JP2017114733A - Infrared transmitting glass - Google Patents
Infrared transmitting glass Download PDFInfo
- Publication number
- JP2017114733A JP2017114733A JP2015253111A JP2015253111A JP2017114733A JP 2017114733 A JP2017114733 A JP 2017114733A JP 2015253111 A JP2015253111 A JP 2015253111A JP 2015253111 A JP2015253111 A JP 2015253111A JP 2017114733 A JP2017114733 A JP 2017114733A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- glass
- content
- infrared transmitting
- transmitting glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 33
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 3
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 abstract description 10
- 239000002994 raw material Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000003708 ampul Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 4
- 238000004017 vitrification Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000005387 chalcogenide glass Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 229910005900 GeTe Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、赤外線センサー等に使用される赤外線透過ガラスに関する。 The present invention relates to an infrared transmitting glass used for an infrared sensor or the like.
車載ナイトビジョンやセキュリティシステム等には、夜間の生体検知に用いられる赤外線センサーを備えている。赤外線センサーは、生体から発せられる波長約8〜14μmの赤外線を感知するため、センサー部の前には当該波長範囲の赤外線を透過するフィルターやレンズ等の光学素子が設けられる。 In-vehicle night vision systems, security systems, and the like are equipped with infrared sensors that are used for detecting living bodies at night. Since the infrared sensor senses infrared rays having a wavelength of about 8 to 14 μm emitted from a living body, an optical element such as a filter or a lens that transmits infrared rays in the wavelength range is provided in front of the sensor unit.
上記のような光学素子用の材料として、GeやZnSeが挙げられる。これらは結晶体であるため加工性に劣り、非球面レンズ等の複雑な形状に加工することが困難である。そのため量産しにくく、また赤外線センサーの小型化も困難であるという問題がある。 Examples of the material for the optical element as described above include Ge and ZnSe. Since these are crystal bodies, they are inferior in workability and difficult to process into a complicated shape such as an aspherical lens. Therefore, there are problems that it is difficult to mass-produce and it is difficult to reduce the size of the infrared sensor.
そこで、波長約8〜14μmの赤外線を透過し、加工が比較的容易なガラス質の材料として、カルコゲナイドガラスが提案されている(例えば特許文献1参照)。 Accordingly, chalcogenide glass has been proposed as a vitreous material that transmits infrared rays having a wavelength of about 8 to 14 μm and is relatively easy to process (see, for example, Patent Document 1).
特許文献1に記載のガラスは、波長10μm以上で赤外線透過率が顕著に低下しているため、特に生体から発せられる赤外線に対する感度に劣り、赤外線センサーが十分に機能しないおそれがある。 Since the glass described in Patent Document 1 has a significantly reduced infrared transmittance at a wavelength of 10 μm or longer, the sensitivity to infrared rays emitted from a living body is particularly inferior, and the infrared sensor may not function sufficiently.
以上に鑑み、本発明は、赤外線透過率に優れ、赤外線センサー用途に好適なガラスを提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass excellent in infrared transmittance and suitable for infrared sensor applications.
本発明者らが鋭意検討した結果、特定組成を有するカルコゲナイドガラスにより、前記課題を解決できることを見出した。 As a result of intensive studies by the present inventors, it has been found that the above problem can be solved by a chalcogenide glass having a specific composition.
即ち、本発明の赤外線透過ガラスは、モル%で、Ge 0〜33%(ただし0%を含まない)、Te 11〜80%、S 0〜80%(ただし0%を含まない)、Ga+Sn+Ag+Cu+Bi+Sb 0〜50%、及びF+Cl+Br+I 0〜50%を含有することを特徴とする。なお、本明細書において、「○+○+・・・」は該当する各成分の含有量の合量を意味する。 That is, the infrared transmitting glass of the present invention has a mol% of Ge 0 to 33% (excluding 0%), Te 11 to 80%, S 0 to 80% (excluding 0%), Ga + It is characterized by containing Sn + Ag + Cu + Bi + Sb 0-50% and F + Cl + Br + I 0-50%. In the present specification, “◯ + ◯ +...” Means the total content of the corresponding components.
