JP2017110914A - Apparatus and method of measuring surface temperature distribution - Google Patents

Apparatus and method of measuring surface temperature distribution Download PDF

Info

Publication number
JP2017110914A
JP2017110914A JP2015243049A JP2015243049A JP2017110914A JP 2017110914 A JP2017110914 A JP 2017110914A JP 2015243049 A JP2015243049 A JP 2015243049A JP 2015243049 A JP2015243049 A JP 2015243049A JP 2017110914 A JP2017110914 A JP 2017110914A
Authority
JP
Japan
Prior art keywords
infrared
surface temperature
temperature distribution
measured
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015243049A
Other languages
Japanese (ja)
Other versions
JP6679915B2 (en
Inventor
靖彦 大門
Yasuhiko Daimon
靖彦 大門
明洋 坂本
Akihiro Sakamoto
明洋 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015243049A priority Critical patent/JP6679915B2/en
Publication of JP2017110914A publication Critical patent/JP2017110914A/en
Application granted granted Critical
Publication of JP6679915B2 publication Critical patent/JP6679915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously measure surface temperature distributions in an outer peripheral direction of a measurement target object with a simple device.SOLUTION: There is provided an apparatus that receives infrared radiation light from a measurement target object 2 to measure the surface temperature of the measurement target object 2, and comprises one infrared thermal image device 11 and at least two or more infrared mirrors 12. The infrared thermal image device 11 directly receives infrared radiation light from a predetermined direct measurement rage on the surface of the measurement target object 2; the infrared mirrors 12 receive infrared radiation light from a range other than the direct measurement range on the surface of the measurement target object 2 and reflect the light toward the infrared thermal image device 11; and the infrared thermal image device 11 further receives the reflected light from the infrared mirrors 12.SELECTED DRAWING: Figure 1

Description

本発明は、管状や円柱状等の被測定物の外周の表面温度分布を測定する表面温度分布測定装置および測定方法に関するものである。   The present invention relates to a surface temperature distribution measuring apparatus and a measuring method for measuring a surface temperature distribution on the outer periphery of a measurement object such as a tube or a column.

例えば鋼管製造において、加熱焼入れ後の製品に円周方向の硬度むらが発生した場合、その改善および原因解明のために、焼入れ不良個所の特定を行う必要がある。そして、そのためには、鋼管の全周方向の温度分布測定が必要となる。   For example, in the manufacture of steel pipes, when uneven hardness in the circumferential direction occurs in a product after heat-quenching, it is necessary to identify a quenching defect in order to improve the cause and elucidate the cause. For this purpose, it is necessary to measure the temperature distribution in the entire circumference of the steel pipe.

外周が曲面状の被測定物に対して、単一方向から温度分布を測定しようとすると、多くの物質では、指向性放射率の影響により、測定装置に対して垂直ではない位置では低く測定されるため、温度分布の測定精度に支障をきたす。   When trying to measure the temperature distribution from a single direction on a measured object with a curved outer periphery, many substances are measured low at a position that is not perpendicular to the measuring device due to the effect of directional emissivity. Therefore, the measurement accuracy of the temperature distribution is hindered.

これに対し、例えば赤外線放射温度計を複数台設置して、被測定物の外周の表面温度を多方向から測定(撮影)し、その画像を重ね合わせることにより、指向性放射率の影響を抑制して外周全体の温度分布を測定することは可能である。しかしながら、赤外線放射温度計を複数台設置することはコストが増大するうえ、複数の赤外線放射温度計による測定値を時間的に同期させることは極めて困難である。   In contrast, for example, multiple infrared radiation thermometers are installed, the surface temperature of the outer circumference of the object to be measured is measured (captured) from multiple directions, and the effect of directional emissivity is suppressed by superimposing the images. Thus, it is possible to measure the temperature distribution of the entire outer periphery. However, the installation of a plurality of infrared radiation thermometers increases the cost and it is extremely difficult to synchronize the measured values of the plurality of infrared radiation thermometers with time.

特許文献1には、曲面状の被測定面に対して法線方向に対向させる複数の光ファイバーで繋がれた赤外線測定端子を用いた表面温度分布測定装置が開示されている。   Patent Document 1 discloses a surface temperature distribution measuring device using an infrared measurement terminal connected by a plurality of optical fibers opposed to a curved surface to be measured in a normal direction.

また、特許文献2には、被測定物の移動を許容するようにその周囲をフードで囲い、被測定物が移動しても赤外線温度測定が可能となる赤外線放射温度計が開示されている。   Patent Document 2 discloses an infrared radiation thermometer that surrounds the object to be measured with a hood so as to allow the object to be measured, and can measure the infrared temperature even if the object to be measured moves.

