JP2008261024A - Hot dip galvannealed steel sheet having excellent corrosion resistance and plating adhesion - Google Patents

Hot dip galvannealed steel sheet having excellent corrosion resistance and plating adhesion Download PDF

Info

Publication number
JP2008261024A
JP2008261024A JP2007105636A JP2007105636A JP2008261024A JP 2008261024 A JP2008261024 A JP 2008261024A JP 2007105636 A JP2007105636 A JP 2007105636A JP 2007105636 A JP2007105636 A JP 2007105636A JP 2008261024 A JP2008261024 A JP 2008261024A
Authority
JP
Japan
Prior art keywords
steel sheet
corrosion resistance
mass
plating layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007105636A
Other languages
Japanese (ja)
Other versions
JP5092512B2 (en
Inventor
Kenji Yasui
健志 安井
Masato Nakazawa
眞人 仲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007105636A priority Critical patent/JP5092512B2/en
Publication of JP2008261024A publication Critical patent/JP2008261024A/en
Application granted granted Critical
Publication of JP5092512B2 publication Critical patent/JP5092512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot dip galvannealed steel sheet which has both of improved corrosion resistance and excellent plating adhesion although a large amount of easily oxidizable element such as Mg or Al is not incorporated in a plated layer. <P>SOLUTION: The hot dip galvannealed steel sheet has a Zn-plated layer containing, by mass, 5.0-20.0% Fe and 0.01-0.5% Al on the surface of a steel sheet base material. A particulate substance having an average particle diameter of ≤1 μm, containing Fe, Al, Si and Zn, and substantially free from oxygen is contained in the Zn-plated layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車の車体用に適する、耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板に関する。   The present invention relates to an alloyed hot-dip galvanized steel sheet excellent in corrosion resistance and plating adhesion, suitable for automobile bodies.

合金化溶融亜鉛めっきは、鋼板の防食を目的として施され、広範囲に使用されている。その製造方法としては、連続式溶融亜鉛めっきライン(以下、CGLと称する)に於いて、脱脂洗浄後、H2及びN2を含む還元雰囲気にて、ラジアントチューブによる間接加熱により焼鈍し、めっき浴温度近傍まで冷却した後に、溶融亜鉛めっき浴に浸漬し、めっき浴を出た後に再加熱して合金化するという全還元炉方式が一般的である。 Alloying hot dip galvanizing is applied for the purpose of corrosion protection of steel sheets, and is widely used. As a manufacturing method thereof, in a continuous hot dip galvanizing line (hereinafter referred to as CGL), after degreasing cleaning, annealing is performed by indirect heating with a radiant tube in a reducing atmosphere containing H 2 and N 2 , and a plating bath An all-reduction furnace method is generally used in which after cooling to near the temperature, it is immersed in a hot dip galvanizing bath, and after leaving the plating bath, it is reheated and alloyed.

合金化溶融亜鉛めっき鋼板の使用用途としては、自動車の外板や構造部材等、自動車用鋼板としての用途が多いが、自動車用鋼板においては、車体の長寿命化を目的として、Znめっき層の耐食性をさらに向上させることが求められている。同時に、複雑化している自動車のボディ形状に対応するため、複雑な形状にプレス成形してもめっき密着性が確保できることが求められている。そのため、亜鉛めっき鋼板の耐食性及びめっき密着性を向上させるために、種々の検討がなされてきた。   The use of alloyed hot-dip galvanized steel sheets is often used as automotive steel sheets, such as automotive outer panels and structural members, but in automotive steel sheets, the Zn plating layer is used for the purpose of extending the life of the vehicle body. There is a need to further improve the corrosion resistance. At the same time, in order to cope with the complicated body shape of automobiles, it is required that plating adhesion can be ensured even when press-molding into a complicated shape. For this reason, various studies have been made to improve the corrosion resistance and plating adhesion of galvanized steel sheets.

例えば、特許文献1には、Znめっき層中にAl、Mg、Siを含有させた溶融亜鉛めっき鋼板及びその製造方法が開示されている。   For example, Patent Document 1 discloses a hot-dip galvanized steel sheet containing Al, Mg, and Si in a Zn plating layer and a method for manufacturing the same.

また、特許文献2には、合金化溶融亜鉛めっき層中にAl、Mg、Mn、Siを含有させた合金化溶融亜鉛めっき鋼板が開示されている。   Patent Document 2 discloses an alloyed hot-dip galvanized steel sheet containing Al, Mg, Mn, and Si in the alloyed hot-dip galvanized layer.

さらに、特許文献3には、第一層として合金化溶融亜鉛めっき層を有し、第二層としてMg-Al合金めっき層を有することによって、第一層で加工性を確保、第二層で耐食性を確保する技術が開示されている。   Further, Patent Document 3 has an alloyed hot-dip galvanized layer as the first layer and an Mg-Al alloy plated layer as the second layer, thereby ensuring workability in the first layer and in the second layer. A technique for ensuring corrosion resistance is disclosed.

特開2001-355054号公報JP 2001-355054 特開平3-97840号公報Japanese Patent Laid-Open No. 3-97840 特開平4-52284号公報Japanese Patent Laid-Open No. 4-52284

しかし、特許文献1に開示される技術では、耐食性は向上するものの、加工性及びめっき密着性に劣るため、自動車用鋼板として用いることはできない。特許文献2では、耐食性が向上し、めっき層への合金元素の含有が、密着性を悪化させることはないが、合金化中にMgやAlがめっき層表面に濃化し、スポット溶接性を悪化させる恐れがある。特許文献3では、第二層を付与することで耐食性が向上し、めっき密着性を悪化させることはないが、Mg-Alめっき層の表面に酸化膜が形成し、スポット溶接性を悪化させる恐れがある。   However, the technique disclosed in Patent Document 1 improves corrosion resistance but is inferior in workability and plating adhesion, and cannot be used as a steel plate for automobiles. In Patent Document 2, the corrosion resistance is improved and the inclusion of the alloy element in the plating layer does not deteriorate the adhesion, but Mg and Al are concentrated on the surface of the plating layer during alloying, which deteriorates the spot weldability. There is a fear. In Patent Document 3, the addition of the second layer improves the corrosion resistance and does not deteriorate the plating adhesion, but an oxide film is formed on the surface of the Mg-Al plating layer, which may deteriorate the spot weldability. There is.

本発明は、前述のような従来技術の問題点を解決し、めっき層中にMg、Al等の易酸化性元素を多量に含有させなくても耐食性が向上し、同時にめっき密着性にも優れた合金化溶融亜鉛めっき鋼板を提供することを目的とする。   The present invention solves the problems of the prior art as described above, and improves the corrosion resistance without containing a large amount of easily oxidizable elements such as Mg and Al in the plating layer, and at the same time has excellent plating adhesion. An object of the present invention is to provide a galvannealed steel sheet.

上記問題を解決するため、本発明者らは鋭意検討を重ねた結果、合金化溶融亜鉛めっき鋼板のめっき層中に、Fe、Al、Si、Znを含有し実質的に酵素を含有しない粒子状物質を含有させることで、耐食性が向上することを見出した。また、これらの粒子状物質は、加工時にもめっき密着性を阻害することはなく、耐食性の向上とめっき密着性が両立する、合金化溶融亜鉛めっき鋼板の提供を可能にした。   In order to solve the above problems, the present inventors have made extensive studies, and as a result, the plated layer of the alloyed hot-dip galvanized steel sheet contains Fe, Al, Si, Zn and is substantially free of enzymes. It has been found that the corrosion resistance is improved by containing a substance. In addition, these particulate materials have made it possible to provide an alloyed hot-dip galvanized steel sheet that does not hinder plating adhesion even during processing, and that has both improved corrosion resistance and plating adhesion.