本発明の赤外線透過ガラスは、Cd、Tl及びPbを実質的に含有しないことが好ましい。 The infrared transmitting glass of the present invention preferably contains substantially no Cd, Tl and Pb.
本発明の赤外線透過ガラスは、厚み2mmでの赤外吸収端波長が20μm以上であることが好ましい。なお本発明において、「赤外吸収端波長」とは、波長8μm以上の赤外域において光透過率が0.5%となる波長をいう。 The infrared transmitting glass of the present invention preferably has an infrared absorption edge wavelength of 2 μm or more at a thickness of 2 mm. In the present invention, the “infrared absorption edge wavelength” refers to a wavelength at which the light transmittance is 0.5% in an infrared region having a wavelength of 8 μm or more.
本発明の光学素子は、上記の赤外線透過ガラスを用いたことを特徴とする。 The optical element of the present invention is characterized by using the above infrared transmitting glass.
本発明の赤外線センサーは、上記の光学素子を用いたことを特徴とする。 The infrared sensor of the present invention is characterized by using the above optical element.
本発明によれば、赤外線透過率に優れ、赤外線センサー用途に好適なガラスを提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the glass which is excellent in infrared transmittance and suitable for an infrared sensor use.
本発明の赤外線透過ガラスは、モル%で、Ge 0〜33%(ただし0%を含まない)、Te 11〜80%、S 0〜80%(ただし0%を含まない)、Ga+Sn+Ag+Cu+Bi+Sb 0〜50%、及びF+Cl+Br+I 0〜50%を含有することを特徴とする。このようにガラス組成を規定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、特に断りのない限り、「%」は「モル%」を意味する。 The infrared transmitting glass of the present invention is mol%, Ge 0 to 33% (excluding 0%), Te 11 to 80%, S 0 to 80% (excluding 0%), Ga + Sn + Ag + Cu + Bi + Sb 0-50. %, And F + Cl + Br + I 0-50%. The reason for defining the glass composition in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified.
Geはガラス骨格を形成するための必須成分である。Geの含有量は0〜33%(ただし0%を含まない)であり、1〜32%であることが好ましく、5〜31%であることがより好ましく、10〜30%であることがさらに好ましい。Geの含有量が少なすぎると、ガラス化しにくくなる。一方、Geの含有量が多すぎると、Ge系結晶が析出して赤外線が透過しにくくなるとともに、原料コストが高くなる傾向がある。 Ge is an essential component for forming a glass skeleton. The content of Ge is 0 to 33% (excluding 0%), preferably 1 to 32%, more preferably 5 to 31%, and further preferably 10 to 30%. preferable. When there is too little content of Ge, it will become difficult to vitrify. On the other hand, when the content of Ge is too large, Ge-based crystals are precipitated and it is difficult to transmit infrared rays, and the raw material cost tends to increase.
カルコゲン元素であるTeはガラス骨格を形成する必須成分である。Teの含有量は11〜80%であり、20〜79%であることが好ましく、30〜78%であることがより好ましい。Teの含有量が少なすぎると、ガラス化しにくくなり、一方、多すぎるとTe系結晶が析出してガラス化しにくくなり、結果として赤外線が透過しにくくなる。 Te, which is a chalcogen element, is an essential component that forms a glass skeleton. The Te content is 11 to 80%, preferably 20 to 79%, and more preferably 30 to 78%. If the Te content is too small, it will be difficult to vitrify, while if it is too much, Te-based crystals will precipitate and will not be vitrified, and as a result it will be difficult to transmit infrared rays.
同じく、カルコゲン化物元素であるSは熱的安定性(ガラス化の安定性)を高める必須成分である。Sの含有量は0〜80%(ただし0%を含まない)であり、1〜60%であることが好ましく、2〜50%であることがより好ましく、3〜40%であることがさらに好ましい。Sの含有量が少なすぎると、ガラス化しにくくなる。一方、Sの含有量が多すぎると、赤外吸収端波長が短波長側にシフトし、赤外透過特性が低下しやすくなる。 Similarly, S, which is a chalcogenide element, is an essential component that enhances thermal stability (stability of vitrification). The content of S is 0 to 80% (excluding 0%), preferably 1 to 60%, more preferably 2 to 50%, and further preferably 3 to 40%. preferable. When there is too little content of S, it will become difficult to vitrify. On the other hand, when the content of S is too large, the infrared absorption edge wavelength is shifted to the short wavelength side, and the infrared transmission characteristics are likely to deteriorate.
