WO2023243407A1 - Infrared ray transmitting glass - Google Patents

Infrared ray transmitting glass Download PDF

Info

Publication number
WO2023243407A1
WO2023243407A1 PCT/JP2023/020236 JP2023020236W WO2023243407A1 WO 2023243407 A1 WO2023243407 A1 WO 2023243407A1 JP 2023020236 W JP2023020236 W JP 2023020236W WO 2023243407 A1 WO2023243407 A1 WO 2023243407A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
infrared
transmitting glass
glass
Prior art date
Application number
PCT/JP2023/020236
Other languages
French (fr)
Japanese (ja)
Inventor
基志 岩永
佳雅 松下
史雄 佐藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023243407A1 publication Critical patent/WO2023243407A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • Infrared cameras are designed by combining optical elements such as filters and lenses that transmit infrared rays.
  • Infrared cameras are popular as thermography and night vision cameras, and the higher the contrast of the captured image, the higher the temperature resolution and visibility in dark places. Therefore, infrared transmitting materials, particularly chalcogenide glasses, are required to have high internal transmittance in the infrared region from the viewpoint of increasing the contrast of photographed images. In addition, from the viewpoint of improving production stability, chalcogenide glasses that are easy to vitrify and have excellent thermal stability are required.
  • an object of the present invention is to provide an infrared transmitting glass that is easy to vitrify, has excellent thermal stability, and can achieve high internal transmittance in the infrared region.
  • the infrared transmitting glass of Aspect 2 preferably further contains, in mol%, Al+Si 0% to 40%, B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb 0% to 40%, and F+Cl+Br+I 0% to 40%.
  • the infrared transmitting glass of aspect 4 preferably has an internal transmittance of 90% or more at a wavelength of 10 ⁇ m.
  • Internal transmittance refers to transmittance excluding surface reflection loss on the incident side and exit side of the sample. Further, the “internal transmittance” in the present invention refers to the internal transmittance at a thickness of 2 mm, and specifically, it is calculated from the measured values of transmittance including surface reflection loss at thicknesses of 2 mm and 6 mm.
  • the infrared transmitting glass of the present invention contains S+Se+Te 25% to 90%, Ge+Ga 0.1% to 55%, Cu+Sn+Bi 0% to less than 40% in mol%, and has a volume resistivity of 10 3.0 ( ⁇ cm). It is characterized by the above.
  • the infrared transmitting glass of the present invention is a so-called chalcogenide glass having a glass skeleton of chalcogen elements (S, Se, and Te). The reason why the glass composition was defined as above and the content of each component will be explained below. In the following description, “%” means “mol%” unless otherwise specified. Furthermore, in the present invention, "x+y+z+" means the total content of each component.
  • Volume resistivity is 10 3.0 ( ⁇ cm) or more, 10 3.4 ( ⁇ cm) or more, 10 3.6 ( ⁇ cm) or more, 10 3.8 ( ⁇ cm) or more, 10 4.0 ( ⁇ cm) or more , 10 4.2 ( ⁇ cm) or more, particularly preferably 10 4.4 ( ⁇ cm) or more.
  • electronic absorption absorption of infrared light
  • the internal transmittance in the infrared region tends to decrease.
  • the content of Ge is 0% to 55%, 0% to 50%, 0% to 45%, 0% to 40%, 0% to 35%, 0% to 30%, 0.1% to 30%, It is preferably 0.1% to 25%, 0.3% to 25%, 0.3% to 24%, 0.5% to 22%, particularly 0.5% to 20%. If the Ge content is too high, the light transmittance tends to decrease. In addition, raw material costs tend to increase.
  • the Ga content is 0% to 55%, 0% to 50%, 0% to 45%, 0% to 40%, 0% to 35%, 0% to 30%, 0% to 28%, 0. It is preferably 1% to 25%, 0.3% to 25%, 0.3% to 24%, particularly 0.5% to 22%. If the Ga content is too high, Ga-based crystals will precipitate and the internal transmittance will tend to decrease.
  • Cu, Sn, and Bi are components that expand the vitrification range and particularly tend to improve the thermal stability of glass. However, these components tend to lower the volume resistivity and also tend to lower the internal transmittance in the infrared region due to electron absorption, so the content of Cu+Sn+Bi (total amount of Cu, Sn, and Bi) is 0%. - less than 40%, 0% to less than 30%, 0.1% to less than 35%, 0.1% to less than 30%, 1% to less than 20%, particularly preferably 1% to less than 10%. Note that the content of each component of Cu, Sn, and Bi is preferably 0% to less than 40%.
  • the content of each component of Cu, Sn, and Bi is preferably 0% or more, 0.1% or more, particularly 1% or more, and less than 40%, less than 35%, and less than 30%. , less than 20%, less than 10%, particularly preferably 9% or less.
  • the content of each component of Cu, Sn, and Bi is less than 5%, less than 3%, less than 1%, less than 0.5%, and 0.4%. %, less than 0.3%, less than 0.2%, 0.1% or less, particularly preferably substantially not.
  • the infrared transmitting glass of the present invention may contain the following optional components in addition to the above components.
  • the content of each component of Al and Si is less than 5%, less than 3%, less than 1%, less than 0.5%, and less than 0.4%. , less than 0.3%, less than 0.2%, 0.1% or less, particularly preferably substantially not contained.
  • the content of B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb is 0% to 40%, 0% to 30%, 0% to 20 %, 0% to 10%, 0% to 5%, 0% to 1%, particularly 0% to less than 1%. If the content of these components is too large, it may be difficult to obtain desired optical properties.
  • each component of B, C, Mg, Ca, Ti, Cr, Mn, Fe, Zn, Ag, In, and Sb is 0% to 10%, 0% to 5%, 0% to 1%. , particularly preferably from 0% to less than 1%.
  • the molar ratio Ag/(S+Se+Te) is 0.0300 or more, 0.0325 or more, 0.0350 or more, 0.0375 or more, 0.0400 or more, 0.0425 or more, 0.0450. Above, it is preferably 0.0475 or more, particularly 0.0500 or more.
  • Ag/(S+Se+Te) means the value obtained by dividing the content of Ag by the total amount of S, Se, and Te.
  • F, Cl, Br, and I are components that tend to expand the vitrification range and increase the thermal stability of the glass, and are components that improve the volume resistivity.
  • the content of F + Cl + Br + I (total amount of F, Cl, Br and I) is 0% to 40%, 0% to 30%, 0% to 20%, 0% to 10%, 0% to 5%, 0% It is preferably from 0% to less than 1%, particularly from 0% to less than 1%. If the content of these components is too large, it may be difficult to obtain desired optical properties.
  • the content of each component of F, Cl, Br, and I is preferably 0% to 10%, 0% to 5%, 0% to 1%, particularly 0% to less than 1%.
  • the As content should be 30% or less, 25% or less, 20% or less, 10% or less, 5% or less, 3% or less. , 1% or less, particularly preferably substantially no content. Note that, from the viewpoint of particularly reducing the burden on the environment, it is particularly preferable that Se and As are not substantially contained.
  • elemental raw materials Ga, Si, Te, Ag, I, etc.
  • compound raw materials Ga 2 Te 3 , AgI, etc.
  • an antireflection film may be formed on one or both sides of the optical element.
  • methods for forming the antireflection film include vacuum evaporation, ion plating, and sputtering.
  • Tables 1 to 8 are Example Nos. of the present invention. 1 to 58 and Comparative Example No. 1 is shown.
  • Examples and comparative examples were produced as follows. First, a quartz glass ampoule was evacuated while being heated, and then raw materials were prepared to have the glass compositions shown in Tables 1 to 8 and placed in the quartz glass ampoule. Next, the quartz glass ampoule was sealed with an oxygen burner. Next, the sealed quartz glass ampoule was placed in a melting furnace, and the temperature was raised to 650°C to 1000°C at a rate of 10°C to 40°C/hour, and then held for 6 to 12 hours. During the holding time, the quartz glass ampoule was turned upside down and the melt was stirred. Finally, the quartz glass ampoule was taken out of the melting furnace and rapidly cooled to room temperature to obtain a sample. The internal transmittance and volume resistivity of the obtained sample were determined.
  • Example No. Nos. 1 to 58 had a volume resistivity of 10 3.0 ⁇ cm or more and an internal transmittance of 90% or more. Comparative example no. No. 1 had a small volume resistivity of 10 2.9 ⁇ cm. Furthermore, the internal transmittance was as low as 84.0%.
  • the infrared transmitting glass of the present invention can be suitably used for optical elements such as filters and lenses used in infrared sensors, infrared cameras, and the like.