めっき層中に該粒子状物質を含有させることで耐食性が向上する理由の詳細については不明であるが、めっき層を上記の構造とすることで、耐食性が向上し、めっき密着性との両立が可能であることを見出したのである。   Although the details of the reason why the corrosion resistance is improved by including the particulate matter in the plating layer is unknown, the corrosion resistance is improved by making the plating layer the above structure, and compatibility with the plating adhesion is achieved. I found it possible.

本発明は、上記知見に基づいて完成されたもので、その要旨とするところは、以下の通りである。
(1) 鋼板母材の表面に、質量%で、
Fe:5.0〜20.0%、
Al:0.01〜0.5%
を含有するZnめっき層を有する合金化溶融亜鉛めっき鋼板であって、該Znめっき層中に、平均粒径が1μm以下であり、Fe、Al、Si、Znを含有し実質的に酵素を含有しない粒子状物質を含有することを特徴とする耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
(2) 前記粒子状物質が、質量%で、
Si:0.1〜15%、
Al:0.1〜20%
を合計で1〜35質量%含有し、残部がFe及びZnからなる上記(1)に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
(3) めっき層を断面から観察した際に、めっき層と鋼板の界面に平行な方向に10μm当たり、前記粒子状物質が平均で5個以上存在する上記(1)又は(2)に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
(4) 前記鋼板母材が、質量%で、
C:0.001〜0.3%、
Si:0.2〜3.0%、
Mn:0.5〜3.0%、
Al:0.1〜2.0%、
P:0.0001〜0.3%、
S:0.0001〜0.1%、
N:0.0001〜0.007%
を含有し、残部がFe及び不可避不純物である上記(1)〜(3)のいずれかに記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
(5) 前記めっき層中に、Si、Mn又はAlの1種又は2種以上を含む層状酸化物をさらに含有する(1)に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
(6) Znめっき層中に存在する層状酸化物の厚さTが、式(A)の条件を満たす上記(5)に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
1nm≦T≦50nm ・・・ (A)
The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) On the surface of the steel plate base metal,
Fe: 5.0-20.0%,
Al: 0.01-0.5%
An alloyed hot-dip galvanized steel sheet having a Zn-plated layer containing Ni, wherein the Zn-plated layer has an average particle size of 1 μm or less, contains Fe, Al, Si, Zn, and substantially contains an enzyme An alloyed hot-dip galvanized steel sheet excellent in corrosion resistance and plating adhesion, characterized by containing a particulate material that does not act.
(2) The particulate matter is mass%,
Si: 0.1-15%,
Al: 0.1-20%
The alloyed hot-dip galvanized steel sheet having excellent corrosion resistance and plating adhesion as described in (1) above, comprising 1 to 35% by mass in total, the balance being Fe and Zn.
(3) When the plating layer is observed from a cross section, the average number of the particulate matter is 10 or more per 10 μm in the direction parallel to the interface between the plating layer and the steel sheet, as described in (1) or (2) above Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion.
(4) The steel plate base material is mass%,
C: 0.001-0.3%
Si: 0.2-3.0%
Mn: 0.5-3.0%
Al: 0.1-2.0%,
P: 0.0001-0.3%
S: 0.0001-0.1%,
N: 0.0001-0.007%
The alloyed hot-dip galvanized steel sheet having excellent corrosion resistance and plating adhesion as described in any one of (1) to (3) above, wherein the balance is Fe and inevitable impurities.
(5) The alloyed hot-dip galvanized steel sheet excellent in corrosion resistance and plating adhesion according to (1), further containing a layered oxide containing one or more of Si, Mn, or Al in the plating layer .
(6) The galvannealed steel sheet having excellent corrosion resistance and plating adhesion as described in (5) above, wherein the thickness T of the layered oxide present in the Zn plating layer satisfies the condition of the formula (A).
1nm ≦ T ≦ 50nm (A)

本発明の合金化溶融亜鉛めっき鋼板は、めっき層中に、Fe、Al、Si、Znを含有し実質的に酵素を含有しない粒子状物質を含有させることで、耐食性が向上し、めっき密着性との両立が可能となり、自動車の外板や構造部材等の用途に極めて有効である。   The alloyed hot-dip galvanized steel sheet according to the present invention includes a particulate material containing Fe, Al, Si, Zn and substantially no enzyme in the plating layer, thereby improving corrosion resistance and plating adhesion. And is extremely effective for applications such as automobile outer plates and structural members.

以下、本発明を詳細に説明する。
まず、上記(1)において、Znめっき層中のFe含有量を5.0〜20.0質量%の範囲に限定しているのは、5.0質量%未満では、スポット溶接性が劣るからであり、20.0質量%を超えると、めっき層自体の密着性を損ない、加工の際、めっき層が破壊・脱落し、金型に付着することで、成形時の疵の原因となるからである。
Hereinafter, the present invention will be described in detail.
First, in the above (1), the Fe content in the Zn plating layer is limited to the range of 5.0 to 20.0% by mass because if less than 5.0% by mass, the spot weldability is inferior, 20.0% by mass. This is because the adhesion of the plating layer itself is impaired, and the plating layer breaks / drops off during processing and adheres to the mold, thereby causing defects during molding.

めっき層中のAl含有量を0.01〜0.5質量%の範囲に限定しているのは、後述するように、めっき層中に上記(1)のような粒子状物質を含有させるためには、Alは必須元素であり、0.01質量%未満では、めっき層中に粒子状物質を含有させることができないためである。また、0.5質量%を超えてAlを添加すると、合金化時に、Alがめっき層表面に濃化して、スポット溶接性を悪化させる。そのため、上限を0.5質量%とした。   The Al content in the plating layer is limited to the range of 0.01 to 0.5% by mass, as described later, in order to contain the particulate matter as in (1) above in the plating layer, Al Is an essential element, and if it is less than 0.01% by mass, a particulate matter cannot be contained in the plating layer. Moreover, when Al is added exceeding 0.5 mass%, Al is concentrated on the surface of the plating layer during alloying, and spot weldability is deteriorated. Therefore, the upper limit is set to 0.5% by mass.

めっき層中のFe及びAlの含有量を測定するには、めっき層を酸で溶解し、溶解液を化学分析する方法を用いればよい。例えば、30mm×40mmに切断した合金化溶融亜鉛めっき鋼板について、インヒビタを添加した5%HCl水溶液で、鋼板母材の溶出を抑制しながらめっき層のみを溶解し、溶解液をICP発光して得られた信号強度と、濃度既知溶液から作成した検量線からFe及びAlの含有量を定量する方法を用いればよい。また、各試料間の測定ばらつきを考慮して、同じ合金化溶融亜鉛めっき鋼板から切出した、少なくとも3つの試料を測定した平均値を採用すればよい。   In order to measure the content of Fe and Al in the plating layer, a method of dissolving the plating layer with an acid and chemically analyzing the solution may be used. For example, an alloyed hot-dip galvanized steel sheet cut to 30 mm × 40 mm is obtained by dissolving only the plating layer with 5% HCl aqueous solution with inhibitor added while suppressing elution of the steel sheet base material, and the solution is obtained by ICP light emission. A method of quantifying the contents of Fe and Al from the obtained signal intensity and a calibration curve created from a solution having a known concentration may be used. In addition, in consideration of measurement variations among the samples, an average value obtained by measuring at least three samples cut out from the same alloyed hot-dip galvanized steel sheet may be employed.

めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2以上であることが望ましい。また、めっき密着性を確保すると言う観点からは、片面付着量で100g/m2を超えないことが望ましい。本発明の溶融亜鉛めっき鋼板上に、塗装性、溶接性を改善する目的で、上層めっきを施すことや、各種の処理、例えば、クロメート処理、非クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施してもよい。 The plating adhesion amount is not particularly limited, but is preferably 5 g / m 2 or more in terms of single-sided adhesion from the viewpoint of corrosion resistance. Further, from the viewpoint of ensuring plating adhesion, it is desirable that the amount of adhesion on one side does not exceed 100 g / m 2 . On the hot dip galvanized steel sheet of the present invention, for the purpose of improving paintability and weldability, it is possible to apply upper layer plating and various treatments such as chromate treatment, non-chromate treatment, phosphate treatment, lubricity improvement treatment. Further, a weldability improving process or the like may be performed.

本発明の合金化溶融亜鉛めっき鋼板は、上記Znめっき層中に、Fe、Al、Si、Znを含有し実質的に酵素を含有しない粒子状物質を含有させることで、耐食性に優れ、耐食性とめっき密着性が両立している。本発明の合金化溶融亜鉛めっき鋼板の断面構造の模式図の一例を図1に示す。ここで、粒子状物質とは、長径と短径のアスペクト比(長径/短径)が3未満の物質のことを指す。粒子状物質の分布形態は、特に限定されるものではなく、めっきと鋼板の界面近傍に集中して存在していても、めっき層全体に分散していても、本発明の要件を満たす。また、粒子状物質の形状については、アスペクト比が3未満であれば特に限定されるものではなく、球状、楕円状、ダンベル状等の形状であっても本発明の要件を満たす。めっき層が図1のような構造であることにより、耐食性が向上するのは、めっきの疵部等において予め粒子状物質が露出している場合、あるいは、表面から腐食が進行して粒子状物質が露出した場合において、粒子状物質中のSiやAlが溶出して疵部及び腐食部を覆い、不動態化するからであると考えられる。粒子状物質中には鋼板母材から供給されるFeとめっき層から供給されるZnが不可避的に含まれる。   The alloyed hot-dip galvanized steel sheet of the present invention is excellent in corrosion resistance and corrosion resistance by including a particulate material containing Fe, Al, Si, Zn and substantially free of enzymes in the Zn plating layer. Plating adhesion is compatible. An example of a schematic view of the cross-sectional structure of the galvannealed steel sheet of the present invention is shown in FIG. Here, the particulate matter refers to a substance having an aspect ratio (major axis / minor axis) of a major axis and a minor axis of less than 3. The distribution form of the particulate matter is not particularly limited, and satisfies the requirements of the present invention whether it is concentrated near the interface between the plating and the steel plate or dispersed throughout the plating layer. Further, the shape of the particulate matter is not particularly limited as long as the aspect ratio is less than 3, and the shape of the spherical material, the elliptical shape, the dumbbell shape, or the like satisfies the requirements of the present invention. The corrosion resistance is improved when the plating layer has a structure as shown in FIG. 1 when the particulate matter is exposed in advance at the plating butt or the like, or the corrosion proceeds from the surface and the particulate matter. This is probably because Si and Al in the particulate matter are eluted and cover the heel and the corroded portion and passivate. The particulate matter inevitably contains Fe supplied from the steel plate base material and Zn supplied from the plating layer.

粒子状物質が実質的に酵素を含有しないと限定したのは、酵素を含有していると、SiやAlが酸化物として安定化してしまうために、溶出することが困難となり、耐食性を向上させる効果がなくなってしまうからである。酵素は、含有量が0.1質量%程度であればSi、Alの耐食性向上効果に悪影響を及ぼさないので、0.1質量%までは含有していても構わない。   Particulate matter was limited to containing substantially no enzyme. If enzyme is contained, Si and Al are stabilized as oxides, which makes it difficult to elute and improves corrosion resistance. This is because the effect is lost. If the content of the enzyme is about 0.1% by mass, it will not adversely affect the effect of improving the corrosion resistance of Si and Al, so it may be contained up to 0.1% by mass.

粒子状物質の平均粒径を1μm以下であると限定したのは、1μm超であると溶出が困難となり、耐食性を向上させる効果が得られないである。また、1μm以下であれば加工時のめっき密着性には全く影響を及ぼさないために、耐食性とめっき密着性の両立が可能となる。また、粒径が小さくなり過ぎると溶出過程で酸化され易く、耐食性を向上させる効果が小さくなるため、粒径を10nm以上とすることが好ましい。   The reason why the average particle diameter of the particulate material is limited to 1 μm or less is that when it exceeds 1 μm, elution becomes difficult and the effect of improving the corrosion resistance cannot be obtained. Further, if the thickness is 1 μm or less, the plating adhesion at the time of processing is not affected at all, so that both corrosion resistance and plating adhesion can be achieved. Further, if the particle size becomes too small, it is likely to be oxidized during the elution process, and the effect of improving the corrosion resistance is reduced. Therefore, the particle size is preferably 10 nm or more.

めっき層中に存在する粒子状物質が、Fe、Al、Si、Znを含有し実質的に酵素を含有しないことを確認するには、めっき鋼板の断面から組織観察を行って粒状物質の有無を確認し、粒状物質を組成分析すればよい。例えば、集束イオンビーム加工装置(FIB)により、めっき層を含むように鋼板断面を薄片に加工した後、電解放出型透過型電子顕微鏡(FE-TEM)による観察と、エネルギー分散型X線検出器(EDX)による組成分析を行う方法が挙げられる。粒子状物質を、EDXで分析すれば、粒子状物質がFe、Al、Si、Znを含有し、酵素を実質的に含有しないことを確認できる。   In order to confirm that the particulate matter present in the plating layer contains Fe, Al, Si, Zn and does not substantially contain an enzyme, the structure is observed from the cross section of the plated steel sheet to check for the presence of particulate matter. Confirmation and composition analysis of the granular material may be performed. For example, after processing the cross section of a steel sheet into thin pieces so as to include a plating layer using a focused ion beam processing device (FIB), observation with a field emission transmission electron microscope (FE-TEM) and an energy dispersive X-ray detector The method of performing composition analysis by (EDX) is mentioned. If the particulate matter is analyzed by EDX, it can be confirmed that the particulate matter contains Fe, Al, Si, Zn and substantially does not contain the enzyme.

粒子状物質をめっき層中に含有させるには、Al及びSiを鋼板母材以外から供給する必要がある。供給源としては、Alは通常CGLにおける溶融亜鉛めっき浴中に0.1質量%〜0.3質量%程度添加されているので、これを利用すればよい。Siは、CGL通板前に、CVD(化学気相成長)によって、鋼板表面にSiの薄膜を形成させ、その後CGLに通板し、焼鈍工程において鋼板母材中に熱拡散させ、鋼板表層にSi濃化層を形成させる。その後、めっき浴に浸漬させ、加熱合金化すれば、Fe、Al、Si、Znを含有した粒子状物質をめっき層中に含有させることができる。CVDで鋼板表面に形成させるSi薄膜の量は、特に制限されるものではないが、厚さ10〜100nm程度とすればよい。   In order to contain the particulate matter in the plating layer, it is necessary to supply Al and Si from other than the steel plate base material. As the supply source, Al is usually added in an amount of about 0.1 to 0.3% by mass in a hot dip galvanizing bath in CGL, and this may be used. Prior to CGL passing, Si is formed by CVD (Chemical Vapor Deposition) to form a Si thin film on the surface of the steel sheet, then passed through CGL, thermally diffused in the steel base material in the annealing process, A concentrated layer is formed. Then, if it is immersed in a plating bath and heat-alloyed, the particulate substance containing Fe, Al, Si, Zn can be contained in the plating layer. The amount of the Si thin film formed on the steel plate surface by CVD is not particularly limited, but may be about 10 to 100 nm in thickness.

