JP2017115205A - MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION - Google Patents

MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION Download PDF

Info

Publication number
JP2017115205A
JP2017115205A JP2015251842A JP2015251842A JP2017115205A JP 2017115205 A JP2017115205 A JP 2017115205A JP 2015251842 A JP2015251842 A JP 2015251842A JP 2015251842 A JP2015251842 A JP 2015251842A JP 2017115205 A JP2017115205 A JP 2017115205A
Authority
JP
Japan
Prior art keywords
heat treatment
plating
reduction heat
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015251842A
Other languages
Japanese (ja)
Inventor
将明 浦中
Masaaki Uranaka
将明 浦中
服部 保徳
Yasunori Hattori
保徳 服部
健太郎 平田
Kentaro Hirata
健太郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2015251842A priority Critical patent/JP2017115205A/en
Publication of JP2017115205A publication Critical patent/JP2017115205A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a hot dip Zn-Al-Mg alloy plated steel plate having an excellent plating adhesion by using a steel plate as a plating substrate, the steel plate being imparted by a hot dip metal embrittlement crack resistance by adding B to a relatively high-Mn-based high-strength steel.SOLUTION: When a maximum arrival temperature of a steel plate surface is defined as "a reduction heat treatment temperature" inside a furnace of a reduction heat treatment performed in a case where a steel plate is introduced to a hot dip Zn-Al-Mg alloy plating bath, the reduction heat treatment is performed to secure a plating adhesion by suppressing coverage of the steel plate surface with BN in the reduction heat treatment, the reduction heat treatment being performed at a dew point within an area (including a boundary) enclosed by lines connecting points of A(-75,800)-B(-45,900)-C(-10,900)-D(-10,750)-E(-75,750)-A in an orthogonal coordinate system of a real number scale where an x-axis is a dew point within the furnace and a y-axis is the reduction heat treatment temperature (°C) and under a condition satisfying the reduction heat treatment temperature.SELECTED DRAWING: Figure 2

Description

本発明は、めっき原板としてBを含有し、さらにSi、Mn、Tiの1種以上を含有する鋼種を用い、これに溶融Zn−Al−Mg合金めっきを施した鋼板であって、耐溶融金属脆化割れ性およびめっき密着性を同時に改善した溶融Zn−Al−Mg合金めっき鋼板の製造方法に関する。   The present invention is a steel plate containing B as a plating base plate and further using a steel type containing one or more of Si, Mn, and Ti, and subjected to hot-dip Zn-Al-Mg alloy plating. The present invention relates to a method for producing a hot-dip Zn—Al—Mg alloy-plated steel sheet that has improved embrittlement cracking and plating adhesion.

溶融Zn系めっき鋼板は種々の用途で広く用いられているが、Zn系めっき鋼板に溶接を施すと、溶接熱影響部に割れが発生して問題となることがある。この現象は一般に「溶融金属脆化割れ」と呼ばれ、溶融しためっき成分が鋼板の粒界に作用して脆性的な破壊(粒界破壊)を引き起こすものと考えられている。   Although the hot-dip Zn-based plated steel sheet is widely used in various applications, when welding is performed on the Zn-based plated steel sheet, cracks may occur in the weld heat affected zone, which may be a problem. This phenomenon is generally called “molten metal embrittlement cracking”, and it is considered that the molten plating component acts on the grain boundaries of the steel sheet to cause brittle fracture (grain boundary fracture).

Zn系めっき鋼板の中でも、溶融Zn−Al−Mg系めっき鋼板は耐食性に優れることから建材をはじめとする種々の耐食用途において使用されている。最近では、従来一般的なZnめっき鋼板の代替としても溶融Zn−Al−Mg系めっき鋼板を適用することが多くなってきた。ただし溶融Zn−Al−Mg系めっき鋼板は、従来の溶融亜鉛系めっき鋼板よりも溶融金属脆化割れを生じやすい傾向にある。   Among Zn-based plated steel sheets, molten Zn-Al-Mg-based steel sheets are used in various corrosion resistance applications including building materials because they are excellent in corrosion resistance. Recently, a hot-dip Zn-Al-Mg-based steel sheet has been increasingly applied as a substitute for a conventional Zn-plated steel sheet. However, the molten Zn—Al—Mg-based plated steel sheet tends to cause molten metal embrittlement cracking more easily than the conventional hot-dip galvanized steel sheet.

そこで、耐溶融金属脆化割れ性を改善する手法として、Bを含有するめっき原板を適用することが有効であることが知られている(特許文献1)。   Therefore, it is known that it is effective to apply a plating original plate containing B as a technique for improving resistance to molten metal embrittlement cracking (Patent Document 1).

特開2003−003238号公報JP 2003-003238 A 特開2006−097063号公報JP 2006-097063 A 特開2011−214041号公報JP 2011-214041 A 特開2011−231346号公報JP 2011-231346 A 特開2008−07842号公報JP 2008-07842 A 特開2014−208902号公報JP 2014-208902 A 特許第5799819号公報Japanese Patent No. 5799819

溶融Zn−Al−Mg系めっき鋼板は、その高耐食性を活かして種々の用途で適用されるようになり、高張力鋼板の用途においても当該合金めっき鋼板のニーズが増えてきた。特許文献2には比較的多量(2質量%前後)のMnを含有する高張力鋼板用の鋼種をめっき原板として溶融Zn−Al−Mg系めっき鋼板を製造する技術が開示されている。ただし、耐溶融金属脆化割れ性については特に配慮されておらず、これを溶接用途に使用した場合には溶融金属脆化割れが問題となる場合がありうる。   The hot-dip Zn-Al-Mg-based plated steel sheet has been applied in various applications taking advantage of its high corrosion resistance, and the need for the alloy-plated steel sheet has also increased in the use of high-tensile steel sheets. Patent Document 2 discloses a technique for manufacturing a molten Zn—Al—Mg-based plated steel sheet using a steel type for a high-strength steel sheet containing a relatively large amount (around 2% by mass) of Mn as a plating base sheet. However, no special consideration is given to the resistance to molten metal embrittlement cracking, and when this is used for welding, molten metal embrittlement cracking may become a problem.

特許文献3、4にも、比較的多量(1質量%以上)のMnを含有した高張力鋼板をめっき原板として、これに溶融Zn−Al−Mg系めっき鋼板を製造する技術が開示されている。この技術が対象としているめっき原板は、耐溶融金属脆化割れ性を改善するためにBを含有しているが、しかしながら、比較的高Mn系でBを含有する高強度鋼種をめっき原板に使用すると、溶融Zn−Al−Mg系めっき層の密着性が低下しやすいという新たな問題が生じることが開示されている。めっき密着性に劣る鋼板を曲げ加工に供すると、曲げ部でめっきが剥離してトラブルの要因となる。この技術では、還元熱処理の保持時間と還元熱処理温度の条件を厳密に制御することにより、Bを含有するめっき原板であっても、Bが表面に多量に拡散してくる前に還元熱処理を終了することによってめっき密着性が低下する課題を解決している。
しかし、特許文献3に記載されているようにPを多量に添加すると、加工性、スポット溶接性、靭性が低下し、また、Cr、Moを添加するとめっき原板のコストが増大する。また、特許文献4に記載されている弱酸化熱処理では、還元熱処理の時間が長すぎればSi、Mn、Bの表面濃化を引き起こし、短すぎれば鋼板表面にFeの酸化膜が残存するため、めっき密着性の確保には不十分であるという問題点がある。還元熱処理と溶融めっきを連続して行う生産設備では、操業上の理由から鋼板の通板速度を減速することもある。このような場合にも、還元熱処理の時間を長くしてもめっき密着性が確保できることは好都合である。
Patent Documents 3 and 4 also disclose a technique for manufacturing a molten Zn—Al—Mg-based plated steel sheet using a high-strength steel sheet containing a relatively large amount (1% by mass or more) of Mn as a plating base sheet. . The plating base plate targeted by this technology contains B in order to improve the molten metal embrittlement cracking resistance. However, a relatively high Mn-based high strength steel type containing B is used for the plating base plate. Then, it is disclosed that the new problem that the adhesiveness of a molten Zn-Al-Mg type plating layer tends to fall arises. If a steel sheet with poor plating adhesion is subjected to bending, plating peels off at the bent part, causing trouble. In this technology, by strictly controlling the conditions of the holding time of the reduction heat treatment and the reduction heat treatment temperature, the reduction heat treatment is completed before B diffuses to the surface in a large amount even for a plating original plate containing B. This solves the problem of poor plating adhesion.
However, as described in Patent Document 3, when a large amount of P is added, workability, spot weldability, and toughness are reduced, and when Cr and Mo are added, the cost of the plating original plate is increased. Further, in the weak oxidation heat treatment described in Patent Document 4, if the time of the reduction heat treatment is too long, it causes surface concentration of Si, Mn, B, and if it is too short, an Fe oxide film remains on the steel sheet surface. There is a problem that it is insufficient for securing plating adhesion. In production equipment that continuously performs reduction heat treatment and hot dipping, the sheet passing speed of the steel sheet may be reduced for operational reasons. Even in such a case, it is advantageous that the plating adhesion can be ensured even if the time for the reduction heat treatment is increased.

