JP2017108900A - 睡眠情報収集システム - Google Patents

睡眠情報収集システム Download PDF

Info

Publication number
JP2017108900A
JP2017108900A JP2015245251A JP2015245251A JP2017108900A JP 2017108900 A JP2017108900 A JP 2017108900A JP 2015245251 A JP2015245251 A JP 2015245251A JP 2015245251 A JP2015245251 A JP 2015245251A JP 2017108900 A JP2017108900 A JP 2017108900A
Authority
JP
Japan
Prior art keywords
bedding
sleep
information
deep sleep
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015245251A
Other languages
English (en)
Other versions
JP6269980B2 (ja
Inventor
高橋 幸司
Koji Takahashi
幸司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emoor Co Ltd
Original Assignee
Emoor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emoor Co Ltd filed Critical Emoor Co Ltd
Priority to JP2015245251A priority Critical patent/JP6269980B2/ja
Publication of JP2017108900A publication Critical patent/JP2017108900A/ja
Application granted granted Critical
Publication of JP6269980B2 publication Critical patent/JP6269980B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】信頼性の高い睡眠情報を収集することのできる睡眠情報収集システムを提供する。
【解決手段】硬度を含む物性が各々で異なる複数のテスト用寝具Tと、測定・記録された生体情報に基づいて、使用者Pの深睡眠率を算出する深睡眠率算出部1fと、深睡眠率算出部1fが深睡眠率を算出した際に、その深睡眠率、その深睡眠率が算出された使用者Pの身体情報、及び、その使用者Pが使用したテスト用寝具Tの物性を格納する睡眠情報格納部1aを備える。
【選択図】図1