Abstract

Provided is an infrared ray transmitting glass that is easily vitrified, has excellent thermal stability, and is capable of achieving excellent infrared ray transmissivity. This infrared ray transmitting glass is characterized by containing, in mol%, 25-90% of S+Se+Te, 0.1-55% of Ge+Ga, and 0% or more but less than 40% of Cu+Sn+Bi, and by having a volume resistivity of 103.0 (Ωcm) or more.

Description

赤外線透過ガラスinfrared transparent glass
 本発明は、赤外線透過ガラスに関する。 The present invention relates to infrared transmitting glass.
 車載ナイトビジョンやセキュリティシステム等で用いる赤外線カメラの開発が進んでいる。赤外線カメラは、赤外線を透過するフィルターやレンズ等の光学素子を組み合わせて設計される。 The development of infrared cameras for use in in-vehicle night vision and security systems is progressing. Infrared cameras are designed by combining optical elements such as filters and lenses that transmit infrared rays.
 上記光学素子には、ゲルマニウム(Ge)やシリコン(Si)等の材料がしばしば用いられる。しかし、Geは高価な材料であり、光学素子の低コスト化に不利である。また、Siは赤外域における光透過率がGeよりも低く、赤外線カメラの性能向上に不利である。 Materials such as germanium (Ge) and silicon (Si) are often used for the above optical elements. However, Ge is an expensive material and is disadvantageous for reducing the cost of optical elements. Further, Si has a lower light transmittance than Ge in the infrared region, which is disadvantageous for improving the performance of an infrared camera.
 そこで、GeやSiに代わる材料として、種々のカルコゲナイドガラスが提案されている(特許文献1)。 Therefore, various chalcogenide glasses have been proposed as materials to replace Ge and Si (Patent Document 1).
国際公開第2017/086227号International Publication No. 2017/086227
 赤外線カメラはサーモグラフィや暗視カメラとして普及しており、撮影画像のコントラストが高いほど、温度分解能や暗所での視認性が高まる。そのため、赤外線透過材料、とりわけカルコゲナイドガラスに対しては、撮影画像のコントラストを高める観点から、赤外域における高い内部透過率が求められている。また、製造安定性を高める観点から、ガラス化しやすく、熱的安定性に優れたカルコゲナイドガラスが求められている。 Infrared cameras are popular as thermography and night vision cameras, and the higher the contrast of the captured image, the higher the temperature resolution and visibility in dark places. Therefore, infrared transmitting materials, particularly chalcogenide glasses, are required to have high internal transmittance in the infrared region from the viewpoint of increasing the contrast of photographed images. In addition, from the viewpoint of improving production stability, chalcogenide glasses that are easy to vitrify and have excellent thermal stability are required.
 以上に鑑み、本発明はガラス化しやすく、熱的安定性に優れ、かつ赤外域における高い内部透過率を達成することが可能な赤外線透過ガラスを提供することを目的とする。 In view of the above, an object of the present invention is to provide an infrared transmitting glass that is easy to vitrify, has excellent thermal stability, and can achieve high internal transmittance in the infrared region.
 上記課題を解決する赤外線透過ガラスの各態様について説明する。 Each aspect of the infrared transmitting glass that solves the above problems will be explained.
 態様1の赤外線透過ガラスは、モル%で、S+Se+Te 25%~90%、Ge+Ga 0.1%~55%、Cu+Sn+Bi 0%~40%未満を含有し、体積抵抗率が103.0(Ωcm)以上であることを特徴とする。 The infrared transmitting glass of embodiment 1 contains S+Se+Te 25% to 90%, Ge+Ga 0.1% to 55%, Cu+Sn+Bi 0% to less than 40% in mol%, and has a volume resistivity of 10 3.0 (Ωcm). It is characterized by the above.
 態様2の赤外線透過ガラスは、態様1において、さらに、モル%で、Al+Si 0%~40%、B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb 0%~40%、F+Cl+Br+I 0%~40%を含有することが好ましい。 The infrared transmitting glass of Aspect 2 preferably further contains, in mol%, Al+Si 0% to 40%, B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb 0% to 40%, and F+Cl+Br+I 0% to 40%.
 態様3の赤外線透過ガラスは、態様1又は態様2において、Se及びAsを実質的に含有しないことが好ましい。 The infrared transmitting glass of Aspect 3 preferably does not substantially contain Se and As in Aspect 1 or Aspect 2.
 態様4の赤外線透過ガラスは、態様1から態様3のいずれか一つの態様において、波長10μmにおける内部透過率が90%以上であることが好ましい。「内部透過率」とは、試料の入射側および出射側における表面反射損失を除いた透過率をいう。また、本発明における「内部透過率」は、厚さ2mmでの内部透過率を指し、具体的には、厚さ2mmおよび6mmのそれぞれの表面反射損失を含む透過率の測定値から算出する。 In any one of aspects 1 to 3, the infrared transmitting glass of aspect 4 preferably has an internal transmittance of 90% or more at a wavelength of 10 μm. "Internal transmittance" refers to transmittance excluding surface reflection loss on the incident side and exit side of the sample. Further, the "internal transmittance" in the present invention refers to the internal transmittance at a thickness of 2 mm, and specifically, it is calculated from the measured values of transmittance including surface reflection loss at thicknesses of 2 mm and 6 mm.
