改良型 研磨盤直径:15インチ 研磨盤回転数:90rpm 研磨試料:熱酸化膜(厚さ1μm)付き6インチウェハ 圧力:150g/cm2 研磨液温度:30℃ 研磨剤供給量:100ml/分 研磨時間:3分(1枚当り)
Polishing machine: LPH-15 manufactured by Lappmaster
Improved polishing machine diameter: 15 inches Polishing machine rotation speed: 90 rpm Polishing sample: 6-inch wafer with thermal oxide film (thickness: 1 μm) Pressure: 150 g / cm 2 Polishing liquid temperature: 30 ° C. Abrasive supply amount: 100 ml / min Polishing Time: 3 minutes (per sheet)

【0029】前記の条件にて酸化膜付きウェハを30枚
研磨した。研磨後のウェハ面酸化膜の研磨除去量を偏光
解析装置(溝尻光学工業所製)にて測定を行い研磨効率
とし、また表面状態は顕微鏡により観察した。この時の
平均研磨効率は2380Å/分であり、被研磨表面にス
クラッチはなく良好であった。
Under the above conditions, 30 wafers with an oxide film were polished. The polishing removal amount of the oxide film on the wafer surface after polishing was measured by a polarization analyzer (manufactured by Mizojiri Optical Industrial Co., Ltd.) to determine the polishing efficiency, and the surface state was observed with a microscope. The average polishing efficiency at this time was 2380 ° / min, and the surface to be polished had no scratches and was good.

【0030】ここで発生した使用済研磨液は工程中の水
により希釈され、pH10.0、シリカ固形分は27重
量%であった。また、液中の金属分は、Fe3ppm、
Al80ppm、Ca2ppm、Mg2ppm、Na2
5ppmであった。
The used polishing liquid generated here was diluted with water during the process, and had a pH of 10.0 and a silica solid content of 27% by weight. The metal content in the liquid is Fe3 ppm,
Al80ppm, Ca2ppm, Mg2ppm, Na2
It was 5 ppm.

【0031】次にこの使用済研磨液を、予め再生処理さ
れているカチオン交換樹脂(商品名IR−120B:ロ
ームアンドハース製)へS/V値:3〜4にて通液し、
金属分を除去処理後、半導体グレードアンモニアにて1
0.5にpH調整し、低金属含量高濃度シリカゾルを添
加してシリカ固形分を30重量%に調整し再生研磨液と
した。得られた再生研磨液の金属分はFe0.2pp
m、Al 23ppm、Ca0.1ppm、Mg0.2
ppm、Na10ppmであった。
Next, this used polishing liquid is passed through a cation exchange resin (trade name: IR-120B, manufactured by Rohm and Haas) having been subjected to a regeneration treatment at an S / V value of 3 to 4,
After removing metal components, add 1 with semiconductor grade ammonia.
The pH was adjusted to 0.5, and a silica sol having a low metal content and a high concentration was added to adjust the silica solid content to 30% by weight to obtain a reclaimed polishing liquid. The metal content of the obtained reclaimed polishing liquid is Fe0.2pp
m, Al 23 ppm, Ca 0.1 ppm, Mg 0.2
ppm and Na 10 ppm.

【0032】ここで得られた再生研磨液を研磨液とし
て、上記と同条件で再度研磨し研磨性を測定した。結果
は、研磨効率は2350Å/分、表面状態はスクラッチ
はなく、研磨液を遠心分離法(3500rpm×30
分)で評価した結果、沈澱物はなく、良好な安定性を示
した。
The reclaimed polishing liquid obtained here was used as a polishing liquid and polished again under the same conditions as above, and the polishing properties were measured. As a result, the polishing efficiency was 2350 ° / min, the surface condition was not scratched, and the polishing liquid was centrifuged (3500 rpm × 30
As a result, no precipitate was found and good stability was shown.

【0033】尚、本例ではアンモニアの揮発による組成
変化を抑制するために装置全体をビニールテントで覆い
略密閉系として行った。
In the present example, the entire apparatus was covered with a vinyl tent to form a substantially closed system in order to suppress a change in composition due to volatilization of ammonia.

【0034】(実施例2)当初の研磨液及び研磨液再生
時のpH調整用アルカリとして低金属含量アミノエチル
エタノールアミンを使用した以外は実施例1と同様に研
磨及び再生処理を行った。再生研磨液の中の金属分はF
e0.7ppm、Al 26ppm、Ca0.1pp
m、Mg0.3ppm、Na12ppmであった。この
再生研磨液を研磨液として研磨した結果は、研磨効率2
300Å/分、被研磨表面の状態はスクラッチがなく、
研磨液の安定性も、沈澱物がなく良好であった。また、
研磨液の再生及び再生研磨液を研磨液とした研磨を10
回繰り返したが研磨効率の低下は誤差の範囲であり、被
研磨表面状態、研磨液安定性のいずれも良好であった。
Example 2 A polishing and regenerating treatment was performed in the same manner as in Example 1, except that aminoethylethanolamine having a low metal content was used as the initial polishing liquid and the alkali for adjusting the pH at the time of regenerating the polishing liquid. The metal content in the reclaimed polishing liquid is F
e0.7ppm, Al 26ppm, Ca0.1pp
m, Mg 0.3 ppm and Na 12 ppm. As a result of polishing using this regenerated polishing liquid as a polishing liquid, polishing efficiency 2
300 ° / min, the surface to be polished has no scratches,
The stability of the polishing liquid was good without any precipitate. Also,
Regeneration of polishing liquid and polishing using the regenerated polishing liquid as polishing liquid
Although the polishing was repeated several times, the decrease in polishing efficiency was within an error range, and both the state of the surface to be polished and the stability of the polishing solution were good.

【0035】(実施例3)イオン交換樹脂としてカチオ
ン交換樹脂(デュオライトC−20;住友化学製)を使
用した他は実施例1と同様の条件で第1工程に相当する
研磨及び第2工程に相当する再生処理を行ったが、発生
する研磨液は直ちに再生工程に連続的に供給した。再生
研磨液中の金属分はFe0.1ppm、Al 19pp
m、Ca0.1ppm、Mg0.1ppm、Na 9p
pmであった。連続的に再生されてくる再生研磨液を直
ちに研磨液として連続的に供給して研磨を続けた。2時
間研磨を続けた結果、最終時の研磨効率は2350Å/
分、被研磨表面状態はスクラッチはなく、研磨液の安定
性も、沈澱物はなく良好であった。また、同様にして、
但し、再生研磨液を当初の研磨液と混合して研磨液とし
て供給した場合でも結果は同様であった。
Example 3 Polishing and second step corresponding to the first step under the same conditions as in Example 1 except that a cation exchange resin (Duolite C-20; manufactured by Sumitomo Chemical) was used as the ion exchange resin. The polishing liquid generated was immediately and continuously supplied to the regeneration step. The metal content in the reclaimed polishing liquid is Fe 0.1 ppm, Al 19 pp
m, Ca 0.1 ppm, Mg 0.1 ppm, Na 9p
pm. Polishing was continued by immediately supplying a continuously regenerated polishing liquid as a polishing liquid. As a result of continuing polishing for 2 hours, the final polishing efficiency was 2350 ° /
As a result, the surface to be polished was free of scratches, and the stability of the polishing liquid was good with no precipitate. Similarly,
However, the same result was obtained when the regenerated polishing liquid was mixed with the initial polishing liquid and supplied as the polishing liquid.

【0036】(比較例1)実施例1と同様の研磨液を使
用して研磨を行って生成した使用済研磨液を、再生処理
せずそのまま研磨液として再使用を10回繰り返した。
結果は、シリカ濃度の低下は25重量%に留まったがp
Hは9.1に低下し研磨効率は1950Å/分となり、
表面状態はスクラッチはないが、金属含量が多かったた
めウェハ面へのメタル及びパーティクル汚染が顕著であ
った。
(Comparative Example 1) A used polishing liquid produced by polishing using the same polishing liquid as in Example 1 was reused as a polishing liquid 10 times without regenerating.
As a result, the decrease in silica concentration was only 25% by weight, but p
H dropped to 9.1, the polishing efficiency became 1950 ° / min,
Although there was no scratch on the surface, metal and particle contamination on the wafer surface was remarkable due to the high metal content.

