JP2004219091A - Temperature measuring method using radiation thermometer - Google Patents

Temperature measuring method using radiation thermometer Download PDF

Info

Publication number
JP2004219091A
JP2004219091A JP2003003258A JP2003003258A JP2004219091A JP 2004219091 A JP2004219091 A JP 2004219091A JP 2003003258 A JP2003003258 A JP 2003003258A JP 2003003258 A JP2003003258 A JP 2003003258A JP 2004219091 A JP2004219091 A JP 2004219091A
Authority
JP
Japan
Prior art keywords
temperature
pixel
radiation thermometer
detected
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003003258A
Other languages
Japanese (ja)
Other versions
JP3910917B2 (en
Inventor
Takashi Kamiyama
隆 神山
Noriyasu Matsumoto
憲靖 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003003258A priority Critical patent/JP3910917B2/en
Publication of JP2004219091A publication Critical patent/JP2004219091A/en
Application granted granted Critical
Publication of JP3910917B2 publication Critical patent/JP3910917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature measuring method using a radiation thermometer for precisely measuring temperature even if measurement is made at a great distance to an object when the temperature of the object, such as a compression joint pipe and an electric wire, is measured by using the radiation thermometer. <P>SOLUTION: When the temperature of the compression joint pipe 44, such as an overhead transmission line 50, is measured by using the radiation thermometer, an instant visual field angle θ of one pixel in the radiation thermometer 10 is obtained in advance, the temperature of an already known object to be measured is detected from a blackbody furnace 13 or the like by one pixel, an already known background temperature is detected by nearby pixels 20b-20d adjacent to one pixel 20a, and a correction expression, where a radiation energy P1 in the object to be measured being detected by one pixel becomes a radiation energy A at a temperature of the object to be measured, is calculated from the radiation energy P1 in the object to be detected being detected by one pixel and the background radiation energies P1-P4 detected by each pixel nearby. Temperature is corrected, based on the above correction expression, when the temperature of the compression joint pipe 44 is measured by the radiation thermometer 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉄塔等の架空送電線とがいし或いは送電線同士を接続している圧縮接続管や電線等の対象物の温度測定方法に係り、特に、その対象物を遠く離れた位置から放射温度計を用いて測定するための放射温度計を用いた温度測定方法に関するものである。
【0002】
【従来の技術】
送電線路の保守管理として、圧縮接続管(引留クランプ、圧縮直線スリーブ、ジャンパスリーブ、T型スリーブ、圧縮端子類など)の劣化による発熱を測定することが行われている。
【0003】
図9は、送電線鉄塔を示したものであり、送電線50は、がいし連56を介して鉄塔51の腕金52に支持され、その送電線50同士がジャンパ線53で接続される。
【0004】
圧縮接続管は、図10(a)に示すように送電線50同士を接続する直線スリーブ55や図10(b)に示すように送電線50をがいし連56に接続する引留クランプ54、その他図には示していないが、T型スリーブ、ジャンパスリーブなど種々のものがある。
【0005】
この圧縮接続管は、劣化が進むと抵抗値が増大して電線部分に比べて発熱量が増大するため、送電線の通電中に、その発熱を検知すべく、異常温度となるとその形状が変化する形状記憶合金を圧縮接続管にコイル状に巻き付け、そのコイルピッチの変化を望遠鏡により観察することで異常加熱を検出することが知られている(特許文献1)。
【0006】
【特許文献1】
特開2001−167860号公報
【0007】
【発明が解決しようとする課題】
しかしながら、送電線路の圧縮接続管は多数であり、その圧縮接続管毎に形状記憶合金を巻き付けたのでは、コストがかかる問題がある。
【0008】
そこで、本発明者等は、赤外線放射温度計を用いて圧縮接続管の温度を直接測定することを検討した。
【0009】
この赤外線放射温度計を用いた圧縮接続管の温度の測定は、既設の送電線路の圧縮接続管すべてを測定でき、しかも、安価に測定できる利点がある。
【0010】
ところで、圧縮接続管は、細く、しかも鉄塔の腕金近傍の高い位置にあるため、圧縮接続管が、赤外線放射温度計の瞬時視野角(空間分解能)に十分に収まるまで近づいて測定することは困難であり、どうしても遠い位置からの測定になってしまい、市販されている現状の放射温度計では、圧縮接続管の温度を精度良く測定することは困難であることが分かった。
【0011】
測定に用いた放射温度計のセンサの画素数は、76,800画素(横320画素×縦240画素)であり、その画素毎に温度が測定可能とされており、圧縮接続管が1画素内に収まれば、その温度は測定できるとされているが、現実には、圧縮接続管が1画素に収まりその温度を測定しても実際の温度とは大きな隔たりがあった。
【0012】
この理由は、上述のように76,800画素あり、各画素は基準温度の補正や放射率の補正などが施されるため、1画素は、その周囲の画素の温度影響を受けて温度を表示することに起因するものと思われ、1画素周りの温度が大きく違った場合には、その画素の温度を正確に表示することはできない。
【0013】
実際に放射温度計のメーカ推奨値では、76,800画素中のある画素において、1つの画素が実際に観ている範囲は、被測定物の温度が一様であった場合、1画素は、3×3画素の範囲で90%、5×5画素の範囲で100%の放射エネルギーを測定できるとしている。
【0014】
また、この放射温度計は、その瞬時視野角(空間分解能)が、標準レンズで1.3mrad、5°の望遠レンズを用いても0.29mradが限度であり、圧縮接続管の径にもよるが、20mmの径の直線スリーブの温度測定には、標準レンズを用いたとき、少なくとも5m程度、40mmの径で10m程度近づかなくては精度良い測定はできないこととなり、放射温度計による温度測定は現実的に困難である。
【0015】
実際に、66kV、154kV、275kV以上の電圧階級の送電線で、圧縮接続管に現実に近づける位置で測定した場合に、90%以上の精度で測定できる圧縮接続管の全設備数に対する割合は、66kV送電線で5.4%、154kV送電線で5.0%、275kV以上の送電線で26.0%程度しか測定ができないことが判明した。
【0016】
そこで、本発明の目的は、上記課題を解決し、放射温度計を用いて圧縮接続管や電線などの対象物の温度を測定するに際し、対象物に対してより遠くの位置で測定しても精度良く温度を測定することができる放射温度計を用いた温度測定方法を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するために請求項1の本発明は、架空送電線の圧縮接続管や電線などの対象物を放射温度計を用いて温度測定するに際して、放射温度計の1画素の瞬時視野角を予め求め、その1画素で黒体炉などから既知の被測定物温度を検出させると共にその1画素と隣接する近傍の画素に既知の背景温度を検出させ、その1画素が検出した被測定物放射エネルギーと近傍の各画素が検出した背景放射エネルギーとから1画素で検出した被測定物放射エネルギーが被測定物温度の放射エネルギーとなる補正式を算出しておき、その放射温度計で圧縮接続管の温度を測定する際に上記補正式を基に温度補正を行うようにした放射温度計を用いた温度測定方法である。
【0018】
請求項2の発明は、被測定物温度から求められる放射エネルギーをA、背景温度から求められる放射エネルギーをBとし、被測定物温度を検出した1画素の放射エネルギーPの重み付け係数をa、1画素を中心に、背景温度を検出した縦横1近傍の画素の重み付け係数をb、斜め1近傍の画素の重み付け係数をc、縦横2近傍の画素の重み付け係数をd、斜め2近傍の画素の重み付け係数をeとし、その各画素の放射エネルギーを基に、式を算定すると、
被測定物が1×1の範囲のとき、
A=(P−4bB−4cB−4dB−8eB)/a
被測定物が3×3の範囲のとき、
A=(P−4dB−8eB)/(a+4b+4c)
被測定物が5×5の範囲のとき、
A=P
とし、