 態様5の光学素子は、態様1から態様4のいずれか一つの態様に記載の赤外線透過ガラスを用いることを特徴とする。 The optical element of Aspect 5 is characterized by using the infrared transmitting glass described in any one of Aspects 1 to 4.
 態様6の赤外線カメラは、態様5に記載の光学素子を用いることを特徴とする。 The infrared camera according to aspect 6 is characterized by using the optical element according to aspect 5.
 本発明によれば、ガラス化しやすく、熱的安定性に優れ、かつ赤外域における高い内部透過率を達成することが可能な赤外線透過ガラスを提供することができる。 According to the present invention, it is possible to provide an infrared transmitting glass that is easy to vitrify, has excellent thermal stability, and can achieve high internal transmittance in the infrared region.
 本発明の赤外線透過ガラスは、モル%で、S+Se+Te 25%~90%、Ge+Ga 0.1%~55%、Cu+Sn+Bi 0%~40%未満を含有し、体積抵抗率が103.0(Ωcm)以上であることを特徴とする。本発明の赤外線透過ガラスは、カルコゲン元素(S、Se及びTe)をガラス骨格とする、いわゆるカルコゲナイドガラスである。上記のようにガラス組成を規定した理由及び各成分の含有量について以下で説明する。なお、以下の説明において、特に断りのない限り「%」は「モル%」を意味する。また、本発明において、「x+y+z+・・・」は各成分の含有量の合量を意味する。ここで、必ずしも各成分を必須成分として含有しなくてもよく、含有しない(含有量0%)成分が存在しても構わない。また「x+y+z+・・・ A%~B%」は、例えば「x=0%、y+z+・・・ A%~B%」や「x=0%、y=0%、z+・・・ A%~B%」の場合を含む。 The infrared transmitting glass of the present invention contains S+Se+Te 25% to 90%, Ge+Ga 0.1% to 55%, Cu+Sn+Bi 0% to less than 40% in mol%, and has a volume resistivity of 10 3.0 (Ωcm). It is characterized by the above. The infrared transmitting glass of the present invention is a so-called chalcogenide glass having a glass skeleton of chalcogen elements (S, Se, and Te). The reason why the glass composition was defined as above and the content of each component will be explained below. In the following description, "%" means "mol%" unless otherwise specified. Furthermore, in the present invention, "x+y+z+..." means the total content of each component. Here, each component does not necessarily have to be included as an essential component, and there may be components that are not included (content: 0%). Also, "x+y+z+... A%~B%" can be replaced with, for example, "x=0%, y+z+... A%~B%" or "x=0%, y=0%, z+... A%~ Including the case of "B%".
 体積抵抗率は103.0(Ωcm)以上であり、103.4(Ωcm)以上、103.6(Ωcm)以上、103.8(Ωcm)以上、104.0(Ωcm)以上、104.2(Ωcm)以上、特に104.4(Ωcm)以上が好ましい。体積抵抗率が低下すると、ガラス中の自由電子の振動に由来する赤外光の吸収(以下、電子吸収)が生じやすくなり、赤外域の内部透過率が低下しやすくなる。 Volume resistivity is 10 3.0 (Ωcm) or more, 10 3.4 (Ωcm) or more, 10 3.6 (Ωcm) or more, 10 3.8 (Ωcm) or more, 10 4.0 (Ωcm) or more , 10 4.2 (Ωcm) or more, particularly preferably 10 4.4 (Ωcm) or more. When the volume resistivity decreases, absorption of infrared light (hereinafter referred to as electronic absorption) resulting from the vibration of free electrons in the glass tends to occur, and the internal transmittance in the infrared region tends to decrease.
 S、Se及びTeはガラス骨格を形成する成分である。S+Se+Teの含有量(S、Se及びTeの合量)は、25%~90%であり、30%~89%、40%~89%、50%~85%、50%~82%、50%~80%、特に50%~75%であることが好ましい。S+Se+Teの含有量が少なすぎると、ガラス化しにくくなる。S+Se+Teの含有量が多すぎると、S系、Se系またはTe系の結晶が析出して、内部透過率が低下しやすくなる。なお、各成分の含有量の好ましい範囲は以下の通りである。 S, Se, and Te are components that form the glass skeleton. The content of S + Se + Te (total amount of S, Se and Te) is 25% to 90%, 30% to 89%, 40% to 89%, 50% to 85%, 50% to 82%, 50% It is preferably 80% to 80%, particularly 50% to 75%. If the content of S+Se+Te is too small, vitrification becomes difficult. If the content of S+Se+Te is too large, S-based, Se-based, or Te-based crystals will precipitate, and the internal transmittance will tend to decrease. In addition, the preferable range of content of each component is as follows.
 Sの含有量は、0%~90%、10%~90%、20%~89%、30%~89%、40%~88%、50%~88%、50%~80%、特に50%~75%であることが好ましい。ただし、Sは波長10μm以上における光透過率を低下させやすい成分である。そのため、赤外域における光透過率を向上させるという観点からは、Sの含有量は30%以下、20%以下、15%以下、10%以下、5%以下、1%以下、0.5%以下、特に実質的に含有しないことが好ましい。本明細書において、「実質的に含有しない」とは、意図的に原料中に含有させないという意味であり、不純物レベルの混入を排除するものではない。客観的には、各成分の含有量が0.1%未満を指す。 The content of S is 0% to 90%, 10% to 90%, 20% to 89%, 30% to 89%, 40% to 88%, 50% to 88%, 50% to 80%, especially 50% % to 75%. However, S is a component that tends to reduce the light transmittance at wavelengths of 10 μm or more. Therefore, from the perspective of improving light transmittance in the infrared region, the S content should be 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 1% or less, 0.5% or less. In particular, it is preferable that the content is substantially not contained. As used herein, "substantially not containing" means that the material is not intentionally contained in the raw material, and does not exclude contamination at an impurity level. Objectively, the content of each component is less than 0.1%.