特許文献5は、多量のMn(1.5質量%以上)を含有する高強度鋼板をめっき原板として、溶融Zn−Al−Mg系めっき鋼板を製造する技術を開示している。この技術が対象としているめっき原板はBを含有していないものの、この文献には溶融Zn−Al−Mg系めっき層を行うと不めっきやめっき密着性が低下しやすいという問題が生じることが開示されている。この技術では、還元熱処理における還元雰囲気を制御して鋼板表層部におけるSiOを内部酸化状態とすることによって、不めっきやめっき密着性の問題を解決している。
しかし、酸素分圧POを上昇させるとSi、Mnは内部酸化するが、一方でFeが酸化するため、不めっき抑制やめっき密着性確保には不十分である。また、酸素分圧POを調整してFeが酸化しないに条件とすると、SiやMnの内部酸化が不十分となって鋼板表面へのSi、Mn濃化がおこり、不めっき抑制やめっき密着性確保には不十分となる。
Patent document 5 is disclosing the technique which manufactures a hot-dip Zn-Al-Mg type plated steel plate by using as a plating original plate the high strength steel plate containing a lot of Mn (1.5 mass% or more). Although the plating original plate targeted by this technology does not contain B, it is disclosed in this document that there is a problem that non-plating or plating adhesion tends to be reduced when a molten Zn—Al—Mg based plating layer is applied. Has been. In this technique, the problem of non-plating and plating adhesion is solved by controlling the reducing atmosphere in the reduction heat treatment to bring SiO 2 in the surface layer portion of the steel sheet into an internal oxidation state.
However, when the oxygen partial pressure PO 2 is increased, Si and Mn are internally oxidized. On the other hand, Fe is oxidized, which is insufficient for suppressing non-plating and ensuring plating adhesion. Further, when Fe by adjusting the oxygen partial pressure PO 2 is the condition not oxidized, Si to Si and Mn internal oxidation becomes insufficient surface of the steel sheet, occurs Mn concentrated, non plating inhibiting and plating adhesion It will be insufficient for securing the safety.

特許文献6は、比較的高Si、Mn系でBを含有する高強度鋼板をめっき原板として、溶融Zn−Al−Mg系めっき鋼板を製造する技術を開示している。この技術では、鋼板を熱間圧延する際の巻取り温度を規定して内部酸化物を形成させ、その後の還元熱処理条件を制御することにより、めっき密着性の問題を解決している。
しかし、熱延工程で巻取り温度を制御することは煩雑であり、また、冷延工程で圧延する際に、内部酸化物の層も同時に圧延され内部酸化物の厚みが薄くなるため、還元熱処理の時間が長過ぎるとSi、Mn、Bの表面濃化を引き起こし、めっき性の確保には不十分であるという問題点がある。
Patent Document 6 discloses a technique for manufacturing a hot-dip Zn—Al—Mg-based plated steel sheet using a relatively high Si, Mn-based high-strength steel sheet containing B as a plating base sheet. In this technique, the problem of plating adhesion is solved by defining the coiling temperature at the time of hot rolling the steel sheet, forming an internal oxide, and controlling the subsequent reduction heat treatment conditions.
However, it is cumbersome to control the coiling temperature in the hot rolling process, and when rolling in the cold rolling process, the internal oxide layer is simultaneously rolled to reduce the thickness of the internal oxide. If the time is too long, the surface concentration of Si, Mn, and B is caused, which is insufficient for securing the plating property.

特許文献7は、比較的高Si、Mn系の高強度鋼板をめっき原板として、溶融Zn系めっき鋼板を製造する技術を開示している。この技術では、焼鈍処理における予熱工程、加熱工程、均熱工程での水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)の範囲、加熱時間、加熱時の板温を制御することにより、めっき濡れ性と耐ピックアップ性の問題を解決している。
しかし、この方法では各工程における水素分圧PHと水蒸気分圧PHOを制御することが必要になるため、それらを制御できる設備でしか実施出来ず、そういった設備を有していない場合には新たな設備が必要になるという問題点がある。
Patent Document 7 discloses a technique for producing a hot-dip Zn-based plated steel sheet using a relatively high Si, Mn-based high-strength steel sheet as a plating original sheet. In this technique, the range of the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 and the steam partial pressure PH 2 O in the preheating step, heating step, and soaking step in annealing treatment, heating time, heating By controlling the plate temperature at the time, the problem of plating wettability and pick-up resistance is solved.
However, in this method, since it is necessary to control the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O in each step, it can be performed only with equipment that can control them, and when such equipment is not provided. Has the problem of requiring new equipment.

高強度鋼板の鋼種をめっき原板とする溶融Zn−Al−Mg合金めっき鋼板において、耐溶融金属脆化割れ性を改善するためには、やはりBを添加した鋼をめっき原板に使用することが有効である。しかしながら、比較的高Mn系の高強度鋼種においてBを添加したものをめっき原板に使用した場合、溶融Zn−Al−Mg合金めっき層の密着性が著しく低下することがあるという新たな問題が発生した。めっき密着性に劣る鋼板を曲げ加工に供すると、曲げ部でめっき層が剥離してトラブルの要因となる。   In the hot-dip Zn-Al-Mg alloy-plated steel sheet, which uses a high-strength steel sheet as the plating base plate, it is effective to use steel added with B as the plating base plate in order to improve the resistance to molten metal embrittlement cracking. It is. However, when a relatively high Mn high-strength steel type with B added is used for the plating base plate, there is a new problem that the adhesion of the molten Zn-Al-Mg alloy plating layer may be significantly reduced. did. If a steel sheet with poor plating adhesion is subjected to bending, the plating layer peels off at the bent portion, causing trouble.

本発明は、上記の背景を考慮して、比較的高Mn系の高強度鋼種にBを添加して耐溶融金属脆化割れ性を付与した鋼板をめっき原板に用いて、めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板を製造することを目的とする。   In consideration of the above-mentioned background, the present invention uses a steel plate provided with a resistance to molten metal embrittlement cracking by adding B to a relatively high Mn-based high-strength steel grade, and has excellent plating adhesion. Another object of the present invention is to produce a hot-dip Zn—Al—Mg alloy-plated steel sheet.

上記目的は、比較的高Mn系の高強度鋼種にBを含有するめっき原板を対象とし、溶融Zn−Al−Mg合金めっき浴に導入する際に行われる還元熱処理の条件(露点、還元熱処理温度)を規定することにより、還元熱処理時に鋼板表面がBNで覆われてしまうことを抑制してめっき密着性を確保することによって達成される。   The above-mentioned purpose is intended for a plating base plate containing B in a relatively high Mn-based high-strength steel type, and conditions for reduction heat treatment (dew point, reduction heat treatment temperature) performed when introduced into a molten Zn-Al-Mg alloy plating bath. This is achieved by suppressing the steel sheet surface from being covered with BN during the reduction heat treatment and ensuring plating adhesion.