Description

本発明は、寝具の物性に対する使用者の深睡眠率や熟睡度といった睡眠情報を収集するための睡眠情報収集システムに関する。
従来、使用者の睡眠状況の評価を行い、その評価に基づいて、複数の選択対象寝具から使用者に適すると考えられる寝具を選択する寝具選択システムが知られている。この種の寝具選択システムでは、使用者に対して複数の質問を行い、その回答に基づいて、睡眠状況の評価が行われるものがある(例えば、特許文献1参照。)。
特開2003−216734号公報
ところで、特許文献1に記載のような従来の寝具選択システムは、質問に対する回答という使用者の主観的なデータを基準として睡眠状況の評価を行っている。そのため、従来の寝具選択システムを用いて収集することのできる睡眠情報は、使用者の主観が多分に含まれたものとなっていた。
その結果、従来の寝具選択システムを用いて収集された睡眠情報は、客観性に欠けたものとなってしまい、寝具の物性との相関関係を抽出しにくいという問題があった。
本発明は以上の点に鑑みてなされたものであり、信頼性の高い睡眠情報を収集することのできる睡眠情報収集システムを提供することを目的とする。
上記目的を達成するために、本発明の睡眠情報収集システムは、使用者の身長及び体重を含む身体情報を入力する身体情報入力部と、硬度を含む物性が各々で異なる複数のテスト用寝具と、前記物性を前記テスト用寝具ごとに格納するテスト用寝具物性格納部と、前記テスト用寝具で睡眠中の使用者の生体情報を測定する生体情報測定部と、前記生体情報測定部が測定した前記生体情報を記録する生体情報記録部と、記録された前記生体情報に基づいて、前記使用者の深睡眠率を算出する深睡眠率算出部と、前記物性、前記深睡眠率及び前記身体情報の相関データを格納する睡眠情報格納部とを備え、前記睡眠情報格納部は、前記深睡眠率算出部が算出した前記深睡眠率、該深睡眠率が算出された前記使用者の前記身体情報、及び、該使用者が使用した前記テスト用寝具の前記物性を格納することを特徴とする。
このように、本発明の睡眠情報収集システムでは、まず、物性が予め得られているテスト用寝具で、使用者が試験的な睡眠を行う。ここで、物性には、測定が容易であり、体動(すなわち、睡眠状況)に大きく影響する硬度が含まれている。
そして、その試験的な睡眠中に生体情報測定部で測定され、生体情報記録部で記録された生体情報に基づいて、深睡眠率算出部が深睡眠率を算出する。その後、睡眠情報格納部が、算出された深睡眠率、深睡眠率が算出された使用者の身体情報、及び、使用者が使用したテスト用寝具の物性を、相関データとして格納する。
すなわち、本発明の睡眠情報収集システムでは、使用者個人の生体情報に基づいて得られた深睡眠率と測定が容易であって睡眠状況に大きく影響する硬度を含む物性との相関データを、試験的な睡眠を行って収集している。したがって、本発明の睡眠情報収集システムによれば、使用者ごとに取得された睡眠情報を、実際に睡眠に影響する物性に対応させつつ状態で収集するので、信頼性の高い睡眠情報を収集することができる。
また、上記目的を達成するために、本発明の睡眠情報収集システムは、使用者の身長及び体重を含む身体情報を入力する身体情報入力部と、硬度を含む物性が各々で異なる複数のテスト用寝具と、前記物性を前記テスト用寝具ごとに格納するテスト用寝具物性格納部と、前記テスト用寝具での睡眠の後に、前記使用者が感じた熟睡度を入力する熟睡度入力部と、前記物性、前記熟睡度及び前記身体情報の相関データを格納する睡眠情報格納部とを備え、前記睡眠情報格納部は、前記熟睡度入力部に入力された前記熟睡度、該熟睡度を入力した前記使用者の前記身体情報、及び、該使用者が使用した前記テスト用寝具の前記物性を格納することを特徴とする。
このように、本発明の睡眠情報収集システムでは、まず、物性が予め得られているテスト用寝具で、使用者が試験的な睡眠を行う。ここで、物性には、測定が容易であり、体動(すなわち、睡眠状況)に大きく影響する硬度が含まれている。
そして、その試験的な睡眠の後に、使用者が、その睡眠に対して感じた熟睡度を熟睡度入力部に入力する。その後、睡眠情報格納部が、入力された熟睡度、熟睡度を入力した使用者の身体情報、及び、使用者が使用したテスト用寝具の物性を、相関データとして格納する。
すなわち、本発明の睡眠情報収集システムでは、使用者個人の入力した熟睡度と測定が容易であって睡眠状況に大きく影響する硬度を含む物性との相関データを、試験的な睡眠を行って収集している。したがって、本発明の睡眠情報収集システムによれば、使用者ごとに取得された睡眠情報を、実際に睡眠に影響する物性に対応させつつ状態で収集するので、信頼性の高い睡眠情報を収集することができる。
また、本発明の睡眠情報収集システムにおいては、前記物性は、反発弾性を含むことが好ましい。反発弾性は、測定が比較的容易であり、硬度と同様に、体動(すなわち、睡眠状況)に大きく影響するためである。
実施形態に係る寝具選択システムの概略構成を示す模式図。 図1の寝具選択システムがテスト用寝具選択工程で行う処理を示すフローチャート。 図1の寝具選択システムのタブレットに、使用者の身体情報の入力時に表示される画面の模式図。 図1の寝具選択システムの身体情報と深睡眠率及び熟睡度とテスト用寝具の物性との相関データのデータテーブルの一例を示す模式図。 図1の寝具選択システムが寝具選択工程で行う処理を示すフローチャート。 図1の寝具選択システムが情報収集工程で行う処理を示すフローチャート。
以下、図面を参照して、実施形態に係る寝具選択システムについて説明する。本実施形態の寝具選択システムは、情報収集システムを含むものである。
以下、図1〜図6を参照して、実施形態に係る寝具選択システムについて説明する。
まず、図1を参照して、寝具選択システムSの構成について説明する。
図1に示すように、寝具選択システムSは、寝具販売業者が管理するサーバ1と、使用者Pの自宅に設置されているタブレット2と、使用者Pの生体情報を測定するセンサ3と、寝具販売店の倉庫等に準備されている複数のテスト用寝具T及び複数の選択対象寝具Mとを備えている。サーバ1とタブレット2とは、ネットワークを介して接続されている。
サーバ1は、CPUやメモリ等を備えた情報処理端末である。サーバ1は、予め収集された睡眠情報を格納する睡眠情報格納部1aと、試験的な睡眠で使用するテスト用寝具の物性を認識するテスト用物性認識部1bと、テスト用寝具の物性を格納するテスト用寝具物性格納部1cと、試験的な睡眠で使用するテスト用寝具を選択するテスト用寝具選択部1dとを有している。
睡眠情報格納部1aに格納されている睡眠情報は、予め収集された寝具の物性、深睡眠率又は熟睡度、及び、身体情報の相関データである。この相関データは、タブレット2及び後述する深睡眠率算出部1fからの情報に基づいて更新される。
テスト用物性認識部1bは、タブレット2で入力された使用者Pの身体情報と睡眠情報格納部1aに格納されている相関データとに基づいて、使用者Pの深睡眠率及び熟睡度が高くなる可能性が高い物性をテスト用物性として認識する。
テスト用寝具物性格納部1cは、テスト用寝具Tごとに、その物性を格納している。
テスト用寝具選択部1dは、テスト用物性認識部1bで前記テスト用物性として認識された物性とテスト用寝具物性格納部1cに格納されている物性とに基づいて、複数のテスト用寝具Tから、使用者Pの深睡眠率及び熟睡度が高くなる可能性が高いテスト用寝具を選択する。
また、サーバ1は、センサ3から送信された生体情報を記録する生体情報記録部1eと、使用者Pの深睡眠率を算出する深睡眠率算出部1fと、複数のテスト用寝具Tから使用者Pに好適な寝具を認識する好適寝具認識部1gと、使用者Pに好適な物性を認識する好適物性認識部1hと、選択対象寝具Mの物性を格納する選択対象寝具物性格納部1iと、使用者Pに提案する寝具を選択する寝具選択部1jとを有している。
生体情報記録部1eは、使用者Pがテスト用寝具Tで試験的な睡眠を行っている最中にセンサ3が測定した生体情報を、タブレット2を介して、受信し、記録する。
深睡眠率算出部1fは、生体情報記録部1eが記録した情報に基づいて、テスト用寝具Tごとに、使用者Pの深睡眠率を算出する。
ここで、深睡眠率とは、睡眠の全時間中に深睡眠となっている割合を示す。また、深睡眠とは、ノンレム睡眠の睡眠段階3及び4の状態(すなわち、徐波睡眠の状態)をいう。
好適寝具認識部1gは、テスト用寝具Tごとに算出された深睡眠率、及び、タブレット2で入力された熟睡度を比較し、使用者の深睡眠率及び熟睡度が高い前記テスト用寝具を好適寝具として認識する。
好適物性認識部1hは、好適寝具認識部1gで好適寝具として認識されたテスト用寝具Tとテスト用寝具物性格納部1cに格納されているテスト用寝具Tの物性とに基づいて、使用者Pの深睡眠率及び熟睡度が高くなる物性を好適物性として認識する。
選択対象寝具物性格納部1iは、選択対象寝具Mごとに、その物性を格納している。
寝具選択部1jは、好適物性認識部1hで好適物性として認識された物性と選択対象寝具物性格納部1iに格納されている選択対象寝具Mの物性とに基づいて、複数の選択対象寝具Mから、使用者Pの深睡眠率及び熟睡度が高くなる寝具を選択する。
タブレット2(身体情報入力部、熟睡度入力部)は、入出力部2aを有している(図3参照)。使用者Pは、入出力部2aを介して、自らの身体情報、テスト用寝具Tで睡眠した後に感じた熟睡度を入力するとともに、入出力部2aに表示されたテスト用寝具Tや選択対象寝具Mを確認する。
ここで、熟睡度とは、使用者Pが睡眠の後に感じたよく眠れたか否かの度合いあり、主観的なものである。熟睡度は、最もよく眠れなかったと感じた場合の「1」から、最も良く眠れたと感じた場合の「5」までの5段階で表される。ただし、熟睡度の度合いは、4段階以下としてもよいし、6段階以上としてもよい。
また、ここで、身体情報には、身長及び体重の他、性別、年齢が含まれている。睡眠情報格納部1aに格納されている相関データは、これらの身体情報と、寝具の物性並びに深睡眠率及び熟睡度とを対応させたデータとなっている。
なお、寝具選択システムSにおいては、使用者Pが身体情報や熟睡度を自宅で容易に入力可能とするために、身体情報入力部及び熟睡度入力部としてタブレット2を用いている。しかし、本発明の身体情報入力部及び熟睡度入力部は、身体情報及び熟睡度を入力できるものであればよく、PC等の他の端末を用いてもよい。また、その設置場所も、使用者Pの自宅に限られず、寝具販売店の店頭等であってもよい。
センサ3(生体情報測定部)は、テスト用寝具で睡眠中の使用者Pの生体情報を測定し、タブレット2を介して、サーバ1の生体情報記録部1eに送信する。センサ3で測定する生体情報は、深睡眠率を算出できるものであればよい。例えば、使用者Pの睡眠中における脳波の変化、心拍の変化、呼吸の変化又は体動回数等であればよい。
複数のテスト用寝具Tは、物性が各々で異なっている。各々のテスト用寝具には番号が付されており、テスト用寝具物性格納部1cには、テスト用寝具の番号ごとに、そのテスト用寝具の物性が格納されている。
複数の選択対象寝具Mは、物性が各々で異なっている。各々の選択対象寝具には番号が付されており、選択対象寝具物性格納部1iには、選択対象寝具の番号ごとに、その選択対象寝具の物性が格納されている。
ここで、寝具選択システムSにおける寝具には、敷布団の他、枕、マットレス、抱き枕等、睡眠時に使用者Pの身体の下に位置する寝具が含まれている。そして、物性には、硬度及び反発弾性の他、保温性、吸放湿性、素材(肌触り)等も含まれている。以下の説明においては硬度についてのみ説明するが、寝具選択システムSでは、他の物性も、テスト用寝具Tや選択対象寝具Mの選択の際に、硬度と同様に判断の基準として用いられている。
なお、本発明の寝具は、必ずしも上記のものに限られるものではなく、掛布団や就寝用衣服等を寝具としてもよい。そして、それらを選択対象寝具とする場合には、基準となる物性は、その寝具において測定が容易であり、且つ、睡眠において重要視されるものを用いればよい。例えば、掛布団や就寝用衣服を選択対象寝具とした場合には、保温性、吸放湿性、素材(肌触り)、重量、ドレープ性等を基準とすればよい。
また、本発明の寝具の物性は、必ずしも上記のものに限られるものではなく、寝具が敷布団である場合には、少なくとも硬度を含んでいればよい。
また、寝具選択システムSには、情報収集システムが含まれている。具体的には、情報収集システムは、サーバ1の情報収集部Saと、タブレット2と、センサ3と、複数のテスト用寝具Tとで構成されている。情報収集部Saには、睡眠情報格納部1a、テスト用寝具物性格納部1c、生体情報記録部1e及び深睡眠率算出部1fが含まれる。
次に、図1〜図4を参照して、寝具選択システムSが、テスト用寝具選択工程で行う処理について説明する。なお、図2は、テスト用寝具選択工程で行われる処理を示すフローチャートである。
まず、タブレット2が、使用者Pによってタブレット2の入出力部2aに入力された、使用者Pの身体情報をサーバ1に送信する(図2/STEP10)。
具体的には、図3に示すように、タブレット2の入出力部2aに、自身の名前、性別、年齢、身長、体重を身体情報として入力する。入力された身体情報は、ネットワークを介して、サーバ1のテスト用物性認識部1bに送信される。
次に、サーバ1のテスト用物性認識部1bが、受信した身体情報に基づいて、使用者Pの深睡眠率及び熟睡度が高くなる可能性が高い物性を睡眠情報格納部1aから検索し、検索された物性をテスト用物性として認識する(図2/STEP11)。
具体的には、テスト用物性認識部1bは、受信した身体情報に基づいて、対象部位(すなわち、睡眠時に使用者Pの身体に接する寝具の領域)ごとに、睡眠情報格納部1aに格納されている予め収集された物性、深睡眠率又は熟睡度、及び、身体情報の相関データを参照し、使用者Pの深睡眠率及び熟睡度が高くなる可能性が高い物性を検索する。
この相関データには、図4に示すように、性別、年齢、対象部位ごとに、身長及び体重から算出されたBMI値及び硬度等の物性に、平均深睡眠率及び平均熟睡度を対応させたものとなっている。物性には、硬度の他、反発弾性、通気性、重さ、素材(肌触り)等が含まれている。また、対象部位としては、腰、頭、肩等が含まれている。
次に、サーバ1のテスト用寝具選択部1dが、認識されたテスト用物性と一致する物性、又は、それに近い物性をテスト用寝具物性格納部1cから検索し、その検索結果に基づいて、複数のテスト用寝具Tから、使用者Pが試験的な睡眠で使用するテスト用寝具Tを選択し、そのテスト用寝具Tの情報をタブレット2に送信する(図2/STEP12)。
テスト用寝具Tの物性は、それぞれのテスト用寝具Tに付された番号ごとに、睡眠情報格納部1aに格納された相関データと同様の項目が含まれている。具体的には、対象部位ごとの硬度や反発弾性等が含まれている。
このとき、物性は対象部位ごとに取得されているが、それらの物性の重要度は、対象部位によって異なる。そのため、寝具選択システムSでは、まず最も重要度の高い腰を対象部位とした物性に基づいて、全てのテスト用寝具Tからいくつかのテスト用寝具Tを選択し、その後、選択されたテスト用寝具Tの中から、比較的重要度の低い頭や肩を対象部位とした物性に基づいて、使用者Pに提案するテスト用寝具Tを選択する。
最後に、タブレット2が、選択されたテスト用寝具Tを表示する(図2/STEP13)。
使用者P及び寝具販売業者は、その表示された結果に基づいて、使用者Pが試験的な睡眠を行うための手配(テスト用寝具Tの配送等)を行う。
なお、選択されたテスト用寝具Tを必ずしもタブレット2に表示する必要はなく、その選択されたテスト用寝具Tを用いて使用者Pが試験的な睡眠を行うことができればよい。例えば、その選択結果に基づいて、自動的に、使用者Pの自宅に選択されたテスト用寝具Tが配送されるようになっていてもよい。
以上のSTEP10〜STEP13が、寝具選択システムSにおけるテスト用寝具選択工程である。
次に、図1及び図5を参照して、寝具選択システムSが、寝具選択工程で行う処理について説明する。なお、図5は、寝具選択工程で行われる処理を示すフローチャートである。
まず、使用者Pは、選択されたテスト用寝具Tで試験的な睡眠を行う。その睡眠の最中に、センサ3が、テスト用寝具選択工程で選択されたテスト用寝具Tで睡眠中の使用者Pの生体情報を測定するとともに、その生体情報を、タブレット2を介して、サーバ1の生体情報記録部1eに送信する(図5/STEP20)。
ここで測定される生体情報は、使用者Pの睡眠中における脳波の変化、心拍の変化、呼吸の変化又は体動回数等、深睡眠率を算出可能なデータであればよい。
次に、サーバ1の生体情報記録部1eが、センサ3が測定し、タブレット2を介して送信された生体情報を記録する(図5/STEP21)。
次に、サーバ1の深睡眠率算出部1fが、生体情報記録部1eが記録した生体情報に基づいて、使用者Pの選択されたテスト用寝具Tにおける深睡眠率を算出する(図5/STEP22)。
具体的には、生体情報に基づいて、使用者Pが深睡眠となっている時間を算出し、その算出された時間と試験的な睡眠における使用者Pの睡眠の全時間とに基づいて、深睡眠率(睡眠の全時間中に深睡眠となっている割合)を算出する。
次に、使用者Pは、試験的な睡眠の後に、テスト用寝具Tを用いた試験的な睡眠に対して感じた熟睡度を5段階(1〜5の数値)で判断し、タブレット2に入力する。そして、タブレット2が、使用者Pによって入力された熟睡度をサーバ1に送信する(図5/STEP23)。
なお、寝具選択システムSでは、入力された熟睡度の送信を、深睡眠率の算出(図5/STEP22)の後に行っているが、同時に行ってもよいし、深睡眠率の算出の前に行ってもよい。
次に、サーバ1の好適寝具認識部1gが、深睡眠率算出部1fで算出された深睡眠率及びタブレット2に入力された熟睡度に基づいて、使用者Pの深睡眠率及び熟睡度の両方が高くなったテスト用寝具Tを、好適寝具として認識する(図5/STEP24)。
深睡眠率及び熟睡度が高いか否かの判定は、例えば、1つの又は所定の数のテスト用寝具Tにおいて算出された深睡眠率及び入力された熟睡度を予め定められた所定の値と比較することによって行う。すなわち、寝具選択システムSでは、深睡眠率及び熟睡度の両方が所定の値より低い場合には、深睡眠率及び熟睡度の両方が所定の値のテスト用寝具Tが発見されるまで、テスト用寝具Tを用いた試験的な睡眠が繰り返し行われる。
なお、テスト用寝具Tの種類が少ない場合等には、全てのテスト用寝具Tで試験的な睡眠を行うようにしてもよい。その場合には、算出された深睡眠率や入力された熟睡度を所定の値と比較するのではなく、テスト用寝具Tごとに算出された深睡眠率や入力された熟睡度を互いに比較してもよい。
また、使用者Pが満足した場合には、1回だけで試験的な睡眠を終了してもよい。逆に、使用者Pが満足しない場合には、所定の値よりも高い深睡眠率及び熟睡度となっても、他のテスト用寝具Tを用いた試験的な睡眠を継続してもよい。
次に、好適物性認識部1hが、好適寝具認識部1gで好適寝具として認識されたテスト用寝具Tの物性をテスト用寝具物性格納部1cに格納された物性から検索し、検索された物性を好適物性として認識するとともに、その好適物性をタブレット2に送信する(図5/STEP25)。
次に、サーバ1の寝具選択部1jが、認識された好適物性と一致する物性、又は、それに近い物性を選択対象寝具物性格納部1iから検索し、その検索結果に基づいて、複数の選択対象寝具Mから、使用者Pに提案する寝具を選択し、その寝具の情報をタブレット2に送信する(図5/STEP26)。
選択対象寝具Mの物性は、それぞれの選択対象寝具Mに付された番号ごとに、睡眠情報格納部1aに格納された相関データと同様の項目が含まれている。具体的には、対象部位ごとの硬度や反発弾性等が含まれている。
このとき、物性は対象部位ごとに取得されているが、それらの物性の重要度は、対象部位によって異なる。そのため、寝具選択システムSでは、まず最も重要度の高い腰を対象部位とした物性に基づいて、全ての選択対象寝具Mからいくつかの選択対象寝具Mを選択し、その後、選択された選択対象寝具Mの中から、比較的重要度の低い頭や肩を対象部位とした物性に基づいて、使用者Pに提案する選択対象寝具Mを選択する。
最後に、タブレット2が、対象部位ごとの好適物性、選択された選択対象寝具M及びその対象部位ごとの物性を表示する(図5/STEP27)。
なお、物性は必ずしも対象部位ごとに分ける必要はなく、1つの寝具に対して1つの物性としてもよい。また、タブレット2には、必ずしも物性を表示する必要はなく、選択対象寝具Mのみを表示するようにしてもよい。
以上のSTEP20〜STEP27が、寝具選択システムSにおける寝具選択工程である。
次に、図1及び図6を参照して、寝具選択システムSが、情報収集工程で行う処理について説明する。なお、図6は、情報収集工程で行われる処理を示すフローチャートである。
この情報収集工程は、上記のテスト用寝具選択工程及び寝具選択工程と同時に行われるものである。
この情報収集工程は、寝具選択システムSに含まれる情報収集システムによって行われる。情報収集システムは、サーバ1の情報収集部Saと、タブレット2と、センサ3と、複数のテスト用寝具Tとで構成されている。情報収集部Saには、睡眠情報格納部1a、テスト用寝具物性格納部1c、生体情報記録部1e及び深睡眠率算出部1fが含まれる。
まず、タブレット2が、サーバ1の睡眠情報格納部1aに、使用者Pによってタブレット2の入出力部2aに入力された、使用者Pの身体情報を送信する(図6/STEP30)。
このとき、睡眠情報格納部1aは、身体情報を一時的に記憶する。
次に、サーバ1の深睡眠率算出部1fが、センサ3が測定し、サーバ1の生体情報記録部1eが記録した生体情報に基づいて、使用者Pの選択されたテスト用寝具Tにおける深睡眠率を算出する(図6/STEP31)。
次に、サーバ1の深睡眠率算出部1fが、サーバ1の睡眠情報格納部1aに、算出した深睡眠率を送信する(図6/STEP32)。
このとき、睡眠情報格納部1aは、予め記憶されていたその使用者Pの身体情報に対応させた形で、受信した深睡眠率を一時的に記憶する。
次に、タブレット2が、サーバ1の睡眠情報格納部1aに、使用者Pによって入力された熟睡度を送信する(図6/STEP33)。
次に、タブレット2が、サーバ1の睡眠情報格納部1aに、入力された熟睡度を送信する(図6/STEP35)。
このとき、睡眠情報格納部1aは、予め記憶されていたその使用者Pの身体情報に対応させた形で、受信した熟睡度を一時的に記憶する。
最後に、サーバ1の睡眠情報格納部1aが、一時的に記憶しておいた身体情報ごとに、算出された深睡眠率、入力された熟睡度、対応するテスト用寝具T(すなわち、その深睡眠率が算出され、熟睡度が入力された際の試験的な睡眠で用いられたテスト用寝具T)の物性を格納する(図6/STEP34)。
以上のSTEP30〜STEP34が、寝具選択システムSにおける情報収集工程である。
以上説明したように、睡眠情報収集システムを含む寝具選択システムSでは、使用者P個人の生体情報に基づいて得られた深睡眠率及び使用者個人Pの入力した熟睡度と測定が容易であって睡眠状況に大きく影響する硬度を含む物性との相関データを、試験的な睡眠を行って収集している。
したがって、睡眠情報収集システムを含む寝具選択システムSによれば、使用者ごとに取得された睡眠情報を、実際に睡眠に影響する物性に対応させつつ状態で収集するので、信頼性の高い睡眠情報を収集することができる。
以上、図示の実施形態について説明したが、本発明はこのような形態に限られるものではない。
例えば、上記実施形態では、サーバ1の備える処理部において、各種情報の処理を行っている。しかし、情報の処理は、必ずしもサーバで行う必要はない。例えば、一部の処理をタブレットで行う等、適宜処理する端末は変更してもよい。
また、上記実施形態では、情報収集の対象とする物性に、硬度の他、反発弾性等が含まれている。しかし、寝具が敷布団等の睡眠時に使用者Pの身体の下に位置する寝具である場合には、物性には少なくとも硬度が含まれていればよいので、情報収集の対象とする物性から反発弾性を除いてもよい。逆に、情報収集の対象とする物性に、上記実施形態で例示した物以外の物性を含めてもよい。
また、上記実施形態では、深睡眠率及び熟睡度が情報収集の対象とされている。しかし、必ずしもそれらの両方を収集する必要はなく、深睡眠率及び熟睡度のいずれか一方のみを収集するようにしてもよい。
1…サーバ、1a…睡眠情報格納部、1b…テスト用物性認識部、1c…テスト用寝具物性格納部、1d…テスト用寝具選択部、1e…生体情報記録部、1f…深睡眠率算出部、1g…好適寝具認識部、1h…好適物性認識部、1i…選択対象寝具物性格納部、1j…寝具選択部、2…タブレット(身体情報入力部、熟睡度入力部)、2a…入出力部、3…センサ(生体情報測定部)、M…選択対象寝具、P…使用者、S…寝具選択システム、Sa…情報収集部、T…テスト用寝具。

Claims (3)

  1. 使用者の身長及び体重を含む身体情報を入力する身体情報入力部と、
    硬度を含む物性が各々で異なる複数のテスト用寝具と、
    前記物性を前記テスト用寝具ごとに格納するテスト用寝具物性格納部と、
    前記テスト用寝具で睡眠中の使用者の生体情報を測定する生体情報測定部と、
    前記生体情報測定部が測定した前記生体情報を記録する生体情報記録部と、
    記録された前記生体情報に基づいて、前記使用者の深睡眠率を算出する深睡眠率算出部と、
    前記物性、前記深睡眠率及び前記身体情報の相関データを格納する睡眠情報格納部とを備え、
    前記睡眠情報格納部は、前記深睡眠率算出部が算出した前記深睡眠率、該深睡眠率が算出された前記使用者の前記身体情報、及び、該使用者が使用した前記テスト用寝具の前記物性を格納することを特徴とする睡眠情報収集システム。
  2. 使用者の身長及び体重を含む身体情報を入力する身体情報入力部と、
    硬度を含む物性が各々で異なる複数のテスト用寝具と、
    前記物性を前記テスト用寝具ごとに格納するテスト用寝具物性格納部と、
    前記テスト用寝具での睡眠の後に、前記使用者が感じた熟睡度を入力する熟睡度入力部と、
    前記物性、前記熟睡度及び前記身体情報の相関データを格納する睡眠情報格納部とを備え、
    前記睡眠情報格納部は、前記熟睡度入力部に入力された前記熟睡度、該熟睡度を入力した前記使用者の前記身体情報、及び、該使用者が使用した前記テスト用寝具の前記物性を格納することを特徴とする睡眠情報収集システム。
  3. 請求項1又は請求項2に記載の睡眠情報収集システムであって、
    前記物性は、反発弾性を含むことを特徴とする睡眠情報収集システム。
JP2015245251A 2015-12-16 2015-12-16 睡眠情報収集システム Active JP6269980B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015245251A JP6269980B2 (ja) 2015-12-16 2015-12-16 睡眠情報収集システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245251A JP6269980B2 (ja) 2015-12-16 2015-12-16 睡眠情報収集システム

Publications (2)

Publication Number Publication Date
JP2017108900A true JP2017108900A (ja) 2017-06-22
JP6269980B2 JP6269980B2 (ja) 2018-01-31

Family

ID=59079828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245251A Active JP6269980B2 (ja) 2015-12-16 2015-12-16 睡眠情報収集システム

Country Status (1)

Country Link
JP (1) JP6269980B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201642A (ja) * 2019-06-07 2020-12-17 株式会社エムール スケジュール提案システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299545A (ja) * 2000-04-24 2001-10-30 Rofutee Kk 枕の選択アドバイスシステム
JP2004514515A (ja) * 2000-11-28 2004-05-20 キングズダウン,インコーポレイテッド 自動マットレス選択システム
JP2004187961A (ja) * 2002-12-12 2004-07-08 Toshiba Corp 睡眠状態検出装置および睡眠状態管理システム
JP2005326982A (ja) * 2004-05-12 2005-11-24 Paramount Bed Co Ltd 寝具の販売方法及び宿泊方法
JP2007319238A (ja) * 2006-05-30 2007-12-13 Toshiba Consumer Marketing Corp 睡眠モニタ装置
US20080201856A1 (en) * 2007-02-26 2008-08-28 Howard John Hunter Mattress system and method
CN101731876A (zh) * 2008-11-14 2010-06-16 上海维椎保健科技有限公司 利用肌肉力量对比找到合适软硬度的床垫与合适高度的枕头的方法
JP2012055334A (ja) * 2010-09-03 2012-03-22 Maruhachi Mawata Hanbai:Kk 寝具選択方法
US8676662B1 (en) * 2011-03-02 2014-03-18 King Koil Licensing Company, Inc. System and method for selecting a bedding mattress

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299545A (ja) * 2000-04-24 2001-10-30 Rofutee Kk 枕の選択アドバイスシステム
JP2004514515A (ja) * 2000-11-28 2004-05-20 キングズダウン,インコーポレイテッド 自動マットレス選択システム
JP2004187961A (ja) * 2002-12-12 2004-07-08 Toshiba Corp 睡眠状態検出装置および睡眠状態管理システム
JP2005326982A (ja) * 2004-05-12 2005-11-24 Paramount Bed Co Ltd 寝具の販売方法及び宿泊方法
JP2007319238A (ja) * 2006-05-30 2007-12-13 Toshiba Consumer Marketing Corp 睡眠モニタ装置
US20080201856A1 (en) * 2007-02-26 2008-08-28 Howard John Hunter Mattress system and method
CN101731876A (zh) * 2008-11-14 2010-06-16 上海维椎保健科技有限公司 利用肌肉力量对比找到合适软硬度的床垫与合适高度的枕头的方法
JP2012055334A (ja) * 2010-09-03 2012-03-22 Maruhachi Mawata Hanbai:Kk 寝具選択方法
US8676662B1 (en) * 2011-03-02 2014-03-18 King Koil Licensing Company, Inc. System and method for selecting a bedding mattress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201642A (ja) * 2019-06-07 2020-12-17 株式会社エムール スケジュール提案システム

Also Published As

Publication number Publication date
JP6269980B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6229983B2 (ja) 寝具選択システム及び寝具物性認識システム
Salai et al. Stress detection using low cost heart rate sensors
Romanzini et al. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents
Pierleoni et al. An Android‐Based Heart Monitoring System for the Elderly and for Patients with Heart Disease
JP6149515B2 (ja) 検知方法,検知装置および検知プログラム
CN109937010A (zh) 睡眠质量评分和改进
EP2437652A1 (en) Method and system for providing behavioural therapy for insomnia
US20140324459A1 (en) Automatic health monitoring alerts
CN109328034A (zh) 用于确定对象的睡眠阶段的确定系统和方法
Angelova et al. Automated method for detecting acute insomnia using multi-night actigraphy data
Clemente et al. Helena: Real-time contact-free monitoring of sleep activities and events around the bed
US20150157258A1 (en) Method and apparatus for assessment of sleep apnea
WO2013093666A1 (en) A method and system for managing feedback to a user
CN106663140A (zh) 用于检测对象的健康状况的设备、系统和方法
JP6269980B2 (ja) 睡眠情報収集システム
CN105832322A (zh) 基于冰箱的人体特征检测方法与装置
US11848096B2 (en) Home visit assessment and decision support system
JP7018410B2 (ja) 判定装置、判定方法及びコンピュータプログラム
JP2019133290A (ja) 寝具選択システム
KR101197216B1 (ko) 매트리스 모델 선정 시스템
Gauthier et al. Predictive thermal comfort model: Are current field studies measuring the most influential variables?
CN113841205A (zh) 热应激的影响推定装置、热应激的影响推定方法以及计算机程序
TWI643078B (zh) 伺服器及使用該伺服器的資料搜索方法
KR101886221B1 (ko) 라이프로그 데이터의 유사도 산출 방법 및 장치
GB2512305A (en) Apparatus and method for estimating energy expenditure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170814

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6269980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150