Ga、Sn、Ag、Cu、Bi、Sbは赤外線透過特性を低下させることなく、ガラスの熱的安定性を高める成分である。Ga+Sn+Ag+Cu+Bi+Sbの含有量は0〜50%(ただし0%を含まない)であり、1〜40%であることが好ましく、2〜30%であることがより好ましく、3〜25%であることがさらに好ましく、5〜20%であることが特に好ましい。Ga+Sn+Ag+Cu+Bi+Sbの含有量が少なすぎる、あるいは多すぎると、ガラス化しにくくなる。なお、Ga、Sn、Ag、Cu、Bi、Sbの各成分の含有量は各々0〜50%であり、0〜50%(ただし0%を含まない)であることが好ましく、1〜40%であることがより好ましく、2〜30%であることがさらに好ましく、3〜25%であることが特に好ましく、5〜20%であることが最も好ましい。なかでもガラスの熱的安定性を高める効果が特に大きいという点で、Ag、SnまたはCuを使用することが好ましい。 Ga, Sn, Ag, Cu, Bi, and Sb are components that increase the thermal stability of the glass without deteriorating the infrared transmission characteristics. The content of Ga + Sn + Ag + Cu + Bi + Sb is 0 to 50% (however, not including 0%), preferably 1 to 40%, more preferably 2 to 30%, and further preferably 3 to 25%. Preferably, it is 5 to 20%, and it is especially preferable. When the content of Ga + Sn + Ag + Cu + Bi + Sb is too small or too large, vitrification becomes difficult. The content of each component of Ga, Sn, Ag, Cu, Bi, and Sb is 0 to 50%, preferably 0 to 50% (however, not including 0%), and 1 to 40% More preferably, it is 2 to 30%, more preferably 3 to 25%, and most preferably 5 to 20%. Of these, Ag, Sn, or Cu is preferably used in that the effect of increasing the thermal stability of the glass is particularly great.
F、Cl、Br、Iもガラスの熱的安定性を高める成分である。F、Cl、Br、Iの含有量は0〜50%であり、1〜40%であることが好ましく、1〜30%であることがより好ましく、1〜25%であることがさらに好ましく、1〜20%であることが特に好ましい。F+Cl+Br+Iの含有量が多すぎると、ガラス化しにくくなるとともに、耐候性が低下しやすくなる。なお、F、Cl、Br、Iの各成分の含有量は、各々0〜50%であり、1〜40%であることが好ましく、1〜30%であることがより好ましく、1〜25%であることがさらに好ましく、1〜20%であることが特に好ましい。なかでも元素原料を使用可能であり、ガラスの熱的安定性を高める効果が特に大きいという点で、Iを使用することが好ましい。 F, Cl, Br, and I are also components that enhance the thermal stability of the glass. The content of F, Cl, Br, and I is 0 to 50%, preferably 1 to 40%, more preferably 1 to 30%, still more preferably 1 to 25%, 1 to 20% is particularly preferable. When there is too much content of F + Cl + Br + I, it will become difficult to vitrify and a weather resistance will fall easily. In addition, content of each component of F, Cl, Br, and I is 0 to 50%, preferably 1 to 40%, more preferably 1 to 30%, and more preferably 1 to 25%. It is more preferable that it is 1 to 20%. Among them, it is preferable to use I because elemental raw materials can be used and the effect of enhancing the thermal stability of the glass is particularly great.
本発明の赤外線透過ガラスには、上記成分以外にも、下記の成分を含有させることができる。 In addition to the above components, the infrared transmitting glass of the present invention may contain the following components.