重み付け係数a〜eは、黒体炉などから既知の温度を1画素に入力すると共にその近傍の画素に既知の背景温度を入力し、これら温度と各画素が検出したエネルギーから予め求めておく請求項1記載の放射温度計を用いた温度測定方法である。
【0019】
請求項3の発明は、対象物が、圧縮接続管や電線など細長であり、その幅が1画素の範囲のとき、
A=(P−2bB−4cB−2dB−8eB)/(a+2b+2d)
対象物の幅が3画素の範囲のとき、
A=(P−2dB−4eB)/(a+4b+4c+2d+4e)
対象物の幅が5画素の範囲のとき、
A=P
として求める請求項2記載の放射温度計を用いた温度測定方法である。
【0020】
請求項4の発明は、対象物の幅をW、1画素の1片の大きさをrとし、対象物の幅Wが1画素以上3画素未満の範囲のとき、
A=(P−βB)/α
但し、
α+β=1、
α=a+b(1+W/r)+2c(W/r−1)+2d+2e(W/r−1)、
β=b(3−W/r)+2c(3−W/r)+2d+2e(5−W/r)、
として求める請求項3記載の放射温度計を用いた温度測定方法である。
【0021】
請求項5の発明は、対象物の幅をW、1画素の1片の大きさをrとし、対象物の幅Wが3画素以上5画素未満の範囲のとき、
A=(P−βB)/α
但し、
α+β=1、
α=a+4b+4c+d(W/r−1)+2e(W/r−1)
β=d(5−W/r)+2e(5−W/r)
として求める請求項3記載の放射温度計を用いた温度測定方法である。
【0022】
請求項6の発明は、放射温度計で圧縮接続管や電線など細長の対象物の熱画像を撮影する際に、その細長の対象物が熱画像に対して水平になるように放射温度計をロールさせて撮影する請求項1〜5いずれかに記載の放射温度計を用いた温度測定方法である。
【0023】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0024】
先ず、放射温度計の一つの画素がどれぐらいの範囲まで測定しているのか(視野の広がり)について図4、図5により説明する。
【0025】
先ず、図5に示すように、現在圧縮接続管や電線の温度測定に使用する赤外線放射温度計(カメラ)10は、その撮影面11が、横320画素、縦240画素の76,800画素であり、その撮影面11中、1画素が1つの温度として表示している領域12は、放射温度計10と被測定物までの距離Lで、その大きさも異なるが、1画素の範囲の瞬時視野角(空間分解能)θは、1.3mradとなっている。
【0026】
そこで、図4(a)、(b)に示すように、1画素が正しく温度測定がなされるか、黒体炉13を用いて、1画素の測定温度を測定した。
【0027】
この場合、図4(b)に示すように黒体炉13の赤外線出口窓14を、10mm×10mm角の穴15をあけたステンレス板16で覆い、図4(a)に示すように放射温度計10の光軸Oを、黒体炉13の窓14を覆ったステンレス板16の穴15の中心に一致するようにし、瞬時視野角(空間分解能)θを考慮して黒体炉13と放射温度計10との距離Lθ(この場合7.5m)を調節して、穴15が1画素に収まるようにした。
【0028】
また、比較のため穴径30mm×30mm角のステンレス板も用いて測定を行った。
【0029】
測定は、黒体炉の温度を50℃、79℃、118℃として、穴に相当する放射エネルギーを測定した。また、穴周りのステンレス板温度(背景温度)は24℃に保った。
【0030】
ここで、測定される温度をTとすると、画素での放射エネルギーEの算出式は、下式となる。
【0031】
E=218000/[{exp(1488.6/(T+273)}−1]
上記式より、T= 50℃の放射エネルギーは、E=2194
T= 79℃の放射エネルギーは、E=3223
T=118℃の放射エネルギーは、E=4952
であり、また背景温度24℃の放射エネルギーは、E=1461
である。
【0032】
しかし、実際に、それぞれ3回測定した1画素相当分の放射エネルギーは、
T= 50℃(E=2194)で、2018(44.3℃)、1979(43.0℃)、1991(43.4℃)であり、
T= 79℃(E=3223)で、2770(67.0℃)、2702(65.1℃)、1991(63.0℃)であり、
T=118℃(E=4952)で、4034(98.4℃)、3977(97.1℃)、3946(96.4℃)であり、背景温度の影響を大きく受けて正しい放射エネルギーEを示さない。
【0033】
これに対して、30mm×30mmの穴のステンレス板を用いた放射エネルギーは、90%以上の測定精度を示した。
【0034】
この10mm×10mmの穴の1画素を中心とした近傍の画素の放射エネルギーを調べたところ、背景温度の放射エネルギーの測定値は、50℃で、約1550〜1460と背景放射エネルギー(E=1461)に対して0〜90程度放射エネルギーが高く、79℃で、放射エネルギー範囲が約1580〜1460と背景放射エネルギー(E=1461)に対して0〜120程度放射エネルギーが高くなり、118℃で、放射エネルギー範囲が約1710〜1460と背景放射エネルギー(E=1461)に対して0〜250程度放射エネルギーが高くなっていることが分かった。
【0035】
このことは、被測定物が1画素に収まっていても、その画素は背景温度の影響を受け、逆にその1画素近傍の画素は、被測定物の画素の測定温度の影響を受けていることを示している。
【0036】
そこで、1画素を中心に近傍の画素(5×5画素)について、ステンレス板を1画素ずつ移動させて、それぞれの画素の放射エネルギーを測定した。
【0037】
図6は、5×5画素20(但し5×5画素中の4隅の画素は影響を受けないために無視して合計21画素とする)の感知範囲モデルを示したものである。
【0038】
先ず、図6(a)は、5×5画素20の中心画素20aに穴が位置して黒体炉の温度を測定する場合(条件1)、図6(b)は、中心画素20aに対して上下左右に1近傍ずらした画素20bに穴が位置した場合(条件2)、図6(c)は、中心画素20aに対して斜めに1近傍ずらした画素20cに穴が位置した場合(条件3)、図6(d)は、中心画素20aに対して上下左右に2近傍ずらした画素20dに穴が位置した場合(条件4)、図6(e)は、中心画素20aに対して斜めに2近傍ずらした画素20eに穴が位置した場合(条件5)を示している。
【0039】
この図6で、各画素には、被測定物の放射エネルギーAが入射するときにAを表示し、背景エネルギーBが入射するときにBを表示し、中心画素20aに係数aを、中心画素20a(係数a)に対して、上下左右1近傍に係数b、斜め1近傍に係数c、上下左右2近傍に係数dを、斜め2近傍に係数eを付与して重み付けを行って表示した。
【0040】
そこで、各条件1〜5での表示エネルギーP1〜P5としたとき、
条件1: P1=aA+4bB+4cB+4dB+8eB
条件2: P2=aB+3bB+4cB+4dB+8eB+bA
条件3: P3=aB+4bB+3cB+4dB+8eB+cA
条件4: P4=aB+4bB+4cB+3dB+8eB+dA
条件5: P5=aB+4bB+4cB+4dB+7eB+eA
となる。
【0041】
但し、a+4b+4c+4d+8e=1である。
【0042】
次に、図7は、被測定物が5×5画素20のどの範囲にあるかを示した図で、図7(a)は、被測定物が、1×1の画素の範囲にある場合、図7(b)は、被測定物が、3×3の画素の範囲にある場合、図7(c)は、被測定物が、5×5の画素の範囲にある場合を示している。
【0043】
図7(a)の1×1画素の場合の真のエネルギー算出式は、
A=(P−4bB−4cB−4dB−8eB)/a
となる。
【0044】
但し、斜め2近傍の係数eは、略ゼロに近いため、算出式を簡便にするため、
A=(P−4bB−4cB−4dB)/a
とした。
【0045】
また図7(b)の3×3画素が被測定物の放射エネルギーが入射する場合の真のエネルギー算出式は、
A=(P−4dB−8eB)/(a+4b+4c)
となり、同様に、斜め2近傍の係数eは、略ゼロに近いため、算出式を簡便にするため、
A=(P−4dB)/(a+4b+4c)
とした。
【0046】
さらに図7(c)の5×5画素が被測定物の放射エネルギーが入射する場合の真のエネルギー算出式は、
A=P
であり、補正式は不要となる。
【0047】
次に、これら係数a〜dを求めた結果を図8により説明する。
【0048】
図8は、図4、図6で説明したように、被測定物温度(黒体温度)が50℃(図8(a))、79℃(図8(b))、118℃(図8(c))の場合の各画素の温度、各画素の放射エネルギー、近傍画素毎の放射エネルギーの平均をそれぞれ示したものである。
【0049】
この図8(a)〜図8(c)においては、説明の便宜上、各黒体温度に対して1データしか示していないが、放射温度計の補正式となる係数a〜dをより正確に求めるためには、多数温度を測定しておく。
【0050】
さて、中心画素(係数a)の表示エネルギーをP1とし、近傍画素の表示エネルギー値を、上下左右1近傍の画素(係数b)の平均表示エネルギー値をP2、斜め1近傍の画素(係数c)の平均エネルギー値をP3、上下左右2近傍の画素(係数d)の平均表示エネルギー値をP4とし、上記条件1〜4の式(但し、係数eはゼロ)から、それぞれのP1〜P4の表示エネルギーを代入して係数a〜dを求めると以下の通りとなる。
【0051】

Figure 2004219091
以下、測定をそれぞれ3回行った時の係数を下表に示す。
【0052】
Figure 2004219091
表1の全体平均の係数(a=0.715803、b=0.053578、c=0.014790、d=0.002263)を用いて温度を補正した結果を表2に示す。
【0053】
Figure 2004219091
またエネルギー表示では表3となる。
【0054】
Figure 2004219091
このように、1画素の温度、表示エネルギーを係数a〜dを用いて補正することで、実際の温度、放射エネルギーに対して誤差率±5%以内に納めることができ、より信頼性の高い温度測定が行える。
【0055】
次に、温度を測定する対象物として、実際に圧縮接続管の温度を測定する例を図1により説明する。
【0056】
図1は、赤外線放射温度計10で、圧縮接続管として、鉄塔51の引留クランプ54の温度を測定する例を示している。
【0057】
先ず、温度測定を行う引留クランプ54と放射温度計10までの距離Lを距離センサ(図示せず)で計測し、その放射線温度計10で撮影された熱画像G中、引留クランプ54が収まる範囲Sを設定すると共に、その引留クランプ54が水平となるように赤外線放射温度計10と三脚22間に設けたローリング装置24で放射温度計10を光軸周りにロールさせることで、引留クランプ54の温度測定部位25に相当する画素領域26(図では5×5画素)を水平にした状態で、その各画素20の表示エネルギーを取り込みこれを記憶する。
【0058】
このように、引留クランプ54の温度測定部位25の温度データを取り込んだならば他の部位を更に測定する。
【0059】
図2は、放射線温度計10で測定した画素領域26からその温度測定部位25を演算する温度測定装置30のブロック図を示したものである。
【0060】