すなわち本発明では、鋼板の化学組成が、質量%で、C:0.01〜0.20%、Si:0.01〜1.00%、Mn:0.50〜3.00%、Ti:0.010〜0.150%、B:0.0003〜0.0100%、N:0.010%未満の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる鋼板をめっき原板として、還元熱処理に引き続いて、質量%でAl:0.1〜22.0%、Mg:0.05〜10.0%、残部がZnである溶融Zn−Al−Mg合金めっきを施して溶融Zn−Al−Mg合金めっき鋼板を製造するにあたり、前記還元熱処理工程において、還元熱処理の炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、当該炉内の露点(℃)をx軸、還元熱処理温度(℃)をy軸とする実数目盛のx−y直交座標系において、図2に示すA(−75,800)−B(−45,900)−C(−10,900)−D(−10,750)−E(−75,750)−Aを結ぶ直線で囲まれた領域内(境界を含む)の露点、還元熱処理温度を満たす条件で還元熱処理を行うことにより、めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板が製造可能となる。   That is, in the present invention, the chemical composition of the steel sheet is, in mass%, C: 0.01 to 0.20%, Si: 0.01 to 1.00%, Mn: 0.50 to 3.00%, Ti: Plating steel sheet containing at least one selected from the group of 0.010 to 0.150%, B: 0.0003 to 0.0100%, N: less than 0.010%, and the balance Fe and unavoidable impurities Subsequent to the reduction heat treatment, the original plate was subjected to molten Zn-Al-Mg alloy plating in which Al: 0.1 to 22.0% by mass, Mg: 0.05 to 10.0%, and the balance being Zn. In producing the hot-dip Zn—Al—Mg alloy-plated steel sheet, in the reduction heat treatment step, when the maximum reached temperature of the steel sheet surface in the reduction heat treatment furnace is defined as “reduction heat treatment temperature”, the dew point in the furnace ( ° C) as x-axis and reduction heat treatment temperature (° C) as y-axis In the real scale xy orthogonal coordinate system, A (−75,800) −B (−45,900) −C (−10,900) −D (−10,750) −E ( -75, 750) Molten Zn-Al-Mg excellent in plating adhesion by performing reduction heat treatment under conditions satisfying the dew point (including the boundary) and the reduction heat treatment temperature in the region surrounded by the straight line connecting -A Alloy-plated steel sheets can be manufactured.

上記において、めっき原板が、さらに、質量%で、さらにCr:1.00%以下、Nb:0.10%以下、Mo:0.50%以下の群から選ばれる1種以上を含有するものであっても構わない。また、溶融Zn−Al−Mg合金めっきが、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有するものであっても構わない。   In the above, the plating base plate further contains at least one selected from the group of mass%, Cr: 1.00% or less, Nb: 0.10% or less, Mo: 0.50% or less. It does not matter. Further, the molten Zn—Al—Mg alloy plating further comprises at least one selected from the group consisting of Ti: 0.10% or less, B: 0.05% or less, and Si: 2.0% or less by mass%. It may be contained.

発明者らは、上記の製造方法に従って比較的高Mn系の高強度鋼種にBを含有するめっき原板を還元熱処理するとき、還元熱処理炉内の露点と還元熱処理温度を設定することにより、鋼板表面がBNで覆われなくなることによってめっき密着性に優れた溶融Zn−Al−Mg系めっき鋼板が得られることを発明者らは見出したのである。   The inventors of the present invention, when subjecting a plating base plate containing B to a relatively high Mn-based high-strength steel grade according to the above production method, by setting the dew point and the reduction heat treatment temperature in the reduction heat treatment furnace, The inventors have found that a hot-dip Zn—Al—Mg-based plated steel sheet having excellent plating adhesion can be obtained by not being covered with BN.

本発明によれば、高耐食性を有する溶融Zn−Al−Mg合金めっきを施した、比較的高Mn系の高強度鋼種にBを含有する鋼板において、「耐溶融金属脆化割れ性」と「めっき密着性」の両方を改善した材料が実現される。これらの特性を同時に両立させた溶融Zn−Al−Mg合金めっき鋼板の製造は、従来困難であったところ、本発明は曲げ加工や溶接加工に供される溶融Zn系めっき鋼板の用途において、溶融Zn−Al−Mg系めっき鋼板の普及に寄与するものである。   According to the present invention, in a steel sheet containing B in a relatively high Mn-based high-strength steel grade that has been subjected to hot Zn-Al-Mg alloy plating having high corrosion resistance, "melting metal embrittlement cracking resistance" and " A material with improved “plating adhesion” is realized. Production of a hot-dip Zn-Al-Mg alloy-plated steel sheet having both of these properties simultaneously has been difficult, but the present invention can be used in the application of hot-dip Zn-plated steel sheets used for bending and welding. This contributes to the widespread use of Zn—Al—Mg plated steel sheets.

耐溶融脆化対策割れ性を評価するために行う、ボス溶接試験を示す模式図。The schematic diagram which shows the boss-welding test performed in order to evaluate a melt-proof embrittlement countermeasure cracking property. 発明鋼での還元熱処理の「露点」と「還元熱処理温度」の適正範囲を示すグラフ。The graph which shows the appropriate range of the "dew point" and the "reduction heat treatment temperature" of the reduction heat processing in invention steel. 参考鋼での還元熱処理の「露点」と「還元熱処理温度」の適正範囲を示すグラフ。The graph which shows the appropriate range of "dew point" and "reduction heat treatment temperature" of reductive heat treatment with reference steel.

本明細書において、めっき原板および溶融めっきの化学組成における「%」は、特に断らない限り「質量%」を意味する。   In this specification, “%” in the chemical composition of the plating original plate and the hot dipping means “% by mass” unless otherwise specified.

〔めっき原板〕
本発明では、Mnを比較的多量に含有する高強度鋼種にBを添加しためっき原板を対象とする。その化学組成は以下のとおりである。
C:0.01〜0.20%
Cは、鋼板の強度を担う基本的な元素であり、本発明では0.01%以上のC含有量レベルの鋼種を対象とする。0.10%以上のC含有量のものを使用するように管理してもよい。ただし、過剰のC含有は延性、溶接性を低下させるので、C含有量は0.20%以下に制限される。
[Plating plate]
In the present invention, an original plating plate obtained by adding B to a high-strength steel type containing a relatively large amount of Mn is used. Its chemical composition is as follows.
C: 0.01 to 0.20%
C is a basic element responsible for the strength of the steel sheet, and in the present invention, a steel type having a C content level of 0.01% or more is targeted. You may manage to use the thing of C content of 0.10% or more. However, since excessive C content reduces ductility and weldability, the C content is limited to 0.20% or less.

Si:0.01%〜1.00%
鋼板中のSiは、固溶強化によって鋼材の強度を上昇する作用を有しているため、0.01%以上の含有量が必要となる。ただし、めっき性に有害なSi酸化膜を鋼板表面に生じさせる要因にもなるため、種々検討の結果、Si含有量は1.00%以下に制限される。
Si: 0.01% to 1.00%
Since Si in the steel sheet has an effect of increasing the strength of the steel material by solid solution strengthening, a content of 0.01% or more is required. However, the Si content is limited to 1.00% or less as a result of various studies because it also causes a Si oxide film harmful to plating properties to be generated on the surface of the steel sheet.

Mn:0.50〜2.50%
鋼板中のMnは、固溶強化によって鋼材の強度を上昇する作用を有すると共に、オーステナイトを安定化させマルテンサイト等の変態相の生成を促進させる作用を有するので、鋼板の強度の確保と機械的特性の安定化のため、また、Mn含有量が0.5%未満ではBNに起因しためっき密着性の低下が発生しないため、およそMn含有量は0.50%以上とする必要がある。ただし、多量のMn添加は加工性およびめっき性を低下させる要因となるので、Mn含有量は2.50%以下に制限される。
Mn: 0.50 to 2.50%
Mn in the steel sheet has the effect of increasing the strength of the steel material by solid solution strengthening, and also has the effect of stabilizing the austenite and promoting the generation of transformation phases such as martensite. In order to stabilize the characteristics, and if the Mn content is less than 0.5%, the plating adhesion due to BN does not deteriorate, so the Mn content needs to be about 0.50% or more. However, addition of a large amount of Mn causes a decrease in workability and plating properties, so the Mn content is limited to 2.50% or less.