【0037】(比較例2)平均粒子径25nm、シリカ
固形分12重量%の超微粉シリカ(日本アエロジル
(株)製)の半導体グレードアンモニアアルカリによる
スラリーを使用して実施例1と同様の条件で絶縁酸化膜
付きのシリコンウェハの研磨を行い、ウェハを30枚研
磨した。ここで発生した使用済研磨スラリー液は工程中
の水により希釈され、pH10.1、シリカ固形分は1
1.8重量%であった。又、液中の金属分は、Fe2.
7ppm、Al 55ppm、Ca1.9ppm、Mg
1.8ppm、Na19ppmであった。次にこの使用
済研磨スラリー液を予め再生処理されているイオン交換
樹脂(IR−120B)へS/V値:3〜4にて通液
し、金属分を除去処理後、半導体グレードアンモニアに
て10.5にpH調整し再生研磨スラリー液とした。得
られた調整スラリー液のシリカ固形分は11.7重量%
に低下したが許容範囲内なので濃度調整はしなかった。
この再生研磨スラリー液は、液中の金属分はFe0.2
ppm、Al 0.3ppm、Ca0.3ppm、Mg
0.2ppm、Na0.2ppmであったが、超微粉シ
リカスラリーを使用したため、イオン交換樹脂通過中に
2次凝集が促進されており沈澱物を生じていた。この再
生研磨スラリー液を研磨液として、上記と同条件で再度
研磨し研磨性を測定した。結果は研磨効率は1810Å
/分、表面状態を半導体検査用顕微鏡(オリンパス光学
工業製)により観察した結果、4ヶ所のスクラッチが確
認された。
(Comparative Example 2) A slurry of ultrafine silica (manufactured by Nippon Aerosil Co., Ltd.) of semiconductor grade ammonia alkali having an average particle diameter of 25 nm and a silica solid content of 12% by weight was used under the same conditions as in Example 1. A silicon wafer with an insulating oxide film was polished, and 30 wafers were polished. The used polishing slurry liquid generated here is diluted with water in the process, and the pH is 10.1 and the silica solid content is 1
It was 1.8% by weight. The metal component in the liquid is Fe2.
7 ppm, Al 55 ppm, Ca 1.9 ppm, Mg
It was 1.8 ppm and Na19 ppm. Next, this used polishing slurry liquid is passed through an ion exchange resin (IR-120B) which has been regenerated in advance at an S / V value of 3 to 4 to remove a metal component, and then is treated with semiconductor grade ammonia. The pH was adjusted to 10.5 to obtain a regenerated polishing slurry liquid. The silica solid content of the obtained adjusted slurry liquid was 11.7% by weight.
However, the concentration was not adjusted because it was within the allowable range.
In this reclaimed polishing slurry liquid, the metal component in the liquid is Fe0.2
ppm, Al 0.3 ppm, Ca 0.3 ppm, Mg
Although it was 0.2 ppm and Na was 0.2 ppm, secondary agglomeration was promoted during the passage of the ion-exchange resin due to the use of the ultrafine silica slurry, and a precipitate was generated. This regenerated polishing slurry liquid was used as a polishing liquid and polished again under the same conditions as above, and the polishing property was measured. The result is a polishing efficiency of 1810 °
As a result of observing the surface state with a microscope for semiconductor inspection (manufactured by Olympus Optical Industrial Co., Ltd.), four scratches were confirmed.

【0038】[0038]

【発明の効果】本発明によれば、シリカゾル系研磨液を
用いる半導体製品の表面研磨システムにおいて、使用済
の研磨液を再生し、これを循環使用して高研磨効率を維
持しつつ、且つ安定して良好な研磨を行うことのできる
半導体製品の表面研磨システムが提供される。
According to the present invention, in a semiconductor product surface polishing system using a silica sol-based polishing liquid, a used polishing liquid is regenerated and circulated to maintain high polishing efficiency while maintaining a stable polishing rate. The present invention provides a semiconductor product surface polishing system capable of performing good polishing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ性シリカゾル組成物からなる研
磨液を使用して半導体製品表面を研磨する第1工程と、
使用済研磨液のシリカ濃度、pH及び/又は金属含量を
調整して再生研磨液とする第2工程と、前記第2工程で
得られた再生研磨液を第1工程の研磨液の一部若しくは
全部に置換する第3工程と、を備えた半導体製品の表面
研磨システム。
A first step of polishing a semiconductor product surface using a polishing liquid comprising an alkaline silica sol composition;
A second step of adjusting the silica concentration, pH, and / or metal content of the used polishing liquid to be a regenerated polishing liquid, and using the regenerated polishing liquid obtained in the second step as part of the polishing liquid of the first step or And a third step of completely replacing the surface.
【請求項2】 第1工程で生じた使用済研磨液を貯蔵し
ておき、必要なときに前記使用済研磨液を再生する第2
工程を行い、得られた再生研磨液を前記第1工程の研磨
液の一部若しくは全部に置換するバッチ法が採用される
請求項1に記載の半導体製品の表面研磨システム。
2. A second polishing apparatus for storing used polishing liquid generated in the first step and regenerating the used polishing liquid when necessary.
2. The semiconductor product surface polishing system according to claim 1, wherein a batch method of performing a step and replacing the obtained reclaimed polishing liquid with a part or all of the polishing liquid of the first step is adopted.
【請求項3】 第1工程、第2工程及び第3工程を同時
に稼働させる連続法が採用される請求項1に記載の半導
体製品の表面研磨システム。
3. The semiconductor product surface polishing system according to claim 1, wherein a continuous method for simultaneously operating the first, second, and third steps is employed.
JP7970398A 1998-03-26 1998-03-26 Surface polishing system for semiconductor product Pending JPH11277380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7970398A JPH11277380A (en) 1998-03-26 1998-03-26 Surface polishing system for semiconductor product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7970398A JPH11277380A (en) 1998-03-26 1998-03-26 Surface polishing system for semiconductor product