温度測定装置30には、送電線路毎に送電線名、鉄塔番号、送電線の線番、電線種類、圧縮接続管の種類とその圧縮接続管の番号などがデータベースとして格納された送電線路データ31、送電線路データ31から圧縮接続管の種類とその圧縮接続管の番号が入力されて電線外径や圧縮接続管の径のデータが格納され、かつ放射線温度計10より、データ入力装置32よりの圧縮接続管の温度測定部位25の温度データを記憶する圧縮接続管データ33、上述した重み付け係数a〜dのデータが格納された係数データ部34、入力された測定距離から瞬時視野角を割り出す瞬時視野角割出部35、圧縮接続管データ33からの圧縮接続管のデータ及び温度データと瞬時視野角割出部35からの視野角及び係数データ部34からの係数a〜dを基に圧縮接続管の温度を上述した補正式を用いて演算する温度測定演算処理部36と、温度測定演算処理部36で求めた温度から圧縮接続管の良否を判定する良否判定部37とを備え、その温度データがデータ保存部38に格納されると共に外部のデータ保存装置39に保存され、またデータ出力部40よりプリンタ41に出力されるようになっていると共に、これらデータをディスプレイ42で表示できるようになっている。
【0061】
またデータ入力装置32には、測定時の天候、気温(背景温度となる)、風向、風速が入力され、圧縮接続管の周囲の背景温度が設定できるようにされ、更に測定時に送電線に流れている電流(潮流)も入力できるようになっている。
【0062】
この温度測定装置30は、温度測定演算処理部36で温度を補正するにあたって、圧縮接続管データ33からの圧縮接続管の径と、瞬時視野角割出部35からの瞬時視野角θで、放射線温度計10で測定した画素領域26が、圧縮接続管のどの領域を計測しているかを判断して、上述した重み付け係数a〜dで演算するかを決定する。
【0063】
次に、重み付け係数a〜dを用いて、実際の圧縮接続管の温度を補正する補正式を説明する。
【0064】
先ず、図6は、係数a〜dを求めるための条件式であり、また図7は、被測定物のエネルギーが、1×1、3×3、5×5の画素範囲で説明した。しかし、実際の圧縮接続管は、細長であり、その幅Wは、1画素、3画素、5画素の範囲に入るが、長さ方向には5画素分が入る場合が多いため、上述した1×1、3×3、5×5の画素範囲の補正式の他に、この横方向の5画素分を考慮した補正式とする方がより正確な補正式が得られる。
【0065】
これを図3により説明する。
【0066】
図3(a)に示すように、5×5の画素20が、圧縮接続管44の領域に全て収まって被測定物温度を計測している場合、図3(b)に示すように、上下2近傍の画素20dが圧縮接続管44からはみ出して一部背景温度を計測している場合(3×5の画素)、図3(c)に示すように上下1近傍の画素20bと斜め1近傍の画素20cが一部背景温度を計測している場合(1×5)、更に、図3(d)に示すように、中央の画素20aに圧縮接続管44の温度と背景温度を同時に計測している場合とがある。
【0067】
そこで、先ず図3(a)の5×5の画素20が、圧縮接続管44の領域に全て収まって被測定物温度を計測している場合には、温度測定演算処理部36は、係数a〜dを用いずに、そのまま画素20aの表示エネルギーを測定温度(P=A)とする。
【0068】
また、図3(d)のように1画素20a内に背景温度が入る場合には、演算せずに、測定不可とする。
【0069】
図3(b)の3×5画素が圧縮接続管44の領域に入る場合には、
上述した3×3の補正式
A=(P−4dB−8eB)/(a+4b+4c)
中、圧縮接続管の温度を測定している画素の放射エネルギーAが図3(b)に示すように3×5=15画素となるため、
A=(P−2bB−4cB−2dB−8eB)/(a+4b+4c+4e)
で求める。
【0070】
次に図3(c)の1×5の1画素の場合
上述した補正式
A=(P−4bB−4cB−4dB−8eB)/a
中、圧縮接続管の温度を測定している画素の放射エネルギーAが図3(c)に示すように1×5=5画素となるため、
A=(P−2bB−4cB−8eB)/(a+2b+2d)
で求める。
【0071】
ここで、Aは、被測定物のエネルギー、Bは、背景エネルギーで、空が映っていれば、その空のエネルギー、Pは、画素20aで表示されるエネルギーである。
【0072】
また、圧縮接続管の幅が連続的に変化した場合の補正方法は、圧縮接続管の幅をW、1画素の1片の大きさをrとし、圧縮接続管の幅Wが1画素以上3画素未満の範囲のときは、
A=(P−βB)/α
但し、
α+β=1
α=a+b(1+W/r)+2c(W/r−1)+2d+2e(W/r−1)
β=b(3−W/r)+2c(3−W/r)+2d+2e(5−W/r)
として求める。
【0073】
また、圧縮接続管の幅Wが3画素以上5画素未満の範囲のときは、
A=(P−βB)/α
但し、
α+β=1
α=a+4b+4c+d(W/r−1)+2e(W/r−1)
β=d(5−W/r)+2e(5−W/r)
として求める。
【0074】
このように視野角θを基準に、温度測定する領域を、画素がどの程度の範囲で撮影できているかで、補正式を選択することで、更により精度の高い温度測定が行える。
【0075】
以上において、従来では、66kV、154kV、275kV以上の電圧階級の送電線で、圧縮接続管に現実に近づける位置で測定した場合に、90%以上の精度で測定できる圧縮接続管の全設備数に対する割合は、66kV送電線で5.4%、154kV送電線で5.0%、275kV以上の送電線で26.0%程度しか測定ができなかったが、本発明では、従来の3倍の距離でも、66kV送電線で99.1%、154kV送電線で99.7%、275kV以上の送電線で92.9%の圧縮接続管の温度を精度良く測定できると判断される。
【0076】
なお、上述の実施の形態では圧縮接続管の温度測定で説明したが、圧縮接続管に限らず、送電線、鉄塔等の細長の形状の対象物はもとより、変圧器など細長の形状ではない種々の対象物の温度測定にも、本発明が適用できることは勿論である。
【0077】
【発明の効果】
以上要するに本発明によれば、放射温度計を用いて遠い距離からでも圧縮接続管などの対象物の温度を精度良く測定することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示し、放射温度計で圧縮接続管を撮影する状態を示した図である。
【図2】本発明における温度測定装置のブロック図である。
【図3】本発明において、温度測定する圧縮接続管に対する放射温度計の画素の領域を説明する図である。
【図4】本発明において、補正式を求めるための黒体炉と放射温度計の説明図である。
【図5】本発明において、放射温度計の視野角を説明する図である。
【図6】本発明において、補正式を求めるための5×5画素の放射エネルギーと係数の関係を示す図である。
【図7】本発明において、5×5画素中の被測定物の範囲と補正式の関係を示す図である。
【図8】図4の状態で、黒体炉の温度を測定した時の放射温度計における5×5画素のの温度、表示エネルギーを示す図である。
【図9】圧縮接続管が使用される鉄塔を示す図である。
【図10】圧縮接続管の詳細を示す図である。
【符号の説明】
10 放射温度計
13 黒体炉
20 画素
44 圧縮接続管(対象物)
53 引留クランプ(圧縮接続管)
50 送電線
51 鉄塔[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the temperature of an object such as an overhead transmission line such as a pylon or an insulator or a compression connection pipe or an electric wire connecting the transmission lines, and in particular, the radiation temperature from a position far away from the object. The present invention relates to a temperature measurement method using a radiation thermometer for measurement using a meter.
[0002]
[Prior art]
As a maintenance management of a transmission line, measurement of heat generation due to deterioration of a compression connection pipe (an end clamp, a compression linear sleeve, a jumper sleeve, a T-shaped sleeve, compression terminals, etc.) is performed.
[0003]
FIG. 9 shows a power transmission tower, in which a power transmission line 50 is supported by an arm 52 of a steel tower 51 via an insulator string 56, and the power transmission lines 50 are connected to each other by a jumper wire 53.
[0004]
As shown in FIG. 10 (a), the compression connection pipe includes a straight sleeve 55 for connecting the transmission lines 50 to each other, an end clamp 54 for connecting the transmission line 50 to the insulator 56 as shown in FIG. 10 (b), and other drawings. Although not shown, there are various types such as a T-shaped sleeve and a jumper sleeve.
[0005]
The resistance of this compression connection pipe increases as deterioration progresses, and the amount of heat generated increases as compared to the electric wire part. It is known to detect abnormal heating by winding a shape memory alloy to be wound around a compression connection pipe in a coil shape and observing a change in the coil pitch with a telescope (Patent Document 1).
[0006]
[Patent Document 1]
JP 2001-167860 A
[Problems to be solved by the invention]
However, there are a large number of compression connection pipes in the transmission line, and if a shape memory alloy is wound around each compression connection pipe, there is a problem that the cost is high.
[0008]
Then, the present inventors considered directly measuring the temperature of the compression connection pipe using an infrared radiation thermometer.
[0009]
The measurement of the temperature of the compression connection pipe using the infrared radiation thermometer has the advantage that all the compression connection pipes of the existing transmission line can be measured, and the measurement can be performed at low cost.
[0010]
By the way, since the compression connection pipe is thin and located at a high position near the arm of the tower, it is not possible to measure until the compression connection pipe is sufficiently close to the instantaneous viewing angle (spatial resolution) of the infrared radiation thermometer. It was difficult to measure the temperature from a distant position, and it was found that it was difficult to measure the temperature of the compression connection pipe accurately with a commercially available radiation thermometer.
[0011]
The number of pixels of the sensor of the radiation thermometer used for the measurement is 76,800 pixels (320 horizontal pixels × 240 vertical pixels), and the temperature can be measured for each pixel. If the temperature falls within the range, the temperature can be measured. However, in reality, even if the compression connection pipe fits into one pixel and the temperature is measured, there is a large gap from the actual temperature.
[0012]
The reason for this is that as described above, there are 76,800 pixels, each of which undergoes correction of the reference temperature, correction of the emissivity, etc., so that one pixel displays the temperature affected by the temperature of the surrounding pixels. If the temperature around one pixel is significantly different, the temperature of that pixel cannot be displayed accurately.
[0013]
Actually, according to the manufacturer's recommended value of the radiation thermometer, in a certain pixel out of 76,800 pixels, the range actually observed by one pixel is as follows when the temperature of the measured object is uniform. It is stated that radiant energy of 90% can be measured in a range of 3 × 3 pixels and 100% in a range of 5 × 5 pixels.
[0014]
In addition, this radiation thermometer has an instantaneous viewing angle (spatial resolution) of only 0.29 mrad even with a standard lens of 1.3 mrad and a telephoto lens of 5 °, and depends on the diameter of the compression connection pipe. However, when measuring the temperature of a linear sleeve having a diameter of 20 mm, when using a standard lens, accurate measurement cannot be performed unless the distance is close to at least about 5 m, and a diameter of 40 mm is about 10 m. Realistically difficult.
[0015]
Actually, when measuring at a position close to reality with a compression connection pipe in a transmission line of a voltage class of 66 kV, 154 kV, 275 kV or more, the ratio to the total number of equipment of the compression connection pipe which can be measured with an accuracy of 90% or more is: It turned out that only about 5.4% can be measured with a 66 kV transmission line, 5.0% with a 154 kV transmission line, and only about 26.0% with a 275 kV or more transmission line.
[0016]
Therefore, an object of the present invention is to solve the above-described problems, and when measuring the temperature of an object such as a compression connection pipe or an electric wire using a radiation thermometer, it is also possible to measure the temperature at a position farther from the object. It is an object of the present invention to provide a temperature measuring method using a radiation thermometer that can accurately measure a temperature.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, the present invention of claim 1 provides an instantaneous viewing angle of one pixel of a radiation thermometer when measuring a temperature of an object such as a compression connection pipe or an electric wire of an overhead transmission line using the radiation thermometer. Is determined in advance, and a known object temperature is detected from a black body furnace or the like at one pixel, and a known background temperature is detected at a neighboring pixel adjacent to the one pixel, and the measured object is detected by the one pixel. From the radiant energy and the background radiant energy detected by each pixel in the vicinity, a correction formula is calculated in which the radiant energy of the DUT detected in one pixel is the radiant energy of the temperature of the DUT, and compression connection is performed with the radiation thermometer. This is a temperature measurement method using a radiation thermometer that performs temperature correction based on the above correction formula when measuring the temperature of the tube.
[0018]
According to a second aspect of the present invention, the radiant energy obtained from the object temperature is A, the radiant energy obtained from the background temperature is B, and the weighting coefficient of the radiant energy P of one pixel that has detected the object temperature is a, With the pixel as the center, the weighting coefficient of the pixel near the vertical and horizontal 1 near the background temperature is b, the weighting coefficient of the pixel near the diagonal 1 is c, the weighting coefficient of the pixel near the vertical and horizontal 2 is d, and the weighting of the pixel near the diagonal 2 When the coefficient is e and the equation is calculated based on the radiant energy of each pixel,
When the measured object is in the range of 1 × 1,
A = (P-4bB-4cB-4dB-8eB) / a
When the measured object is in the 3 × 3 range,
A = (P-4dB-8eB) / (a + 4b + 4c)
When the measured object is in the range of 5 × 5,
A = P
age,
The weighting coefficients a to e are obtained by inputting a known temperature from a black body furnace or the like to one pixel, inputting a known background temperature to a pixel in the vicinity thereof, and previously obtaining the temperature and the energy detected by each pixel. A temperature measurement method using the radiation thermometer according to item 1.
[0019]
According to a third aspect of the present invention, when the object is elongated, such as a compression connection pipe or an electric wire, and its width is within a range of one pixel,
A = (P-2bB-4cB-2dB-8eB) / (a + 2b + 2d)
When the width of the object is in the range of 3 pixels,
A = (P-2dB-4eB) / (a + 4b + 4c + 2d + 4e)
When the width of the object is within the range of 5 pixels,
A = P
A temperature measuring method using the radiation thermometer according to claim 2 which is obtained as follows.
[0020]
According to a fourth aspect of the present invention, when the width of the object is W, the size of one piece of one pixel is r, and the width W of the object is in a range of 1 pixel or more and less than 3 pixels,
A = (P-βB) / α
However,
α + β = 1,
α = a + b (1 + W / r) + 2c (W / r−1) + 2d + 2e (W / r−1),
β = b (3-W / r) + 2c (3-W / r) + 2d + 2e (5-W / r),
A temperature measurement method using the radiation thermometer according to claim 3 which is obtained as follows.
[0021]
According to a fifth aspect of the present invention, when the width of the object is W and the size of one piece of one pixel is r, and the width W of the object is in a range of 3 pixels or more and less than 5 pixels,
A = (P-βB) / α
However,
α + β = 1,
α = a + 4b + 4c + d (W / r-1) + 2e (W / r-1)
β = d (5-W / r) + 2e (5-W / r)
A temperature measurement method using the radiation thermometer according to claim 3 which is obtained as follows.
[0022]
According to the invention of claim 6, when a thermal image of an elongated object such as a compression connection pipe or an electric wire is taken by the radiation thermometer, the radiation thermometer is arranged so that the elongated object is horizontal to the thermal image. A temperature measurement method using a radiation thermometer according to any one of claims 1 to 5, wherein the temperature is measured by rolling.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0024]
First, the extent to which one pixel of the radiation thermometer measures (expansion of the visual field) will be described with reference to FIGS.
[0025]
First, as shown in FIG. 5, an infrared radiation thermometer (camera) 10 currently used for measuring the temperature of a compression connection pipe or an electric wire has an imaging surface 11 of 320 pixels wide and 240 pixels high, of 76,800 pixels. An area 12 in which one pixel is displayed as one temperature in the photographing surface 11 is different in the distance L between the radiation thermometer 10 and the object to be measured, and has a different size. The angle (spatial resolution) θ is 1.3 mrad.
[0026]
Therefore, as shown in FIGS. 4A and 4B, the temperature of one pixel was measured correctly or the measured temperature of one pixel was measured using the black body furnace 13.
[0027]
In this case, as shown in FIG. 4B, the infrared exit window 14 of the black body furnace 13 is covered with a stainless plate 16 having a hole 15 of 10 mm × 10 mm square, and the radiation temperature is changed as shown in FIG. The optical axis O of the total 10 is made to coincide with the center of the hole 15 of the stainless steel plate 16 covering the window 14 of the black body furnace 13 and the radiation with the black body furnace 13 in consideration of the instantaneous viewing angle (spatial resolution) θ. The distance Lθ from the thermometer 10 (in this case, 7.5 m) was adjusted so that the hole 15 could fit in one pixel.
[0028]
For comparison, the measurement was performed using a stainless steel plate having a hole diameter of 30 mm × 30 mm square.
[0029]
For the measurement, the radiant energy corresponding to the holes was measured with the temperature of the black body furnace set at 50 ° C., 79 ° C., and 118 ° C. The temperature of the stainless steel plate around the hole (background temperature) was kept at 24 ° C.
[0030]
Here, assuming that the measured temperature is T, the calculation formula of the radiant energy E at the pixel is as follows.
[0031]
E = 218000 / [{exp (1488.6 / (T + 273)}-1])
From the above equation, the radiant energy at T = 50 ° C. is E = 2194
The radiant energy at T = 79 ° C. is E = 3223
The radiant energy at T = 118 ° C. is E = 4952
And the radiant energy at a background temperature of 24 ° C. is E = 1461.
It is.
[0032]
However, actually, the radiant energy equivalent to one pixel measured three times is
T = 50 ° C. (E = 2194), 2018 (44.3 ° C.), 1979 (43.0 ° C.), 1991 (43.4 ° C.),
T = 79 ° C. (E = 3223), 2770 (67.0 ° C.), 2702 (65.1 ° C.), 1991 (63.0 ° C.),
At T = 118 ° C. (E = 4952), they are 4034 (98.4 ° C.), 3977 (97.1 ° C.), and 3946 (96.4 ° C.). Not shown.
[0033]
On the other hand, radiant energy using a stainless steel plate having a hole of 30 mm × 30 mm showed a measurement accuracy of 90% or more.
[0034]
When the radiant energy of a pixel in the vicinity of one pixel in the hole of 10 mm × 10 mm was examined, the measured value of the radiant energy at the background temperature was about 1550 to 1460 at 50 ° C., and the background radiant energy (E = 1461) ) Has a high radiant energy of about 0 to 90 at 79 ° C., the radiant energy range is about 1580 to 1460, and the radiant energy increases by about 0 to 120 with respect to the background radiant energy (E = 1461). It was found that the radiant energy range was about 1710 to 1460, which is about 0 to 250 higher than the background radiant energy (E = 1461).
[0035]
This means that even if the device under test falls within one pixel, that pixel is affected by the background temperature, and conversely, pixels near that one pixel are affected by the measured temperature of the pixel of the device under test. It is shown that.
[0036]
Therefore, the radiant energy of each pixel was measured by moving the stainless steel plate one pixel at a time around the pixel (5 × 5 pixels) in the vicinity of one pixel.
[0037]
FIG. 6 shows a sensing range model of 5 × 5 pixels 20 (however, pixels at the four corners of the 5 × 5 pixels are ignored because they are not affected, so that a total of 21 pixels).
[0038]
First, FIG. 6A shows the case where the hole is located at the center pixel 20a of the 5 × 5 pixels 20 and the temperature of the black body furnace is measured (condition 1). 6 (c), a hole is located at a pixel 20c which is obliquely shifted from the center pixel 20a by one neighborhood (condition 2). 3), FIG. 6D shows a case where a hole is located at a pixel 20d shifted by two neighborhoods up, down, left and right with respect to the center pixel 20a (condition 4), and FIG. 2 shows a case where a hole is located at a pixel 20e shifted by two neighborhoods (condition 5).
[0039]
In FIG. 6, each pixel displays A when the radiant energy A of the device under test is incident, displays B when the background energy B is incident, and assigns a coefficient a to the center pixel 20a and a center pixel 20a. 20a (coefficient a) is weighted by giving a coefficient b to the vicinity of the upper, lower, left and right 1, a coefficient c to the vicinity of the diagonal 1, a coefficient d to the vicinity of the upper, lower, left and right 2 and a coefficient e to the vicinity of the diagonal 2.
[0040]
Then, when the display energies P1 to P5 under the respective conditions 1 to 5 are set,
Condition 1: P1 = aA + 4bB + 4cB + 4dB + 8eB
Condition 2: P2 = aB + 3bB + 4cB + 4dB + 8eB + bA
Condition 3: P3 = aB + 4bB + 3cB + 4dB + 8eB + cA
Condition 4: P4 = aB + 4bB + 4cB + 3dB + 8eB + dA
Condition 5: P5 = aB + 4bB + 4cB + 4dB + 7eB + eA
It becomes.
[0041]
However, a + 4b + 4c + 4d + 8e = 1.
[0042]
Next, FIG. 7 is a diagram showing the range of the object to be measured in 5 × 5 pixels 20, and FIG. 7A shows the case where the object to be measured is in the range of 1 × 1 pixels. 7B shows a case where the object to be measured is in a range of 3 × 3 pixels, and FIG. 7C shows a case where the object to be measured is in a range of 5 × 5 pixels. .
[0043]
The true energy calculation formula for the 1 × 1 pixel in FIG.
A = (P-4bB-4cB-4dB-8eB) / a
It becomes.
[0044]
However, the coefficient e in the vicinity of the diagonal 2 is close to substantially zero, so that the calculation formula is simplified,
A = (P-4bB-4cB-4dB) / a
And
[0045]
In addition, when the radiant energy of the object to be measured is incident on the 3 × 3 pixels in FIG.
A = (P-4dB-8eB) / (a + 4b + 4c)
Similarly, since the coefficient e in the vicinity of the diagonal 2 is almost close to zero, to simplify the calculation formula,
A = (P−4 dB) / (a + 4b + 4c)
And
[0046]
Further, when the radiant energy of the object to be measured is incident on the 5 × 5 pixel in FIG.
A = P
Therefore, the correction formula becomes unnecessary.
[0047]
Next, the result of obtaining these coefficients a to d will be described with reference to FIG.
[0048]
8, as described with reference to FIGS. 4 and 6, the measured object temperature (black body temperature) is 50 ° C. (FIG. 8A), 79 ° C. (FIG. 8B), and 118 ° C. (FIG. 8). 3C shows the temperature of each pixel, the radiant energy of each pixel, and the average of the radiant energy of each neighboring pixel in the case of (c)).
[0049]
In FIGS. 8A to 8C, only one data is shown for each black body temperature for convenience of description, but the coefficients a to d, which are the correction formulas of the radiation thermometer, are more accurately determined. In order to obtain it, many temperatures are measured.
[0050]
Now, the display energy of the central pixel (coefficient a) is P1, the display energy value of the neighboring pixel is P2, the average display energy value of the pixel (coefficient b) near the top, bottom, left and right is P2, and the pixel near the diagonal one (coefficient c) is The average energy value of P3 and the average display energy value of the pixels (coefficient d) in the vicinity of the top, bottom, left and right are P4, and the display of each of P1 to P4 from the expressions of the above conditions 1 to 4 (coefficient e is zero) When the coefficients a to d are obtained by substituting the energy, the following are obtained.
[0051]
Figure 2004219091
The following table shows the coefficients obtained when the measurement was performed three times.
[0052]
Figure 2004219091
Table 2 shows the result of correcting the temperature using the coefficients of the overall average in Table 1 (a = 0.715803, b = 0.053578, c = 0.014790, d = 0.0026263).
[0053]
Figure 2004219091
Table 3 shows the energy display.
[0054]
Figure 2004219091
As described above, by correcting the temperature and the display energy of one pixel by using the coefficients a to d, the error rate can be kept within ± 5% with respect to the actual temperature and the radiant energy, and the reliability is higher. Temperature measurement can be performed.
[0055]
Next, an example of actually measuring the temperature of the compression connection pipe as an object for measuring the temperature will be described with reference to FIG.
[0056]
FIG. 1 shows an example in which the infrared radiation thermometer 10 measures the temperature of a retention clamp 54 of a steel tower 51 as a compression connection pipe.
[0057]
First, a distance L between the retention clamp 54 for performing temperature measurement and the radiation thermometer 10 is measured by a distance sensor (not shown), and a range in which the retention clamp 54 fits in the thermal image G captured by the radiation thermometer 10. S is set, and the radiation thermometer 10 is rolled around the optical axis by a rolling device 24 provided between the infrared radiation thermometer 10 and the tripod 22 so that the retention clamp 54 is horizontal. In a state where the pixel area 26 (5 × 5 pixels in the figure) corresponding to the temperature measurement part 25 is horizontal, the display energy of each pixel 20 is captured and stored.
[0058]
As described above, when the temperature data of the temperature measurement portion 25 of the retaining clamp 54 is captured, other portions are further measured.
[0059]
FIG. 2 is a block diagram of a temperature measurement device 30 that calculates a temperature measurement site 25 from a pixel area 26 measured by the radiation thermometer 10.
[0060]
The transmission line data 31 in which the temperature measurement device 30 stores, as a database, transmission line names, tower numbers, transmission line numbers, electric wire types, types of compression connection tubes, and numbers of the compression connection tubes for each transmission line. The type of the compression connection pipe and the number of the compression connection pipe are input from the transmission line data 31, data on the outer diameter of the electric wire and the diameter of the compression connection pipe are stored, and from the radiation thermometer 10 and the data input device 32 The compression connection pipe data 33 for storing the temperature data of the temperature measurement part 25 of the compression connection pipe, the coefficient data section 34 in which the data of the above-mentioned weighting coefficients a to d are stored, and the instant to determine the instantaneous viewing angle from the input measurement distance. The viewing angle indexing unit 35, the data and temperature data of the compression connection pipe from the compression connection pipe data 33, and the viewing angle from the instantaneous viewing angle calculation unit 35 and the coefficients a to d from the coefficient data unit 34. A temperature measurement calculation processing unit 36 for calculating the temperature of the compression connection pipe using the above-described correction formula; and a quality judgment unit 37 for determining the quality of the compression connection pipe from the temperature obtained by the temperature measurement calculation processing unit 36. The temperature data is stored in the data storage unit 38 and stored in the external data storage device 39, and is output from the data output unit 40 to the printer 41. These data are displayed on the display 42. I can do it.
[0061]
The data input device 32 receives the weather, air temperature (becomes a background temperature), wind direction, and wind speed at the time of measurement, and allows setting of the background temperature around the compression connection pipe. Current (current) that can be input.
[0062]
The temperature measuring device 30 uses the diameter of the compression connection pipe from the compression connection pipe data 33 and the instantaneous viewing angle θ from the instantaneous viewing angle indexing unit 35 to correct the temperature in the temperature measurement calculation processing unit 36. It is determined which region of the compression connection pipe is measured by the pixel region 26 measured by the total 10, and it is determined whether the calculation is performed using the above-described weighting coefficients a to d.
[0063]
Next, a correction equation for correcting the actual temperature of the compression connection pipe using the weighting coefficients a to d will be described.
[0064]
First, FIG. 6 is a conditional expression for obtaining the coefficients a to d, and FIG. 7 has been described in the pixel range where the energy of the DUT is 1 × 1, 3 × 3, and 5 × 5. However, the actual compression connection pipe is slender, and its width W falls within the range of 1 pixel, 3 pixels, and 5 pixels, but often includes 5 pixels in the length direction. In addition to the correction formulas for the pixel ranges of × 1, 3 × 3, and 5 × 5, a more accurate correction formula can be obtained by using a correction formula that takes into account the five pixels in the horizontal direction.
[0065]
This will be described with reference to FIG.
[0066]
As shown in FIG. 3A, when the 5 × 5 pixels 20 are all within the area of the compression connection pipe 44 and measure the temperature of the object to be measured, as shown in FIG. When the pixels 20d in the vicinity of 2 are protruding from the compression connection pipe 44 and partially measuring the background temperature (3 × 5 pixels), as shown in FIG. In the case where the pixel 20c of (a) partially measures the background temperature (1 × 5), the temperature of the compression connection pipe 44 and the background temperature are simultaneously measured at the central pixel 20a as shown in FIG. And sometimes.
[0067]
Therefore, first, when the 5 × 5 pixels 20 in FIG. 3A are all contained in the area of the compression connection pipe 44 and are measuring the temperature of the object to be measured, the temperature measurement calculation processing unit 36 sets the coefficient a The display energy of the pixel 20a is set to the measurement temperature (P = A) without using ず d.
[0068]
When the background temperature falls within one pixel 20a as shown in FIG. 3D, the measurement is not performed without calculation.
[0069]
When 3 × 5 pixels in FIG. 3B enter the area of the compression connection pipe 44,
The above 3 × 3 correction equation A = (P−4 dB−8 eB) / (a + 4b + 4c)
Medium, since the radiant energy A of the pixel measuring the temperature of the compression connection pipe is 3 × 5 = 15 pixels as shown in FIG.
A = (P-2bB-4cB-2dB-8eB) / (a + 4b + 4c + 4e)
Ask for.
[0070]
Next, in the case of one pixel of 1 × 5 in FIG. 3C, the above-described correction equation A = (P-4bB-4cB-4dB-8eB) / a
Medium, since the radiant energy A of the pixel measuring the temperature of the compression connection pipe is 1 × 5 = 5 pixels as shown in FIG.
A = (P-2bB-4cB-8eB) / (a + 2b + 2d)
Ask for.
[0071]
Here, A is the energy of the measured object, B is the background energy, and if the sky is reflected, the energy of the sky, and P is the energy displayed by the pixel 20a.
[0072]
When the width of the compression connection pipe continuously changes, the correction method is as follows: the width of the compression connection pipe is W, the size of one pixel is r, and the width W of the compression connection pipe is 1 pixel or more. When the range is smaller than the pixel,
A = (P-βB) / α
However,
α + β = 1
α = a + b (1 + W / r) + 2c (W / r−1) + 2d + 2e (W / r−1)
β = b (3-W / r) + 2c (3-W / r) + 2d + 2e (5-W / r)
Asking.
[0073]
When the width W of the compression connection pipe is in a range of 3 pixels or more and less than 5 pixels,
A = (P-βB) / α
However,
α + β = 1
α = a + 4b + 4c + d (W / r-1) + 2e (W / r-1)
β = d (5-W / r) + 2e (5-W / r)
Asking.
[0074]
As described above, even more accurate temperature measurement can be performed by selecting a correction formula depending on the extent to which the pixel can be photographed in the temperature measurement area based on the viewing angle θ.
[0075]
In the above description, conventionally, when measuring at a position close to the actual state of the compression connection pipe with a transmission line of a voltage class of 66 kV, 154 kV, 275 kV or more, the total number of equipment of the compression connection pipe that can be measured with 90% or more accuracy is considered. The ratio was 5.4% for 66 kV transmission lines, 5.0% for 154 kV transmission lines, and only about 26.0% for 275 kV or higher transmission lines. However, it is determined that the temperature of the compression connection pipe can be accurately measured at 99.1% for the 66 kV transmission line, 99.7% for the 154 kV transmission line, and 92.9% for the 275 kV or higher transmission line.
[0076]
In the above-described embodiment, the description has been made of the temperature measurement of the compression connection pipe. Of course, the present invention can also be applied to temperature measurement of an object.
[0077]
【The invention's effect】
In short, according to the present invention, it is possible to accurately measure the temperature of an object such as a compression connection pipe even from a long distance using a radiation thermometer.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention and showing a state in which a compression connection pipe is photographed by a radiation thermometer.
FIG. 2 is a block diagram of a temperature measuring device according to the present invention.
FIG. 3 is a diagram illustrating a pixel area of a radiation thermometer with respect to a compression connection pipe for measuring a temperature in the present invention.
FIG. 4 is an explanatory diagram of a blackbody furnace and a radiation thermometer for obtaining a correction equation in the present invention.
FIG. 5 is a diagram illustrating a viewing angle of a radiation thermometer in the present invention.
FIG. 6 is a diagram illustrating a relationship between radiant energy of 5 × 5 pixels and a coefficient for obtaining a correction equation in the present invention.
FIG. 7 is a diagram showing a relationship between a range of an object to be measured in 5 × 5 pixels and a correction formula in the present invention.
8 is a diagram showing the temperature and display energy of 5 × 5 pixels in the radiation thermometer when the temperature of the black body furnace is measured in the state of FIG.
FIG. 9 is a view showing a steel tower in which a compression connection pipe is used.
FIG. 10 is a diagram showing details of a compression connection pipe.
[Explanation of symbols]
10 Radiation thermometer 13 Black body furnace 20 Pixel 44 Compression connection pipe (object)
53 Retention clamp (compression connection pipe)
50 Transmission line 51 Steel tower

Claims (6)

架空送電線の圧縮接続管や電線などの対象物を放射温度計を用いて温度測定するに際して、放射温度計の1画素の瞬時視野角を予め求め、その1画素で黒体炉などから既知の被測定物温度を検出させると共にその1画素と隣接する近傍の画素に既知の背景温度を検出させ、その1画素が検出した被測定物放射エネルギーと近傍の各画素が検出した背景放射エネルギーとから1画素で検出した被測定物放射エネルギーが被測定物温度の放射エネルギーとなる補正式を算出しておき、その放射温度計で圧縮接続管の温度を測定する際に上記補正式を基に温度補正を行うことを特徴とする放射温度計を用いた温度測定方法。When measuring the temperature of an object such as a compression connection pipe or an electric wire of an overhead power transmission line using a radiation thermometer, an instantaneous viewing angle of one pixel of the radiation thermometer is obtained in advance, and the one pixel is known from a black body furnace or the like. The temperature of the DUT is detected, and a neighboring pixel adjacent to the one pixel is detected at a known background temperature, and the radiated energy of the DUT detected by the one pixel and the background radiant energy detected by each neighboring pixel are calculated. A correction formula is calculated in which the radiant energy of the DUT detected by one pixel becomes the radiant energy of the temperature of the DUT, and when the radiation thermometer measures the temperature of the compression connection pipe, the temperature is calculated based on the above correction formula. A temperature measuring method using a radiation thermometer, wherein the temperature is corrected. 被測定物温度から求められる放射エネルギーをA、背景温度から求められる放射エネルギーをBとし、被測定物温度を検出した1画素の放射エネルギーPの重み付け係数をa、1画素を中心に、背景温度を検出した縦横1近傍の画素の重み付け係数をb、斜め1近傍の画素の重み付け係数をc、縦横2近傍の画素の重み付け係数をd、斜め2近傍の画素の重み付け係数をeとし、その各画素の放射エネルギーを基に、式を算定すると、
被測定物が1×1の範囲のとき、
A=(P−4bB−4cB−4dB−8eB)/a
被測定物が3×3の範囲のとき、
A=(P−4dB−8eB)/(a+4b+4c)
被測定物が5×5の範囲のとき、
A=P
とし、
重み付け係数a〜eは、黒体炉などから既知の温度を1画素に入力すると共にその近傍の画素に既知の背景温度を入力し、これら温度と各画素が検出したエネルギーから予め求めておく請求項1記載の放射温度計を用いた温度測定方法。
The radiant energy obtained from the temperature of the device under test is A, the radiant energy obtained from the background temperature is B, and the weighting coefficient of the radiant energy P of one pixel at which the temperature of the device under test is detected is a. B, the weighting coefficient of the pixel in the vicinity of the diagonal 1 is c, the weighting coefficient of the pixel in the vicinity of the vertical and horizontal 2 is d, and the weighting coefficient of the pixel in the vicinity of the diagonal 2 is e. When calculating the formula based on the radiant energy of the pixel,
When the measured object is in the range of 1 × 1,
A = (P-4bB-4cB-4dB-8eB) / a
When the measured object is in the 3 × 3 range,
A = (P-4dB-8eB) / (a + 4b + 4c)
When the measured object is in the range of 5 × 5,
A = P
age,
The weighting coefficients a to e are obtained by inputting a known temperature from a black body furnace or the like to one pixel, inputting a known background temperature to a pixel in the vicinity thereof, and previously obtaining the temperature and the energy detected by each pixel. Item 4. A temperature measurement method using the radiation thermometer according to Item 1.
対象物が、圧縮接続管や電線など細長であり、その幅が1画素の範囲のとき、
A=(P−2bB−4cB−2dB−8eB)/(a+2b+2d)
対象物の幅が3画素の範囲のとき、
A=(P−2dB−4eB)/(a+4b+4c+2d+4e)
対象物の幅が5画素の範囲のとき、
A=P
として求める請求項2記載の放射温度計を用いた温度測定方法。
When the target object is slender such as a compression connection pipe or electric wire and the width is within the range of one pixel,
A = (P-2bB-4cB-2dB-8eB) / (a + 2b + 2d)
When the width of the object is in the range of 3 pixels,
A = (P-2dB-4eB) / (a + 4b + 4c + 2d + 4e)
When the width of the object is within the range of 5 pixels,
A = P
A temperature measuring method using the radiation thermometer according to claim 2, which is determined as follows.
対象物の幅をW、1画素の1片の大きさをrとし、対象物の幅Wが1画素以上3画素未満の範囲のとき、
A=(P−βB)/α
但し、
α+β=1、
α=a+b(1+W/r)+2c(W/r−1)+2d+2e(W/r−1)、
β=b(3−W/r)+2c(3−W/r)+2d+2e(5−W/r)、
として求める請求項3記載の放射温度計を用いた温度測定方法。
When the width of the object is W and the size of one piece of one pixel is r, and the width W of the object is in a range of 1 pixel or more and less than 3 pixels,
A = (P-βB) / α
However,
α + β = 1,
α = a + b (1 + W / r) + 2c (W / r−1) + 2d + 2e (W / r−1),
β = b (3-W / r) + 2c (3-W / r) + 2d + 2e (5-W / r),
A temperature measuring method using the radiation thermometer according to claim 3, wherein the temperature is determined as:
対象物の幅をW、1画素の1片の大きさをrとし、対象物の幅Wが3画素以上5画素未満の範囲のとき、
A=(P−βB)/α
但し、
α+β=1、
α=a+4b+4c+d(W/r−1)+2e(W/r−1)
β=d(5−W/r)+2e(5−W/r)
として求める請求項3記載の放射温度計を用いた温度測定方法。
When the width of the object is W and the size of one piece of one pixel is r, and the width W of the object is in a range of 3 pixels or more and less than 5 pixels,
A = (P-βB) / α
However,
α + β = 1,
α = a + 4b + 4c + d (W / r-1) + 2e (W / r-1)
β = d (5-W / r) + 2e (5-W / r)
A temperature measuring method using the radiation thermometer according to claim 3, wherein the temperature is determined as:
放射温度計で圧縮接続管や電線など細長の対象物の熱画像を撮影する際に、その細長の対象物が熱画像に対して水平になるように放射温度計をロールさせて撮影する請求項1〜5いずれかに記載の放射温度計を用いた温度測定方法。When taking a thermal image of an elongated object such as a compression connection pipe or an electric wire with the radiation thermometer, the radiation thermometer is rolled so that the elongated object is horizontal to the thermal image, and the image is taken. A temperature measurement method using the radiation thermometer according to any one of 1 to 5.
JP2003003258A 2003-01-09 2003-01-09 Temperature measurement method using a radiation thermometer Expired - Fee Related JP3910917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003258A JP3910917B2 (en) 2003-01-09 2003-01-09 Temperature measurement method using a radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003258A JP3910917B2 (en) 2003-01-09 2003-01-09 Temperature measurement method using a radiation thermometer

Publications (2)

Publication Number Publication Date
JP2004219091A true JP2004219091A (en) 2004-08-05
JP3910917B2 JP3910917B2 (en) 2007-04-25

Family

ID=32894577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003258A Expired - Fee Related JP3910917B2 (en) 2003-01-09 2003-01-09 Temperature measurement method using a radiation thermometer

Country Status (1)

Country Link
JP (1) JP3910917B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668025B1 (en) 2004-08-11 2007-01-15 산요덴키가부시키가이샤 Temperature correction processing apparatus
JP2008045888A (en) * 2006-08-11 2008-02-28 Chugoku Electric Power Co Inc:The Device for diagnosing overheating
JP2014149260A (en) * 2013-02-04 2014-08-21 Nec Personal Computers Ltd Information processor
CN106052878A (en) * 2015-04-17 2016-10-26 保时捷股份公司 Cylinder head assembly
WO2023276639A1 (en) * 2021-06-28 2023-01-05 コニカミノルタ株式会社 Surface temperature measurement device, surface temperature measurement method, and optical characteristic measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668025B1 (en) 2004-08-11 2007-01-15 산요덴키가부시키가이샤 Temperature correction processing apparatus
JP2008045888A (en) * 2006-08-11 2008-02-28 Chugoku Electric Power Co Inc:The Device for diagnosing overheating
JP2014149260A (en) * 2013-02-04 2014-08-21 Nec Personal Computers Ltd Information processor
CN106052878A (en) * 2015-04-17 2016-10-26 保时捷股份公司 Cylinder head assembly
JP2016206183A (en) * 2015-04-17 2016-12-08 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Cylinder head assembly
WO2023276639A1 (en) * 2021-06-28 2023-01-05 コニカミノルタ株式会社 Surface temperature measurement device, surface temperature measurement method, and optical characteristic measurement device

Also Published As

Publication number Publication date
JP3910917B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
CN106679817B (en) A method of for Calibration of Infrared Thermal Imager
US8823803B2 (en) Apparatus and method to calculate energy dissipated from an object
TW200803482A (en) Image processing method of indicator input system
CN112798110A (en) Calibration fitting-based temperature detection method for infrared thermal imaging equipment
KR20100034086A (en) Method and apparatus for the aging monitoring of electric device using image acquisition
CN112254663B (en) Plane deformation monitoring and measuring method and system based on image recognition
CN107101623A (en) Measuring method, system and device based on coordinate transform
JP2005016991A (en) Infrared structure diagnosis system
JP2005016995A (en) Infrared structure diagnosis method
JP2004219091A (en) Temperature measuring method using radiation thermometer
JP2005300179A (en) Infrared structure diagnosis system
CN114136544B (en) Underwater vibration simulation test system and method based on high-speed video measurement
CN108519158B (en) A kind of infrared detection method of GIS device over-heat inside defect
CN106997022A (en) The detection means of ultraviolet partial discharge number of photons is compensated based on laser ranging
CN111289148A (en) Transient fireball parameter acquisition method based on field calibration
CN111964604B (en) Plane deformation monitoring and measuring method based on image recognition
CN105717502A (en) High speed laser distance measuring device based on linear array CCD and method
CN108898585A (en) A kind of axial workpiece detection method and its device
CN114235157A (en) Thermal infrared imager with TOF sensor
CN117630091B (en) Method and device for testing retraction stress of heat-shrinkable sleeve
JP3565549B2 (en) Method and apparatus for measuring weld temperature of welded pipe
CN113720573B (en) Wind tunnel cold leakage monitoring system based on vision and distributed optical fiber combined temperature measurement
CN109751955A (en) Non-contact object displacement measuring device and the measurement method for using it
CN112649095B (en) Large-range accurate temperature measurement system based on affine transformation and optical/infrared double lenses
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees