JP2737419B2 - Surface temperature distribution measuring device for curved objects - Google Patents

Surface temperature distribution measuring device for curved objects

Info

Publication number
JP2737419B2
JP2737419B2 JP3035438A JP3543891A JP2737419B2 JP 2737419 B2 JP2737419 B2 JP 2737419B2 JP 3035438 A JP3035438 A JP 3035438A JP 3543891 A JP3543891 A JP 3543891A JP 2737419 B2 JP2737419 B2 JP 2737419B2
Authority
JP
Japan
Prior art keywords
temperature distribution
measuring device
measured
optical fiber
distribution measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3035438A
Other languages
Japanese (ja)
Other versions
JPH04254726A (en
Inventor
豊司 真野
一男 平本
俊行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3035438A priority Critical patent/JP2737419B2/en
Publication of JPH04254726A publication Critical patent/JPH04254726A/en
Application granted granted Critical
Publication of JP2737419B2 publication Critical patent/JP2737419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、棒状や管状等のよう
な“曲面を有する物体”の表面における温度分布を測定
するための非接触型の温度分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type temperature distribution measuring device for measuring a temperature distribution on the surface of an "object having a curved surface" such as a rod or a tube.

【0002】[0002]

【従来技術とその課題】従来、加熱鋼材等如き物体の表
面の温度分布を非接触で測定する装置の1つとして、反
射鏡を放射温度計に組み合わせ被測定物体の表面を走査
する機構を備えた“1次元走査型の温度分布測定装置”
が知られている。この装置は、例えば図4で示すよう
に、放射温度計1の測定視野を回転鏡2の如き反射鏡に
より走査して被測定物体3の表面における温度分布を広
い範囲で測定しようとしたものである。なお、図中の符
号4はレンズを示している。
2. Description of the Related Art Conventionally, as one of the devices for measuring the temperature distribution on the surface of an object such as a heated steel material in a non-contact manner, there is provided a mechanism for scanning the surface of the object to be measured by combining a reflecting mirror with a radiation thermometer. "One-dimensional scanning type temperature distribution measuring device"
It has been known. As shown in FIG. 4, for example, this apparatus scans the measurement field of the radiation thermometer 1 with a reflecting mirror such as a rotating mirror 2 to measure the temperature distribution on the surface of the measured object 3 in a wide range. is there. Note that reference numeral 4 in the drawing denotes a lens.

【0003】しかし、物体表面から放射される放射光の
強度は、図5に示すように“放射面の法線方向”と“該
法線に対して角度θをなす方向”とで異なっており、法
線に対して角度θをなす方向への放射強度I(θ)と法
線方向への放射強度I0 との間には I(θ)=ε(θ)I0 ・ cos θ で表わされるランバ−トの余弦法則が成立する。ここ
で、ε(θ)はθ方向の放射率である。
However, as shown in FIG. 5, the intensity of the radiated light emitted from the surface of the object differs between the “normal direction of the radiation surface” and the “direction at an angle θ to the normal”. Between the radiation intensity I (θ) in the direction forming an angle θ with respect to the normal and the radiation intensity I 0 in the normal direction is expressed by I (θ) = ε (θ) I 0 · cos θ. Lambert's cosine law holds. Here, ε (θ) is the emissivity in the θ direction.

【0004】そのため、図6で示したように、前記走査
反射鏡を備える温度分布測定装置で例えば圧延加工中の
線材(5) 表面の温度分布を測定しようとすると、図中の
A点のように“測定面からの放射強度の角度依存性”が
測温に与える影響を無視できる範囲の部位であれば正確
な温度測定が可能であるが、B点のように法線方向から
の変位角度の大きい部位では放射強度の角度依存性のた
めに正確な温度測定は不可能であり、従って広い範囲に
わたる正確な温度分布測定ができないという問題があっ
た。そして、該図6からも推測できるように、放射強度
の角度依存性が無視できる範囲は平面物体よりも曲面を
有する物体の方がより一層小さくなるため、曲面物体表
面の正確な温度分布測定は極めて困難であった。
For this reason, as shown in FIG. 6, when a temperature distribution measuring device having the above-mentioned scanning reflector is used to measure the temperature distribution on the surface of a wire (5) during rolling, for example, a point A in FIG. It is possible to measure the temperature accurately if it is within the range where the influence of "angle dependence of the radiation intensity from the measurement surface" on the temperature measurement can be neglected. However, as shown at point B, the displacement angle from the normal direction However, accurate measurement of the temperature is impossible at a site where the radiation intensity is large, due to the angular dependence of the radiation intensity. As can be inferred from FIG. 6, the range in which the angular dependence of the radiation intensity can be neglected is smaller for an object having a curved surface than for a planar object. It was extremely difficult.

【0005】一方、実開平1−97227号公報には、
細長部材の周方向温度分布を測定する装置として、図7
で示したような、1台の放射温度計1を被測定物体3の
同心外円上に設置した回転輪6に固定して成る温度分布
測定装置が開示されている。即ち、この装置は、回転輪
6を回転させることにより被測定物体3のまわりに放射
温度計1を周回させ、被測定物体3の全周にわたる温度
分布を測定しようとするものである。
On the other hand, Japanese Utility Model Laid-Open No. 1-97227 discloses that
As an apparatus for measuring the circumferential temperature distribution of an elongated member, FIG.
A temperature distribution measuring device is disclosed in which one radiation thermometer 1 is fixed to a rotating wheel 6 installed on a concentric outer circle of a measured object 3 as shown in FIG. In other words, this device is to rotate the rotating wheel 6 so that the radiation thermometer 1 orbits around the measured object 3 to measure the temperature distribution over the entire circumference of the measured object 3.

【0006】しかしながら、上記図7に示すような装置
では放射温度計1を設置した回転輪6を高速で回転させ
ることに限界があるため、測定対象物体の温度が短時間
に変化する場合や測定対象物体が高速で移動する場合に
は、測定対象物体の全周,全長での温度分布の測定が困
難であった。その上、放射温度計1を回転させなければ
ならないため、装置が大型となって設置場所が限定され
るといった問題も指摘された。
However, in the apparatus shown in FIG. 7, there is a limit in rotating the rotating wheel 6 on which the radiation thermometer 1 is installed at a high speed. When the target object moves at a high speed, it is difficult to measure the temperature distribution over the entire circumference and the entire length of the measurement target object. In addition, it has been pointed out that since the radiation thermometer 1 must be rotated, the size of the apparatus becomes large and the installation place is limited.

【0007】上述のように、これまで物体表面、特に曲
面状物体表面の温度分布を広い範囲にわたり正確かつ迅
速に測定できる非接触式の簡易な装置が無かったため、
各種物品の製造や処理手段の改善等を進める上で少なか
らぬ障害となっていた。
As described above, there has been no simple non-contact type device that can accurately and quickly measure the temperature distribution on the surface of an object, particularly on the surface of a curved object over a wide range.
This has been a considerable obstacle in promoting production of various articles and improvement of processing means.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題を解
決すべくなされたものであり、「物体からの熱放射光を
受光して該物体表面の温度分布を測定する装置におい
て、 図1に示されるように、 被測定物体3からの熱放射
光の受光及び伝送のための“一端を前記物体3の被測定
面に法線方向から対向させ得る複数本の単芯光ファイバ
−7”を有し、 かつその各光ファイバ−7の他端にそれ
ぞれ光検出器8の光電変換素子の一単位を接続した構成
を導入するか、或いはこれに加えて更に、 前記光ファイ
バ−7の受光部(一端側)に各光ファイバ−7の被測定
物体3表面上における視野が互いに重複するのを避け測
定視野分解能を上げるための視野絞り9を配設すること
により、 曲面物体の表面温度分布をも広い範囲にわたっ
て高精度,高速で測定し得るようにした点」に大きな特
徴を有している。なお、図中の符号10は信号処理装置を
示す。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problem, and an object of the present invention is to provide an apparatus for measuring a temperature distribution on the surface of an object by receiving heat radiation from the object. As shown in the figure, "a plurality of single-core optical fibers 7 whose one ends can be opposed to the surface to be measured of the object 3 from the normal direction" for receiving and transmitting the heat radiation light from the object 3 to be measured. And a configuration in which one unit of the photoelectric conversion element of the photodetector 8 is connected to the other end of each optical fiber 7, or in addition to this, the light receiving of the optical fiber 7 is further performed. By disposing a field stop 9 for preventing the fields of view of the optical fibers 7 on the surface of the object 3 to be measured from overlapping with each other at one end (one end side) so as to increase the measurement field resolution, the surface temperature distribution of the curved object is obtained. High accuracy and high speed over a wide range And it has a great feature in the point "which is adapted to measure. Note that reference numeral 10 in the figure denotes a signal processing device.

【0009】上記本発明装置による温度分布の測定に際
しては、測定精度を確保するため光ファイバ−の受光部
("一端" 即ち "先端")を測定対象物体の被測定面に法線
方向から対向させねばならないが、その対向方向は格別
な厳密さを必要とするものではなくて法線方向から多少
の角度的ズレが生じても差支えない。また、測定対象物
体の被測定面上の測定視野の大きさを各光ファイバ−間
で一様にするためには、各光ファイバ−の受光部(先
端)位置を被測定面から等距離とする(例えば被測定面
が円筒面であるならばその同心外円上に先端位置を揃え
る)ことが好ましいことは言うまでもない。
When measuring the temperature distribution by the apparatus of the present invention, the light receiving portion of the optical fiber is used to secure the measurement accuracy.
("One end" or "tip") must be opposed to the surface to be measured of the object to be measured from the normal direction, but the facing direction does not require extraordinary strictness and is slightly different from the normal direction. There is no problem if an angular deviation occurs. Also, in order to make the size of the measurement visual field on the surface to be measured of the object to be measured uniform between the optical fibers, the light receiving portion (tip) of each optical fiber must be positioned at the same distance from the surface to be measured. It is needless to say that it is preferable to perform the measurement (for example, if the surface to be measured is a cylindrical surface, the tip positions are aligned on the concentric outer circle).

【00010】各光ファイバ−の他端(後端)は、光検
出器として1次元光検出器が適用される場合には一定間
隔で1列に並べてその各「光電変換素子の一単位」と1
対1で結合させて接続され、また光検出器として2次元
光検出器が適用される場合には一定間隔で複数列に並べ
てその各「光電変換素子の一単位」と1対1で結合させ
て接続されるが、光検出器の「光電変換素子の一単位」
とは、例えば光電変換素子がCCD素子(Charge Coupl
ing Device)であるならば、その複数の画素のうちの
“1画素”又は“2画素以上”を一単位としたものを言
い、一単位の画素数は適宜決定すれば良い。
When the one-dimensional photodetector is used as the photodetector, the other end (rear end) of each optical fiber is arranged in a line at a fixed interval and each of the "one unit of the photoelectric conversion element" 1
When a two-dimensional photodetector is applied as a photodetector, the two-dimensional photodetector is arranged in a plurality of rows at regular intervals, and is coupled one-to-one with each “one unit of the photoelectric conversion element”. Connected, but the "one unit of photoelectric conversion element" of the photodetector
For example, a photoelectric conversion element is a CCD element (Charge Coupl
ing Device), one unit of “1 pixel” or “2 or more pixels” of the plurality of pixels is referred to as one unit, and the number of pixels in one unit may be appropriately determined.

【00011】[00011]

【作用】さて、本発明に係わる表面温度分布測定装置に
よれば、被測定物体と光検出器との間に“被測定物体か
らの熱放射光を受光し光検出器まで伝送する媒体”とし
て光ファイバ−を介在させたことで、熱放射光の受光位
置や受光方向を自在に設定することが可能となり、温度
分布を測定しようとする対象物の広範囲な表面各部位に
わたって等距離位置の熱放射光を“放射強度の角度依存
性”の影響がない角度で検出することができるようにな
るため、曲面物体であっても高精度の温度分布測定を実
施できる。また、装置の構造も簡単で小型化が可能にな
るため、設置場所の制限が少なくなる。
According to the surface temperature distribution measuring device according to the present invention, a "medium for receiving heat radiation light from the measured object and transmitting the light to the photodetector" is provided between the measured object and the photodetector. With the optical fiber interposed, the position and direction of the heat radiation can be freely set, and the heat at the equidistant position over a wide range of the surface of the object whose temperature distribution is to be measured. Since the emitted light can be detected at an angle that is not affected by the “radiation intensity angle dependence”, a highly accurate temperature distribution measurement can be performed even for a curved object. Further, since the structure of the device is simple and the device can be miniaturized, restrictions on the installation location are reduced.

【00012】そして、各光ファイバ−の後端は1次元
又は2次元光検出器の各「光電変換素子の一単位」と1
対1で接続されているので、それぞれの光ファイバ−に
受光された熱放射光は前記光検出器によって電気信号に
変換され、電気的に走査することで高速での温度分布の
測定が可能となる。更に、光ファイバ−の熱放射光受光
部に視野絞りを配設した場合には、各光ファイバ−の被
測定物体表面上における視野を小さくして互いの光ファ
イバ−による温度測定部分の面積が重複するのを避ける
ことができ、測定視野分解能を上げることが可能にな
る。
The rear end of each optical fiber is connected to each "one unit of the photoelectric conversion element" of the one-dimensional or two-dimensional photodetector.
Since they are connected in a one-to-one relationship, the thermal radiation received by each optical fiber is converted into an electrical signal by the photodetector, and the electrical scanning can be performed to measure the temperature distribution at high speed. Become. Further, in the case where a field stop is provided in the heat radiation receiving portion of the optical fibers, the field of view of each optical fiber on the surface of the object to be measured is reduced so that the area of the temperature measurement portion by each optical fiber is reduced. Overlap can be avoided, and the measurement field resolution can be increased.

【00013】[00013]

【実施例】以下、実施例によって本発明を更に具体的に
説明する。図2は、本発明の実施例に係わる温度分布測
定装置の構成概要図であり、圧延中の線材11が温度分布
を測定する対象物体とされている状況が示されている。
即ち、図2に示される装置において、圧延中の線材11か
らの図示していない熱放射光を視野絞り9を配設した光
ファイバ−7で受光すると共に光検出器8に伝送し、該
光検出器8のCCD素子12で電気信号に変換して信号処
理装置10により温度換算することによって、線材11の表
面温度分布が測定される。
The present invention will be described more specifically with reference to the following examples. FIG. 2 is a schematic diagram of the configuration of the temperature distribution measuring device according to the embodiment of the present invention, and shows a situation in which the wire 11 being rolled is a target object whose temperature distribution is to be measured.
That is, in the apparatus shown in FIG. 2, the heat radiation light (not shown) from the wire 11 being rolled is received by the optical fiber 7 provided with the field stop 9 and transmitted to the photodetector 8, and the light is transmitted to the photodetector 8. The surface temperature distribution of the wire 11 is measured by converting it into an electric signal by the CCD element 12 of the detector 8 and converting the temperature by the signal processing device 10.

【00014】ここで、光ファイバ−7としては例えば
20本の単芯光ファイバ−(コア100μm,クラッド
140μm)が適用され、該光ファイバ−7の先端が線
材11の同心外円上の位置となるように、かつそれぞれが
線材11の中心を向くように(即ち線材外周面に法線方向
から対向するように)線材11の外周を取り囲んで配設さ
れる。なお、全光ファイバ−7の先端には、その視野が
線材11の外周に対応するように視野絞り9が設けられて
いる。
Here, as the optical fiber 7, for example, 20 single-core optical fibers (core 100 μm, clad 140 μm) are applied, and the tip of the optical fiber 7 is positioned on the concentric outer circle of the wire 11. The wire 11 is disposed so as to surround the outer periphery of the wire 11 so as to face the center of the wire 11 (ie, to face the outer peripheral surface of the wire from the normal direction). A field stop 9 is provided at the tip of all the optical fibers 7 so that the field of view corresponds to the outer periphery of the wire 11.

【00015】全光ファイバ−7の後端は200μm間
隔で一列に並べ、1次元光検出器の128画素(画素間
隔50μm)を有するCCD素子に接続されている。C
CD素子12との接続は、図示の通り光ファイバ−のコア
部分1個がCCD2画素と結合するようになされてい
る。従って、それぞれの光ファイバ−により伝送された
“線材からの放射光”は、光ファイバ−1本に対してC
CDの2画素分に受光され電気信号に変換され、その合
計出力が光ファイバ−1本分の信号となり信号処理装置
10で温度換算される。同様に、全光ファイバ−に対して
も放射光から電気信号に、そして温度変換がなされ、線
材の温度分布が表示される。
The rear ends of all the optical fibers 7 are arranged in a line at intervals of 200 μm and connected to a CCD element having 128 pixels (pixel interval of 50 μm) of a one-dimensional photodetector. C
The connection with the CD element 12 is made such that one core portion of the optical fiber is connected to two CCDs as shown in the figure. Therefore, the "radiation light from the wire" transmitted by each optical fiber is C
The signal is received by two pixels of the CD and converted into an electric signal, and the total output is a signal for one optical fiber, and the signal processing device
Converted to temperature by 10. Similarly, for all the optical fibers, the emitted light is converted into an electric signal, and the temperature is converted, and the temperature distribution of the wire is displayed.

【00016】この装置により圧延加工中の線材外周面
の温度分布を測定した結果の1例を、図3に示す。この
ように、本発明装置を使用すると、圧延加工中の線材の
全周についての温度分布を高速で的確に測定することが
可能である。
FIG. 3 shows an example of the result of measuring the temperature distribution on the outer peripheral surface of the wire rod during rolling by this apparatus. As described above, the use of the apparatus of the present invention makes it possible to accurately and accurately measure the temperature distribution over the entire circumference of the wire being rolled.

【00017】[00017]

【効果の総括】以上に説明した如く、この発明によれ
ば、棒状や管状等の如き曲面を有する物体の表面におけ
る温度分布を高速,高精度,高分解能で測定することが
可能で、設置場所等の制限が小さいコンパクトな表面温
度分布測定装置を提供することができるなど、産業上有
用な効果がもたらされる。
As described above, according to the present invention, the temperature distribution on the surface of an object having a curved surface such as a rod or a tube can be measured at high speed, high accuracy, and high resolution. Industrially useful effects are provided, such as a compact surface temperature distribution measuring device with a small restriction such as that described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる表面温度分布測定装置の概要説
明図である。
FIG. 1 is a schematic explanatory view of a surface temperature distribution measuring device according to the present invention.

【図2】本発明の実施例に係わる温度分布測定装置の構
成概要図である。
FIG. 2 is a schematic diagram of a configuration of a temperature distribution measuring device according to an embodiment of the present invention.

【図3】実施例装置によって圧延加工中の線材外周面の
温度分布を測定した結果を示すグラフである。
FIG. 3 is a graph showing a result of measuring a temperature distribution on an outer peripheral surface of a wire during rolling by an example apparatus.

【図4】従来の温度分布測定装置の説明図である。FIG. 4 is an explanatory diagram of a conventional temperature distribution measuring device.

【図5】物体表面から放射される放射光の放射角度によ
る強度差の説明図である。
FIG. 5 is an explanatory diagram of an intensity difference depending on a radiation angle of radiation light radiated from an object surface.

【図6】従来の温度分布測定装置の問題点に関する説明
図である。
FIG. 6 is an explanatory diagram relating to a problem of a conventional temperature distribution measuring device.

【図7】従来の温度分布測定装置の別例に関する説明図
である。
FIG. 7 is an explanatory diagram relating to another example of the conventional temperature distribution measuring device.

【符号の説明】[Explanation of symbols]

1 放射温度計 2 回転鏡 3 被測定物体 4 レンズ 5 線材 6 回転輪 7 光ファイバ− 8 光検出器 9 視野絞り 10 信号処理装置 11 圧延中の線材 12 CCD素子 DESCRIPTION OF SYMBOLS 1 Radiation thermometer 2 Rotating mirror 3 Object to be measured 4 Lens 5 Wire 6 Rotating wheel 7 Optical fiber 8 Optical detector 9 Field stop 10 Signal processing device 11 Rolling material 12 CCD element

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体からの熱放射光を受光して該物体表
面の温度分布を測定する装置であって、熱放射光の受光
及び伝送のための“一端を前記物体の被測定面に法線方
向から対向させ得る複数本の単芯光ファイバ−”を有
し、かつその各光ファイバ−の他端にそれぞれ光検出器
の光電変換素子の一単位を接続して成ることを特徴とす
る、曲面物体の表面温度分布測定装置。
1. An apparatus for receiving a thermal radiation from an object and measuring a temperature distribution on the surface of the object, comprising a method for receiving and transmitting the thermal radiation. A plurality of single-core optical fibers which can be opposed to each other from the line direction, and one end of each optical fiber is connected to one unit of a photoelectric conversion element of a photodetector. , Surface temperature distribution measuring device for curved objects.
【請求項2】 被測定物体からの熱放射光を受光する光
ファイバ−の受光部に、各光ファイバ−の被測定物体表
面上における視野が互いに重複するのを避け測定視野分
解能を上げるための視野絞りを配設したことを特徴とす
る、請求項1に記載の曲面物体の表面温度分布測定装
置。
2. A light receiving portion of an optical fiber for receiving thermal radiation light from an object to be measured is provided with a light receiving section for improving the resolution of the measurement visual field by avoiding overlapping of the fields of view on the surface of the object to be measured. The surface temperature distribution measuring device for a curved object according to claim 1, wherein a field stop is provided.
JP3035438A 1991-02-05 1991-02-05 Surface temperature distribution measuring device for curved objects Expired - Lifetime JP2737419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035438A JP2737419B2 (en) 1991-02-05 1991-02-05 Surface temperature distribution measuring device for curved objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035438A JP2737419B2 (en) 1991-02-05 1991-02-05 Surface temperature distribution measuring device for curved objects

Publications (2)

Publication Number Publication Date
JPH04254726A JPH04254726A (en) 1992-09-10
JP2737419B2 true JP2737419B2 (en) 1998-04-08

Family

ID=12441855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035438A Expired - Lifetime JP2737419B2 (en) 1991-02-05 1991-02-05 Surface temperature distribution measuring device for curved objects

Country Status (1)

Country Link
JP (1) JP2737419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110914A (en) * 2015-12-14 2017-06-22 新日鐵住金株式会社 Apparatus and method of measuring surface temperature distribution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628960B4 (en) * 1996-07-18 2005-06-02 Alstom Technology Ltd temperature measuring
US7246570B2 (en) 2005-02-03 2007-07-24 General Electric Company Indication film for temperature and temperature distribution measurement and related method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790273B2 (en) * 1990-11-30 1995-10-04 住友金属工業株式会社 Temperature profile measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110914A (en) * 2015-12-14 2017-06-22 新日鐵住金株式会社 Apparatus and method of measuring surface temperature distribution

Also Published As

Publication number Publication date
JPH04254726A (en) 1992-09-10

Similar Documents

Publication Publication Date Title
US4962311A (en) Device for determining the direction of incident laser radiation
JP2737419B2 (en) Surface temperature distribution measuring device for curved objects
JP2677128B2 (en) Thermal image detector
CN106525249A (en) Infrared temperature measurement device and temperature measurement method for mirror surfaces
CN115389029A (en) Rotary reflection infrared thermal imaging system for measuring circumferential instantaneous temperature distribution of cylindrical surface
CN213276091U (en) High-resistance silicon infrared lens
CN110132144B (en) A kind of dimension of object measurement method and system
JPS6242325Y2 (en)
JPH0524029Y2 (en)
JPH055289B2 (en)
JPS5850330Y2 (en) optical measurement device
JP2607733Y2 (en) Radiation thermometer for wire rod temperature measurement
JPS6344134A (en) Image guide type radiation thermometer
JPH1172390A (en) Measuring apparatus for temperature distribution in turbine blade
JPS5937703Y2 (en) Infrared temperature measuring device
JP2570010B2 (en) Method and apparatus for determining surface groove direction
JPS58131503A (en) Method and apparatus for measuring billet shape
JPH0729471Y2 (en) Optical shaft horsepower meter
JPS6015145Y2 (en) Laser output meter
JPH0791915A (en) Distance measuring device
JPH01170821A (en) Thermal image display device
JPH0790273B2 (en) Temperature profile measuring device
JPH04339227A (en) Non-contact type temperature measuring apparatus using optical fiber
JPH0516511Y2 (en)
RU2146355C1 (en) Method measuring thickness of sheet glass and device for its realization