JP7172024B2 - Chalcogenide glass material - Google Patents

Chalcogenide glass material Download PDF

Info

Publication number
JP7172024B2
JP7172024B2 JP2017174793A JP2017174793A JP7172024B2 JP 7172024 B2 JP7172024 B2 JP 7172024B2 JP 2017174793 A JP2017174793 A JP 2017174793A JP 2017174793 A JP2017174793 A JP 2017174793A JP 7172024 B2 JP7172024 B2 JP 7172024B2
Authority
JP
Japan
Prior art keywords
glass material
chalcogenide glass
antireflection film
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017174793A
Other languages
Japanese (ja)
Other versions
JP2019048752A (en
Inventor
佳雅 松下
史雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017174793A priority Critical patent/JP7172024B2/en
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to EP18855694.8A priority patent/EP3683196B1/en
Priority to PCT/JP2018/031041 priority patent/WO2019054145A1/en
Priority to CN202210698280.2A priority patent/CN115010379A/en
Priority to CN201880059175.6A priority patent/CN111094201A/en
Priority to US16/638,783 priority patent/US11643357B2/en
Publication of JP2019048752A publication Critical patent/JP2019048752A/en
Priority to JP2022165365A priority patent/JP2022186810A/en
Application granted granted Critical
Publication of JP7172024B2 publication Critical patent/JP7172024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3464Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
    • C03C17/347Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a sulfide or oxysulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3621Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3628Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a sulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3634Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、赤外線センサ、赤外線カメラ等に使用されるカルコゲナイドガラス材に関する。 The present invention relates to a chalcogenide glass material used for infrared sensors, infrared cameras and the like.

車載ナイトビジョンやセキュリティシステム等は、夜間の生体検知に用いられる赤外線センサを備えている。赤外線センサは、生体から発せられる波長約8~14μmの赤外線を感知するため、センサ部の前には当該波長範囲の赤外線を透過するフィルターやレンズ等の光学素子が設けられる。 In-vehicle night vision systems, security systems, and the like are equipped with infrared sensors used for biometric detection at night. Since the infrared sensor senses infrared rays with a wavelength of about 8 to 14 μm emitted from a living body, an optical element such as a filter or lens that transmits infrared rays in this wavelength range is provided in front of the sensor section.

上記のような光学素子用の材料として、GeやZnSeが挙げられる。これらは結晶体であるため加工性に劣り、非球面レンズ等の複雑な形状に加工することが困難である。そのため量産しにくく、また赤外線センサの小型化も困難であるという問題がある。 Ge and ZnSe are mentioned as a material for the above optical elements. Since these materials are crystalline, they are inferior in workability and difficult to process into complicated shapes such as aspherical lenses. Therefore, there is a problem that mass production is difficult and it is also difficult to miniaturize the infrared sensor.

そこで、波長約8~14μmの赤外線を透過し、加工が比較的容易なガラス質の材料として、カルコゲナイドガラスが提案されている。(例えば特許文献1参照) Therefore, chalcogenide glass has been proposed as a vitreous material that transmits infrared rays with a wavelength of about 8 to 14 μm and is relatively easy to process. (See Patent Document 1, for example)

特開2009-161374号公報JP 2009-161374 A

しかしながら、特許文献1に記載のガラスは、波長10μm以上で赤外線透過率が顕著に低下しているため、特に生体から発せられる赤外線に対する感度に劣り、赤外線センサが十分に機能しないおそれがある。さらに、前記ガラスは、耐候性が低いため変質し、赤外線透過率が低下するという問題がある。 However, the glass described in Patent Literature 1 has a significantly reduced infrared transmittance at a wavelength of 10 μm or longer, and is particularly poor in sensitivity to infrared rays emitted from a living body, and the infrared sensor may not function satisfactorily. Furthermore, the glass has a problem that it deteriorates due to its low weather resistance, and the infrared transmittance decreases.

本発明は、このような状況に鑑みてなされたものであり、耐候性に優れ、赤外線センサの光学素子として好適なカルコゲナイドガラス材を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a chalcogenide glass material that has excellent weather resistance and is suitable as an optical element for an infrared sensor.

本発明のカルコゲナイドガラス材は、モル%で、Te 20~99%を含有し、表面に反射防止膜が形成されていることを特徴とする。 The chalcogenide glass material of the present invention is characterized by containing 20 to 99% by mol of Te and having an antireflection film formed on the surface thereof.