 Seの含有量は、0%~90%、10%~90%、20%~89%、30%~89%、40%~88%、50%~88%、50%~80%、特に50%~75%であることが好ましい。ただし、Seは毒性成分である。そのため、環境への負荷を低減するという観点からは、Seの含有量は40%以下、30%以下、20%以下、15%以下、10%以下、5%以下、1%以下、特に実質的に含有しないことが好ましい。 The content of Se is 0% to 90%, 10% to 90%, 20% to 89%, 30% to 89%, 40% to 88%, 50% to 88%, 50% to 80%, especially 50% % to 75%. However, Se is a toxic component. Therefore, from the perspective of reducing the burden on the environment, the Se content should be 40% or less, 30% or less, 20% or less, 15% or less, 10% or less, 5% or less, 1% or less, especially if the It is preferable not to contain it.
 Teは10μm以上の波長域における光透過率を高めやすい成分である。一方で、体積抵抗率を特に低下させやすい成分であり、Teの含有量が多すぎると、電子吸収によって赤外域の内部透過率が低下しやすくなる。そのため、Teの含有量は、0%~90%、1%~90%、10%~90%、20%~89%、30%~89%、40%~88%、43%~88%、50%~88%、50%~80%、特に50%~75%であることが好ましい。 Te is a component that tends to increase the light transmittance in the wavelength range of 10 μm or more. On the other hand, Te is a component that particularly tends to lower the volume resistivity, and if the content of Te is too large, the internal transmittance in the infrared region tends to decrease due to electron absorption. Therefore, the content of Te is 0% to 90%, 1% to 90%, 10% to 90%, 20% to 89%, 30% to 89%, 40% to 88%, 43% to 88%, It is preferably 50% to 88%, 50% to 80%, particularly 50% to 75%.
 なお、S、Se及びTeのうち、少なくとも一種の成分を含有していればよいが、10μm以上の波長域における光透過率を高めるという点では、Teを含有していることが特に好ましい。 Note that it is sufficient to contain at least one component among S, Se, and Te, but it is particularly preferable to contain Te in terms of increasing the light transmittance in a wavelength range of 10 μm or more.
 Ge、Gaはガラス骨格を形成する成分である。Ge+Gaの含有量(GeとGaの合量)は、0.1%~55%であり、0.1%~50%、0.3%~50%、0.3%~44%、0.3%~34%、特に0.5%~30%であることが好ましい。Ge+Gaの含有量が少なすぎると、ガラス化しにくくなる。Ge+Gaの含有量が多すぎると、Ge系またはGa系の結晶が析出して、内部透過率が低下しやすくなる。なお、特にガラス化の安定性を高めたい場合は、Ge+Gaの含有量は1%以上、2%以上、3%以上、特に5%以上であることが好ましい。なお、各成分の含有量の好ましい範囲は以下の通りである。 Ge and Ga are components that form the glass skeleton. The content of Ge+Ga (total amount of Ge and Ga) is 0.1% to 55%, 0.1% to 50%, 0.3% to 50%, 0.3% to 44%, 0. It is preferably 3% to 34%, particularly 0.5% to 30%. If the content of Ge+Ga is too small, it will be difficult to vitrify. If the content of Ge+Ga is too large, Ge-based or Ga-based crystals will precipitate, and the internal transmittance will tend to decrease. Note that, especially when it is desired to improve the stability of vitrification, the content of Ge+Ga is preferably 1% or more, 2% or more, 3% or more, particularly 5% or more. In addition, the preferable range of content of each component is as follows.
 Geの含有量は、0%~55%、0%~50%、0%~45%、0%~40%、0%~35%、0%~30%、0.1%~30%、0.1%~25%、0.3%~25%、0.3%~24%、0.5%~22%、特に0.5%~20%であることが好ましい。Geの含有量が多すぎると、光透過率が低下しやすくなる。また、原料コストが高くなりやすくなる。 The content of Ge is 0% to 55%, 0% to 50%, 0% to 45%, 0% to 40%, 0% to 35%, 0% to 30%, 0.1% to 30%, It is preferably 0.1% to 25%, 0.3% to 25%, 0.3% to 24%, 0.5% to 22%, particularly 0.5% to 20%. If the Ge content is too high, the light transmittance tends to decrease. In addition, raw material costs tend to increase.
 Gaの含有量は、0%~55%、0%~50%、0%~45%、0%~40%、0%~35%、0%~30%、0%~28%、0.1%~25%、0.3%~25%、0.3%~24%、特に0.5%~22%であることが好ましい。Gaの含有量が多すぎると、Ga系結晶が析出し内部透過率が低下しやすくなる。 The Ga content is 0% to 55%, 0% to 50%, 0% to 45%, 0% to 40%, 0% to 35%, 0% to 30%, 0% to 28%, 0. It is preferably 1% to 25%, 0.3% to 25%, 0.3% to 24%, particularly 0.5% to 22%. If the Ga content is too high, Ga-based crystals will precipitate and the internal transmittance will tend to decrease.