Ti:0.010〜0.150%
Tiは、強力な窒化物形成元素であり、めっき原板中のNをTiNとして固定するために重要な元素である。Nを固定することによりフリーBの量が確保され、フリーBによる耐溶融金属脆化割れ性の向上作用が発揮される。検討の結果、上記作用を十分に発揮させるためには0.010%以上のTi含有量を確保する必要がある。0.020%以上とすることがより好ましい。ただし、過剰にTiを添加しても上記効果は飽和し、またTiの多量添加は鋼材の加工性を劣化させる要因になる。このためTi含有量は0.150%以下に制限される。
Ti: 0.010 to 0.150%
Ti is a strong nitride-forming element and is an important element for fixing N in the plating original plate as TiN. By fixing N, the amount of free B is secured, and the effect of improving the resistance to molten metal embrittlement cracking by free B is exhibited. As a result of the study, it is necessary to secure a Ti content of 0.010% or more in order to sufficiently exhibit the above-described effects. More preferably, the content is 0.020% or more. However, even if Ti is added excessively, the above effect is saturated, and addition of a large amount of Ti becomes a factor that deteriorates the workability of the steel material. For this reason, Ti content is restrict | limited to 0.150% or less.

B:0.0003〜0.0100%
Bは、溶融金属脆化の抑制に有効な元素である。その作用はBがフリーBとして結晶粒界に偏析して原子間結合力が増大することによってもたらされるものと考えられる。そのためには少なくとも0.0003%以上のB含有量を確保する必要がある。0.0005%以上のB含有量とすることがより好ましい。ただし、過剰のB添加は硼化物の生成、加工性劣化の要因となるため、B含有量は0.0100%以下に制限される。
B: 0.0003-0.0100%
B is an element effective for suppressing molten metal embrittlement. The effect is considered to be brought about by the fact that B is segregated as free B to the grain boundary and the interatomic bonding force increases. For that purpose, it is necessary to secure a B content of at least 0.0003% or more. More preferably, the B content is 0.0005% or more. However, excessive B addition causes formation of borides and deterioration of workability, so the B content is limited to 0.0100% or less.

N:0.010%未満
Nは、Bと反応して硼化物を形成し、耐溶融金属脆化割れ性の改善に有効なフリーBの量を低減させる要因となる。種々検討の結果、N含有量は0.010%未満の範囲に制限される。
N: Less than 0.010% N reacts with B to form a boride, which causes a reduction in the amount of free B effective in improving the resistance to molten metal embrittlement cracking. As a result of various studies, the N content is limited to a range of less than 0.010%.

Cr:1.00%以下
鋼板中のCrは、固溶強化によって鋼板の強度を上昇する作用を有するとともに、耐溶融金属脆化割れの抑制にも有効である。ただし、多量に添加すると加工性を低下させる要因となるので、1.00%以下に制限される。0.50%以下とすることがより好ましい。
Cr: 1.00% or less Cr in the steel sheet has an effect of increasing the strength of the steel sheet by solid solution strengthening, and is also effective in suppressing melting metal embrittlement cracking resistance. However, if it is added in a large amount, it causes a decrease in workability, so it is limited to 1.00% or less. More preferably, it is 0.50% or less.

Nb:0.10%以下、Mo:0.50%以下
Nb、Moは、固溶強化により鋼板の高強度化に寄与する元素であり、NbやMoを多く含有することは、より高温で長時間の還元熱処理条件を行った場合に良好な機械的特性を得る上で有利となる。しかし、これらの元素の多量添加は加工性を低下させる要因となるので、Nbは0.10%以下、Moは0.50%以下の範囲で含有させるのがよい。好ましくはNb:0.05%以下、Mo:0.20%以下がよい。
Nb: 0.10% or less, Mo: 0.50% or less Nb and Mo are elements that contribute to increasing the strength of a steel sheet by solid solution strengthening, and containing a large amount of Nb and Mo is longer at higher temperatures. It is advantageous to obtain good mechanical properties when time-reducing heat treatment conditions are used. However, since the addition of a large amount of these elements causes a decrease in workability, it is preferable to contain Nb in a range of 0.10% or less and Mo in a range of 0.50% or less. Preferably, Nb is 0.05% or less and Mo is 0.20% or less.

本発明においてめっき原板としては、以上の化学組成を有する熱延鋼板または冷延鋼板を使用することができる。熱延鋼板の場合は、熱間圧延に供するスラブや、仕上げ温度、巻取り温度は特に限定されず、常法のとおりでよいが、表面の酸化スケールが十分に除去されている必要がある。冷間圧延を行う場合は、熱間圧延のあと常法にしたがって冷間圧延を行い、所定の板厚に仕上げる。板厚は、用途に応じて例えば0.6〜4.5mmの範囲で選択すればよい。   In the present invention, a hot-rolled steel plate or a cold-rolled steel plate having the above chemical composition can be used as the plating base plate. In the case of a hot-rolled steel sheet, the slab to be subjected to hot rolling, the finishing temperature, and the winding temperature are not particularly limited, and may be as usual, but the surface oxide scale needs to be sufficiently removed. When cold rolling is performed, cold rolling is performed in accordance with a conventional method after hot rolling, and finished to a predetermined plate thickness. The plate thickness may be selected in the range of 0.6 to 4.5 mm, for example, depending on the application.

〔還元熱処理〕
めっき原板を溶融Zn−Al−Mg合金めっき浴に導入する前に、通常、鋼板表面を活性化させるために還元熱処理が行われる。大量生産現場の連続溶融めっきラインでは、還元熱処理と溶融めっきを連続的に行うようになっている。この還元熱処理工程は、単にめっき原板の表面を活性化させるだけではなく、鋼板の金属組織を最終的な組織状態に調整するための焼鈍工程を兼ねる場合が多い。したがって、目的に応じて種々のヒートパターンが採用される。また、ラインの操業状況によっては、活性化や焼鈍に支障のない範囲で熱処理炉を通過する鋼帯の速度(ライン速度)が調整されることもある。
[Reduction heat treatment]
Before introducing the plating base plate into the molten Zn—Al—Mg alloy plating bath, a reduction heat treatment is usually performed to activate the steel plate surface. In a continuous hot dipping line at a mass production site, reduction heat treatment and hot dipping are continuously performed. In many cases, this reduction heat treatment process not only activates the surface of the plating original sheet but also serves as an annealing process for adjusting the metal structure of the steel sheet to a final structure. Therefore, various heat patterns are adopted according to the purpose. Further, depending on the operation status of the line, the speed (line speed) of the steel strip passing through the heat treatment furnace may be adjusted within a range that does not hinder activation and annealing.

前述のように、比較的高Mn系の高強度鋼種でBを含有する鋼板を溶融Zn−Al−Mg合金めっきに供すると、めっき密着性に問題を生じることがある。発明者らは、その原因を究明すべく、溶融めっき後のめっき層/鋼素地界面の状態を詳細に調べた。その結果、比較的高Mn系の高強度鋼種にBを含有する鋼板で還元熱処理の露点が高い(−40℃以上)場合、もしくは、Bを含有しない鋼板、低Mn含有量(0.50%未満)でBを含有する鋼板では、めっき層/鋼素地界面に連続したFe−Al合金層が形成されており、この合金層を介してめっき層の密着性が確保されていた。これに対し、比較的高Mn系の高強度鋼種にBを含有する鋼板で還元熱処理の露点が低く、還元熱処理温度が高い場合、めっき層/鋼素地界面にはFe−Al合金層が形成されていない部分が多く見られた。そして、その部分ではめっき層と鋼素地が接合されていないことがわかった。 As described above, when a steel sheet containing B, which is a relatively high Mn-based high-strength steel type, is subjected to hot-dip Zn—Al—Mg alloy plating, a problem may occur in plating adhesion. The inventors investigated in detail the state of the plating layer / steel substrate interface after hot dipping in order to investigate the cause. As a result, when the dew point of the reduction heat treatment is high (−40 ° C. or higher) with a steel plate containing B in a relatively high Mn-based high-strength steel grade, or a steel plate not containing B, a low Mn content (0.50%) In the steel sheet containing B, a continuous Fe—Al alloy layer was formed at the plating layer / steel base interface, and the adhesion of the plating layer was ensured through this alloy layer. In contrast, when a steel sheet containing B in a relatively high Mn-based high-strength steel type has a low dew point of the reduction heat treatment and a high reduction heat treatment temperature, an Fe—Al alloy layer is formed at the plating layer / steel substrate interface. Many parts were not seen. And it turned out that the plating layer and the steel base are not joined in the part.

そこで、溶融Zn−Al−Mg合金めっき浴に浸せきする直前のめっき原板の表面状態を把握するために、鋼板試料を種々の条件で還元熱処理したのち、その表面の観察および分析を実施した。それによると、良好なめっき密着性が得られる還元熱処理条件、鋼種では、鋼板表面にMn−B系複合酸化物が点在しているのみであった。これに対し、還元熱処理の露点が低く、還元熱処理温度が高い場合には、鋼板表面でMn−B系複合酸化物が点在していることは同様であったが、さらにBNが表面全体を覆っていることが明らかとなった。このようなBNに覆われた表面部分では鋼素地中のFeとZn−Al−Mg合金めっき浴中のAlとの反応が阻害され、結果的にめっき層との密着性不良が生じやすくなるものと推察された。   Therefore, in order to grasp the surface state of the plating original plate immediately before being immersed in the molten Zn—Al—Mg alloy plating bath, the steel plate sample was subjected to reduction heat treatment under various conditions, and then the surface was observed and analyzed. According to this, in the reduction heat treatment conditions and steel types that provide good plating adhesion, the Mn—B based complex oxide was only scattered on the steel sheet surface. On the other hand, when the dew point of the reduction heat treatment was low and the reduction heat treatment temperature was high, it was the same that the Mn-B-based composite oxide was scattered on the steel sheet surface, but BN further covered the entire surface. It became clear that it was covered. In such a surface portion covered with BN, the reaction between Fe in the steel substrate and Al in the Zn-Al-Mg alloy plating bath is hindered, and as a result, poor adhesion to the plating layer is likely to occur. It was guessed.

このような知見から、比較的高Mn系の高強度鋼種でBを含有する鋼板をめっき原板として溶融Zn−Al−Mg合金めっきを施す際には、めっき前処理の還元熱処理を、鋼板表面をBNが覆うことのない条件範囲で行うことによって、めっき密着性を改善することが可能となる。具体的には、還元熱処理の「露点」と「還元熱処理温度」の組合せを適正範囲に厳密にコントロールすることによって、良好なめっき密着性を安定して実現することができる。   From such knowledge, when performing hot-dip Zn-Al-Mg alloy plating using a steel plate containing B, which is a relatively high Mn-based high-strength steel type, as a plating base plate, reduction heat treatment of pre-plating treatment is performed on By performing in a condition range that BN does not cover, the plating adhesion can be improved. Specifically, good plating adhesion can be stably realized by strictly controlling the combination of “dew point” and “reduction heat treatment temperature” of the reduction heat treatment within an appropriate range.

めっき原板表面の活性化を十分に行うためには700℃以上の還元雰囲気中に鋼板表面を曝すことが有効である。詳細な検討の結果、還元雰囲気の炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、還元熱処理時の「露点」と「還元熱処理温度」によって良好なめっき密着性を安定して実現することができる還元熱処理の条件範囲を規定することができる。実際の操業では、使用する製造ラインの還元熱処理炉において予め測定されている鋼板表面温度のヒートカーブのデータに基づいて、適正な「露点」と「還元熱処理温度」の条件範囲をコントロールすることが可能である。   In order to sufficiently activate the plating original plate surface, it is effective to expose the steel plate surface in a reducing atmosphere of 700 ° C. or higher. As a result of detailed examination, when the maximum temperature reached on the surface of the steel sheet in the furnace in a reducing atmosphere is defined as `` reducing heat treatment temperature '', good plating adhesion is achieved by the `` dew point '' and `` reducing heat treatment temperature '' during the reduction heat treatment. It is possible to define the condition range of the reduction heat treatment that can be stably realized. In actual operation, it is possible to control the appropriate condition range of “dew point” and “reduction heat treatment temperature” based on the heat curve data of the steel sheet surface temperature measured in advance in the reduction heat treatment furnace of the production line used. Is possible.

化学組成が前述の範囲にある鋼板をめっき原板とする場合、(露点,還元熱処理温度)の適正範囲として、図2に示されるA(−75,800)−B(−45,900)−C(−10,900)−D(−10,750)−E(−75,750)−Aを結ぶ直線で囲まれた領域内(境界を含む)の条件が採用できることがわかった。この範囲内で、鋼板の最終焼鈍を兼ねた条件を適用すればよい。   When a steel plate having a chemical composition in the above-described range is used as a plating base plate, A (−75,800) −B (−45,900) −C shown in FIG. 2 is set as an appropriate range of (dew point, reduction heat treatment temperature). It was found that the conditions within the region (including the boundary) surrounded by the straight line connecting (−10,900) −D (−10,750) −E (−75,750) −A can be adopted. Within this range, a condition that also serves as final annealing of the steel sheet may be applied.

還元熱処理によって再結晶焼鈍を兼ねる場合は、上記の各条件範囲において、鋼板内部まで再結晶温度以上となる条件を採用すればよい。当該対象鋼種の場合、上記の各条件範囲において還元処理温度(表面の最高到達温度)が750℃以上となるようにすることが望ましい。   When the recrystallization annealing also serves as the recrystallization annealing, a condition in which the recrystallization temperature is reached or higher up to the inside of the steel sheet may be adopted in each of the above condition ranges. In the case of the target steel type, it is desirable that the reduction treatment temperature (maximum surface temperature) be 750 ° C. or higher in each of the above condition ranges.

還元熱処理の雰囲気としては、従来一般的に溶融めっき前処理として使用されている雰囲気が適用できる。例えば5〜50%H2−N2雰囲気が例示できる。 As an atmosphere of the reduction heat treatment, an atmosphere conventionally used as a pretreatment for hot dipping can be applied. For example 5~50% H 2 -N 2 atmosphere can be exemplified.

〔溶融亜鉛系めっき〕
上記の還元熱処理を終えためっき原板を、大気に曝すことなく、溶融Zn−Al−Mg合金めっき浴に導入する。
[Hot zinc plating]
The plating original plate that has undergone the above reduction heat treatment is introduced into a molten Zn—Al—Mg alloy plating bath without being exposed to the atmosphere.

めっき浴中のAlは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。その効果は、溶融めっき浴のAl含有量が1.0質量%以上で認められる。一方、Al含有量が22.0%を超えると、めっき層と鋼基材との界面で脆いFe−Al合金層が過剰に成長するようになり、めっき密着性の低下を招く要因となる。優れためっき密着性を確保するには15.0%以下のAl含有量とすることが好ましく、10.0%以下に管理しても構わない。   Al in the plating bath is effective for improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide-based dross in the plating bath. The effect is recognized when the Al content of the hot dipping bath is 1.0% by mass or more. On the other hand, when the Al content exceeds 22.0%, a brittle Fe—Al alloy layer grows excessively at the interface between the plating layer and the steel substrate, which causes a decrease in plating adhesion. In order to ensure excellent plating adhesion, the Al content is preferably 15.0% or less, and may be controlled to 10.0% or less.

めっき浴中のMgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。また、めっき密着性の改善にも有効である。これらの作用は溶融めっき浴のMg含有量が0.05%以上の範囲で発現し、特に顕著な効果を得るためには1.0%以上のMg含有量を確保することがより好ましい。一方、Mg含有量が10.0%を超えるとMg酸化物系ドロスが発生し易くなる。より高品質のめっき層を得るには5.0%以下のMg含有量とすることが好ましく、4.0%以下に管理しても構わない。   Mg in the plating bath exhibits an effect of significantly increasing the corrosion resistance of the plated steel sheet by generating a uniform corrosion product on the surface of the plating layer. It is also effective in improving plating adhesion. These effects are manifested when the Mg content of the hot dipping bath is 0.05% or more, and in order to obtain a particularly remarkable effect, it is more preferable to ensure a Mg content of 1.0% or more. On the other hand, when the Mg content exceeds 10.0%, Mg oxide-based dross tends to occur. In order to obtain a higher quality plating layer, the Mg content is preferably 5.0% or less, and may be controlled to 4.0% or less.

溶融めっき浴中にTi、Bを含有させると、溶融Zn−Al−Mg合金めっき鋼板において斑点状の外観不良を与えるZn11Mg2相の生成・成長が抑制される。またこれらの元素の添加によって溶融めっき時における製造条件の自由度が拡大する。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.002%以上、Bの場合0.001%以上とすることがより効果的である。ただし、Ti含有量が過剰になるとめっき層中にTi−Al系の析出物が生成し、またB含有量が過剰になるとめっき層中にAl−B系あるいはTi−B系の析出物が生成して粗大化する。これらの析出物はめっき層表面の外観を損ねる要因となる。したがって、めっき浴にTiを添加する場合は0.10%以下の範囲で行う必要があり、0.01%以下とすることがより好ましい。また、Bを添加する場合は0.05%以下の範囲とする必要があり、0.005%以下とすることがより好ましい。 When Ti and B are contained in the hot dipping bath, the formation and growth of the Zn 11 Mg 2 phase that gives speckled appearance defects in the hot-dip Zn—Al—Mg alloy plated steel sheet is suppressed. Further, the addition of these elements increases the degree of freedom in manufacturing conditions during hot dipping. For this reason, 1 type or 2 types of Ti and B can be added as needed. It is more effective to add 0.002% or more in the case of Ti and 0.001% or more in the case of B. However, if the Ti content is excessive, Ti—Al based precipitates are generated in the plating layer, and if the B content is excessive, Al—B based or Ti—B based precipitates are generated in the plating layer. And become coarse. These precipitates are factors that impair the appearance of the plating layer surface. Therefore, when Ti is added to the plating bath, it is necessary to be within the range of 0.10% or less, and more preferably 0.01% or less. Moreover, when adding B, it is necessary to set it as 0.05% or less of range, and it is more preferable to set it as 0.005% or less.

溶融めっき浴中にSiを含有させると、鋼素地とめっき層の界面に生成するFe−Al合金層の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。またSiはめっき層の黒変化を防止し、表面の光沢性を維持する上でも有効である。したがって、必要に応じてSiを含有させることができる。Siを含有させる場合は、溶融めっき浴のSi含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、めっき浴中のSi含有量は2.0%以下に制限される。   When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer generated at the interface between the steel substrate and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. Is advantageous. Moreover, Si is effective in preventing the black change of the plating layer and maintaining the glossiness of the surface. Therefore, Si can be contained as necessary. When Si is contained, it is more effective to set the Si content of the hot dipping bath to 0.005% or more. However, since excessive Si content increases the amount of dross in the hot dipping bath, the Si content in the plating bath is limited to 2.0% or less.

溶融めっき浴中には、鋼板を浸漬・通過させる関係上、一般にはFeの混入が避けられない。Zn−Al−Mg合金めっき浴中のFe含有量は概ね2.0%程度まで許容される。めっき浴中にはその他の元素として例えば、Ca、Sr、Na、希土類元素、Ni、Co、Sn、Cu、Cr、Mnの1種以上が混入する場合があるが、それらの合計含有量は1.0%以下に管理することが望ましい。   In general, it is unavoidable that Fe is mixed in the hot dipping bath because the steel sheet is immersed and passed. The Fe content in the Zn—Al—Mg alloy plating bath is generally allowed up to about 2.0%. In the plating bath, for example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr and Mn may be mixed, but the total content thereof is 1 It is desirable to manage to 0.0% or less.

めっき付着量は、鋼板片面当たり20〜300g/m2の範囲で調整することが望ましい。 It is desirable to adjust the plating adhesion amount within a range of 20 to 300 g / m 2 per one side of the steel sheet.

表1に示す16種類の化学組成を持つ鋼を溶製し、そのスラブを1250℃に加熱したのち抽出して、仕上げ圧延温度800℃、巻取り温度420〜500℃の各温度で熱間圧延して、板厚2.5mmの熱延鋼帯を得た。次に、熱延鋼帯を酸洗したのち冷間圧延して、板厚1.0mmの冷延鋼板を用意した。
次に、各冷延鋼板について、種々の露点、還元熱処理温度にて還元熱処理を施し、その後、大気に曝すことなく溶融Zn−Al−Mg合金めっき浴に浸漬し、浴から引き上げ、片面当たりのめっき付着量が約90g/m2の溶融亜鉛系めっき鋼板を得た。実験条件は表2と、以下のとおりである。
Steel having 16 kinds of chemical compositions shown in Table 1 is melted, the slab is heated to 1250 ° C., extracted, and then hot rolled at a finish rolling temperature of 800 ° C. and a winding temperature of 420 to 500 ° C. Thus, a hot-rolled steel strip having a thickness of 2.5 mm was obtained. Next, the hot-rolled steel strip was pickled and cold-rolled to prepare a cold-rolled steel plate having a thickness of 1.0 mm.
Next, each cold-rolled steel sheet is subjected to reduction heat treatment at various dew points and reduction heat treatment temperatures, and then immersed in a molten Zn-Al-Mg alloy plating bath without being exposed to the atmosphere. A hot dip galvanized steel sheet having a coating adhesion amount of about 90 g / m 2 was obtained. The experimental conditions are as follows in Table 2.

〔還元熱処理〕
・雰囲気ガス;30%H2−N2雰囲気
・露点と熱処理温度:表2
・保持時間(750℃以上に保持される時間):32秒
[Reduction heat treatment]
Atmospheric gas; 30% H 2 -N 2 atmosphere, dew point and the heat treatment temperature: TABLE 2
-Holding time (time for holding above 750 ° C): 32 seconds

〔溶融めっき〕
・浴組成; 表2
・浴温; 400℃
・浴浸漬時間; 2秒
[Hot plating]
・ Bath composition; Table 2
・ Bath temperature: 400 ℃
・ Bath immersion time: 2 seconds

〔めっき密着性の評価〕
得られためっき鋼板から幅15mmの曲げ試験片を切り出し、先端半径R=2mmのポンチを用いて90°V曲げ試験を行った。試験片の幅方向(=曲げ軸の方向)が圧延方向と一致するようにした。曲げ試験後の試験片について、曲げ加工部の外周部にJIS Z1522で定めるセロハン粘着テープを貼付した後、剥ぎ取って、テープにめっき層の付着が認められないものを○(めっき密着性;良好)、それ以外のものを×(めっき密着性;不良)と判定した。同種のめっきサンプルについてn=3で曲げ試験を行い、最も評価の悪い試験片の結果をそのサンプルの成績として採用した。結果は、表2、表3に合わせて示している。
[Evaluation of plating adhesion]
A bending test piece having a width of 15 mm was cut out from the obtained plated steel sheet, and a 90 ° V bending test was performed using a punch having a tip radius R = 2 mm. The width direction of the specimen (= direction of the bending axis) was made to coincide with the rolling direction. Regarding the test piece after the bending test, a cellophane adhesive tape defined in JIS Z1522 was applied to the outer periphery of the bending portion, and then peeled off. ), Other than that was judged as x (plating adhesion; poor). The same kind of plating sample was subjected to a bending test with n = 3, and the result of the test piece with the worst evaluation was adopted as the result of the sample. The results are shown in Tables 2 and 3.

〔耐溶融金属脆化割れ性の評価〕
めっき鋼板から100mm×75mmのサンプルを切り出し、これをアーク溶接による溶融金属脆化に起因する溶接最大割れ長さを評価するための試験片とした。
溶接試験は図1に示すような外観のボス溶接部材を作製する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片1の板面中央に直径20mm×長さ25mmの軟鋼からなるボス(突起)2を垂直に立て、このボス2を試験片1にアーク溶接にて接合した。溶接条件は、溶接電流:220A、溶接電圧25V、溶接速度0.2m/min、シールドガス:CO2、シールドガス流量:20L/minとした。溶接ワイヤは、YGW12を用いた。
溶接開始点からボスの周囲を1周して溶接開始点を過ぎた後もさらに溶接を続けて溶接ビード3が重なった部分4を作った。
[Evaluation of molten metal embrittlement crack resistance]
A 100 mm × 75 mm sample was cut out from the plated steel sheet, and this was used as a test piece for evaluating the maximum weld crack length caused by molten metal embrittlement by arc welding.
In the welding test, “boss welding” for producing a boss weld member having an appearance as shown in FIG. 1 was performed, and the cross section of the welded portion was observed to examine the occurrence of cracks. That is, a boss (projection) 2 made of mild steel having a diameter of 20 mm and a length of 25 mm was set up vertically in the center of the plate surface of the test piece 1, and the boss 2 was joined to the test piece 1 by arc welding. The welding conditions were welding current: 220 A, welding voltage 25 V, welding speed 0.2 m / min, shielding gas: CO2, and shielding gas flow rate: 20 L / min. YGW12 was used for the welding wire.
After the welding start point made one round around the boss and after the welding start point was passed, welding was continued further to make a portion 4 where the weld beads 3 overlapped.

ボス溶接後に、ビード重なり部分4の部分を含むように試験片とボスを切断し、断面を埋め込んで光学顕微鏡によりビード重なり部を観察した。断面内の試験片1の部分に割れが観察された場合は、その割れの長さを測定し、複数の割れが観察された場合は最も長い割れ長さを「最大割れ長さ」とした。この割れは、溶接熱影響部の旧オーステナイト粒界に沿って生じており、「この割れは溶融金属脆化割れ」であると判断される。耐溶融金属脆化割れ性の評価は、最大割れ長さが0.1mm以下の場合は合格(○)とし、0.1mmを越える場合は不合格(×)とした。
その評価結果を表4に示す。鋼A〜Lは合格であったが、鋼M〜Pの4種は不合格であった。
After the boss welding, the test piece and the boss were cut so as to include the bead overlap portion 4, the cross section was embedded, and the bead overlap portion was observed with an optical microscope. When a crack was observed in the portion of the test piece 1 in the cross section, the length of the crack was measured. When a plurality of cracks were observed, the longest crack length was defined as the “maximum crack length”. This crack occurs along the prior austenite grain boundary of the weld heat affected zone, and it is determined that this crack is a molten metal embrittlement crack. Evaluation of the resistance to molten metal embrittlement cracking was a pass (◯) when the maximum crack length was 0.1 mm or less, and a reject (x) when it exceeded 0.1 mm.
The evaluation results are shown in Table 4. Steels A to L passed, but four types of steels M to P failed.

Figure 2017115205
Figure 2017115205

Figure 2017115205
Figure 2017115205

Figure 2017115205
Figure 2017115205

Figure 2017115205
Figure 2017115205

本発明で規定する還元熱処理の範囲において、良好なめっき密着性が得られることがわかる。   It can be seen that good plating adhesion can be obtained within the range of the reduction heat treatment defined in the present invention.

1 試験片
2 ボス
3 溶接ビード
4 ビード重なり部
1 Test piece 2 Boss 3 Weld bead 4 Bead overlap

Claims (3)

鋼板の化学組成が、質量%で、C:0.01〜0.20%、Si:0.01〜1.00%、Mn:0.50〜3.00%、Ti:0.010〜0.150%、B:0.0003〜0.0100%、N:0.010%未満の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる鋼板をめっき原板として、
還元熱処理に引き続いて、
質量%でAl:0.1〜22.0%、Mg:0.05〜10.0%、残部がZnである溶融Zn−Al−Mg合金めっきを施して溶融Zn−Al−Mg合金めっき鋼板を製造するにあたり、
前記還元熱処理工程において、
還元熱処理の炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、当該炉内の露点(℃)をx軸、還元熱処理温度(℃)をy軸とする実数目盛のx−y直交座標系において、図2に示すA(−75,800)−B(−45,900)−C(−10,900)−D(−10,750)−E(−75,750)−Aを結ぶ直線で囲まれた領域内(境界を含む)の露点、還元熱処理温度を満たす条件で還元熱処理を行うことを特徴とする、
めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法。
The chemical composition of the steel sheet is% by mass: C: 0.01 to 0.20%, Si: 0.01 to 1.00%, Mn: 0.50 to 3.00%, Ti: 0.010 to 0 150%, B: 0.0003 to 0.0100%, N: containing one or more selected from the group of less than 0.010%, the steel sheet consisting of the remainder Fe and unavoidable impurities as a plating original plate,
Following the reduction heat treatment,
Molten Zn-Al-Mg alloy-plated steel sheet by applying molten Zn-Al-Mg alloy plating in which mass: Al: 0.1-22.0%, Mg: 0.05-10.0%, the balance being Zn In manufacturing
In the reduction heat treatment step,
When the maximum temperature reached on the surface of a steel sheet in a reduction heat treatment furnace is defined as “reduction heat treatment temperature”, the dew point (° C.) in the furnace is the x axis and the reduction heat treatment temperature (° C.) is the y axis. In the xy orthogonal coordinate system, A (−75,800) −B (−45,900) −C (−10,900) −D (−10,750) −E (−75,750) shown in FIG. 2. ) It is characterized in that the reduction heat treatment is performed under conditions satisfying the dew point (including the boundary) and the reduction heat treatment temperature in the region surrounded by the straight line connecting -A.
A method for producing a hot-dip Zn—Al—Mg alloy-plated steel sheet having excellent plating adhesion.
前記鋼板の化学組成が、さらに、質量%で、Cr:1.00%以下、Nb:0.10%以下、Mo:0.50%以下の群から選ばれる1種以上を含有することを特徴とする、
請求項1に記載のめっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法。
The chemical composition of the steel sheet further includes one or more selected from the group consisting of Cr: 1.00% or less, Nb: 0.10% or less, and Mo: 0.50% or less in terms of mass%. And
The manufacturing method of the hot dip Zn-Al-Mg alloy plating steel plate excellent in plating adhesiveness of Claim 1.
前記溶融Zn−Al−Mg合金めっきが、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有することを特徴とする、
請求項1または2に記載のめっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法。

The molten Zn-Al-Mg alloy plating further contains at least one selected from the group consisting of Ti: 0.10% or less, B: 0.05% or less, Si: 2.0% or less in terms of mass%. It is characterized by
The manufacturing method of the hot dip Zn-Al-Mg alloy plating steel plate excellent in plating adhesiveness of Claim 1 or 2.

JP2015251842A 2015-12-24 2015-12-24 MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION Pending JP2017115205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251842A JP2017115205A (en) 2015-12-24 2015-12-24 MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251842A JP2017115205A (en) 2015-12-24 2015-12-24 MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION

Publications (1)

Publication Number Publication Date
JP2017115205A true JP2017115205A (en) 2017-06-29

Family

ID=59233319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251842A Pending JP2017115205A (en) 2015-12-24 2015-12-24 MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION

Country Status (1)

Country Link
JP (1) JP2017115205A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003050A (en) * 2016-06-28 2018-01-11 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
CN108486415A (en) * 2018-04-23 2018-09-04 马钢(集团)控股有限公司 A kind of preparation method of steel plate and steel plate after dip galvanized aluminum magnesium plating solution and its hot-dip
CN114369783A (en) * 2021-12-10 2022-04-19 首钢集团有限公司 Hot-dip galvanized coating steel plate and preparation method thereof
CN115074576A (en) * 2022-06-13 2022-09-20 首钢集团有限公司 Zinc-aluminum-magnesium alloy ingot, plating layer, plated steel and preparation method thereof
CN115354254A (en) * 2022-09-14 2022-11-18 江苏国强镀锌实业有限公司 Preparation method of high-corrosion-resistance continuous hot-dip zinc-aluminum-magnesium-plated steel and zinc-aluminum-magnesium-steel

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161315A (en) * 2000-09-12 2002-06-04 Kawasaki Steel Corp Hot dip coated, high tensile strength steel sheet and strip and production method of the same
JP2003277904A (en) * 2002-03-25 2003-10-02 Sumitomo Metal Ind Ltd HOT DIP Zn-Al-Mg ALLOY COATED STEEL SHEET AND FORMED PRODUCT
JP2006037207A (en) * 2004-07-30 2006-02-09 Nisshin Steel Co Ltd Stock for hot dip plated electric resistance welded tube having excellent bead cutting property in tube making
JP2008261024A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Hot dip galvannealed steel sheet having excellent corrosion resistance and plating adhesion
JP2009228079A (en) * 2008-03-24 2009-10-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED STEEL SHEET HAVING EXCELLENT HOT DIP METAL EMBRITTLEMENT CRACK RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP2011153361A (en) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd HIGH STRENGTH Zn-Al-Mg BASED PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND HOT DIP METAL EMBRITTLEMENT RESISTANCE
JP2012514131A (en) * 2008-12-26 2012-06-21 ポスコ Steel plate annealing apparatus, plated steel plate manufacturing apparatus including the same, and plated steel plate manufacturing method using the same
WO2012141659A1 (en) * 2011-04-13 2012-10-18 U.S. STEEL KOŠICE, s.r.o. Method of production of hot dip galvanized flat steel products with improved corrosion resistance
WO2013047820A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Hot-dip galvanized steel sheet and process for producing same
WO2013047819A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot dip galvanized steel plate having excellent moldability, weak material anisotropy and ultimate tensile strength of 980 mpa or more, high-strength alloyed hot dip galvanized steel plate and manufacturing method therefor
WO2014024825A1 (en) * 2012-08-07 2014-02-13 新日鐵住金株式会社 Zinc-plated steel sheet for hot press molding
JP2014505168A (en) * 2010-12-28 2014-02-27 ポスコ Hot-dip plated steel sheet with excellent plating adhesion and method for producing the same
WO2014146638A2 (en) * 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Method for improving the weldability of high-manganese-containing steel strips and coated steel strip
JP2014189812A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd High strength plated steel sheet for weld structure member and manufacturing method therefor
US20150047751A1 (en) * 2011-09-28 2015-02-19 Jfe Steel Corporation High strength steel sheet and method of manufacturing the same
US20150225831A1 (en) * 2012-09-03 2015-08-13 Voestalpine Stahl Gmbh Method for applying a protective coating to a flat steel product and flat steel product having a corresponding protective coating

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161315A (en) * 2000-09-12 2002-06-04 Kawasaki Steel Corp Hot dip coated, high tensile strength steel sheet and strip and production method of the same
JP2003277904A (en) * 2002-03-25 2003-10-02 Sumitomo Metal Ind Ltd HOT DIP Zn-Al-Mg ALLOY COATED STEEL SHEET AND FORMED PRODUCT
JP2006037207A (en) * 2004-07-30 2006-02-09 Nisshin Steel Co Ltd Stock for hot dip plated electric resistance welded tube having excellent bead cutting property in tube making
JP2008261024A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Hot dip galvannealed steel sheet having excellent corrosion resistance and plating adhesion
JP2009228079A (en) * 2008-03-24 2009-10-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED STEEL SHEET HAVING EXCELLENT HOT DIP METAL EMBRITTLEMENT CRACK RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP2012514131A (en) * 2008-12-26 2012-06-21 ポスコ Steel plate annealing apparatus, plated steel plate manufacturing apparatus including the same, and plated steel plate manufacturing method using the same
JP2011153361A (en) * 2010-01-28 2011-08-11 Nisshin Steel Co Ltd HIGH STRENGTH Zn-Al-Mg BASED PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND HOT DIP METAL EMBRITTLEMENT RESISTANCE
JP2014505168A (en) * 2010-12-28 2014-02-27 ポスコ Hot-dip plated steel sheet with excellent plating adhesion and method for producing the same
WO2012141659A1 (en) * 2011-04-13 2012-10-18 U.S. STEEL KOŠICE, s.r.o. Method of production of hot dip galvanized flat steel products with improved corrosion resistance
US20150047751A1 (en) * 2011-09-28 2015-02-19 Jfe Steel Corporation High strength steel sheet and method of manufacturing the same
WO2013047820A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Hot-dip galvanized steel sheet and process for producing same
WO2013047819A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot dip galvanized steel plate having excellent moldability, weak material anisotropy and ultimate tensile strength of 980 mpa or more, high-strength alloyed hot dip galvanized steel plate and manufacturing method therefor
WO2014024825A1 (en) * 2012-08-07 2014-02-13 新日鐵住金株式会社 Zinc-plated steel sheet for hot press molding
US20150225831A1 (en) * 2012-09-03 2015-08-13 Voestalpine Stahl Gmbh Method for applying a protective coating to a flat steel product and flat steel product having a corresponding protective coating
WO2014146638A2 (en) * 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Method for improving the weldability of high-manganese-containing steel strips and coated steel strip
JP2014189812A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd High strength plated steel sheet for weld structure member and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003050A (en) * 2016-06-28 2018-01-11 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
CN108486415A (en) * 2018-04-23 2018-09-04 马钢(集团)控股有限公司 A kind of preparation method of steel plate and steel plate after dip galvanized aluminum magnesium plating solution and its hot-dip
CN114369783A (en) * 2021-12-10 2022-04-19 首钢集团有限公司 Hot-dip galvanized coating steel plate and preparation method thereof
CN114369783B (en) * 2021-12-10 2024-04-09 首钢集团有限公司 Hot dip galvanized coated steel sheet and preparation method thereof
CN115074576A (en) * 2022-06-13 2022-09-20 首钢集团有限公司 Zinc-aluminum-magnesium alloy ingot, plating layer, plated steel and preparation method thereof
CN115354254A (en) * 2022-09-14 2022-11-18 江苏国强镀锌实业有限公司 Preparation method of high-corrosion-resistance continuous hot-dip zinc-aluminum-magnesium-plated steel and zinc-aluminum-magnesium-steel

Similar Documents

Publication Publication Date Title
JP5826321B2 (en) Manufacturing method of hot dip galvanized steel sheet with excellent plating adhesion
JP5879390B2 (en) Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
JP5648755B2 (en) Method for producing hot-dip galvanized steel sheet
CN110892087A (en) Zinc-coated steel sheet having high resistance spot weldability
KR101913989B1 (en) Hot-dip galvanized steel sheet
JP5513216B2 (en) Method for producing galvannealed steel sheet
JP2017115205A (en) MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION
KR101899688B1 (en) High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
WO2010104086A1 (en) Zinc based alloy coated steel having superior resistance to liquid metal embrittlement and cracking
JP2014189812A (en) High strength plated steel sheet for weld structure member and manufacturing method therefor
KR20140138255A (en) Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
KR20200047728A (en) Method for manufacturing coated steel sheet, two spot welded metal sheets and uses thereof
JP5715344B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5660796B2 (en) Manufacturing method of hot dip galvanized high strength steel sheet
KR102065230B1 (en) Zinc coated high manganese steel sheet with superior spot weldability and method for manufacturing same
JP6801496B2 (en) High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method
JP5495921B2 (en) Manufacturing method of hot dip galvanized high strength steel sheet
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP2022130469A (en) Method for manufacturing coated steel sheet
JP2018165398A (en) Methods for manufacturing galvanized steel sheet and galvannealed steel sheet
KR101568614B1 (en) Galvanized steel having good spot weldabity and coatability, and method for manufacturing the same
JP7144710B1 (en) Galvanized steel sheet and cold-rolled steel sheet
US20170051379A1 (en) Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same
JP6958459B2 (en) Fused Zn-Al-Mg alloy plated steel sheet and its manufacturing method
JP2016006230A (en) Hot-dip galvanized steel plate excellent in plating adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200421