特許第2737419号公報Japanese Patent No. 2737419 特許第3437140号公報Japanese Patent No. 3437140

ところが、前記特許文献1の測定装置の場合、被測定物の全周を測定するためには多量の光ファイバーと赤外線測定端子が必要になる。また、特許文献2の場合には、被測定物の全周の平均温度しか測定できない。   However, in the case of the measuring device of Patent Document 1, a large amount of optical fibers and infrared measuring terminals are required to measure the entire circumference of the object to be measured. In the case of Patent Document 2, only the average temperature of the entire circumference of the object to be measured can be measured.

本発明は、かかる課題を解決し、簡易な装置で、被測定物の外周方向の表面温度分布を同時に計測することを目的とする。   An object of the present invention is to solve such a problem and to simultaneously measure the surface temperature distribution in the outer peripheral direction of an object to be measured with a simple apparatus.

上記問題を解決するため、本発明は、被測定物からの赤外放射光を受光して、前記被測定物の表面温度を測定する装置であって、1台の赤外線熱画像装置と、少なくとも2つ以上の赤外線用鏡とを有し、前記赤外線熱画像装置は、前記被測定物の表面の予め定められた直接測定範囲からの赤外放射光を直接受光し、前記赤外線用鏡は、前記被測定物の表面において前記直接測定範囲以外の範囲からの赤外放射光を受光し前記赤外線熱画像装置へ向けて反射し、前記赤外線熱画像装置は、前記赤外線用鏡からの反射光をさらに受光することを特徴とする、表面温度分布測定装置を提供する。   In order to solve the above problems, the present invention is an apparatus that receives infrared radiation from an object to be measured and measures the surface temperature of the object to be measured, and includes at least one infrared thermal imaging apparatus, Two or more infrared mirrors, the infrared thermal imaging device directly receives infrared radiation from a predetermined direct measurement range of the surface of the object to be measured, the infrared mirror, Infrared radiation from a range other than the direct measurement range is received on the surface of the object to be measured and reflected toward the infrared thermal imaging device, and the infrared thermal imaging device receives reflected light from the infrared mirror. Furthermore, the present invention provides a surface temperature distribution measuring device characterized by receiving light.

前記表面温度分布測定装置において、前記赤外線熱画像装置および前記各赤外線用鏡はそれぞれ、前記被測定物の測定面の指向性放射率が前記測定面の法線方向への放射率と等しい角度範囲内からの赤外放射光を受光するように配置されていることが好ましい。   In the surface temperature distribution measuring apparatus, each of the infrared thermal imaging device and each of the infrared mirrors has an angular range in which a directional emissivity of a measurement surface of the object to be measured is equal to an emissivity in a normal direction of the measurement surface. It is preferable that it is arranged so as to receive infrared radiation from inside.

2つ以上の前記赤外線用鏡は、前記赤外線熱画像装置への反射光が、前記被測定物から直接受光する直接光および他の赤外線用鏡からの反射光に重ならずに前記赤外線熱画像装置に到達するように配置されていることが好ましい。また、2つ以上の前記赤外線用鏡は、前記赤外線熱画像装置で直接受光する範囲以外の全ての角度範囲からの赤外放射光を受光するように配置されてもよい。   The two or more infrared mirrors may be configured such that the reflected light to the infrared thermal image device does not overlap the direct light directly received from the object to be measured and the reflected light from other infrared mirrors. It is preferably arranged to reach the device. Further, the two or more infrared mirrors may be arranged so as to receive infrared radiation from all angle ranges other than the range directly received by the infrared thermal imaging device.

また、本発明は、被測定物からの赤外放射光を受光して、前記被測定物の表面温度を測定する方法であって、1台の赤外線熱画像装置と、少なくとも2つ以上の赤外線用鏡とを設け、前記赤外線熱画像装置に、前記被測定物の表面の予め定められた直接測定範囲からの赤外放射光を直接受光させ、前記赤外線用鏡に、前記被測定物の表面において前記直接測定範囲以外の範囲からの赤外放射光を受光させて前記赤外線熱画像装置へ向けて反射させ、前記赤外線熱画像装置に、前記赤外線用鏡からの反射光をさらに受光させることを特徴とする、表面温度分布測定方法を提供する。   The present invention also relates to a method of receiving infrared radiation from a device under test and measuring the surface temperature of the device under test, comprising one infrared thermal imager and at least two infrared rays. The infrared thermal imaging device directly receives infrared radiation from a predetermined direct measurement range of the surface of the object to be measured, and the infrared mirror has a surface of the object to be measured. Receiving infrared radiation from a range other than the direct measurement range and reflecting the infrared radiation toward the infrared thermal imaging device, and causing the infrared thermal imaging device to further receive reflected light from the infrared mirror. A surface temperature distribution measuring method is provided.