本発明のカルコゲナイドガラス材は、必須成分としてTeを含有させているため、赤外線透過率に優れている。また、表面に反射防止膜が形成されているため、赤外光の反射を抑制することができ、赤外線透過率をより高めることができる。さらに、表面に反射防止膜が形成されていると、ガラスが空気中の水分や酸素と反応し変質することを抑制できるため、耐候性に優れている。 Since the chalcogenide glass material of the present invention contains Te as an essential component, it is excellent in infrared transmittance. In addition, since an antireflection film is formed on the surface, reflection of infrared light can be suppressed, and infrared transmittance can be further increased. Furthermore, when an antireflection film is formed on the surface, the glass can be prevented from reacting with moisture and oxygen in the air and deteriorating, so that the glass has excellent weather resistance.

本発明のカルコゲナイドガラス材は、モル%で、Te 40~95%を含有することが好ましい。 The chalcogenide glass material of the present invention preferably contains 40 to 95% by mole of Te.

本発明のカルコゲナイドガラス材は、さらに、モル%で、Ge 0~40%を含有することが好ましい。 The chalcogenide glass material of the present invention preferably further contains 0 to 40% by mole of Ge.

本発明のカルコゲナイドガラス材は、さらに、モル%で、Ga 0~30%を含有することが好ましい。 The chalcogenide glass material of the present invention preferably further contains 0 to 30% Ga in terms of mol %.

本発明のカルコゲナイドガラス材は、反射防止膜が、低屈折率層と高屈折率層が交互に合計2層以上積層されていることが好ましい。 In the chalcogenide glass material of the present invention, the antireflection film preferably has a total of two or more layers of alternating low refractive index layers and high refractive index layers.

本発明の光学素子は、上記のカルコゲナイドガラス材を用いることを特徴とする。 An optical element of the present invention is characterized by using the chalcogenide glass material described above.

本発明の赤外線センサは、上記の光学素子を用いることを特徴とする。 An infrared sensor of the present invention is characterized by using the optical element described above.

本発明によれば、耐候性に優れ、赤外線センサの光学素子として好適なカルコゲナイドガラス材を提供することができる。 According to the present invention, it is possible to provide a chalcogenide glass material that is excellent in weather resistance and suitable as an optical element for an infrared sensor.

本発明のカルコゲナイドガラス材は、表面に反射防止膜が形成されている。上述した通り、表面に反射防止膜が形成されていると、赤外線透過率、耐候性を向上させることができる。 The chalcogenide glass material of the present invention has an antireflection film formed on its surface. As described above, when an antireflection film is formed on the surface, infrared transmittance and weather resistance can be improved.

まず、反射防止膜について説明する。 First, the antireflection film will be explained.

反射防止膜は、低屈折率層と高屈折率層が交互に合計2層以上、2~34層、特に4~12層積層されていることが好ましい。積層数が少なすぎると赤外光を透過しにくくなる。一方、積層数が多すぎると成膜に要する工程が多くなり高コスト化の要因となる傾向がある。なお、低屈折率層及び高屈折率層の組合わせに制限は無く、高屈折率層の屈折率が低屈折率層の屈折率より相対的に大きければよい。 It is preferable that the antireflection film has a total of 2 or more layers, 2 to 34 layers, particularly 4 to 12 layers, in which low refractive index layers and high refractive index layers are alternately laminated. If the number of laminations is too small, it becomes difficult to transmit infrared light. On the other hand, if the number of laminations is too large, the number of steps required for film formation increases, which tends to cause an increase in cost. The combination of the low refractive index layer and the high refractive index layer is not limited as long as the refractive index of the high refractive index layer is relatively higher than that of the low refractive index layer.

屈折率層の1層当りの厚みは、0.01~10μm、0.02~5μm、特に0.03~2μmが好ましい。1層当たりの厚みが小さすぎると赤外光を透過しにくくなる。一方、厚みが大きすぎると、反射防止膜とカルコゲナイドガラス材の界面にかかる応力が大きくなり、膜の密着性、ガラス材の機械的強度が低下しやすくなる。 The thickness of each refractive index layer is preferably 0.01 to 10 μm, 0.02 to 5 μm, particularly 0.03 to 2 μm. If the thickness per layer is too small, it becomes difficult to transmit infrared light. On the other hand, if the thickness is too large, the stress applied to the interface between the antireflection film and the chalcogenide glass material increases, and the adhesion of the film and the mechanical strength of the glass material tend to decrease.

屈折率層の材質は、金属酸化物(Y、Al、SiO、SiO、MgO、TiO、TiO、Ti、CeO、Bi、HfO)、水素化炭素、ダイヤモンドライクカーボン(DLC)、Ge、Si、ZnS、ZnSe、As、AsSe、PbF、テルル化金属、フッ化金属が好ましい。なお、耐候性、機械的強度をより向上させるためには、金属酸化物、水素化炭素、ダイヤモンドライクカーボン(DLC)を最外層にすることが好ましい。また、密着性をより向上するためには、金属酸化物を中間層にすることが好ましい。なお、屈折率層の材質は、樹脂でもよく、例えばオレフィン系樹脂等を用いることができる。 The material of the refractive index layer is metal oxide ( Y2O3 , Al2O3 , SiO, SiO2 , MgO, TiO, TiO2 , Ti2O3 , CeO2 , Bi2O3 , HfO2 ), Hydrogenated carbon, diamond-like carbon (DLC), Ge, Si, ZnS, ZnSe, As2S3 , As2Se3 , PbF2 , metal telluride, and metal fluoride are preferred. In order to further improve weather resistance and mechanical strength, it is preferable to use metal oxide, hydrogenated carbon, or diamond-like carbon (DLC) as the outermost layer. Moreover, in order to further improve adhesion, it is preferable to use a metal oxide as the intermediate layer. The material of the refractive index layer may be a resin, for example, an olefin resin or the like.

次に、本発明のカルコゲナイドガラス材の組成について説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 Next, the composition of the chalcogenide glass material of the present invention will be described. In the following description of the content of each component, "%" means "mol %" unless otherwise specified.

本発明のカルコゲナイドガラス材は、Teを必須成分として含有する。カルコゲン元素であるTeはガラス骨格を形成し、赤外線透過率を高める成分である。Teの含有量は、20~99%であり、40~95%、50~85%、60~85%、特に70~80%であることが好ましい。Teの含有量が少なすぎると、ガラス化しにくくなり、赤外線透過率が低下しやすくなる。一方、Teの含有量が多すぎるとガラスの熱安定性が低下しやすく、Te系の結晶が析出しやすくなる。ちなみに、他のカルコゲン元素Se、Sは、Teより赤外線透過率を向上させにくく、赤外透過限界波長が短くなりやすい。 The chalcogenide glass material of the present invention contains Te as an essential component. Te, which is a chalcogen element, is a component that forms a glass skeleton and increases infrared transmittance. The Te content is 20 to 99%, preferably 40 to 95%, 50 to 85%, 60 to 85%, particularly 70 to 80%. If the Te content is too low, vitrification becomes difficult and the infrared transmittance tends to decrease. On the other hand, if the Te content is too high, the thermal stability of the glass tends to decrease, and Te-based crystals tend to precipitate. Incidentally, the other chalcogen elements Se and S are more difficult to improve the infrared transmittance than Te, and tend to have a shorter infrared transmission limit wavelength.

上記成分以外にも、以下に示す種々の成分を含有させることができる。 In addition to the above components, various components shown below can be contained.

Geは赤外線透過率を低下させることなく、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Geの含有量は、0~40%、1~35%、5~30%、7~25%、特に10~20%であることが好ましい。Geの含有量が多すぎると、Ge系の結晶が析出しやすくなるとともに、原料コストが高くなる傾向がある。 Ge is a component that widens the vitrification range and increases the thermal stability of the glass without lowering the infrared transmittance. The Ge content is preferably 0-40%, 1-35%, 5-30%, 7-25%, particularly 10-20%. If the Ge content is too high, Ge-based crystals tend to precipitate more easily and raw material costs tend to increase.

Gaは赤外線透過率を低下させることなく、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Gaの含有量は、0~30%、1~30%、3~25%、4~20%、特に5~15%であることが好ましい。Gaの含有量が多すぎると、Ga系の結晶が析出しやすくなるとともに、原料コストが高くなる傾向がある。 Ga is a component that widens the vitrification range and increases the thermal stability of the glass without lowering the infrared transmittance. The Ga content is preferably 0 to 30%, 1 to 30%, 3 to 25%, 4 to 20%, particularly 5 to 15%. If the Ga content is too high, Ga-based crystals tend to precipitate more easily and raw material costs tend to increase.

Agはガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Agの含有量は0~20%、特に1~10%であることが好ましい。Agの含有量が多すぎると、ガラス化しにくくなる。 Ag is a component that widens the vitrification range and enhances the thermal stability of the glass. The Ag content is preferably 0 to 20%, particularly 1 to 10%. If the Ag content is too high, it becomes difficult to vitrify.

Alはガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Alの含有量は0~20%、特に0~10%であることが好ましい。Alの含有量が多すぎると、ガラス化しにくくなる。 Al is a component that widens the vitrification range and enhances the thermal stability of the glass. The Al content is preferably 0 to 20%, particularly 0 to 10%. If the Al content is too high, it becomes difficult to vitrify.

Snはガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Snの含有量は0~20%、特に0~10%であることが好ましい。Snの含有量が多すぎると、ガラス化しにくくなる。 Sn is a component that widens the vitrification range and enhances the thermal stability of the glass. The Sn content is preferably 0 to 20%, particularly 0 to 10%. If the Sn content is too high, it becomes difficult to vitrify.

次に、本発明のカルコゲナイドガラス材の製造方法について説明する。 Next, the method for producing the chalcogenide glass material of the present invention will be described.

上記のガラス組成となるように、原料を混合し、原料バッチを得る。次に、石英ガラスアンプルを加熱しながら真空排気した後、原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管する。 Raw materials are mixed to obtain the above glass composition to obtain a raw material batch. Next, after the quartz glass ampoule is evacuated while being heated, a raw material batch is put therein, and the quartz glass ampoule is sealed with an oxygen burner while being evacuated.

原料としては、元素原料(Te、Ge、Ga等)を用いてもよく、化合物原料(GeTe、GeTe、GaTe等)を用いても良い。また、これらを併用することも可能である。 As raw materials, element raw materials (Te, Ge, Ga, etc.) may be used, and compound raw materials (GeTe, GeTe 2 , Ga 2 Te 3 , etc.) may be used. Moreover, it is also possible to use these together.

次に、封管された石英ガラスアンプルを溶融炉内で10~80℃/時間の速度で650~1000℃まで昇温後、6~12時間保持する。保持時間中、必要に応じて、石英ガラスアンプルの上下を反転し、溶融物を攪拌する。 Next, the sealed quartz glass ampoule is heated to 650 to 1000° C. at a rate of 10 to 80° C./hour in a melting furnace and held for 6 to 12 hours. During the holding time, the quartz glass ampoule is turned upside down to stir the melt, if necessary.

その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することによりガラス母材を得る。 Thereafter, the quartz glass ampoule is taken out from the melting furnace and rapidly cooled to room temperature to obtain a glass preform.

続いて、得られたガラス母材を所定形状(円盤状、レンズ状等)に加工する。 Subsequently, the obtained glass base material is processed into a predetermined shape (disk-like, lens-like, etc.).

所定形状に加工したガラス母材の片面又は両面に、反射防止膜を形成させカルコゲナイドガラス材を得る。反射防止膜の形成方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。 A chalcogenide glass material is obtained by forming an antireflection film on one or both sides of a glass base material processed into a predetermined shape. Methods for forming the antireflection film include a vacuum deposition method, an ion plating method, a sputtering method, and the like.

なお、ガラス母材に反射防止膜を形成した後、ガラス母材を所定形状に加工しても構わない。ただし、加工工程において反射防止膜の剥離が生じやすくなるため、特段の事情がない限り、ガラス母材を所定形状に加工した後に、反射防止膜を形成することが好ましい。 After forming the antireflection film on the glass base material, the glass base material may be processed into a predetermined shape. However, since the antireflection film tends to peel off during the processing step, it is preferable to form the antireflection film after processing the glass base material into a predetermined shape unless there are special circumstances.

本発明のカルコゲナイドガラス材は、厚み2mmでの波長8~14μmにおける平均赤外線透過率が80%以上、85%以上、特に90%以上であることが好ましい。平均赤外線透過率が低すぎると、赤外線センサ用として使用した場合に十分に機能しないおそれがある。 The chalcogenide glass material of the present invention preferably has an average infrared transmittance of 80% or more, 85% or more, particularly 90% or more at a wavelength of 8 to 14 μm with a thickness of 2 mm. If the average infrared transmittance is too low, it may not function sufficiently when used as an infrared sensor.

本発明のカルコゲナイドガラス材は、赤外線透過率、耐候性に優れるため、赤外線センサのセンサ部を保護するためのカバー部材や、赤外線センサ部に赤外光を集光させるためのレンズ等の光学素子として好適である。 Since the chalcogenide glass material of the present invention is excellent in infrared transmittance and weather resistance, it can be used as an optical element such as a cover member for protecting the sensor part of an infrared sensor or a lens for concentrating infrared light on the infrared sensor part. It is suitable as

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described below based on examples, but the present invention is not limited to these examples.

表1及び2は、本発明の実施例(試料No.1~10)及び比較例(試料No.11、12)を示している。 Tables 1 and 2 show examples of the present invention (samples Nos. 1 to 10) and comparative examples (samples Nos. 11 and 12).

Figure 0007172024000001
Figure 0007172024000001

Figure 0007172024000002
Figure 0007172024000002

表1及び2に示すガラス組成になるように原料を調合し、原料バッチを得た。次に、純水で洗浄した石英ガラスアンプルを加熱しながら真空排気した後、原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管した。封管された石英ガラスアンプルを溶融炉内で10~80℃/時間の速度で650~1000℃まで昇温後、6~12時間保持した。保持時間中、2時間ごとに石英ガラスアンプルの上下を反転し、溶融物を攪拌した。その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することによりガラス母材を得た。 Raw materials were blended so that the glass compositions shown in Tables 1 and 2 were obtained, and raw material batches were obtained. Next, after the quartz glass ampoule washed with pure water was heated and evacuated, a raw material batch was put therein, and the quartz glass ampoule was sealed with an oxygen burner while being evacuated. The sealed quartz glass ampoule was heated to 650 to 1000° C. at a rate of 10 to 80° C./hour in a melting furnace and held for 6 to 12 hours. During the holding time, the quartz glass ampoule was turned upside down every 2 hours to stir the melt. Thereafter, the quartz glass ampoule was taken out from the melting furnace and rapidly cooled to room temperature to obtain a glass preform.

得られたガラス母材を切削、研磨することにより、直径15mm、厚み2mmの円盤状に加工した後、両面を光学研磨した。光学研磨後のガラス母材に、真空蒸着法にて表1及び2に示す構成の反射防止膜を全面に形成し、カルコゲナイドガラス材を得た。なお、反射防止膜に関しては、表1及び2に記載の通り、ガラス材側から第1層、第2層、第3層、第4層、第5層、第6層、第7層、第8層、第9層、第10層、第11層、第12層、第13層の順に成膜を行った。 The obtained glass base material was cut and polished to be processed into a disk shape having a diameter of 15 mm and a thickness of 2 mm, and both surfaces were optically polished. An anti-reflection film having the structure shown in Tables 1 and 2 was formed on the entire surface of the optically polished glass base material by vacuum deposition to obtain a chalcogenide glass material. Regarding the antireflection film, as shown in Tables 1 and 2, from the glass material side, the first layer, the second layer, the third layer, the fourth layer, the fifth layer, the sixth layer, the seventh layer, and the third layer. The 8th layer, the 9th layer, the 10th layer, the 11th layer, the 12th layer, and the 13th layer were formed in this order.

得られた試料について、平均赤外線透過率、耐候性を測定または評価した。結果を表1、2に示す。 The obtained samples were measured or evaluated for average infrared transmittance and weather resistance. Tables 1 and 2 show the results.

波長8~14μmにおける平均赤外線透過率は、FT-IR(フーリエ変換赤外分光光度計)にて測定した。 The average infrared transmittance at a wavelength of 8 to 14 μm was measured by FT-IR (Fourier transform infrared spectrophotometer).

耐候性は次のようにして評価した。得られた試料を60℃-90Rh%の恒温恒湿層内に500時間保持した。保持後の試料の波長8~14μmにおける平均赤外線透過率をFT-IRにて測定した。保持前後で平均赤外線透過率が変化しなかったものを「○」、変化したものを「×」とした。 Weather resistance was evaluated as follows. The obtained sample was kept in a constant temperature and humidity layer of 60° C.-90 Rh % for 500 hours. After holding, the average infrared transmittance at a wavelength of 8 to 14 μm was measured by FT-IR. When the average infrared transmittance did not change before and after holding, it was evaluated as "○", and when it changed, it was evaluated as "X".

表1、2から明らかなように、実施例1~10の試料は、平均赤外線透過率が94%以上と高く、耐候性にも優れていた。一方、比較例1は、反射防止膜が形成されていないため、平均赤外線透過率が52%と低く、耐候性にも劣っていた。比較例2は、Teを含有していないため平均赤外線透過率が68%と低かった。 As is clear from Tables 1 and 2, the samples of Examples 1 to 10 had a high average infrared transmittance of 94% or more and excellent weather resistance. On the other hand, in Comparative Example 1, since no antireflection film was formed, the average infrared transmittance was as low as 52%, and the weather resistance was also poor. Comparative Example 2 did not contain Te, so the average infrared transmittance was as low as 68%.

本発明のカルコゲナイドガラス材は、赤外線センサのセンサ部を保護するためのカバー部材や、赤外線センサ部に赤外光を集光させるためのレンズ等の光学素子として好適である。 INDUSTRIAL APPLICABILITY The chalcogenide glass material of the present invention is suitable as a cover member for protecting the sensor portion of an infrared sensor and as an optical element such as a lens for concentrating infrared light on the infrared sensor portion.

Claims (9)

モル%で、Te 20~99%、を含有し、表面に反射防止膜が形成されているカルコゲナイドガラス材であって、
前記反射防止膜は、低屈折率層及び高屈折率層が交互に合計2層以上積層されてなり、
前記反射防止膜の最外層が、 、Al 、MgO、CeO 、Bi 、HfO のいずれかから選択される金属酸化物、水素化炭素又はZnSのいずれかであり、
前記反射防止膜の、ガラス材側の第1層が、Ge、Si、Y 、Al 、MgO、CeO 、HfO のいずれかから選択される金属酸化物のいずれかであることを特徴とするカルコゲナイドガラス材。
A chalcogenide glass material containing 20 to 99% by mol of Te and having an antireflection film formed on its surface,
The antireflection film is formed by laminating a total of two or more layers of a low refractive index layer and a high refractive index layer alternately,
The outermost layer of the antireflection film is a metal oxide selected from Y2O3 , Al2O3 , MgO , CeO2 , Bi2O3 , HfO2 , hydrogenated carbon or ZnS . is either
The first layer of the antireflection film on the glass material side is any metal oxide selected from Ge, Si , Y2O3 , Al2O3 , MgO, CeO2 , and HfO2 . A chalcogenide glass material comprising:
モル%で、Te 40~95%を含有することを特徴とする請求項1に記載のカルコゲナイドガラス材。 2. The chalcogenide glass material according to claim 1, characterized by containing 40 to 95% Te in terms of mol %. さらに、モル%で、Ge 0~40%を含有することを特徴とする請求項1又は2に記載のカルコゲナイドガラス材。 3. The chalcogenide glass material according to claim 1, further comprising 0 to 40 mol % of Ge. さらに、モル%で、Ga 0~30%を含有することを特徴とする請求項1~3のいずれかに記載のカルコゲナイドガラス材。 4. The chalcogenide glass material according to claim 1, further comprising 0 to 30% Ga in terms of mol %. 屈折率層の1層当りの厚みが0.01~2μmであることを特徴とする請求項1~4のいずれかに記載のカルコゲナイドガラス材。 5. The chalcogenide glass material according to claim 1, wherein the thickness of each refractive index layer is 0.01 to 2 μm. 前記反射防止膜の最外層がZnSであることを特徴とする請求項1~5のいずれかに記載のカルコゲナイドガラス材。 6. The chalcogenide glass material according to claim 1, wherein the outermost layer of said antireflection film is ZnS. モル%で、Te 20~99%、を含有し、表面に反射防止膜が形成されているカルコゲナイドガラス材であって、 A chalcogenide glass material containing 20 to 99% by mol of Te and having an antireflection film formed on its surface,
前記反射防止膜は、低屈折率層及び高屈折率層が交互に合計2層以上積層されてなり、 The antireflection film is formed by laminating a total of two or more layers of a low refractive index layer and a high refractive index layer alternately,
前記反射防止膜の最外層がZnSであり、 The outermost layer of the antireflection film is ZnS,
前記反射防止膜の、ガラス材側の第1層が、Ge、Si、Y The first layer of the antireflection film on the glass material side contains Ge, Si, Y 2 O. 3 、Al, Al 2 O. 3 、MgO、CeO, MgO, CeO 2 、HfO, HfO 2 のいずれかから選択される金属酸化物のいずれかであることを特徴とするカルコゲナイドガラス材。A chalcogenide glass material characterized by being any metal oxide selected from any one of
請求項1~のいずれかに記載のカルコゲナイドガラス材を用いることを特徴とする光学素子。 An optical element comprising the chalcogenide glass material according to any one of claims 1 to 7 . 請求項に記載の光学素子を用いることを特徴とする赤外線センサ。
An infrared sensor using the optical element according to claim 8 .
JP2017174793A 2017-09-12 2017-09-12 Chalcogenide glass material Active JP7172024B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017174793A JP7172024B2 (en) 2017-09-12 2017-09-12 Chalcogenide glass material
PCT/JP2018/031041 WO2019054145A1 (en) 2017-09-12 2018-08-22 Chalcogenide glass material
CN202210698280.2A CN115010379A (en) 2017-09-12 2018-08-22 Chalcogenide glass material
CN201880059175.6A CN111094201A (en) 2017-09-12 2018-08-22 Chalcogenide glass material
EP18855694.8A EP3683196B1 (en) 2017-09-12 2018-08-22 Chalcogenide glass material
US16/638,783 US11643357B2 (en) 2017-09-12 2018-08-22 Chalcogenide glass material
JP2022165365A JP2022186810A (en) 2017-09-12 2022-10-14 Chalcogenide glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174793A JP7172024B2 (en) 2017-09-12 2017-09-12 Chalcogenide glass material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022165365A Division JP2022186810A (en) 2017-09-12 2022-10-14 Chalcogenide glass material

Publications (2)

Publication Number Publication Date
JP2019048752A JP2019048752A (en) 2019-03-28
JP7172024B2 true JP7172024B2 (en) 2022-11-16

Family

ID=65722727

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017174793A Active JP7172024B2 (en) 2017-09-12 2017-09-12 Chalcogenide glass material
JP2022165365A Pending JP2022186810A (en) 2017-09-12 2022-10-14 Chalcogenide glass material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022165365A Pending JP2022186810A (en) 2017-09-12 2022-10-14 Chalcogenide glass material

Country Status (5)

Country Link
US (1) US11643357B2 (en)
EP (1) EP3683196B1 (en)
JP (2) JP7172024B2 (en)
CN (2) CN111094201A (en)
WO (1) WO2019054145A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056270A (en) * 2019-09-27 2021-04-08 日本電気硝子株式会社 Lens member, lens unit, and methods of manufacturing lens member and lens unit
CN112047627B (en) * 2020-08-14 2022-09-09 暨南大学 Full-spectrum chalcogenide glass material and preparation method thereof
JPWO2022130909A1 (en) * 2020-12-16 2022-06-23
WO2023095900A1 (en) * 2021-11-29 2023-06-01 日本電気硝子株式会社 Infrared-transmitting glass
WO2023243407A1 (en) * 2022-06-17 2023-12-21 日本電気硝子株式会社 Infrared ray transmitting glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264509A (en) 2000-03-21 2001-09-26 Nippon Sheet Glass Co Ltd Article coated with antireflection film and method for producing the same
JP2011221048A (en) 2010-04-02 2011-11-04 Fujifilm Corp Anti-reflection coating and optical element for infrared ray
WO2016052080A1 (en) 2014-09-30 2016-04-07 富士フイルム株式会社 Antireflection film, lens, and imaging device
WO2016052079A1 (en) 2014-09-30 2016-04-07 富士フイルム株式会社 Antireflection film, lens, and imaging device
JP2017124952A (en) 2016-01-14 2017-07-20 日本電気硝子株式会社 Infrared transmitting glass
WO2017126394A1 (en) 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component
JP2017137204A (en) 2016-02-02 2017-08-10 日本電気硝子株式会社 Infrared transmitting glass

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988338A (en) * 1982-11-08 1984-05-22 Hitachi Ltd Optical fiber for infrared light
JPS60114801A (en) * 1983-11-25 1985-06-21 Matsushita Electric Ind Co Ltd Reflection preventing film
JPS61127639A (en) 1984-11-21 1986-06-14 Hitachi Ltd Material for optical fiber for infrared ray
JPH01230001A (en) * 1988-03-10 1989-09-13 Hisankabutsu Glass Kenkyu Kaihatsu Kk Reflection preventing film for chalcogenide glass
JP3361621B2 (en) * 1994-06-29 2003-01-07 三菱電機株式会社 Anti-reflection coating for infrared region
JPH08310840A (en) * 1995-05-16 1996-11-26 Nippon Sheet Glass Co Ltd Reflection preventing film
CZ286152B6 (en) * 1998-03-13 2000-01-12 Miroslav Ing. Csc. Vlček Transparent and semitransparent diffraction elements, particularly holograms and process of their production
DE602005005594D1 (en) 2004-09-09 2008-05-08 Umicore Nv Based on tellurium chalcogenide glasses for transmission of light in the middle and far infrared range
US7116888B1 (en) * 2005-04-13 2006-10-03 Corning, Incorporated Chalcogenide glass for low viscosity extrusion and injection molding
JP5339720B2 (en) 2007-12-28 2013-11-13 五鈴精工硝子株式会社 Infrared transparent glass for molding
KR20140058208A (en) * 2012-11-06 2014-05-14 삼성전자주식회사 Image sensor
JP6046860B2 (en) 2014-03-13 2016-12-21 富士フイルム株式会社 Optical component, infrared camera, and method of manufacturing optical component
JP6631775B2 (en) * 2014-08-11 2020-01-15 日本電気硝子株式会社 Infrared transmission glass
JP2017128491A (en) 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264509A (en) 2000-03-21 2001-09-26 Nippon Sheet Glass Co Ltd Article coated with antireflection film and method for producing the same
JP2011221048A (en) 2010-04-02 2011-11-04 Fujifilm Corp Anti-reflection coating and optical element for infrared ray
WO2016052080A1 (en) 2014-09-30 2016-04-07 富士フイルム株式会社 Antireflection film, lens, and imaging device
WO2016052079A1 (en) 2014-09-30 2016-04-07 富士フイルム株式会社 Antireflection film, lens, and imaging device
JP2017124952A (en) 2016-01-14 2017-07-20 日本電気硝子株式会社 Infrared transmitting glass
WO2017126394A1 (en) 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component
JP2017137204A (en) 2016-02-02 2017-08-10 日本電気硝子株式会社 Infrared transmitting glass

Also Published As

Publication number Publication date
US11643357B2 (en) 2023-05-09
EP3683196A1 (en) 2020-07-22
EP3683196A4 (en) 2021-06-02
CN115010379A (en) 2022-09-06
JP2022186810A (en) 2022-12-15
WO2019054145A1 (en) 2019-03-21
US20200189964A1 (en) 2020-06-18
CN111094201A (en) 2020-05-01
EP3683196B1 (en) 2023-09-06
JP2019048752A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP7172024B2 (en) Chalcogenide glass material
JP7495667B2 (en) Chalcogenide Glass Lenses
US8945713B2 (en) Glass material for press molding, method for manufacturing optical glass element employing same, and optical glass element
US7502175B2 (en) Aspherical lens and process for the production thereof
US7638449B2 (en) Optical glass
JP2023059941A (en) Chalcogenide glass material
JP2024074945A (en) Infrared transmitting glass
JP7290022B2 (en) Chalcogenide glass material
JP4410877B2 (en) Low melting glass
JP6819920B2 (en) Calcogenide glass
WO2023008123A1 (en) Film-equipped base material and manufacturing method for same
JP4433391B2 (en) Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
JP4756337B2 (en) Cover glass for solid-state image sensor
JP6938864B2 (en) Manufacturing method of infrared transmissive lens
JP7058825B2 (en) Infrared transmissive glass
CN107102383B (en) Infrared-transmitting film, optical film, antireflection film, optical member, optical system, and imaging device
JP5181861B2 (en) Infrared transmission glass
Worrall Materials for infra-red optics
JP2008174440A (en) Glass for use as substrate
JP2022078764A (en) Optical member and method for producing the same
WO2020022002A1 (en) Optical component
JP2022056102A (en) Method for manufacturing optical member, and optical member
US20190064398A1 (en) Durable silver-based mirror coating employing nickel oxide
JP2022169294A (en) Infrared transmitting glass
JP2022034713A (en) Optical member and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150