Publications (1)

Publication Number Publication Date
JPH11277380A true JPH11277380A (en) 1999-10-12

Family

ID=13697579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7970398A Pending JPH11277380A (en) 1998-03-26 1998-03-26 Surface polishing system for semiconductor product

Country Status (1)

Country Link
JP (1) JPH11277380A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319900A (en) * 2000-05-10 2001-11-16 Toshiba Ceramics Co Ltd Polishing method of semiconductor substrate
JP2008188723A (en) * 2007-02-06 2008-08-21 Mitsubishi Electric Corp Recycling method for used slurry
JP2008192656A (en) * 2007-01-31 2008-08-21 Nitta Haas Inc Additive for polishing constituent
JP2010167551A (en) * 2008-12-26 2010-08-05 Nomura Micro Sci Co Ltd Method for regenerating used slurry
WO2013099595A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Additive for polishing agent, and polishing method
JP2017117847A (en) * 2015-12-21 2017-06-29 花王株式会社 Method for manufacturing silica fluid dispersion
JP2019143147A (en) * 2013-07-11 2019-08-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Chemical machine polishing composition containing benzotriazole derivative as corrosion inhibitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319900A (en) * 2000-05-10 2001-11-16 Toshiba Ceramics Co Ltd Polishing method of semiconductor substrate
JP2008192656A (en) * 2007-01-31 2008-08-21 Nitta Haas Inc Additive for polishing constituent
JP2008188723A (en) * 2007-02-06 2008-08-21 Mitsubishi Electric Corp Recycling method for used slurry
JP2010167551A (en) * 2008-12-26 2010-08-05 Nomura Micro Sci Co Ltd Method for regenerating used slurry
WO2013099595A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Additive for polishing agent, and polishing method
JP2019143147A (en) * 2013-07-11 2019-08-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Chemical machine polishing composition containing benzotriazole derivative as corrosion inhibitor
JP2017117847A (en) * 2015-12-21 2017-06-29 花王株式会社 Method for manufacturing silica fluid dispersion

Similar Documents

Publication Publication Date Title
EP1229094B1 (en) Polishing composition and polishing method employing it
TW434094B (en) Abrasive and method for polishing semiconductor substrate
CN107075347B (en) Polishing composition
KR101092884B1 (en) Method for polishing wafer
US8025809B2 (en) Polishing methods
US6338743B1 (en) Buffer solutions for suspensions used in chemical-mechanical polishing
EP3368624A1 (en) Tungsten-processing slurry with cationic surfactant
JP2006324639A (en) Polish slurry and method for regenerating wafer
WO2011093223A1 (en) Method for reclaiming semiconductor wafer and polishing composition
JPH11277380A (en) Surface polishing system for semiconductor product
JP4580433B2 (en) Method for regenerating polishing slurry
JP2003205460A (en) Cerium oxide-based abrasive regeneration method
TW201825665A (en) Composition and method for removing residue from chemical-mechanical planarization substrate
JP4824976B2 (en) Semiconductor wafer polishing method
US5935869A (en) Method of planarizing semiconductor wafers
JP4551167B2 (en) Semiconductor wafer polishing apparatus and polishing method using the same
US6315644B1 (en) Apparatus and process for supplying abrasives for use in the manufacture of semiconductors
JPH11279534A (en) Surface polishing liquid composition for semiconductor product
JP4507141B2 (en) Polishing composition, production method thereof and polishing method using the same
JP2000063806A (en) Abrasive slurry and preparation thereof
US5972863A (en) Slurry compositions for polishing wafers used in integrated circuit devices and cleaning compositions for removing electron wax after polishing
JP4455833B2 (en) Wafer polishing method
KR100545449B1 (en) Method of polishing an oxide film using CMP
JP2002083789A (en) Recovery apparatus for abrasive
JP2014160833A (en) Polishing method of non-oxide single crystal substrate