前記表面温度分布測定方法において、前記赤外線熱画像装置および前記各赤外線用鏡をそれぞれ、前記被測定物の測定面の指向性放射率が前記測定面の法線方向への放射率と等しい角度範囲内からの赤外放射光を受光するように配置することが好ましい。   In the surface temperature distribution measuring method, in the infrared thermal imaging device and each infrared mirror, an angular range in which a directional emissivity of a measurement surface of the object to be measured is equal to an emissivity in a normal direction of the measurement surface It is preferable to arrange so as to receive infrared radiation from inside.

2つ以上の前記赤外線用鏡を、前記赤外線熱画像装置への反射光が、前記被測定物から直接受光する直接光および他の赤外線用鏡からの反射光に重ならずに前記赤外線熱画像装置に到達するように配置することが好ましい。また、2つ以上の前記赤外線用鏡を、前記赤外線熱画像装置で直接受光する範囲以外の全ての角度範囲からの赤外放射光を受光するように配置してもよい。   Two or more infrared mirrors are used so that the reflected light to the infrared thermal imaging apparatus does not overlap the direct light directly received from the object to be measured and the reflected light from other infrared mirrors. It is preferably arranged to reach the device. Further, two or more infrared mirrors may be arranged to receive infrared radiation from all angle ranges other than the range directly received by the infrared thermal imager.

前記赤外線用鏡からの反射光を、前記被測定物からの直接光と同じ向きになるように反転させ、前記直接光および前記反射光のうち、測定位置が重なる部分を削除して、前記被測定物の外周の表面温度を表示させてもよい。   The reflected light from the infrared mirror is inverted so as to be in the same direction as the direct light from the object to be measured, and the portion where the measurement position overlaps is deleted from the direct light and the reflected light. You may display the surface temperature of the outer periphery of a measurement object.

本発明によれば、簡易な装置で、被測定物の全周の温度分布を同時に測定できる。これにより、各種製造業における温度に起因する性能の管理が可能となる。   According to the present invention, the temperature distribution of the entire circumference of the object to be measured can be simultaneously measured with a simple device. This makes it possible to manage performance due to temperature in various manufacturing industries.

本発明の実施形態にかかる表面温度分布測定装置の概略を示す図である。It is a figure which shows the outline of the surface temperature distribution measuring apparatus concerning embodiment of this invention. 材質毎の指向性放射率の例を示す図である。It is a figure which shows the example of the directional emissivity for every material. 本発明の異なる実施形態にかかる表面温度分布測定装置の概略を示す図である。It is a figure which shows the outline of the surface temperature distribution measuring apparatus concerning different embodiment of this invention. 実施例で測定した温度分布を表す可視画像の例である。It is an example of the visible image showing the temperature distribution measured in the Example. 実施例で測定した温度分布を表す可視画像の異なる例である。It is a different example of the visible image showing the temperature distribution measured in the Example. 実施例で測定した温度分布を表す可視画像のさらに異なる例である。It is a further different example of the visible image showing the temperature distribution measured in the Example.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の実施形態にかかる表面温度分布測定装置の概略を示す。表面温度分布測定装置1は、例えば断面が円形の被測定物2の一方向側に設けられた1台の赤外線熱画像装置11と、被測定物2に対して赤外線熱画像装置11の略反対側に配置された複数、本実施形態では2つの赤外線用鏡12により構成される。図中の破線は、赤外線の放射または反射を示す。以下、被測定物2の表面のうち、赤外線熱画像装置11に正対する側を正面と称する。被測定物2の背面側に設けられた2つの赤外線用鏡12は、互いに120°の角度をなしている。   FIG. 1 schematically shows a surface temperature distribution measuring apparatus according to an embodiment of the present invention. The surface temperature distribution measuring apparatus 1 includes, for example, one infrared thermal image device 11 provided on one direction side of the measurement object 2 having a circular cross section, and substantially opposite to the infrared thermal image apparatus 11 with respect to the measurement object 2. In this embodiment, two infrared mirrors 12 are arranged on the side. Broken lines in the figure indicate infrared radiation or reflection. Hereinafter, of the surface of the DUT 2, the side facing the infrared thermal image device 11 is referred to as the front. The two infrared mirrors 12 provided on the back side of the DUT 2 make an angle of 120 ° with each other.

赤外線熱画像装置11には、被測定物2から放射された赤外線エネルギーを検出し、温度に換算してカラー映像として表示することができる既存の装置を用いることができる。赤外線用鏡12には、例えば金や銀等の金属をコーティングした、赤外線を十分に反射しうる既存の光学用ミラーが用いられる。可視光は反射しなくても構わない。赤外線用鏡12は、図1に示すように被測定物2の背面側や、赤外線熱画像装置11からでは、以下に説明する指向性放射率が著しく低下する測定面からの赤外線放射光を受光する位置に配置される。   As the infrared thermal image device 11, an existing device that can detect infrared energy radiated from the DUT 2 and convert it to a temperature and display it as a color image can be used. As the infrared mirror 12, an existing optical mirror capable of sufficiently reflecting infrared rays coated with a metal such as gold or silver is used. Visible light may not be reflected. As shown in FIG. 1, the infrared mirror 12 receives infrared radiation from the measurement surface where the directional emissivity described below significantly decreases from the back side of the object 2 to be measured or from the infrared thermal imaging apparatus 11. It is arranged at the position to do.

赤外線用鏡12の枚数および配置は、被測定物2の指向性放射率の特性により決定する。図2は、指向性放射率の例を示すものである。材質により放射率の値は異なるが、図2に示す材質Aや材質Bの場合、角度が0°(法線方向)から60°までは放射率がほぼ一定であり、60°を少し超えたところから急激に放射率が低下する。したがって、被測定物2が材質AまたはBの場合、被測定物2の測定面である外周のうち、正面の赤外線熱画像装置11および各赤外線用鏡12は、それぞれに正対する法線方向を挟んで両側に各60°以内、すなわち120°以内を測定する角度範囲として分担することにより、安定して測定することができる。つまり、材質AまたはBの場合には、赤外線熱画像装置11による直接測定範囲を、正面側の法線方向を挟んで両側に各60°の範囲とし、図1に示す実施形態のように背面側に2つの赤外線用鏡12を互いに120°の角度で配置して、これらの赤外線用鏡12からの反射光を赤外線熱画像装置11で撮影することとする。これにより、赤外線熱画像装置11が直接受光する直接測定範囲以外の赤外放射光を、2つの赤外線用鏡12を介して受光し、被測定物2の外周全体の表面温度を同時に測定できる。一方、例えば図2の材質Cのように、50°付近から放射率が急激に低下する場合には、赤外線熱画像装置11および各赤外線用鏡12のそれぞれの測定範囲を狭くする必要があり、例えば図3に示すように4つの赤外線用鏡12を配置する。安定して赤外光が受光できるための、放射率が法線方向と同等であると判断する基準としては、例えば被測定物2の測定面の指向性放射率が測定面の法線方向(0°方向)への放射率の95%以上とすればよい。   The number and arrangement of the infrared mirrors 12 are determined by the characteristic of the directional emissivity of the DUT 2. FIG. 2 shows an example of directional emissivity. The emissivity value varies depending on the material, but in the case of material A and material B shown in FIG. 2, the emissivity is almost constant from 0 ° (normal direction) to 60 ° and slightly exceeds 60 °. However, the emissivity suddenly decreases. Therefore, when the object to be measured 2 is the material A or B, the infrared thermal imaging device 11 on the front and the infrared mirrors 12 on the outer periphery which is the measurement surface of the object to be measured 2 have normal directions facing each other. It is possible to measure stably by sharing as an angular range for measuring within 60 °, that is, within 120 ° on both sides. That is, in the case of the material A or B, the direct measurement range by the infrared thermal imager 11 is set to 60 ° on both sides across the normal direction on the front side, and the back side as in the embodiment shown in FIG. Two infrared mirrors 12 are arranged on the side at an angle of 120 °, and reflected light from these infrared mirrors 12 is photographed by the infrared thermal imager 11. Thereby, infrared radiation light outside the direct measurement range directly received by the infrared thermal imaging device 11 is received through the two infrared mirrors 12, and the surface temperature of the entire outer periphery of the DUT 2 can be measured simultaneously. On the other hand, when the emissivity rapidly decreases from around 50 °, for example, as the material C in FIG. 2, it is necessary to narrow the respective measurement ranges of the infrared thermal imaging device 11 and each infrared mirror 12. For example, four infrared mirrors 12 are arranged as shown in FIG. As a standard for determining that the emissivity is equivalent to the normal direction in order to receive infrared light stably, for example, the directional emissivity of the measurement surface of the DUT 2 is the normal direction of the measurement surface ( The emissivity in the direction of 0 ° may be 95% or more.

赤外線熱画像装置11で直接受光する直接光と、各赤外線用鏡12からの反射光は、少なくとも重ならずに赤外線熱画像装置11に到達するように、複数の赤外線用鏡12を配置する。さらに、直接光と反射光との境界、あるいは図3の場合には各赤外線用鏡12毎の反射光の境界を識別しやすいように、各反射光は、それぞれ隙間を設けて赤外線熱画像装置11に反射されるようにすることが好ましい。   A plurality of infrared mirrors 12 are arranged so that direct light directly received by the infrared thermal image device 11 and reflected light from each infrared mirror 12 reach the infrared thermal image device 11 without overlapping at least. Further, in order to easily identify the boundary between the direct light and the reflected light, or the boundary of the reflected light for each infrared mirror 12 in the case of FIG. 11 is preferably reflected.

このようにして、図1または図3に示すように、赤外線熱画像装置11には、直接受光する正面側の直接光と、複数の赤外線用鏡12からの反射光による画像が得られる。   In this way, as shown in FIG. 1 or FIG. 3, the infrared thermal imaging device 11 can obtain an image by direct light received directly from the front side and reflected light from the plurality of infrared mirrors 12.

赤外線熱画像装置11で撮影した直接光および反射光は、赤外線熱画像装置11に内蔵された制御部により、画像処理が行われる。先ず、赤外線用鏡12からの反射光は鏡像となるため、正面から直接撮影した直接光と向きが一致するように反転させる。次に、得られた画像のうち、同じ位置を撮影した重複部分は削除し、さらに縦座標を角度として表示する。こうして得られた画像を時系列に並べて、被測定物2の外周全体の表面温度分布を表す可視画像データを得る。   The direct light and the reflected light photographed by the infrared thermal image device 11 are subjected to image processing by a control unit built in the infrared thermal image device 11. First, since the reflected light from the infrared mirror 12 becomes a mirror image, it is reversed so that the direction coincides with the direct light taken directly from the front. Next, in the obtained image, an overlapping portion obtained by photographing the same position is deleted, and the ordinate is displayed as an angle. Visible image data representing the surface temperature distribution of the entire outer periphery of the DUT 2 is obtained by arranging the images thus obtained in time series.

以上のように、本実施形態によれば、被測定物2の指向性放射率の特性に応じて、放射率が一定となる角度範囲で赤外放射光を受光できるように赤外線用鏡12を配置し、赤外線用鏡12からの反射光を、正面側の直接光とともに赤外線熱画像装置11で同時に撮影することにより、簡易な装置構成で、被測定物2の全周の温度分布を同時に測定することができる。   As described above, according to the present embodiment, the infrared mirror 12 can be received so that infrared radiation can be received in an angular range where the emissivity is constant according to the directional emissivity characteristic of the DUT 2. By arranging and photographing the reflected light from the infrared mirror 12 together with the direct light on the front side simultaneously with the infrared thermal imaging device 11, the temperature distribution of the entire circumference of the object 2 to be measured can be measured simultaneously with a simple device configuration. can do.

本発明において、被測定物2としては、円筒状や管状などのように断面が円形のものや、断面形状において凹部を有しないものが好ましい。角柱状のものでも適用可能である。また、例えばレールやクランクシャフトのような複雑な形状のものであっても、断面形状において凹部を有しない部分のみの表面温度分布であれば、本発明によって測定することができる。   In the present invention, the DUT 2 preferably has a circular cross section, such as a cylindrical shape or a tubular shape, or a cross section having no concave portion. A prismatic shape is also applicable. Moreover, even if it is a complicated shape like a rail or a crankshaft, for example, if it is surface temperature distribution of only the part which does not have a recessed part in cross-sectional shape, it can measure by this invention.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

小径管のインダクション焼き入れ工程において、焼き入れ不足の発生位置を特定するために、小径管の外周全体の温度分布測定を行った。加熱むらと冷却むらの両方を調べるため、加熱途中のコイル間と冷却ヘッダ後との2か所で、全周温度分布測定を行った。鋼管の指向性放射率は、0°から60°まではほぼ一定の値をとるため、図1に示すような3方向からの測定を行うこととし、2つの赤外線用鏡を配置した。赤外線用鏡は、Edmund社製「4−6λ平面ミラー」を用いた。   In the induction quenching process of the small-diameter pipe, in order to identify the position where the quenching was insufficient, the temperature distribution of the entire outer circumference of the small-diameter pipe was measured. In order to examine both the heating unevenness and the cooling unevenness, the temperature distribution of the entire circumference was measured at two places, between the coils being heated and after the cooling header. Since the directional emissivity of the steel pipe takes a substantially constant value from 0 ° to 60 °, measurement is performed from three directions as shown in FIG. 1, and two infrared mirrors are arranged. As the infrared mirror, “4-6λ plane mirror” manufactured by Edmund was used.

赤外線熱画像装置で撮影された画像について、鏡像を直接光と同じ向きに反転させ、重複撮影部分を削除し、座標を角度に直して時系列に並べた。図4〜図6は、こうして得られた温度分布を表す冷却後の可視画像の例であり、縦軸が正面からの角度、横軸が長さ方向を示す。画像の濃淡が温度の高低を表している。   About the image image | photographed with the infrared thermal image apparatus, the mirror image was reversed in the same direction as direct light, the duplication imaging | photography part was deleted, the coordinate was changed into the angle, and it arranged in time series. 4-6 is an example of the visible image after cooling showing the temperature distribution obtained in this way, a vertical axis | shaft shows the angle from a front, and a horizontal axis shows a length direction. The shading of the image indicates the temperature.

図4は、角度、すなわち周方向位置による温度差が極めて小さく、温度分布がほぼ一定になっていた例である。図5は、角度が150°〜200°付近に、若干温度むらが生じている例である。図6は、100°〜250°付近に顕著な温度むらが生じている例である。図5および図6から発見された温度むらは、いずれも、赤外線熱画像装置11が設けられている正面側のみの撮影では見つからない位置に生じており、本発明により、赤外線熱画像装置とは反対側の温度を正面側と同時に測定し、温度むらを発見することができた。これにより、例えば冷却時に水流が十分に当たっていない場所を特定し、工程の改善を行うことができた。   FIG. 4 shows an example in which the temperature difference due to the angle, that is, the circumferential position is extremely small and the temperature distribution is almost constant. FIG. 5 shows an example in which the temperature unevenness slightly occurs in the vicinity of the angle of 150 ° to 200 °. FIG. 6 is an example in which remarkable temperature unevenness occurs in the vicinity of 100 ° to 250 °. The temperature unevenness discovered from FIGS. 5 and 6 occurs at a position that cannot be found by photographing only on the front side where the infrared thermal imaging device 11 is provided. The temperature on the opposite side was measured at the same time as the front side, and temperature irregularities were found. As a result, for example, a place where the water flow was not sufficiently applied at the time of cooling could be specified, and the process could be improved.

本発明は、鋼管や棒鋼の他、各種材質において、断面形状において凹部を有していない管状または円柱、角柱状の部材、または長尺部材のうち断面に凹部を有していない箇所の外周の温度測定に適用できる。   The present invention is not limited to steel pipes and steel bars, and in various materials, it is a tubular or cylindrical member having no recess in the cross-sectional shape, a prismatic member, or a long member of the outer periphery of a portion having no recess in the cross section. Applicable to temperature measurement.

1 表面温度分布測定装置
2 被測定物
11 赤外線熱画像装置
12 赤外線用鏡
DESCRIPTION OF SYMBOLS 1 Surface temperature distribution measuring apparatus 2 Object to be measured 11 Infrared thermal imaging apparatus 12 Infrared mirror

Claims (9)

被測定物からの赤外放射光を受光して、前記被測定物の表面温度を測定する装置であって、
1台の赤外線熱画像装置と、少なくとも2つ以上の赤外線用鏡とを有し、
前記赤外線熱画像装置は、前記被測定物の表面の予め定められた直接測定範囲からの赤外放射光を直接受光し、
前記赤外線用鏡は、前記被測定物の表面において前記直接測定範囲以外の範囲からの赤外放射光を受光し前記赤外線熱画像装置へ向けて反射し、
前記赤外線熱画像装置は、前記赤外線用鏡からの反射光をさらに受光することを特徴とする、表面温度分布測定装置。
A device that receives infrared radiation from a device under test and measures the surface temperature of the device under test,
One infrared thermal imager and at least two infrared mirrors;
The infrared thermal imager directly receives infrared radiation from a predetermined direct measurement range on the surface of the object to be measured;
The infrared mirror receives infrared radiation from a range other than the direct measurement range on the surface of the object to be measured and reflects it toward the infrared thermal imaging device,
The infrared thermal imager further receives reflected light from the infrared mirror.
前記赤外線熱画像装置および前記各赤外線用鏡はそれぞれ、前記被測定物の測定面の指向性放射率が前記測定面の法線方向への放射率と等しい角度範囲内からの赤外放射光を受光するように配置されていることを特徴とする、請求項1に記載の表面温度分布測定装置。   The infrared thermal imaging device and the infrared mirrors each receive infrared radiation from an angular range in which the directional emissivity of the measurement surface of the object to be measured is equal to the emissivity in the normal direction of the measurement surface. 2. The surface temperature distribution measuring device according to claim 1, wherein the surface temperature distribution measuring device is arranged to receive light. 2つ以上の前記赤外線用鏡は、前記赤外線熱画像装置への反射光が、前記被測定物から直接受光する直接光および他の赤外線用鏡からの反射光に重ならずに前記赤外線熱画像装置に到達するように配置されていることを特徴とする、請求項1または2のいずれか一項に記載の表面温度分布測定装置。   The two or more infrared mirrors may be configured such that the reflected light to the infrared thermal image device does not overlap the direct light directly received from the object to be measured and the reflected light from other infrared mirrors. The surface temperature distribution measuring device according to claim 1, wherein the surface temperature distribution measuring device is arranged so as to reach the device. 2つ以上の前記赤外線用鏡は、前記赤外線熱画像装置で直接受光する範囲以外の全ての角度範囲からの赤外放射光を受光するように配置されていることを特徴とする、請求項1〜3のいずれか一項に記載の表面温度分布測定装置。   The two or more infrared mirrors are arranged so as to receive infrared radiation from all angle ranges other than the range directly received by the infrared thermal imager. The surface temperature distribution measuring apparatus as described in any one of -3. 被測定物からの赤外放射光を受光して、前記被測定物の表面温度を測定する方法であって、
1台の赤外線熱画像装置と、少なくとも2つ以上の赤外線用鏡とを設け、
前記赤外線熱画像装置に、前記被測定物の表面の予め定められた直接測定範囲からの赤外放射光を直接受光させ、
前記赤外線用鏡に、前記被測定物の表面において前記直接測定範囲以外の範囲からの赤外放射光を受光させて前記赤外線熱画像装置へ向けて反射させ、
前記赤外線熱画像装置に、前記赤外線用鏡からの反射光をさらに受光させることを特徴とする、表面温度分布測定方法。
A method of receiving infrared radiation from a device under test and measuring the surface temperature of the device under test,
One infrared thermal imager and at least two infrared mirrors;
The infrared thermal imaging device directly receives infrared radiation from a predetermined direct measurement range on the surface of the object to be measured,
The infrared mirror receives infrared radiation from a range other than the direct measurement range on the surface of the object to be measured and reflects it toward the infrared thermal imaging device,
A method for measuring a surface temperature distribution, wherein the infrared thermal imaging apparatus further receives reflected light from the infrared mirror.
前記赤外線熱画像装置および前記各赤外線用鏡をそれぞれ、前記被測定物の測定面の指向性放射率が前記測定面の法線方向への放射率と等しい角度範囲内からの赤外放射光を受光するように配置することを特徴とする、請求項5に記載の表面温度分布測定方法。   The infrared thermal imaging apparatus and the infrared mirrors each receive infrared radiation from within an angular range in which the directional emissivity of the measurement surface of the object to be measured is equal to the emissivity in the normal direction of the measurement surface. 6. The surface temperature distribution measuring method according to claim 5, wherein the surface temperature distribution measuring method is arranged so as to receive light. 2つ以上の前記赤外線用鏡を、前記赤外線熱画像装置への反射光が、前記被測定物から直接受光する直接光および他の赤外線用鏡からの反射光に重ならずに前記赤外線熱画像装置に到達するように配置することを特徴とする、請求項5または6のいずれか一項に記載の表面温度分布測定方法。   Two or more infrared mirrors are used so that the reflected light to the infrared thermal imaging apparatus does not overlap the direct light directly received from the object to be measured and the reflected light from other infrared mirrors. It arrange | positions so that an apparatus may be reached | attained, The surface temperature distribution measuring method as described in any one of Claim 5 or 6 characterized by the above-mentioned. 2つ以上の前記赤外線用鏡を、前記赤外線熱画像装置で直接受光する範囲以外の全ての角度範囲からの赤外放射光を受光するように配置することを特徴とする、請求項5〜7のいずれか一項に記載の表面温度分布測定方法。   The two or more infrared mirrors are arranged so as to receive infrared radiation from all angle ranges other than the range directly received by the infrared thermal imager. The surface temperature distribution measuring method according to any one of the above. 前記赤外線用鏡からの反射光を、前記被測定物からの直接光と同じ向きになるように反転させ、前記直接光および前記反射光のうち、測定位置が重なる部分を削除して、前記被測定物の外周の表面温度を表示させることを特徴とする、請求項5〜8のいずれか一項に記載の表面温度分布測定方法。   The reflected light from the infrared mirror is inverted so as to be in the same direction as the direct light from the object to be measured, and the portion where the measurement position overlaps is deleted from the direct light and the reflected light. The surface temperature distribution measuring method according to any one of claims 5 to 8, wherein the surface temperature of the outer periphery of the measurement object is displayed.
JP2015243049A 2015-12-14 2015-12-14 Surface temperature distribution measuring device and measuring method Active JP6679915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243049A JP6679915B2 (en) 2015-12-14 2015-12-14 Surface temperature distribution measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243049A JP6679915B2 (en) 2015-12-14 2015-12-14 Surface temperature distribution measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2017110914A true JP2017110914A (en) 2017-06-22
JP6679915B2 JP6679915B2 (en) 2020-04-15

Family

ID=59080617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243049A Active JP6679915B2 (en) 2015-12-14 2015-12-14 Surface temperature distribution measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP6679915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686592B (en) * 2018-12-21 2020-03-01 中國鋼鐵股份有限公司 Method of monitoring temperature of a target object

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651632A (en) * 1979-10-04 1981-05-09 Akinori Nagasawa Three-flank simultaneous photographing thermography method
JPH0636310U (en) * 1992-10-05 1994-05-13 日新電機株式会社 Electric equipment with reflector for temperature monitoring
JPH07222138A (en) * 1994-01-28 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd Periphery photographing device for object to be photographed
JP2737419B2 (en) * 1991-02-05 1998-04-08 住友金属工業株式会社 Surface temperature distribution measuring device for curved objects
JPH11311610A (en) * 1998-02-23 1999-11-09 G D Spa Electro-optical unit for scanning entire side surface of substantially cylindrical article
US20040086021A1 (en) * 2002-11-01 2004-05-06 Litwin Robert Zachary Infrared temperature sensors for solar panel
JP2014055921A (en) * 2012-09-14 2014-03-27 Ricoh Elemex Corp Inspection equipment
JP2014062835A (en) * 2012-09-21 2014-04-10 Ricoh Elemex Corp Inspection device
JP2014153157A (en) * 2013-02-07 2014-08-25 Kansai Electric Power Co Inc:The Temperature monitoring method of electrical equipment
JP2015187564A (en) * 2014-03-26 2015-10-29 株式会社日立ハイテクノロジーズ Infrared inspection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651632A (en) * 1979-10-04 1981-05-09 Akinori Nagasawa Three-flank simultaneous photographing thermography method
JP2737419B2 (en) * 1991-02-05 1998-04-08 住友金属工業株式会社 Surface temperature distribution measuring device for curved objects
JPH0636310U (en) * 1992-10-05 1994-05-13 日新電機株式会社 Electric equipment with reflector for temperature monitoring
JPH07222138A (en) * 1994-01-28 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd Periphery photographing device for object to be photographed
JPH11311610A (en) * 1998-02-23 1999-11-09 G D Spa Electro-optical unit for scanning entire side surface of substantially cylindrical article
US20040086021A1 (en) * 2002-11-01 2004-05-06 Litwin Robert Zachary Infrared temperature sensors for solar panel
JP2014055921A (en) * 2012-09-14 2014-03-27 Ricoh Elemex Corp Inspection equipment
JP2014062835A (en) * 2012-09-21 2014-04-10 Ricoh Elemex Corp Inspection device
JP2014153157A (en) * 2013-02-07 2014-08-25 Kansai Electric Power Co Inc:The Temperature monitoring method of electrical equipment
JP2015187564A (en) * 2014-03-26 2015-10-29 株式会社日立ハイテクノロジーズ Infrared inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686592B (en) * 2018-12-21 2020-03-01 中國鋼鐵股份有限公司 Method of monitoring temperature of a target object

Also Published As

Publication number Publication date
JP6679915B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
TWI232298B (en) Apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar
CN103534581B (en) Multi-optical spectrum imaging system and surface inspecting method thereof
US10346968B2 (en) Machine condition monitoring system using three dimensional thermography
CN105606222A (en) Flame three-dimensional temperature field measurement imaging device, measuring device and measuring method
CN112067147B (en) Method and device for synchronously measuring temperature and deformation
CN101258510A (en) Apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar
CN109813435B (en) Static light reflection micro thermal imaging method and device and terminal equipment
WO2018086161A1 (en) Measurement device and method for spectral responsivity of large-aperture radiometer
US10365369B2 (en) Laser scanner and method
CN102257352B (en) 3d scanner
KR20170136988A (en) Temperature measuring apparatus
JP2017110914A (en) Apparatus and method of measuring surface temperature distribution
CN103134443B (en) A kind of large-caliber large-caliber-thicknreflector reflector surface shape auto-collimation detection device and method
CN106908153B (en) A kind of modified method of surface of revolution infrared measurement of temperature
US10317285B2 (en) System and method for measuring optical resolution with an optical resolution target assembly
Johnson et al. Complexities of Capturing Large Plastic Deformations Using Digital Image Correlation: A Test Case on Full-Scale Pipe Specimens
Fan et al. Uncertainty analysis of a pavement reflectance measurement system based on a gonio-photometer
US11890808B2 (en) In-situ digital image correlation and thermal monitoring in directed energy deposition
JP2004219091A (en) Temperature measuring method using radiation thermometer
JP3162099U (en) Translucent inspection device
US20230358131A1 (en) Advanced optical imaging of tubulars
JP2012173277A (en) Shape measuring apparatus and optical filter to be used for the same
Usamentiaga et al. Comparing temperature measurement using infrared line scanners and the wedge method
RU2487341C2 (en) Method to display temperature field of object
JP2008076203A (en) Apparatus and method for inspecting defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151