焼鈍工程において、一般的にCGLで用いられているような、水素を2〜10%程度含んだ窒素雰囲気を用いると、CVDで鋼板表面に生成させたSi薄膜が鋼板母材中に熱拡散する前に、鋼板表面において酸化してしまうため、焼鈍雰囲気としては、水素を30〜80%程度含んだ窒素雰囲気を用いる必要がある。工業上の観点からは水素濃度が40〜60%の窒素雰囲気を用いるのが好ましい。Siを熱拡散させるための焼鈍温度としては、後述するように750〜950℃とすることが好ましい。   In the annealing process, if a nitrogen atmosphere containing about 2 to 10% of hydrogen, which is generally used in CGL, is used, the Si thin film formed on the steel sheet surface by CVD is thermally diffused into the steel sheet base material. Since it will oxidize on the steel plate surface before, it is necessary to use nitrogen atmosphere containing about 30-80% of hydrogen as annealing atmosphere. From an industrial viewpoint, it is preferable to use a nitrogen atmosphere having a hydrogen concentration of 40 to 60%. The annealing temperature for thermally diffusing Si is preferably 750 to 950 ° C. as will be described later.

上記(2)において、粒子状物質中のSi濃度を質量%で0.1〜15%、Al濃度を質量%で0.1〜20%、Si濃度とAl濃度の合計を質量%で1〜35%に限定したのは、単体でSi及びAlをそれぞれ0.1質量%以上、合計で1質量%以上とすることにより、耐食性がより向上するからであり、単体でSiを15質量%超、Alを20質量%超、合計で35質量%超としても耐食性を向上させる効果が飽和するからである。前述したように粒子状物質には鋼板母材からのFe、めっき層からのZnが不可避的に含有されるが、それらの濃度は特に限定されるものではない。耐食性の観点からは、Feは質量%で30〜80%、Znは質量%で3〜60%、FeとZnの合計で質量%で65〜99%の範囲に入っていることが好ましい。   In (2) above, the Si concentration in the particulate matter is limited to 0.1 to 15% by mass%, the Al concentration is limited to 0.1 to 20% by mass%, and the sum of the Si concentration and Al concentration is limited to 1 to 35% by mass%. The reason is that, by setting Si and Al alone to 0.1% by mass or more and totaling 1% by mass or more, the corrosion resistance is further improved, so that Si alone exceeds 15% by mass and Al is 20% by mass. This is because the effect of improving the corrosion resistance is saturated even if the total exceeds 35% by mass. As described above, the particulate matter unavoidably contains Fe from the steel plate base material and Zn from the plating layer, but their concentrations are not particularly limited. From the viewpoint of corrosion resistance, Fe is preferably in the range of 30 to 80% by mass, Zn is in the range of 3 to 60% by mass, and the total of Fe and Zn is in the range of 65 to 99% by mass.

粒子状物質の組成を確認するには、前述したような、断面のFE-TEM観察用に加工した試料を、再度FE-TEM観察し、粒子状物質についてEDXで定量分析すればよい。TEMの5万倍で写真撮影し、写真中に存在する粒子状物質の平均組成を求める。1つのめっき鋼板について少なくとも3つの断面観察用試料を作成し、このような写真を、1試料当たり5枚撮影して全ての平均値を計算し、そのめっき鋼板における、粒子状物質の組成とする。   In order to confirm the composition of the particulate matter, the sample processed for FE-TEM observation of the cross section as described above may be observed again by FE-TEM, and the particulate matter may be quantitatively analyzed by EDX. Take a photo at 50,000 times the TEM and determine the average composition of the particulate matter present in the photo. Create at least three cross-section observation samples for one plated steel sheet, take 5 photographs of each such sample, calculate the average value of all of them, and use it as the composition of particulate matter in the plated steel sheet. .

粒子状物質のSi濃度、Al濃度を制御する方法を以下に説明する。粒子状物質中のSi濃度は、CGLの焼鈍工程での焼鈍温度によって制御する。焼鈍温度が高いほど、粒子状物質のSi濃度は低くなるので、焼鈍温度750〜950℃の間で適宜変更すればよい。また、粒子状物質中のAl濃度は、めっき浴中のAl濃度が高いほど高くなるので、めっき浴中のAl濃度を0.05〜0.5質量%の間で適宜変更すればよい。   A method for controlling the Si concentration and Al concentration of the particulate matter will be described below. The Si concentration in the particulate matter is controlled by the annealing temperature in the CGL annealing process. The higher the annealing temperature, the lower the Si concentration of the particulate matter, so it may be appropriately changed between the annealing temperatures of 750-950 ° C. Moreover, since the Al concentration in the particulate matter increases as the Al concentration in the plating bath increases, the Al concentration in the plating bath may be appropriately changed between 0.05 to 0.5 mass%.

上記(3)は、粒子状物質の存在密度に関するものであるが、めっき層を断面から観察した際に、めっき層と鋼板の界面に平行な方向に10μm当たり、該粒子状物質が平均で5個以上存在するとしたのは、平均5個以上存在することによって、耐食性を向上させる効果がより高まるからである。また、100個以上存在してもその効果が飽和するので、経済的観点から、上限を100個とすることが好ましい。   The above (3) relates to the density of the particulate matter. When the plated layer is observed from the cross section, the average amount of the particulate matter is 5 μm per 10 μm in the direction parallel to the interface between the plated layer and the steel plate. The reason for the presence of at least five is that the presence of five or more on average increases the effect of improving corrosion resistance. Moreover, since the effect is saturated even if 100 or more are present, the upper limit is preferably set to 100 from the economical viewpoint.

粒子状物質の存在密度を確認するには、前述したように断面FE-TEM観察し、倍率5万倍で写真を撮影し、写真中に存在する粒子状物質の個数を計測する。例えば、図2に模式的に示すような写真を撮影した場合、写真中に存在する粒子状物質は10個であり、写真の長さは10cmである。倍率5万倍で撮影しているので、実際の長さ10μm当たりに存在する粒子状物質の個数は50個となる。1つのめっき鋼板について少なくとも3つの断面観察用試料を作成し、このような写真を、1試料当たり5枚撮影して全ての平均値を採用する。   In order to confirm the density of the particulate matter, the cross-sectional FE-TEM observation is performed as described above, a photograph is taken at a magnification of 50,000 times, and the number of the particulate matter present in the photograph is measured. For example, when a photograph as schematically shown in FIG. 2 is taken, there are 10 particulate matter present in the photograph, and the length of the photograph is 10 cm. Since the image is taken at a magnification of 50,000 times, the actual number of particulate matter present per 10 μm length is 50. At least three cross-section observation samples are prepared for one plated steel sheet, and five such photographs are taken per sample, and all average values are adopted.

粒子状物質の存在密度を制御するには、鋼板がめっき浴に浸漬する際の板温(進入板温)を制御すればよい。進入板温が高いほど、粒子状物質の密度が高くなるので、430〜600℃の間で適宜変更すればよい。   In order to control the density of the particulate matter, the plate temperature (ingress plate temperature) when the steel plate is immersed in the plating bath may be controlled. The higher the entry plate temperature, the higher the density of the particulate matter, so it may be appropriately changed between 430-600 ° C.

上記(4)において、鋼中成分を限定している理由を説明する。   The reason why the component in steel is limited in (4) above will be described.

鋼板母材中のC含有量を0.001〜0.3質量%の範囲に規定しているのは、0.001質量%未満とすることは経済的に不利となる恐れがあり、溶接性を保持可能な上限として0.3質量%が好ましいからである。   The C content in the steel plate base metal is defined in the range of 0.001 to 0.3 mass%, and if it is less than 0.001 mass%, there is a risk of being economically disadvantageous, and as an upper limit that can maintain weldability This is because 0.3% by mass is preferable.

鋼板母材中のSi含有量を0.2〜3.0質量%の範囲に限定しているのは、0.2質量%以上の添加によって、層状酸化物を形成し易いからであり、上限を3.0質量%としたのは、これを超える添加は溶接性に悪影響を及ぼす恐れがあるためである。   The reason why the Si content in the steel plate base material is limited to the range of 0.2 to 3.0% by mass is that the addition of 0.2% by mass or more facilitates formation of a layered oxide, and the upper limit is set to 3.0% by mass. This is because addition exceeding this amount may adversely affect weldability.

鋼板母材中のMn含有量を0.5〜3.0質量%の範囲に限定しているのは、0.5質量%以上の添加によって、層状酸化物を形成し易いからであり、上限を3.0質量%としたのは、これを上回る添加は鋼板の延性に悪影響を及ぼす恐れがあるためである。   The reason why the Mn content in the steel plate base material is limited to the range of 0.5 to 3.0% by mass is that the addition of 0.5% by mass or more facilitates formation of a layered oxide, and the upper limit is set to 3.0% by mass. This is because the addition exceeding this may adversely affect the ductility of the steel sheet.

鋼板母材中のAl含有量を0. 1〜2.0質量%の範囲に限定しているのは、0. 1質量%以上の添加によって、層状酸化物を形成し易いからであり、2.0質量%を超えると溶接性を悪化させる恐れがあるためである。   The reason for limiting the Al content in the steel sheet base metal to the range of 0.1 to 2.0% by mass is that it is easy to form a layered oxide by adding 0.1% by mass or more, and 2.0% by mass. It is because there exists a possibility that weldability may be deteriorated when exceeding.

鋼板母材中のP含有量を0.0001〜0.3質量%の範囲に限定しているのは、0.0001質量%未満とするのはコスト的に不利となる恐れがあるからであり、0.3質量%を超えると溶接性を悪化させる恐れがあるためである。   The reason why the P content in the steel plate base material is limited to the range of 0.0001 to 0.3% by mass is that it may be disadvantageous in terms of cost if it is less than 0.0001% by mass, and exceeds 0.3% by mass. This is because the weldability may be deteriorated.

鋼板母材中のS含有量を0.0001〜0.1質量%の範囲に限定しているのは、0.0001質量%未満とするのはコスト的に不利となる恐れがあるからであり、0.1質量%を超えると溶接性を悪化させる恐れがあるためである。   The reason for limiting the S content in the steel plate base metal to the range of 0.0001 to 0.1% by mass is that it may be disadvantageous in terms of cost if it is less than 0.0001% by mass, and exceeds 0.1% by mass. This is because the weldability may be deteriorated.

鋼板母在中のN含有量を0.0001〜0.007質量%の範囲に限定しているのは、0.0001質量%未満とするのはコスト的に不利となる恐れがあるからであり、0.007質量%を超えると加工性が低下する恐れがあるからである。   The reason why the N content in the steel sheet base is limited to the range of 0.0001 to 0.007% by mass is that it may be disadvantageous in terms of cost if it is less than 0.0001% by mass, and exceeds 0.007% by mass. This is because the workability may be reduced.

上記(5)において、めっき層が、Si、Mn又はAlの1種又は2種以上を含む層状酸化物を含有するとしているのは、めっき層中に層状酸化物を含有させることで、含有しない場合に比べて加工時のめっき密着性を向上させることができるからである。ここで、層状酸化物とは、長径と短径のアスペクト比(長径/短径)が3以上である酸化物のことを指す。めっき密着性が向上するのは、加工時にめっき層と鋼板の界面から発生する亀裂の進展を、層状酸化物が停止する効果が存在するからであると推定される。層状酸化物の長さ及び密度は特に限定されるものではないが、密着性の観点から、長さは0.05〜1μmとすることが好ましい。また、密度は、めっき層と鋼板の界面に平行な方向に、10μm当たり5個〜100個とすることが好ましい。層状酸化物がSi、Mn又はAlの1種または2種以上を含んでいればその組成は特に限定されるものではないが、密着性の観点から、Siは質量%で0.5〜80%、Mnは質量%で0.5〜80%、Alは質量%で0.5〜80%、Si、Mn、Alの3元素の合計で質量%で50〜90%、残部が酵素からなる範囲に入っていることが好ましい。   In (5) above, the plating layer contains a layered oxide containing one or more of Si, Mn, or Al. By including a layered oxide in the plating layer, it does not contain This is because the plating adhesion during processing can be improved compared to the case. Here, the layered oxide refers to an oxide having a major axis / minor axis aspect ratio (major axis / minor axis) of 3 or more. The reason why the plating adhesion is improved is presumed to be that the layered oxide has an effect of stopping the progress of cracks generated from the interface between the plating layer and the steel sheet during processing. The length and density of the layered oxide are not particularly limited, but the length is preferably 0.05 to 1 μm from the viewpoint of adhesion. The density is preferably 5 to 100 per 10 μm in a direction parallel to the interface between the plating layer and the steel plate. The composition is not particularly limited as long as the layered oxide contains one or more of Si, Mn or Al. From the viewpoint of adhesion, Si is 0.5 to 80% by mass, Mn Is 0.5 to 80% by mass, Al is 0.5 to 80% by mass, and the total of 3 elements of Si, Mn, and Al is 50 to 90% by mass. preferable.

上述したような層状酸化物は、鋼中に含有するSi、Mn、Alが、CGLにおける焼鈍工程中に選択酸化されて、鋼板表面に外部酸化膜を形成し、めっき浴への浸漬、及び、加熱合金化中に、めっき層中に取り込まれることによって、めっき層中に含有されたものである。   Layered oxide as described above, Si, Mn, Al contained in the steel is selectively oxidized during the annealing process in CGL to form an external oxide film on the steel sheet surface, immersed in the plating bath, and It is contained in the plating layer by being taken into the plating layer during heating alloying.

焼鈍工程において、外部酸化膜を鋼板表面に形成させるには、Si、Mn、Alに対しての酸化性雰囲気、例えば、2〜10%水素を含んだ窒素雰囲気で焼鈍する必要がある。しかし、上記(1)で示したような粒子状物質をめっき層中に含有させるために、CVDで形成させたSi薄膜を、CGLの焼鈍工程において、水素40〜60%を含んだ窒素雰囲気で焼鈍して、鋼板母材中にSiを熱拡散させる必要がある。そのため、まずCGLの焼鈍工程の前段において、水素40〜60%を含んだ窒素雰囲気で焼鈍して、Si薄膜を鋼板母材中に熱拡散させ、次に、後段において水素2〜10%を含んだ窒素雰囲気で焼鈍し、鋼板表面に外部酸化膜を形成させ、その後めっき浴に浸漬して合金化することにより、上記(1)のような粒子状物質と、上記(5)のような層状酸化物を、めっき層中に同時に含有させることができる。粒子状物質と、層状酸化物がめっき層中に同時に含有される際の、めっき層構造の模式図を図3に示す。   In the annealing process, in order to form the external oxide film on the steel sheet surface, it is necessary to anneal in an oxidizing atmosphere for Si, Mn, and Al, for example, a nitrogen atmosphere containing 2 to 10% hydrogen. However, in order to contain the particulate matter as shown in (1) above in the plating layer, the Si thin film formed by CVD is subjected to a CGL annealing process in a nitrogen atmosphere containing 40 to 60% hydrogen. It is necessary to anneal and thermally diffuse Si in the steel plate base material. Therefore, in the first stage of the CGL annealing process, annealing is performed in a nitrogen atmosphere containing 40 to 60% hydrogen to thermally diffuse the Si thin film in the steel plate base material, and then in the latter stage, 2 to 10% hydrogen is contained. By annealing in a nitrogen atmosphere, forming an external oxide film on the surface of the steel sheet, and then immersing in a plating bath to form an alloy, the particulate matter as in (1) above and the layered state as in (5) above An oxide can be simultaneously contained in the plating layer. FIG. 3 shows a schematic diagram of the plating layer structure when the particulate matter and the layered oxide are simultaneously contained in the plating layer.

上記(6)において、めっき層中に存在する層状酸化物の厚さTを、1〜100nmに限定したのは、層状酸化物の厚さをこの範囲とすることで、めっき層の密着性を向上させる効果が、さらに高まるからである。   In the above (6), the thickness T of the layered oxide present in the plating layer is limited to 1 to 100 nm. By making the thickness of the layered oxide within this range, the adhesion of the plating layer can be improved. It is because the effect of improving further increases.

層状酸化物の厚さを制御するには、CGLの焼鈍工程後段における、焼鈍雰囲気中の露点を制御すればよい。一般的には、CGLの焼鈍工程において、露点は-20〜-40℃であるが、露点が高いほど外部酸化膜の厚さは厚くなり、露点が低いほど外部酸化膜の厚さは薄くなる。露点を-50℃以下とすることで、外部酸化膜の厚みが適度な厚みとなり、層状酸化物の厚さTを上記(6)のような範囲に制御することができる。   In order to control the thickness of the layered oxide, the dew point in the annealing atmosphere in the latter stage of the CGL annealing process may be controlled. Generally, in the CGL annealing process, the dew point is -20 to -40 ° C, but the higher the dew point, the thicker the outer oxide film, and the lower the dew point, the thinner the outer oxide film thickness. . By setting the dew point to −50 ° C. or less, the thickness of the external oxide film becomes an appropriate thickness, and the thickness T of the layered oxide can be controlled within the range as described in the above (6).

めっき層がSi、Mn、Alの1種又は2種以上を含有する層状酸化物を含有していることを確認するには、めっき鋼板の断面から組織観察を行って、層状酸化物の有無を確認し、層状酸化物を組成分析すればよい。同時に、厚さも測定すればよい。例えば、集束イオンビーム加工装置(FIB)により、めっき層を含むように鋼板断面を薄片に加工した後、電解放出型透過型電子顕微鏡(FE-TEM)による観察と、エネルギー分散型X線検出器(EDX)による組成分析を行う方法が挙げられる。層状酸化物を、EDXで定性分析すれば、層状酸化物がSi、Mn、Alの1種又は2種以上を含有することを確認することができる。   In order to confirm that the plating layer contains a layered oxide containing one or more of Si, Mn, and Al, the structure is observed from the cross section of the plated steel sheet, and the presence or absence of the layered oxide is checked. Confirmation and composition analysis of the layered oxide may be performed. At the same time, the thickness may be measured. For example, after processing the cross section of a steel sheet into thin pieces so as to include a plating layer using a focused ion beam processing device (FIB), observation with a field emission transmission electron microscope (FE-TEM) and an energy dispersive X-ray detector The method of performing composition analysis by (EDX) is mentioned. When the layered oxide is qualitatively analyzed by EDX, it can be confirmed that the layered oxide contains one or more of Si, Mn, and Al.

以下、実施例により本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.

表1に示す組成からなるスラブを1150〜1200℃に加熱し、仕上げ温度900〜930℃で熱間圧延をして、厚さ4mmの熱間圧延鋼帯とし、580〜680℃で巻き取った。酸洗後、冷間圧延を施して、厚さ1.0mmの冷間圧延鋼帯とした後、表7に個別に示す条件でCVDで鋼板表面にSi薄膜を形成させた。その後、CGLで合金化溶融亜鉛めっきを行った。焼鈍工程における、焼鈍雰囲気中の水素濃度は表2に示すような条件、露点は表3に示すような条件、焼鈍温度は表4に示すような条件でそれぞれ行った。焼鈍後冷却し、460℃のめっき浴に浸漬した後、表7に個別に示す条件で加熱合金化した。めっき浴への進入板温は表5に示すような条件、めっき浴中のAl濃度は表6に示すような条件で行った。総合的な試験条件は、表7に示したような条件で行った。   A slab having the composition shown in Table 1 was heated to 1150 to 1200 ° C, hot-rolled at a finishing temperature of 900 to 930 ° C to form a hot-rolled steel strip having a thickness of 4 mm, and wound at 580 to 680 ° C. . After pickling and cold rolling to form a cold rolled steel strip having a thickness of 1.0 mm, a Si thin film was formed on the steel plate surface by CVD under the conditions shown in Table 7 individually. Thereafter, alloying hot dip galvanizing was performed with CGL. In the annealing step, the hydrogen concentration in the annealing atmosphere was as shown in Table 2, the dew point was as shown in Table 3, and the annealing temperature was as shown in Table 4. After annealing, cooling was performed, and immersion in a plating bath at 460 ° C. was performed, followed by heat alloying under the conditions individually shown in Table 7. The temperature of the plate entering the plating bath was as shown in Table 5, and the Al concentration in the plating bath was as shown in Table 6. The overall test conditions were as shown in Table 7.

めっき層中のFe含有量、Al含有量は、前述のように、インヒビタを添加した5%HCl水溶液でめっき層のみを溶解し、溶解液をICP発光分析することにより測定した。   As described above, the Fe content and Al content in the plating layer were measured by dissolving only the plating layer with a 5% HCl aqueous solution to which an inhibitor was added, and performing ICP emission analysis on the solution.

めっき層中の、上記(1)のような粒子状物質の有無、組成、密度は、FIBによりめっき層を含むように鋼板断面を薄片に加工した後、FE-TEMによって観察し、EDXによる組成分析を行うことにより確認した。粒子状物質中の酸素の有無は、酸素を0.1質量%超含むものを○、酸素が0.1質量%以下のものを×とした。   Presence / absence, composition, and density of particulate matter as in (1) above in the plating layer were processed by FE-TEM after processing the steel sheet cross-section to include the plating layer by FIB, and the composition by EDX This was confirmed by conducting an analysis. As for the presence or absence of oxygen in the particulate matter, the case where oxygen was more than 0.1% by mass was marked as ◯, and the case where oxygen was 0.1% by mass or less was marked as x.

めっき層中の、上記(5)のような層状酸化物の有無、厚さは、粒子状物質の確認用に作製した試料を、再度FE-TEM観察し、EDXで分析することにより確認した。   The presence or absence and thickness of the layered oxide as in the above (5) in the plating layer was confirmed by FE-TEM observation of a sample prepared for confirmation of particulate matter and analysis by EDX.

合金化溶融亜鉛めっき鋼板の耐食性を評価するため、繰り返し腐食促進試験を行った。鋼板を150mm×70mmのサイズに切断し、カッターでクロスカットを付与した後、CCT30サイクル後の赤錆発生状況を以下に示す評点づけで評価した。 CCTは、SST2hr→乾燥4hr→湿潤2hrを1サイクルとした。SSTの塩水濃度は5%とした。評価は、 ◎:赤錆発生5%未満、○:赤錆発生5%以上10%未満、△:赤錆発生10%以上30%未満、×:赤錆発生30%以上とし、△以上を合格とした。   In order to evaluate the corrosion resistance of the galvannealed steel sheet, repeated corrosion acceleration tests were conducted. After the steel sheet was cut into a size of 150 mm × 70 mm, and a cross cut was given by a cutter, the occurrence of red rust after the CCT 30 cycle was evaluated by the following ratings. For CCT, SST2hr → dry 4hr → wet 2hr was defined as one cycle. The salt water concentration of SST was 5%. The evaluation was as follows: ◎: less than 5% of red rust, ○: 5% to less than 10% of red rust, △: 10% to less than 30% of red rust, ×: 30% or more of red rust,

加工時のめっき密着性の評価は、60°V曲げ試験により行った。評価面が、曲げの内側に来るように、先端の曲率半径が2mmである金型を用いて、60°に曲げ加工し、曲げ部内側にテープを貼り、テープを引き剥がした。テープと共に剥離しためっき層の剥離状況から、めっき密着性を評価した。◎はめっき剥離が殆どないもの(剥離幅2mm未満)、○は軽微な剥離であるもの(剥離幅2mm以上4mm未満)、△はある程度剥離が見られるが実質上差し支えないもの(剥離幅4mm以上7mm未満)、×は剥離が激しいもの(剥離幅7mm以上)とし、◎、○、△を合格とした。   The plating adhesion during processing was evaluated by a 60 ° V bending test. Using a mold with a radius of curvature of 2 mm at the tip so that the evaluation surface is inside the bend, it was bent at 60 °, a tape was applied to the inside of the bent portion, and the tape was peeled off. The plating adhesion was evaluated from the peeled state of the plating layer peeled off with the tape. ◎: almost no peeling of plating (peeling width less than 2mm), ○: minor peeling (peeling width of 2mm or more and less than 4mm), △: some peeling, but practically acceptable (peeling width of 4mm or more) Less than 7 mm) and x were those with severe peeling (peeling width 7 mm or more), and ◎, ○, and Δ were acceptable.

評価結果を表8に示す。表8より、本発明例は全て、耐食性、めっき密着性の評価が合格レベルを満たしている。本発明の範囲を満たさない比較例は、いずれも耐食性、めっき密着性の評価が低い。   The evaluation results are shown in Table 8. From Table 8, all the examples of the present invention satisfy the pass levels in the evaluation of corrosion resistance and plating adhesion. The comparative examples that do not satisfy the scope of the present invention have low evaluations of corrosion resistance and plating adhesion.

本発明の合金化溶融亜鉛めっき鋼板の断面構造を示す模式図。The schematic diagram which shows the cross-section of the galvannealed steel plate of this invention. 本発明の合金化溶融亜鉛めっき鋼板の断面を、FIBで加工し、FE-TEMにより5万倍で撮影した写真の模式図。The schematic diagram of the photograph which processed the cross section of the galvannealed steel plate of this invention by FIB, and was image | photographed by FE-TEM at 50,000 times. 粒子状物質と、層状酸化物がめっき層中に同時に含有される際の、めっき層の断面構造を示す模式図。The schematic diagram which shows the cross-section of a plating layer when a particulate matter and a layered oxide are contained simultaneously in a plating layer.

符号の説明Explanation of symbols

1 合金化溶融亜鉛めっき層
2 粒子状物質
3 鋼板母材
4 合金化溶融亜鉛めっき層
5 鋼板母材
6 粒子状物質
7 合金化溶融亜鉛めっき層
8 鋼板母材
9 層状酸化物
10 粒子状物質
1 Alloyed hot-dip galvanized layer
2 Particulate matter
3 Steel plate base material
4 Alloyed hot-dip galvanized layer
5 Steel plate base material
6 Particulate matter
7 Alloyed hot-dip galvanized layer
8 Steel plate base material
9 Layered oxide
10 Particulate matter

Claims (6)

鋼板母材の表面に、質量%で、
Fe:5.0〜20.0%、
Al:0.01〜0.5%
を含有するZnめっき層を有する合金化溶融亜鉛めっき鋼板であって、該Znめっき層中に、平均粒径が1μm以下であり、Fe、Al、Si、Znを含有し実質的に酵素を含有しない粒子状物質を含有することを特徴とする耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
On the surface of the steel plate base material,
Fe: 5.0-20.0%,
Al: 0.01-0.5%
An alloyed hot-dip galvanized steel sheet having a Zn plating layer containing, wherein the Zn plating layer has an average particle size of 1 μm or less, contains Fe, Al, Si, Zn and substantially contains an enzyme An alloyed hot-dip galvanized steel sheet excellent in corrosion resistance and plating adhesion, characterized by containing a particulate material that does not act.
前記粒子状物質が、質量%で、
Si:0.1〜15%、
Al:0.1〜20%
を合計で1〜35質量%含有し、残部がFe及びZnからなる請求項1に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
The particulate matter is mass%,
Si: 0.1-15%,
Al: 0.1-20%
2. The galvannealed steel sheet excellent in corrosion resistance and plating adhesion according to claim 1, comprising 1 to 35% by mass in total, the balance being Fe and Zn.
めっき層を断面から観察した際に、めっき層と鋼板の界面に平行な方向に10μm当たり、前記粒子状物質が平均で5個以上存在する請求項1又は2に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。   Corrosion resistance and plating adhesion according to claim 1 or 2, wherein when the plating layer is observed from a cross section, there are an average of 5 or more of the particulate matter per 10 μm in a direction parallel to the interface between the plating layer and the steel plate. Excellent galvannealed steel sheet. 前記鋼板母材が、質量%で、
C:0.001〜0.3%、
Si:0.2〜3.0%、
Mn:0.5〜3.0%、
Al:0.1〜2.0%、
P:0.0001〜0.3%、
S:0.0001〜0.1%、
N:0.0001〜0.007%
を含有し、残部がFe及び不可避不純物である請求項1〜3のいずれかに記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
The steel plate base material is mass%,
C: 0.001-0.3%
Si: 0.2-3.0%
Mn: 0.5-3.0%
Al: 0.1-2.0%,
P: 0.0001-0.3%
S: 0.0001-0.1%,
N: 0.0001-0.007%
4. The galvannealed steel sheet excellent in corrosion resistance and plating adhesion according to any one of claims 1 to 3, wherein the balance is Fe and inevitable impurities.
前記めっき層中に、Si、Mn又はAlの1種又は2種以上を含む層状酸化物をさらに含有する請求項1に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。   2. The galvannealed steel sheet excellent in corrosion resistance and plating adhesion according to claim 1, further comprising a layered oxide containing one or more of Si, Mn or Al in the plating layer. Znめっき層中に存在する層状酸化物の厚さTが、式(A)の条件を満たす請求項5に記載の耐食性及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板。
1nm≦T≦50nm ・・・ (A)
6. The galvannealed steel sheet excellent in corrosion resistance and plating adhesion according to claim 5, wherein the thickness T of the layered oxide present in the Zn plating layer satisfies the condition of the formula (A).
1nm ≦ T ≦ 50nm (A)
JP2007105636A 2007-04-13 2007-04-13 Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion Active JP5092512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105636A JP5092512B2 (en) 2007-04-13 2007-04-13 Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105636A JP5092512B2 (en) 2007-04-13 2007-04-13 Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion

Publications (2)

Publication Number Publication Date
JP2008261024A true JP2008261024A (en) 2008-10-30
JP5092512B2 JP5092512B2 (en) 2012-12-05

Family

ID=39983719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105636A Active JP5092512B2 (en) 2007-04-13 2007-04-13 Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion

Country Status (1)

Country Link
JP (1) JP5092512B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097305B1 (en) * 2012-04-25 2012-12-12 日新製鋼株式会社 Black plated steel plate
JP2017115205A (en) * 2015-12-24 2017-06-29 日新製鋼株式会社 MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION
WO2018117520A1 (en) * 2016-12-21 2018-06-28 재단법인 포항산업과학연구원 Black plated steel sheet and manufacturing method therefor
CN112322968A (en) * 2020-09-28 2021-02-05 日照钢铁控股集团有限公司 Thermal-base non-flower high-strength galvanized plate for photovoltaic support and preparation process thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860326A (en) * 1994-08-17 1996-03-05 Kobe Steel Ltd High luster designing property double layer plated steel sheet and its production
JPH0949069A (en) * 1995-05-31 1997-02-18 Sumitomo Metal Ind Ltd Production of hot-dip aluminum-zinc alloy plated steel sheet
JP2000160314A (en) * 1998-07-03 2000-06-13 Kawasaki Steel Corp Hot dip galvannealed steel sheet
JP2002322551A (en) * 2001-04-25 2002-11-08 Kobe Steel Ltd Galvanized steel sheet
JP2003293108A (en) * 2002-04-04 2003-10-15 Nippon Steel Corp Hot dip plated steel having excellent surface smoothness
JP2004107695A (en) * 2002-09-13 2004-04-08 Nippon Steel Corp Hot dip galvanized steel member having excellent uniform coating suitability and corrosion resistance and production method therefor
JP2004256838A (en) * 2003-02-24 2004-09-16 Jfe Steel Kk Hot-dip galvannealed steel sheet of excellent press formability
JP2004315960A (en) * 2003-02-06 2004-11-11 Nippon Steel Corp Galvannealed steel sheet, and manufacturing method therefor
JP2004346375A (en) * 2003-05-22 2004-12-09 Jfe Steel Kk Galvanized steel plate, and method for manufacturing the same
JP2005002477A (en) * 2000-03-07 2005-01-06 Jfe Steel Kk Galvannealed steel sheet
JP2006063360A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860326A (en) * 1994-08-17 1996-03-05 Kobe Steel Ltd High luster designing property double layer plated steel sheet and its production
JPH0949069A (en) * 1995-05-31 1997-02-18 Sumitomo Metal Ind Ltd Production of hot-dip aluminum-zinc alloy plated steel sheet
JP2000160314A (en) * 1998-07-03 2000-06-13 Kawasaki Steel Corp Hot dip galvannealed steel sheet
JP2005002477A (en) * 2000-03-07 2005-01-06 Jfe Steel Kk Galvannealed steel sheet
JP2002322551A (en) * 2001-04-25 2002-11-08 Kobe Steel Ltd Galvanized steel sheet
JP2003293108A (en) * 2002-04-04 2003-10-15 Nippon Steel Corp Hot dip plated steel having excellent surface smoothness
JP2004107695A (en) * 2002-09-13 2004-04-08 Nippon Steel Corp Hot dip galvanized steel member having excellent uniform coating suitability and corrosion resistance and production method therefor
JP2004315960A (en) * 2003-02-06 2004-11-11 Nippon Steel Corp Galvannealed steel sheet, and manufacturing method therefor
JP2004256838A (en) * 2003-02-24 2004-09-16 Jfe Steel Kk Hot-dip galvannealed steel sheet of excellent press formability
JP2004346375A (en) * 2003-05-22 2004-12-09 Jfe Steel Kk Galvanized steel plate, and method for manufacturing the same
JP2006063360A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097305B1 (en) * 2012-04-25 2012-12-12 日新製鋼株式会社 Black plated steel plate
WO2013160973A1 (en) * 2012-04-25 2013-10-31 日新製鋼株式会社 Black-plated steel sheet
KR101537345B1 (en) * 2012-04-25 2015-07-16 닛신 세이코 가부시키가이샤 Black-Plated Steel Sheet
AU2012378606B2 (en) * 2012-04-25 2016-07-07 Nisshin Steel Co., Ltd. Black-plated steel sheet
RU2605050C2 (en) * 2012-04-25 2016-12-20 Ниссин Стил Ко., Лтд. Black-plated steel sheet
US9863027B2 (en) 2012-04-25 2018-01-09 Nisshin Steel Co., Ltd. Black-plated steel sheet
JP2017115205A (en) * 2015-12-24 2017-06-29 日新製鋼株式会社 MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION
WO2018117520A1 (en) * 2016-12-21 2018-06-28 재단법인 포항산업과학연구원 Black plated steel sheet and manufacturing method therefor
US11441219B2 (en) 2016-12-21 2022-09-13 Research Institute Of Industrial Science & Technology Black plated steel sheet and manufacturing method therefor
CN112322968A (en) * 2020-09-28 2021-02-05 日照钢铁控股集团有限公司 Thermal-base non-flower high-strength galvanized plate for photovoltaic support and preparation process thereof

Also Published As

Publication number Publication date
JP5092512B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US9034480B2 (en) Hot-dip Al—Zn coated steel sheet
RU2710813C1 (en) Hot-stamped steel
JP6025867B2 (en) High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same
US9234267B2 (en) Hot-dip Al—Zn coated steel sheet
JP5586224B2 (en) Flat steel product with anticorrosion coating and method for producing flat steel product with anticorrosion coating
ES2749209T3 (en) Hot stamping product and process for the production of a hot stamping product
JP5478804B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
EP3733918B1 (en) Zinc alloy plated steel material having excellent corrosion resistance after being processed and method for manufacturing same
JP5417797B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
US9873934B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
US20160230259A1 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
US20150017474A1 (en) High strength galvanized steel sheet and method for manufacturing the same
JP5673708B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP5092512B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion
WO2022230400A1 (en) Steel sheet and plated steel sheet
KR102649501B1 (en) hot stamp molding body
JP2007270176A (en) Hot-dip galvannealed steel sheet excellent in surface appearance and adhesion to plated layer
JP2010116590A (en) Hot dip galvanized steel sheet and method for producing the same
JP5532086B2 (en) Hot-dip galvanized steel pipe
US20240001423A1 (en) Hot stamped member
US20230407448A1 (en) Plated steel
JPWO2016059741A1 (en) High strength hot dip galvanized steel sheet
JP5320899B2 (en) Alloyed hot-dip galvanized steel sheet with excellent plating adhesion
WO2022039275A1 (en) Hot stamped component
EP4116457B1 (en) Hot pressed member and method of producing same. and coated steel sheet for hot press forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R151 Written notification of patent or utility model registration

Ref document number: 5092512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350