 Cu、Sn、Biは、ガラス化範囲を広げ、ガラスの熱的安定性を特に高めやすい成分である。ただし、これらの成分は体積抵抗率を低下させやすく、電子吸収によって赤外域の内部透過率を低下させやすい成分でもあるため、Cu+Sn+Biの含有量(Cu、Sn、Biの合量)は、0%~40%未満、0%~30%未満、0.1%~35%未満、0.1%~30%未満、1%~20%未満、特に1%~10%未満であることが好ましい。なお、Cu、Sn、Biの各成分の含有量は、0%~40%未満であることが好ましい。より詳細に記載すると、Cu、Sn、Biの各成分の含有量は、0%以上、0.1%以上、特に1%以上であることが好ましく、40%未満、35%未満、30%未満、20%未満、10%未満、特に9%以下であることが好ましい。なお、特に赤外域の内部透過率を向上させる観点からは、Cu、Sn、Biの各成分の含有量は、5%未満、3%未満、1%未満、0.5%未満、0.4%未満、0.3%未満、0.2%未満、0.1%以下、特に実質的に含有しないことが好ましい。 Cu, Sn, and Bi are components that expand the vitrification range and particularly tend to improve the thermal stability of glass. However, these components tend to lower the volume resistivity and also tend to lower the internal transmittance in the infrared region due to electron absorption, so the content of Cu+Sn+Bi (total amount of Cu, Sn, and Bi) is 0%. - less than 40%, 0% to less than 30%, 0.1% to less than 35%, 0.1% to less than 30%, 1% to less than 20%, particularly preferably 1% to less than 10%. Note that the content of each component of Cu, Sn, and Bi is preferably 0% to less than 40%. To describe in more detail, the content of each component of Cu, Sn, and Bi is preferably 0% or more, 0.1% or more, particularly 1% or more, and less than 40%, less than 35%, and less than 30%. , less than 20%, less than 10%, particularly preferably 9% or less. In addition, from the viewpoint of improving the internal transmittance in the infrared region in particular, the content of each component of Cu, Sn, and Bi is less than 5%, less than 3%, less than 1%, less than 0.5%, and 0.4%. %, less than 0.3%, less than 0.2%, 0.1% or less, particularly preferably substantially not.
 体積抵抗率の低下を抑制する観点からは、モル比(Cu+Sn+Bi)/(S+Se+Te)が0.8以下、0.7以下、0.6以下、特に0.5以下であることが好ましく、0以上、0.010以上、0.020以上、0.030以上、0.050以上、0.100以上、0.150以上、0.200以上、0.250以上、0.290以上、特に0.300以上であることが好ましい。なお、(Cu+Sn+Bi)/(S+Se+Te)は、Cu、Sn及びBiの合量をS、Se及びTeの合量で除した値を意味する。 From the viewpoint of suppressing a decrease in volume resistivity, the molar ratio (Cu+Sn+Bi)/(S+Se+Te) is preferably 0.8 or less, 0.7 or less, 0.6 or less, particularly 0.5 or less, and 0 or more. , 0.010 or more, 0.020 or more, 0.030 or more, 0.050 or more, 0.100 or more, 0.150 or more, 0.200 or more, 0.250 or more, 0.290 or more, especially 0.300 It is preferable that it is above. Note that (Cu+Sn+Bi)/(S+Se+Te) means a value obtained by dividing the total amount of Cu, Sn, and Bi by the total amount of S, Se, and Te.
 本発明の赤外線透過ガラスは、上記成分以外に、以下の任意成分を含有してもよい。 The infrared transmitting glass of the present invention may contain the following optional components in addition to the above components.
 Al、Siはガラス化範囲を広げ、ガラスの熱的安定性を高めやすい成分であり、かつ体積抵抗率を向上させる成分である。Al+Si(Al及びSiの合量)の含有量は、0%~40%、0%~30%、0%~20%、0%~10%、0%~5%、特に0%~2.5%であることが好ましい。Al+Siの含有量が多すぎると、Al系またはSi系結晶が析出し内部透過率が低下しやすくなる。なお、Al、Siの各成分の含有量は、0%~40%であることが好ましい。より詳細に記載すると、Al、Siの各成分の含有量は、0%以上、0.1%以上、特に1%以上であることが好ましく、40%未満、35%未満、30%未満、20%未満、10%未満、特に9%以下であることが好ましい。なお、特に赤外域の内部透過率を向上させる観点からは、Al、Siの各成分の含有量は、5%未満、3%未満、1%未満、0.5%未満、0.4%未満、0.3%未満、0.2%未満、0.1%以下、特に実質的に含有しないことが好ましい。 Al and Si are components that expand the vitrification range, tend to increase the thermal stability of glass, and are components that improve volume resistivity. The content of Al+Si (total amount of Al and Si) is 0% to 40%, 0% to 30%, 0% to 20%, 0% to 10%, 0% to 5%, especially 0% to 2. Preferably it is 5%. If the content of Al+Si is too large, Al-based or Si-based crystals will precipitate, and the internal transmittance will tend to decrease. Note that the content of each component of Al and Si is preferably 0% to 40%. More specifically, the content of each component of Al and Si is preferably 0% or more, 0.1% or more, especially 1% or more, and less than 40%, less than 35%, less than 30%, and less than 20%. %, less than 10%, particularly preferably 9% or less. In addition, from the viewpoint of improving internal transmittance in the infrared region in particular, the content of each component of Al and Si is less than 5%, less than 3%, less than 1%, less than 0.5%, and less than 0.4%. , less than 0.3%, less than 0.2%, 0.1% or less, particularly preferably substantially not contained.
 B、C、Mg、Ca、Ti、Cr、Mn、Fe、Zn、Ag、In、Sb等を含有してもよい。B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sbの含有量(B、C、Mg、Ca、Ti、Cr、Mn、Fe、Zn、Ag、In及びSbの合量)は、0%~40%、0%~30%、0%~20%、0%~10%、0%~5%、0%~1%、特に0%~1%未満であることが好ましい。これらの成分の含有量が多すぎると、所望の光学特性が得づらくなる恐れがある。なお、B、C、Mg、Ca、Ti、Cr、Mn、Fe、Zn、Ag、In、Sbの各成分の含有量は、0%~10%、0%~5%、0%~1%、特に0%~1%未満であることが好ましい。 It may contain B, C, Mg, Ca, Ti, Cr, Mn, Fe, Zn, Ag, In, Sb, etc. The content of B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb (total amount of B, C, Mg, Ca, Ti, Cr, Mn, Fe, Zn, Ag, In and Sb) is 0% to 40%, 0% to 30%, 0% to 20 %, 0% to 10%, 0% to 5%, 0% to 1%, particularly 0% to less than 1%. If the content of these components is too large, it may be difficult to obtain desired optical properties. The content of each component of B, C, Mg, Ca, Ti, Cr, Mn, Fe, Zn, Ag, In, and Sb is 0% to 10%, 0% to 5%, 0% to 1%. , particularly preferably from 0% to less than 1%.
 所望の光学特性を得る観点から、モル比Ag/(S+Se+Te)が0.0300以上、0.0325以上、0.0350以上、0.0375以上、0.0400以上、0.0425以上、0.0450以上、0.0475以上、特に0.0500以上であることが好ましい。なお、Ag/(S+Se+Te)は、Agの含有量をS、Se及びTeの合量で除した値を意味する。 From the viewpoint of obtaining desired optical properties, the molar ratio Ag/(S+Se+Te) is 0.0300 or more, 0.0325 or more, 0.0350 or more, 0.0375 or more, 0.0400 or more, 0.0425 or more, 0.0450. Above, it is preferably 0.0475 or more, particularly 0.0500 or more. Note that Ag/(S+Se+Te) means the value obtained by dividing the content of Ag by the total amount of S, Se, and Te.
 F、Cl、Br、Iはガラス化範囲を広げ、ガラスの熱的安定性を高めやすい成分であり、かつ体積抵抗率を向上させる成分である。F+Cl+Br+Iの含有量(F、Cl、Br及びIの合量)は、0%~40%、0%~30%、0%~20%、0%~10%、0%~5%、0%~1%、特に0%~1%未満であることが好ましい。これらの成分の含有量が多すぎると、所望の光学特性が得づらくなる恐れがある。なお、F、Cl、Br、Iの各成分の含有量は、0%~10%、0%~5%、0%~1%、特に0%~1%未満であることが好ましい。 F, Cl, Br, and I are components that tend to expand the vitrification range and increase the thermal stability of the glass, and are components that improve the volume resistivity. The content of F + Cl + Br + I (total amount of F, Cl, Br and I) is 0% to 40%, 0% to 30%, 0% to 20%, 0% to 10%, 0% to 5%, 0% It is preferably from 0% to less than 1%, particularly from 0% to less than 1%. If the content of these components is too large, it may be difficult to obtain desired optical properties. Note that the content of each component of F, Cl, Br, and I is preferably 0% to 10%, 0% to 5%, 0% to 1%, particularly 0% to less than 1%.
 Asは、ガラスの熱的安定性を高める成分である。ただし、Asは毒性成分であるため、環境への負荷を低減するという観点からは、Asの含有量は30%以下、25%以下、20%以下、10%以下、5%以下、3%以下、1%以下、特に実質的に含有しないことが好ましい。なお、環境への負荷を特に低減するという観点からは、Se及びAsを実質的に含有しないことが特に好ましい。 As is a component that increases the thermal stability of glass. However, since As is a toxic component, from the perspective of reducing the burden on the environment, the As content should be 30% or less, 25% or less, 20% or less, 10% or less, 5% or less, 3% or less. , 1% or less, particularly preferably substantially no content. Note that, from the viewpoint of particularly reducing the burden on the environment, it is particularly preferable that Se and As are not substantially contained.
 Cd、Tl及びPbは実質的に含有しないことが好ましい。このようにすれば、環境面への影響を最小限に抑えることができる。 It is preferable that Cd, Tl, and Pb are substantially not contained. In this way, the impact on the environment can be minimized.
 本発明の赤外線透過ガラスは、波長10μmにおける内部透過率が90%以上、92%以上、94%以上、96%以上、特に98%以上であることが好ましい。当該内部透過率を有する赤外線透過ガラスを用いることにより、赤外波長域で比較的高い透過率を示す光学素子を製造することができる。内部透過率の上限は特に限定されないが、現実的には99.99%未満である。 The infrared transmitting glass of the present invention preferably has an internal transmittance of 90% or more, 92% or more, 94% or more, 96% or more, particularly 98% or more at a wavelength of 10 μm. By using an infrared transmitting glass having such internal transmittance, it is possible to manufacture an optical element that exhibits relatively high transmittance in the infrared wavelength region. Although the upper limit of the internal transmittance is not particularly limited, it is realistically less than 99.99%.
 本発明の赤外線透過ガラスは、例えば、以下のように作製することができる。はじめに、所望の組成となるように原料を調合する。次に、加熱しながら真空排気を行った石英ガラスアンプルに調合した原料を入れ、真空排気を行いながら酸素バーナーで封管する。次に、封管された石英ガラスアンプルを650℃~1000℃程度で6時間~12時間保持する。その後、室温まで急冷することにより、赤外線透過ガラスを得ることができる。 The infrared transmitting glass of the present invention can be produced, for example, as follows. First, raw materials are mixed to have a desired composition. Next, the prepared raw materials are put into a quartz glass ampoule that has been heated and evacuated, and the ampoule is sealed with an oxygen burner while being evacuated. Next, the sealed quartz glass ampoule is held at about 650° C. to 1000° C. for 6 hours to 12 hours. Thereafter, by rapidly cooling to room temperature, an infrared transmitting glass can be obtained.
 原料には、元素原料(Ge、Ga、Si、Te、Ag、I等)を用いてもよく、化合物原料(GeTe、GaTe、AgI等)を用いても良い。また、これらを併用してもよい。 As the raw material, elemental raw materials (Ge, Ga, Si, Te, Ag, I, etc.) may be used, or compound raw materials (GeTe 4 , Ga 2 Te 3 , AgI, etc.) may be used. Moreover, you may use these together.
 得られた赤外線透過ガラスを所定形状(円盤状、レンズ状等)に加工することにより、光学素子を作製することができる。例えば、レンズ等の光学素子は、赤外線カメラ等各種の赤外線デバイスに好適に用いることができる。 An optical element can be produced by processing the obtained infrared transmitting glass into a predetermined shape (disk shape, lens shape, etc.). For example, optical elements such as lenses can be suitably used in various infrared devices such as infrared cameras.
 透過率の向上を目的として、光学素子の片面又は両面に、反射防止膜を形成させても構わない。反射防止膜の形成方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。 For the purpose of improving transmittance, an antireflection film may be formed on one or both sides of the optical element. Examples of methods for forming the antireflection film include vacuum evaporation, ion plating, and sputtering.
 赤外線透過ガラスに反射防止膜を形成した後、所定形状に加工してもよい。ただし、加工工程において反射防止膜の剥離が生じやすくなるため、特段の事情がない限り、赤外線透過ガラスを所定形状に加工した後に、反射防止膜を形成することが好ましい。 After forming an antireflection film on infrared transmitting glass, it may be processed into a predetermined shape. However, since the antireflection film is likely to peel off during the processing process, unless there are special circumstances, it is preferable to form the antireflection film after processing the infrared transmitting glass into a predetermined shape.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be explained based on Examples, but the present invention is not limited to these Examples.
 表1~表8は本発明の実施例No.1~58及び比較例No.1を示している。 Tables 1 to 8 are Example Nos. of the present invention. 1 to 58 and Comparative Example No. 1 is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例及び比較例は以下のように作製した。はじめに、石英ガラスアンプルを加熱しながら真空排気した後、表1~表8に示すガラス組成となるよう原料を調合し、石英ガラスアンプルに入れた。次に、石英ガラスアンプルを酸素バーナーで封管した。次に、封管された石英ガラスアンプルを溶融炉に入れ、10℃~40℃/時間の速度で650℃~1000℃まで昇温後、6時間~12時間保持した。保持時間中、石英ガラスアンプルの上下を反転し、溶融物を攪拌した。最後に、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することにより試料を得た。得られた試料について、内部透過率及び体積抵抗率を求めた。 Examples and comparative examples were produced as follows. First, a quartz glass ampoule was evacuated while being heated, and then raw materials were prepared to have the glass compositions shown in Tables 1 to 8 and placed in the quartz glass ampoule. Next, the quartz glass ampoule was sealed with an oxygen burner. Next, the sealed quartz glass ampoule was placed in a melting furnace, and the temperature was raised to 650°C to 1000°C at a rate of 10°C to 40°C/hour, and then held for 6 to 12 hours. During the holding time, the quartz glass ampoule was turned upside down and the melt was stirred. Finally, the quartz glass ampoule was taken out of the melting furnace and rapidly cooled to room temperature to obtain a sample. The internal transmittance and volume resistivity of the obtained sample were determined.
 厚み2mmtと6mmtの試料を用いて、赤外域における光透過率を測定し、得られた光透過率を用いて、厚み2mmtのときの波長10μmにおける内部透過率を算出した。 Using samples with a thickness of 2 mm and 6 mm, the light transmittance in the infrared region was measured, and the obtained light transmittance was used to calculate the internal transmittance at a wavelength of 10 μm when the thickness was 2 mm.
 厚み2mmtの試料の両面に付与したAl電極間の抵抗を測定し、得られた抵抗値、サンプル厚み及びAl電極面積から体積抵抗率を算出した。算出には以下の式を用いた。 The resistance between the Al electrodes provided on both sides of a sample with a thickness of 2 mm was measured, and the volume resistivity was calculated from the obtained resistance value, sample thickness, and Al electrode area. The following formula was used for calculation.
 体積抵抗率(Ωcm)=Al電極間の抵抗値(Ω)×Al電極面積(cm)/サンプル厚み(cm) Volume resistivity (Ωcm) = resistance value between Al electrodes (Ω) x Al electrode area (cm 2 )/sample thickness (cm)
 表1~表8から明らかなように、実施例No.1~58は、体積抵抗率が103.0Ωcm以上、内部透過率が90%以上となった。比較例No.1は体積抵抗率が102.9Ωcmと小さかった。また、内部透過率が84.0%と低くなった。 As is clear from Tables 1 to 8, Example No. Nos. 1 to 58 had a volume resistivity of 10 3.0 Ωcm or more and an internal transmittance of 90% or more. Comparative example no. No. 1 had a small volume resistivity of 10 2.9 Ωcm. Furthermore, the internal transmittance was as low as 84.0%.
 本発明の赤外線透過ガラスは、赤外線センサや赤外線カメラ等に用いられるフィルターやレンズ等の光学素子に好適に用いることができる。
 
The infrared transmitting glass of the present invention can be suitably used for optical elements such as filters and lenses used in infrared sensors, infrared cameras, and the like.

Claims (6)

  1.  モル%で、S+Se+Te 25%~90%、Ge+Ga 0.1%~55%、Cu+Sn+Bi 0%~40%未満を含有し、体積抵抗率が103.0(Ωcm)以上であることを特徴とする赤外線透過ガラス。 It is characterized by containing S+Se+Te 25% to 90%, Ge+Ga 0.1% to 55%, Cu+Sn+Bi 0% to less than 40% in mol%, and having a volume resistivity of 10 3.0 (Ωcm) or more. Infrared transparent glass.
  2.  モル%で、Al+Si 0%~40%、B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb 0%~40%、F+Cl+Br+I 0%~40%を含有する、請求項1に記載の赤外線透過ガラス。 The infrared transmitting glass according to claim 1, which contains, in mol%, Al+Si 0% to 40%, B+C+Mg+Ca+Ti+Cr+Mn+Fe+Zn+Ag+In+Sb 0% to 40%, and F+Cl+Br+I 0% to 40%.
  3.  Se及びAsを実質的に含有しない、請求項1または2に記載の赤外線透過ガラス。 The infrared transmitting glass according to claim 1 or 2, which does not substantially contain Se and As.
  4.  波長10μmにおける内部透過率が90%以上である、請求項1又は2に記載の赤外線透過ガラス。 The infrared transmitting glass according to claim 1 or 2, having an internal transmittance of 90% or more at a wavelength of 10 μm.
  5.  請求項1又は2に記載の赤外線透過ガラスを用いた光学素子。 An optical element using the infrared transmitting glass according to claim 1 or 2.
  6.  請求項5に記載の光学素子を用いた赤外線カメラ。
     
    An infrared camera using the optical element according to claim 5.
PCT/JP2023/020236 2022-06-17 2023-05-31 Infrared ray transmitting glass WO2023243407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098153 2022-06-17
JP2022-098153 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243407A1 true WO2023243407A1 (en) 2023-12-21

Family

ID=89191016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020236 WO2023243407A1 (en) 2022-06-17 2023-05-31 Infrared ray transmitting glass

Country Status (1)

Country Link
WO (1) WO2023243407A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169954A (en) * 1983-03-18 1984-09-26 Hitachi Ltd Material for infrared optical fiber
JP2002249339A (en) * 2000-12-21 2002-09-06 Nippon Electric Glass Co Ltd Glass for potting semiconductor and outer tube for potting semiconductor
EP1642870A1 (en) * 2004-09-09 2006-04-05 Umicore Chalcogenide glasses based on tellurium for transmitting infrared in the middle and far regions
JP2009001488A (en) * 2003-07-16 2009-01-08 Schott Ag Optical component
JP2015063456A (en) * 2013-09-20 2015-04-09 ショット アクチエンゲゼルシャフトSchott AG Feed-through element for harsh environments
WO2017110500A1 (en) * 2015-12-25 2017-06-29 日本電気硝子株式会社 Infrared transmitting glass
WO2019054145A1 (en) * 2017-09-12 2019-03-21 日本電気硝子株式会社 Chalcogenide glass material
WO2020105719A1 (en) * 2018-11-21 2020-05-28 日本電気硝子株式会社 Chalcogenide glass lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169954A (en) * 1983-03-18 1984-09-26 Hitachi Ltd Material for infrared optical fiber
JP2002249339A (en) * 2000-12-21 2002-09-06 Nippon Electric Glass Co Ltd Glass for potting semiconductor and outer tube for potting semiconductor
JP2009001488A (en) * 2003-07-16 2009-01-08 Schott Ag Optical component
EP1642870A1 (en) * 2004-09-09 2006-04-05 Umicore Chalcogenide glasses based on tellurium for transmitting infrared in the middle and far regions
JP2015063456A (en) * 2013-09-20 2015-04-09 ショット アクチエンゲゼルシャフトSchott AG Feed-through element for harsh environments
WO2017110500A1 (en) * 2015-12-25 2017-06-29 日本電気硝子株式会社 Infrared transmitting glass
WO2019054145A1 (en) * 2017-09-12 2019-03-21 日本電気硝子株式会社 Chalcogenide glass material
WO2020105719A1 (en) * 2018-11-21 2020-05-28 日本電気硝子株式会社 Chalcogenide glass lens

Similar Documents

Publication Publication Date Title
JP5048159B2 (en) Near-infrared cut filter glass
JP6804030B2 (en) Infrared transmissive glass
JP2023059941A (en) Chalcogenide glass material
JPWO2018021222A1 (en) Optical glass and near infrared cut filter
WO2019054145A1 (en) Chalcogenide glass material
JP6709499B2 (en) Infrared transparent glass
CN113302164B (en) Infrared ray transmitting glass
JP6819920B2 (en) Calcogenide glass
JP7290022B2 (en) Chalcogenide glass material
WO2020066928A1 (en) Infrared transmission glass
JP5251365B2 (en) Near-infrared cut filter glass
WO2023243407A1 (en) Infrared ray transmitting glass
JP7058825B2 (en) Infrared transmissive glass
WO2020175402A1 (en) Infrared-transmitting glass
JP6788816B2 (en) Infrared transmissive glass
JP6962322B2 (en) Near infrared cut filter glass
JP7026892B2 (en) Infrared transmissive glass
WO2023095900A1 (en) Infrared-transmitting glass
JP2022169294A (en) Infrared transmitting glass
JP2023000285A (en) Infrared transmitting glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823701

Country of ref document: EP

Kind code of ref document: A1