Zn、In、Pはガラス化範囲を広げ、ガラスの熱的安定性を高める成分である。その含有量はそれぞれ0〜20%であることが好ましく、0.5〜10%であることがより好ましい。これらの成分の含有量が多すぎると、ガラス化しにくくなる。 Zn, In, and P are components that widen the vitrification range and increase the thermal stability of the glass. The content is preferably 0 to 20%, and more preferably 0.5 to 10%. When there is too much content of these components, it will become difficult to vitrify.
Se、Asはガラス化範囲を広げ、ガラスの熱的安定性を高める成分である。その含有量はそれぞれ0〜10%であることが好ましく、0.5〜5%であることがより好ましい。ただし、これらの物質は毒性を有するため、環境や人体への影響を低減する観点からは含有しないことが好ましい。 Se and As are components that widen the vitrification range and increase the thermal stability of the glass. The contents are each preferably 0 to 10%, more preferably 0.5 to 5%. However, since these substances are toxic, it is preferable not to contain them from the viewpoint of reducing the influence on the environment and the human body.
なお、本発明の赤外線透過ガラスは有毒物質であるCd、Tl及びPbを実質的に含有しないことが好ましい。このようにすれば、環境面への影響を最小限に抑えることができる。ここで、「実質的に含有しない」とは、意図的に原料中に含有させないという意味であり、不純物レベルの混入を排除するものではない。客観的には、各成分の含有量が0.1%未満を指す。 In addition, it is preferable that the infrared transmission glass of this invention does not contain Cd, Tl, and Pb which are toxic substances substantially. In this way, the environmental impact can be minimized. Here, “substantially does not contain” means that the material is not intentionally contained in the raw material, and does not exclude mixing of impurity levels. Objectively, the content of each component indicates less than 0.1%.
本発明の赤外線透過ガラスは波長約8〜18μmにおける赤外線透過率に優れる。赤外線透過率を評価するための指標として、赤外吸収端波長が挙げられる。赤外吸収端波長が大きいほど、赤外線透過性に優れると判断できる。本発明の赤外透過ガラスの厚み2mmでの赤外吸収端波長は20μm以上であることが好ましく、21μm以上であることがより好ましい。 The infrared transmitting glass of the present invention is excellent in infrared transmittance at a wavelength of about 8 to 18 μm. As an index for evaluating the infrared transmittance, an infrared absorption edge wavelength can be mentioned. It can be judged that the greater the infrared absorption edge wavelength, the better the infrared transparency. The infrared absorption edge wavelength at a thickness of 2 mm of the infrared transmitting glass of the present invention is preferably 20 μm or more, and more preferably 21 μm or more.
本発明の赤外線透過ガラスは、例えば以下のようにして作製することができる。まず、所望の組成となるように原料を調合する。加熱しながら真空排気を行った石英ガラスアンプルに原料を入れ、真空排気を行いながら酸素バーナーで封管する。封管された石英ガラスアンプルを650〜800℃程度で6〜12時間保持した後、室温まで急冷することにより本発明の赤外線透過ガラスが得られる。 The infrared transmitting glass of the present invention can be produced, for example, as follows. First, raw materials are prepared so as to have a desired composition. The raw material is put into a quartz glass ampule that has been evacuated while being heated, and sealed with an oxygen burner while being evacuated. After holding the sealed quartz glass ampule at about 650 to 800 ° C. for 6 to 12 hours, the infrared transmitting glass of the present invention is obtained by rapidly cooling to room temperature.
原料としては、元素原料(Ge、Te、S、Ag、I等)を用いてもよく、化合物原料(GeTe4、GeS2、AgI、等)を用いても良い。また、これらを併用することも可能である。 As raw materials, elemental raw materials (Ge, Te, S, Ag, I, etc.) may be used, and compound raw materials (GeTe 4 , GeS 2 , AgI, etc.) may be used. These can also be used in combination.
以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.
表1及び2は本発明の実施例及び比較例をそれぞれ示している。 Tables 1 and 2 show examples of the present invention and comparative examples, respectively.
各試料は次のようにして調製した。表1及び2に記載のガラス組成となるように、原料を混合し、原料バッチを得た。純水で洗浄した石英ガラスアンプルを加熱しながら真空排気した後、原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管した。 Each sample was prepared as follows. The raw materials were mixed so that the glass composition described in Tables 1 and 2 was obtained, to obtain a raw material batch. The quartz glass ampule washed with pure water was evacuated while being heated, and then a raw material batch was placed, and the quartz glass ampule was sealed with an oxygen burner while evacuating.
封管された石英ガラスアンプルを溶融炉内で10〜20℃/時間の速度で650〜800℃まで昇温後、6〜12時間保持した。保持時間中、2時間ごとに石英ガラスアンプルの上下を反転し、溶融物を攪拌した。その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することにより試料を得た。 The sealed quartz glass ampule was heated in a melting furnace at a rate of 10 to 20 ° C./hour to 650 to 800 ° C. and then held for 6 to 12 hours. During the holding time, the quartz glass ampoule was turned upside down every 2 hours to stir the melt. Thereafter, the quartz glass ampule was taken out of the melting furnace and rapidly cooled to room temperature to obtain a sample.
得られた試料についてX線回折を行い、その回折スペクトルからガラス化しているかどうかを確認した。表中には、ガラス化しているものは「○」、ガラス化していないものは「×」として表記した。また、各試料につき厚み2mmでの光透過率を測定し、赤外吸収端波長を測定した。 The obtained sample was subjected to X-ray diffraction, and it was confirmed from its diffraction spectrum whether it was vitrified. In the table, those that are vitrified are indicated as “◯”, and those that are not vitrified are indicated as “x”. Moreover, the light transmittance in thickness 2mm was measured about each sample, and the infrared absorption edge wavelength was measured.
表1、2に示すように、実施例1〜10の試料はガラス化しており、赤外吸収端波長が24.1〜24.4μmであり、波長8〜18μm付近の赤外領域において良好な光透過率を示していた。 As shown in Tables 1 and 2, the samples of Examples 1 to 10 are vitrified, the infrared absorption edge wavelength is 24.1 to 24.4 μm, and good in the infrared region near the wavelength of 8 to 18 μm. The light transmittance was shown.
一方、比較例1〜4の試料はガラス化せず、波長2〜24μmの範囲で光透過率がほぼ0%であった。 On the other hand, the samples of Comparative Examples 1 to 4 were not vitrified, and the light transmittance was almost 0% in the wavelength range of 2 to 24 μm.
本発明の赤外線透過ガラスは、赤外線センサーのセンサー部を保護するためのカバー部材や、センサー部に赤外光を集光させるためのレンズ等の光学素子として好適である。 The infrared transmitting glass of the present invention is suitable as an optical element such as a cover member for protecting the sensor part of the infrared sensor and a lens for condensing infrared light on the sensor part.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253111A JP6804030B2 (en) | 2015-12-25 | 2015-12-25 | Infrared transmissive glass |
PCT/JP2016/086560 WO2017110500A1 (en) | 2015-12-25 | 2016-12-08 | Infrared transmitting glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253111A JP6804030B2 (en) | 2015-12-25 | 2015-12-25 | Infrared transmissive glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017114733A true JP2017114733A (en) | 2017-06-29 |
JP6804030B2 JP6804030B2 (en) | 2020-12-23 |
Family
ID=59090112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015253111A Active JP6804030B2 (en) | 2015-12-25 | 2015-12-25 | Infrared transmissive glass |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6804030B2 (en) |
WO (1) | WO2017110500A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175402A1 (en) * | 2019-02-28 | 2020-09-03 | 日本電気硝子株式会社 | Infrared-transmitting glass |
WO2020175403A1 (en) * | 2019-02-28 | 2020-09-03 | 日本電気硝子株式会社 | Infrared-transmitting glass |
US20210017066A1 (en) * | 2018-03-28 | 2021-01-21 | Nippon Electric Glass Co., Ltd. | Chalcogenide glass material |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7172024B2 (en) * | 2017-09-12 | 2022-11-16 | 日本電気硝子株式会社 | Chalcogenide glass material |
JP7058825B2 (en) * | 2018-02-28 | 2022-04-25 | 日本電気硝子株式会社 | Infrared transmissive glass |
WO2020066928A1 (en) * | 2018-09-27 | 2020-04-02 | 日本電気硝子株式会社 | Infrared transmission glass |
WO2020105719A1 (en) * | 2018-11-21 | 2020-05-28 | 日本電気硝子株式会社 | Chalcogenide glass lens |
CN113735440A (en) * | 2021-08-16 | 2021-12-03 | 宁波阳光和谱光电科技有限公司 | Ge-based chalcogenide glass and preparation method thereof |
WO2023095900A1 (en) * | 2021-11-29 | 2023-06-01 | 日本電気硝子株式会社 | Infrared-transmitting glass |
WO2023243407A1 (en) * | 2022-06-17 | 2023-12-21 | 日本電気硝子株式会社 | Infrared ray transmitting glass |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51135913A (en) * | 1975-05-21 | 1976-11-25 | Nippon Telegraph & Telephone | Membrane for photoetching |
JPS594848B2 (en) * | 1975-05-21 | 1984-02-01 | 日本電信電話株式会社 | Photoetching method using amorphous chalcogenide glass thin film |
JPH04342438A (en) * | 1991-05-21 | 1992-11-27 | Matsushita Electric Ind Co Ltd | Infrared ray transmitting glass and infrared ray detecting sensor using the same |
JPH0524879A (en) * | 1991-07-24 | 1993-02-02 | Matsushita Electric Ind Co Ltd | Production of infrared ray transmitting glass |
-
2015
- 2015-12-25 JP JP2015253111A patent/JP6804030B2/en active Active
-
2016
- 2016-12-08 WO PCT/JP2016/086560 patent/WO2017110500A1/en active Application Filing
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210017066A1 (en) * | 2018-03-28 | 2021-01-21 | Nippon Electric Glass Co., Ltd. | Chalcogenide glass material |
WO2020175402A1 (en) * | 2019-02-28 | 2020-09-03 | 日本電気硝子株式会社 | Infrared-transmitting glass |
WO2020175403A1 (en) * | 2019-02-28 | 2020-09-03 | 日本電気硝子株式会社 | Infrared-transmitting glass |
CN113302165A (en) * | 2019-02-28 | 2021-08-24 | 日本电气硝子株式会社 | Infrared ray transmission glass |
CN113302164A (en) * | 2019-02-28 | 2021-08-24 | 日本电气硝子株式会社 | Infrared ray transmission glass |
US20220144687A1 (en) * | 2019-02-28 | 2022-05-12 | Nippon Electric Glass Co., Ltd. | Infrared-transmitting glass |
CN113302165B (en) * | 2019-02-28 | 2023-08-01 | 日本电气硝子株式会社 | Infrared ray transmitting glass |
JP7574794B2 (en) | 2019-02-28 | 2024-10-29 | 日本電気硝子株式会社 | Infrared transmitting glass |
Also Published As
Publication number | Publication date |
---|---|
WO2017110500A1 (en) | 2017-06-29 |
JP6804030B2 (en) | 2020-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6804030B2 (en) | Infrared transmissive glass | |
JP6269075B2 (en) | Infrared transmission glass | |
JP6806078B2 (en) | Optical glass | |
JP6709499B2 (en) | Infrared transparent glass | |
JP7574794B2 (en) | Infrared transmitting glass | |
WO2019188025A1 (en) | Chalcogenide glass material | |
JP6819920B2 (en) | Calcogenide glass | |
JP2024074945A (en) | Infrared transmission glass | |
JP7290022B2 (en) | Chalcogenide glass material | |
JP7574793B2 (en) | Infrared transmitting glass | |
JP6788816B2 (en) | Infrared transmissive glass | |
WO2019167462A1 (en) | Infrared transmitting glass | |
JP7026892B2 (en) | Infrared transmissive glass | |
JP2023000285A (en) | Infrared transmitting glass | |
JP2022169294A (en) | Infrared transmitting glass | |
JP2020045265A (en) | Infrared transmitting glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200604 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6804030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |