JP2017102315A - Method of forming hole for wiring and electronic device - Google Patents

Method of forming hole for wiring and electronic device Download PDF

Info

Publication number
JP2017102315A
JP2017102315A JP2015236402A JP2015236402A JP2017102315A JP 2017102315 A JP2017102315 A JP 2017102315A JP 2015236402 A JP2015236402 A JP 2015236402A JP 2015236402 A JP2015236402 A JP 2015236402A JP 2017102315 A JP2017102315 A JP 2017102315A
Authority
JP
Japan
Prior art keywords
hole
glass substrate
substrate
wiring hole
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015236402A
Other languages
Japanese (ja)
Inventor
翔 伊東
Sho Ito
翔 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015236402A priority Critical patent/JP2017102315A/en
Priority to PCT/JP2016/083126 priority patent/WO2017094457A1/en
Priority to TW105137476A priority patent/TW201732403A/en
Publication of JP2017102315A publication Critical patent/JP2017102315A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming a hole for wiring for strengthening fixation of a hole for wiring formed in an electronic device with a conductive material introduced into the hole for wiring.SOLUTION: A liquid crystal panel 1 comprising a first glass substrate 3, a second glass substrate 4 arranged opposite to the first glass substrate 3, and a sealing member 5 interposed between both substrates 3 and 4 is irradiated with a pulse laser from the first glass substrate 3 side, and thereby forming a hole for wiring 8 that penetrates through the first glass substrate 3 and sealing member 5 in the thickness direction and has a hole bottom 8a in the thickness of the second glass substrate 4.SELECTED DRAWING: Figure 4

Description

本発明は、液晶パネル等の電子デバイスに配線用孔を形成するための方法、及び、この配線用孔が形成された電子デバイスに関する。   The present invention relates to a method for forming wiring holes in an electronic device such as a liquid crystal panel, and an electronic device in which the wiring holes are formed.

周知のように、液晶パネルは、BM、RGB、フォトスペーサー、透明電極がパターン形成されたカラーフィルター基板と、薄膜トランジスタや透明電極がパターン形成されたアレイ基板との相互に対向する二枚のガラス基板を備えた電子デバイスである。両基板の間には、これらの基板の周縁部に沿って樹脂(例えば、紫外線硬化樹脂等)でなるシール部材が介在しており、シール部材で囲まれたスペースには、液晶が封入されている(特許文献1を参照)。   As is well known, a liquid crystal panel is composed of two glass substrates facing each other, a color filter substrate on which BM, RGB, photo spacers and transparent electrodes are patterned, and an array substrate on which thin film transistors and transparent electrodes are patterned. Is an electronic device. A seal member made of resin (for example, ultraviolet curable resin) is interposed between the two substrates along the peripheral edge of these substrates, and liquid crystal is sealed in the space surrounded by the seal member. (See Patent Document 1).

ところで、近年、省スペース化やワイドバス化の観点から、液晶パネルの配線の形態として、両基板及びシール部材の全てを厚み方向に貫通する配線用孔を形成し、孔にメッキを施したり、孔を導電性ペーストで充填したりする等、孔に導電性材料を導入する形態が利用されている。この孔は、例えば、液晶パネルに対してレーザーを照射し、レーザーの熱によって照射部を溶融させて除去することで形成される。   By the way, in recent years, from the viewpoint of space saving and wide bus, as a wiring form of the liquid crystal panel, a wiring hole that penetrates both the substrates and the seal member in the thickness direction is formed, and the hole is plated, A form in which a conductive material is introduced into the hole, such as filling the hole with a conductive paste, is used. This hole is formed by, for example, irradiating a liquid crystal panel with a laser and melting and removing the irradiated portion with the heat of the laser.

特開2015−161837号公報Japanese Patent Laying-Open No. 2015-161837

しかしながら、上記のような態様で配線用孔を形成した場合には、孔の内周面が凹凸の少ない平坦な面となることから、例えば、電子デバイスの熱膨張に伴って、孔に導入された導電性材料が抜けやすい等、導電性材料と孔の内周面とが固定され難いという問題があった。なお、このような問題は、液晶パネルを対象として配線用孔を形成する場合にのみ生じているものではない。対向して配置された二枚のガラス基板の相互間に樹脂が介在した構造を有する他の電子デバイスを対象として、両基板及び介在した樹脂を貫通する配線用孔を形成する場合にも同様に生じ得る問題である。   However, when the wiring hole is formed in the manner as described above, the inner peripheral surface of the hole becomes a flat surface with less unevenness. For example, it is introduced into the hole due to thermal expansion of the electronic device. In addition, there is a problem that it is difficult to fix the conductive material and the inner peripheral surface of the hole, for example, the conductive material is easily removed. Such a problem does not occur only when the wiring hole is formed for the liquid crystal panel. Similarly, in the case of forming a wiring hole penetrating both substrates and the interposed resin for other electronic devices having a structure in which a resin is interposed between two glass substrates arranged opposite to each other This is a possible problem.

上記の事情に鑑みなされた本発明は、電子デバイスに形成される配線用孔と、この配線用孔に導入される導電性材料との固定を強固にすることを技術的な課題とする。   This invention made | formed in view of said situation makes it technical subject to strengthen fixation of the hole for wiring formed in an electronic device, and the electroconductive material introduce | transduced into this hole for wiring.

上記の課題を解決するために創案された本発明に係る方法は、第一ガラス基板と、第一ガラス基板に対向して配置された第二ガラス基板と、両基板の間に介在させた樹脂でなる介在部材とを備えた電子デバイスに対し、配線用孔を形成する方法であって、電子デバイスに対して両基板のうちの一方の基板側からパルスレーザーを照射することで、一方の基板及び介在部材を厚み方向に貫通し、且つ他方の基板の厚み内に孔底を有する配線用孔を形成することに特徴付けられる。   The method according to the present invention, which was created to solve the above problems, includes a first glass substrate, a second glass substrate disposed opposite the first glass substrate, and a resin interposed between the two substrates. A wiring hole is formed in an electronic device including an interposition member, and one substrate is formed by irradiating the electronic device with a pulse laser from one of the two substrates. And a wiring hole having a hole bottom that penetrates the interposition member in the thickness direction and is within the thickness of the other substrate.

このような方法によれば、電子デバイスに対して照射したパルスレーザーが、ガラスでなる一方の基板中ではレーザーの入射面側から出射面(介在部材との界面)側に移行するに連れて絞られていく。一方、樹脂でなる介在部材中では、一方の基板中で絞られたパルスレーザーが、レーザーの入射面(一方の基板との界面)側から出射面(他方の基板との界面)側に移行するに連れて反対に広がっていく。これにより、配線用孔は、一方の基板中において孔底側に移行するに連れて径が収縮すると共に、介在部材中において孔底側に移行するに連れて径が拡大するように形成される。換言すれば、配線用孔は、一方の基板と介在部材との界面を境界として、一方の基板側と介在部材側とが相互に逆向きのテーパーとなるように形成される。そのため、この配線用孔に導電性材料を導入すれば、孔の内周面と導電性材料とが引っ掛かりやすくなり、両者を強固に固定することができる。また、本方法においては、他方の基板の厚み内に孔底が位置するように配線用孔を形成している。このようにすれば、配線用孔の形成中に、パルスレーザーの一部のレーザー光が、他方の基板で反射し、この反射光と他方の基板に入射しようとするレーザー光とが干渉した状態となる。このような状態の下で配線用孔が形成されると、配線用孔の介在部材中における内周面に、厚み方向に沿って干渉パターンに従った周期的な凹凸を形成することが可能となる。このため、配線用孔に導電性材料を導入すれば、周期的な凹凸の存在によって孔の内周面と導電性材料とが更に引っ掛かりやすくなるため、両者をより強固に固定することができる。さらに、本方法では、以下のような作用・効果を副次的に得ることが可能である。すなわち、配線用孔として、両基板及び介在部材の全てを貫通した貫通孔を形成する必要がなく、配線用孔の形成に要する時間を短縮することができるため、この配線用孔が形成された電子デバイスの製造効率を向上させることが可能となる。また、配線用孔を両基板及び介在部材の全てを貫通した貫通孔とする場合と比較して、レーザーの照射に伴って両基板に歪が生じる等の不具合の発生を抑制することができる。   According to such a method, the pulse laser irradiated to the electronic device is narrowed as it moves from the laser incident surface side to the emission surface (interface with the intervening member) side in one glass substrate. It will be. On the other hand, in the intervening member made of resin, the pulse laser focused in one substrate moves from the laser incident surface (interface with one substrate) side to the emission surface (interface with the other substrate) side. Will spread to the opposite. As a result, the wiring hole is formed such that its diameter contracts as it moves to the hole bottom side in one of the substrates, and its diameter increases as it moves to the hole bottom side in the interposition member. . In other words, the wiring hole is formed such that the one substrate side and the interposition member side have opposite tapers with the interface between the one substrate and the interposition member as a boundary. Therefore, when a conductive material is introduced into the wiring hole, the inner peripheral surface of the hole and the conductive material are easily caught, and both can be firmly fixed. In this method, the wiring hole is formed so that the hole bottom is located within the thickness of the other substrate. In this way, during the formation of the wiring hole, a part of the laser beam of the pulse laser is reflected by the other substrate, and the reflected light interferes with the laser beam to be incident on the other substrate. It becomes. When the wiring hole is formed under such a state, it is possible to form periodic unevenness according to the interference pattern along the thickness direction on the inner peripheral surface in the interposition member of the wiring hole. Become. For this reason, if a conductive material is introduced into the wiring hole, the inner peripheral surface of the hole and the conductive material are more easily caught due to the presence of periodic irregularities, so that both can be more firmly fixed. Furthermore, in this method, the following actions / effects can be obtained as secondary effects. That is, it is not necessary to form a through hole penetrating all the substrates and the interposition member as the wiring hole, and the time required for forming the wiring hole can be shortened, so that the wiring hole is formed. It becomes possible to improve the manufacturing efficiency of an electronic device. In addition, as compared with the case where the wiring hole is a through hole penetrating all the substrates and the interposition member, it is possible to suppress the occurrence of problems such as distortion in both substrates due to laser irradiation.

上記の方法において、他方の基板に形成する配線用孔の深さを、他方の基板の厚みに対して50%以下とすることが好ましい。また、パルスレーザーとして、波長8.5μm〜14μmのレーザーを用いると共に、他方の基板として、波長8.5μm〜14μmの光に対する反射率が5%以上の基板を用いることが好ましい。   In the above method, the depth of the wiring hole formed in the other substrate is preferably 50% or less with respect to the thickness of the other substrate. Further, it is preferable to use a laser having a wavelength of 8.5 μm to 14 μm as the pulse laser and a substrate having a reflectance of 5% or more for the light having a wavelength of 8.5 μm to 14 μm as the other substrate.

これらのようにすれば、パルスレーザーの一部のレーザー光を、他方の基板でより反射させやすくなる。このため、配線用孔の介在部材中における内周面に周期的な凹凸をより形成しやすくなる。その結果、配線用孔の内周面と導電性材料とを更に強固に固定することができる。   If it does in this way, it will become easy to reflect a part laser beam of a pulse laser with the other board | substrate. For this reason, it becomes easier to form periodic irregularities on the inner peripheral surface in the interposition member of the wiring hole. As a result, the inner peripheral surface of the wiring hole and the conductive material can be more firmly fixed.

上記の方法において、第一ガラス基板と介在部材との界面を、配線用孔の内周面に沿って部分的に剥離させることが好ましい。   In the above method, it is preferable that the interface between the first glass substrate and the interposition member is partially peeled along the inner peripheral surface of the wiring hole.

このようにすれば、配線用孔に導電性材料を導入した際に、第一ガラス基板と介在部材との相互間に導電性材料が入り込む。そのため、配線用孔の内周面と導電性材料とがより一層引っ掛かりやすくなり、両者をより強固に固定することが可能となる。   According to this configuration, when the conductive material is introduced into the wiring hole, the conductive material enters between the first glass substrate and the interposition member. Therefore, the inner peripheral surface of the wiring hole and the conductive material are more easily caught, and both can be fixed more firmly.

上記の配線用孔の形成方法を実行すれば、第一ガラス基板と、第一ガラス基板に対向して配置された第二ガラス基板と、両基板の間に介在させた樹脂でなる介在部材とを備えた電子デバイスであって、両基板のうちの一方の基板及び介在部材を厚み方向に貫通し、且つ他方の基板の厚み内に孔底を有する配線用孔が形成され、配線用孔の径が、一方の基板中において孔底側に移行するに連れて収縮すると共に、介在部材中において孔底側に移行するに連れて拡大した電子デバイスが得られる。   If the above method for forming a wiring hole is executed, a first glass substrate, a second glass substrate disposed to face the first glass substrate, and an intervening member made of a resin interposed between the two substrates, The wiring device includes a wiring hole that penetrates one of the substrates and the interposition member in the thickness direction and has a hole bottom within the thickness of the other substrate. An electronic device whose diameter shrinks as it moves toward the hole bottom in one of the substrates and expands as it moves toward the hole bottom in the interposition member is obtained.

また、上記の配線用孔の形成方法を実行すれば、他方の基板に形成された配線用孔の深さが、他方の基板の厚みに対して50%以下である電子デバイスを得ることができる。   In addition, if the above wiring hole forming method is executed, an electronic device in which the depth of the wiring hole formed in the other substrate is 50% or less with respect to the thickness of the other substrate can be obtained. .

また、上記の配線用孔の形成方法を実行すれば、配線用孔の内周面が孔の中心線に対して傾斜した傾斜角度が、一方の基板中において0.1°〜30°であり、且つ介在部材中において1°〜45°である電子デバイスを得ることが可能である。   In addition, if the above-described method for forming a wiring hole is executed, the inclination angle at which the inner peripheral surface of the wiring hole is inclined with respect to the center line of the hole is 0.1 ° to 30 ° in one substrate. And it is possible to obtain the electronic device which is 1 degree-45 degrees in the interposition member.

また、上記の配線用孔の形成方法を実行すれば、配線用孔の介在部材中における内周面に、厚み方向に沿って周期的な凹凸が形成された電子デバイスを得ることができる。   Further, if the above-described wiring hole forming method is executed, an electronic device in which periodic irregularities are formed along the thickness direction on the inner peripheral surface of the interposition member of the wiring hole can be obtained.

また、上記の配線用孔の形成方法を実行すれば、第一ガラス基板と介在部材との界面が、配線用孔の内周面に沿って部分的に剥離した電子デバイスを得ることが可能である。   In addition, if the above-described wiring hole forming method is executed, an electronic device in which the interface between the first glass substrate and the interposition member is partially peeled along the inner peripheral surface of the wiring hole can be obtained. is there.

これらように構成された電子デバイスによれば、上記の配線用孔の形成方法で既に述べた作用・効果と同一の作用・効果を得ることが可能である。   According to the electronic device configured as described above, it is possible to obtain the same operation and effect as those already described in the above-described method for forming a wiring hole.

本発明によれば、配線用孔に導電性材料を導入した際に、孔の内周面と導電性材料とが引っ掛かりやすくなるため、孔の内周面と導電性材料との両者を強固に固定することが可能である。   According to the present invention, when the conductive material is introduced into the wiring hole, the inner peripheral surface of the hole and the conductive material are easily caught. Therefore, both the inner peripheral surface of the hole and the conductive material are strengthened. It is possible to fix.

本発明の実施形態に係る配線用孔の形成方法を示す縦断側面図である。It is a vertical side view which shows the formation method of the hole for wiring which concerns on embodiment of this invention. 本発明の実施形態に係る配線用孔の形成方法を示す縦断側面図である。It is a vertical side view which shows the formation method of the hole for wiring which concerns on embodiment of this invention. 本発明の実施形態に係る配線用孔の形成方法を示す縦断側面図である。It is a vertical side view which shows the formation method of the hole for wiring which concerns on embodiment of this invention. 本発明の実施形態に係る電子デバイスを示す縦断側面図である。It is a vertical side view which shows the electronic device which concerns on embodiment of this invention. 図4におけるA部を拡大して示す拡大図である。It is an enlarged view which expands and shows the A section in FIG. 図4におけるB部を拡大して示す拡大図である。It is an enlarged view which expands and shows the B section in FIG.

以下、本発明の実施形態に係る配線用孔の形成方法、及び、この方法を実行することで得られる電子デバイスについて、添付の図面を参照して説明する。   Hereinafter, a method for forming a wiring hole according to an embodiment of the present invention and an electronic device obtained by executing this method will be described with reference to the accompanying drawings.

図1〜図3に示すように、本発明の実施形態に係る配線用孔の形成方法は、電子デバイスとしての液晶パネル1に対してパルスレーザー2を照射することにより、配線用孔を形成する方法である。   As shown in FIGS. 1 to 3, the method for forming a wiring hole according to the embodiment of the present invention forms a wiring hole by irradiating a liquid crystal panel 1 as an electronic device with a pulse laser 2. Is the method.

液晶パネル1は、主たる構成要素として、第一ガラス基板3と、第一ガラス基板3に対向して配置された第二ガラス基板4と、両基板3,4の間に介在させた介在部材としてのシール部材5と、第二ガラス基板4上に形成された金属配線6とを備えている。   The liquid crystal panel 1 includes, as main constituent elements, a first glass substrate 3, a second glass substrate 4 disposed to face the first glass substrate 3, and an interposed member interposed between the substrates 3 and 4. The sealing member 5 and the metal wiring 6 formed on the second glass substrate 4 are provided.

第一ガラス基板3と第二ガラス基板4との各々は、矩形の形状を有すると共に、厚みが1μm〜400μmとされている。また、両基板3,4の間に形成される隙間(セルギャップ)の幅は0.5μm〜100μmとされている。第一ガラス基板3は、BM、RGB、フォトスペーサー、透明電極(いずれも図示省略)がパターン形成されたカラーフィルター基板である。一方、第二ガラス基板4は、薄膜トランジスタや透明電極(いずれも図示省略)がパターン形成されたアレイ基板である。なお、両基板3,4のうち、第二ガラス基板4としては、波長8.5μm〜14μmの光に対する反射率が5%以上の基板を用いている。   Each of the first glass substrate 3 and the second glass substrate 4 has a rectangular shape and a thickness of 1 μm to 400 μm. The width of the gap (cell gap) formed between the substrates 3 and 4 is set to 0.5 μm to 100 μm. The first glass substrate 3 is a color filter substrate on which BM, RGB, photo spacers, and transparent electrodes (all not shown) are formed. On the other hand, the second glass substrate 4 is an array substrate on which a thin film transistor and a transparent electrode (both not shown) are patterned. Of the substrates 3 and 4, the second glass substrate 4 is a substrate having a reflectance of 5% or more with respect to light having a wavelength of 8.5 μm to 14 μm.

シール部材5は、第一ガラス基板3と第二ガラス基板4とを貼り合せると共に、両基板3,4の周縁部に沿って配置されている。シール部材5により囲まれたスペースには、液晶7が封入されている。このシール部材5を構成する樹脂は、例えば紫外線硬化樹脂である。金属配線6は、駆動回路(図示省略)に駆動用の信号を送るための配線である。この金属配線6を構成する金属は、例えばアルミニウムであり、バリアメタルとしては、例えばモリブデンが採用される。   The sealing member 5 bonds the first glass substrate 3 and the second glass substrate 4 and is disposed along the peripheral edge portions of both the substrates 3 and 4. Liquid crystal 7 is sealed in the space surrounded by the seal member 5. The resin constituting the seal member 5 is, for example, an ultraviolet curable resin. The metal wiring 6 is a wiring for sending a driving signal to a driving circuit (not shown). The metal constituting the metal wiring 6 is, for example, aluminum, and molybdenum, for example, is used as the barrier metal.

この配線用孔の形成方法では、上記の液晶パネル1に対して第一ガラス基板3側からパルスレーザー2を照射する。なお、本実施形態においては、パルスレーザー2の光軸2aが、第一ガラス基板3及び第二ガラス基板4の厚み方向に延びるように照射を行う。   In this wiring hole forming method, the liquid crystal panel 1 is irradiated with the pulse laser 2 from the first glass substrate 3 side. In the present embodiment, irradiation is performed so that the optical axis 2 a of the pulse laser 2 extends in the thickness direction of the first glass substrate 3 and the second glass substrate 4.

ここで、パルスレーザー2としては、COレーザー、COレーザー、ファイバーレーザー等を使用することができる。パルスレーザー2の波長としては、2.5μm〜15μmとすることが好ましく、本実施形態では、8.5μm〜14μmとしている。また、パルス幅は、0.05μs〜50μsとすることがより好ましい。さらに、周波数としては、100Hz〜20kHzとすることが好ましい。加えて、パルスエネルギーとしては、10μJ〜10mJとすることが好ましい。なお、パルスレーザー2の偏光は円偏光であり、パルスレーザー2の焦点の位置は、第一ガラス基板3の表面(後述の入射面3a)としている。また、パルスレーザー2のショット数は特に限定されるものではないが、本実施形態では3ショットとしている。 Here, as the pulse laser 2, a CO 2 laser, a CO laser, a fiber laser, or the like can be used. The wavelength of the pulse laser 2 is preferably 2.5 μm to 15 μm. In this embodiment, the wavelength is 8.5 μm to 14 μm. The pulse width is more preferably 0.05 μs to 50 μs. Furthermore, the frequency is preferably 100 Hz to 20 kHz. In addition, the pulse energy is preferably 10 μJ to 10 mJ. The polarized light of the pulse laser 2 is circularly polarized, and the focal position of the pulse laser 2 is the surface of the first glass substrate 3 (an incident surface 3a described later). Further, the number of shots of the pulse laser 2 is not particularly limited, but in this embodiment, three shots are used.

図1に示すように、液晶パネル1に対して照射したパルスレーザー2は、第一ガラス基板3中ではレーザーの入射面3a側から出射面3b(シール部材5との界面)側に移行するに連れて絞られていく。一方、図2に示すように、シール部材5中では、第一ガラス基板3中で絞られたパルスレーザー2が、レーザーの入射面5a(第一ガラス基板3との界面)側から出射面5b(第二ガラス基板4との界面)側に移行するに連れて反対に広がっていく。さらに、図3に示すように、第二ガラス基板4中では、シール部材5中で広がったパルスレーザー2が、レーザーの入射面4a(シール部材5との界面)側から出射面4b側に移行するに連れて再び絞られていく。   As shown in FIG. 1, the pulse laser 2 irradiated to the liquid crystal panel 1 moves from the laser incident surface 3 a side to the emission surface 3 b (interface with the seal member 5) side in the first glass substrate 3. It will be squeezed. On the other hand, as shown in FIG. 2, in the sealing member 5, the pulse laser 2 focused in the first glass substrate 3 is irradiated from the laser incident surface 5a (interface with the first glass substrate 3) side to the emission surface 5b. As it moves to the (interface with the second glass substrate 4) side, it spreads in the opposite direction. Further, as shown in FIG. 3, in the second glass substrate 4, the pulse laser 2 spread in the seal member 5 moves from the laser incident surface 4 a (interface with the seal member 5) side to the emission surface 4 b side. It will be squeezed again as you go.

両基板3,4及びシール部材5において、パルスレーザー2が照射された領域は、レーザーの熱によって溶融する。これにより、液晶パネル1に、第一ガラス基板3側から第二ガラス基板4側へと漸次に配線用孔が形成されていく。なお、配線用孔の形成中には、パルスレーザー2の一部のレーザー光が、第二ガラス基板4で反射し、この反射光と第二ガラス基板4に入射しようとするレーザー光とが干渉する。   In both the substrates 3 and 4 and the seal member 5, the region irradiated with the pulse laser 2 is melted by the heat of the laser. Accordingly, wiring holes are gradually formed in the liquid crystal panel 1 from the first glass substrate 3 side to the second glass substrate 4 side. During the formation of the hole for wiring, a part of the laser beam of the pulse laser 2 is reflected by the second glass substrate 4, and this reflected light and the laser beam to be incident on the second glass substrate 4 interfere with each other. To do.

パルスレーザー2の照射は、図4に示すように、配線用孔8が、第一ガラス基板3、シール部材5、及び金属配線6を貫通し、且つ、その孔底8aが第二ガラス基板4の厚み内に形成されるまで継続する。このとき、第二ガラス基板4に形成される配線用孔8の深さDが、第二ガラス基板4の厚みに対して50%以下となるようにする。   As shown in FIG. 4, the pulse laser 2 is irradiated with the wiring hole 8 penetrating the first glass substrate 3, the seal member 5, and the metal wiring 6, and the hole bottom 8 a of the second glass substrate 4. Continue until formed within the thickness of. At this time, the depth D of the wiring hole 8 formed in the second glass substrate 4 is set to 50% or less with respect to the thickness of the second glass substrate 4.

以上により、配線用孔8が形成された液晶パネル1が得られる。この液晶パネル1では、配線用孔8が、第一ガラス基板3中において孔底8a側に移行するに連れて径が収縮するテーパー状に形成されると共に、シール部材5中において孔底8a側に移行するに連れて径が拡大するテーパー状に形成されている。つまり、配線用孔8は、第一ガラス基板3とシール部材5との界面を境界として、第一ガラス基板3側とシール部材5側とが相互に逆向きのテーパーとなるように形成されている。   Thus, the liquid crystal panel 1 in which the wiring holes 8 are formed is obtained. In this liquid crystal panel 1, the wiring hole 8 is formed in a tapered shape whose diameter contracts as it moves to the hole bottom 8 a side in the first glass substrate 3, and the hole bottom 8 a side in the seal member 5. It is formed in the taper shape which a diameter expands as it transfers to. That is, the wiring hole 8 is formed so that the first glass substrate 3 side and the sealing member 5 side have opposite tapers with the interface between the first glass substrate 3 and the sealing member 5 as a boundary. Yes.

ここで、上述の条件で照射したパルスレーザー2により配線用孔8を形成した場合には、配線用孔8の第一ガラス基板3中における内周面が、孔の中心線8bに対して傾斜した傾斜角度θ1が、0.1°〜30°となる。一方、配線用孔8のシール部材5中における内周面が、孔の中心線8bに対して傾斜した傾斜角度θ2が、1°〜45°となる。さらに、図5に示すように、配線用孔8のシール部材5中における内周面に、厚み方向に沿って干渉パターンに従った周期的な凹凸が形成される。この凹凸のピッチPは、0.5μm〜20μmとなる。また、凹凸において凸となった部位の高さHは、0.5μm〜5μmとなる。なお、この周期的な凹凸は、配線用孔8のシール部材5中における内周面の全領域に形成される場合もあるし、一部の領域にのみ形成される場合もある。加えて、図6に示すように、第一ガラス基板3とシール部材5との界面が、配線用孔8の内周面に沿って部分的に剥離した状態となる。この剥離した界面の幅Yは、0.1μm〜50μmとなる。また、剥離によって界面が厚み方向に沿って開口した寸法Zは、0.1μm〜20μmとなる。   Here, when the wiring hole 8 is formed by the pulse laser 2 irradiated under the above-described conditions, the inner peripheral surface of the wiring hole 8 in the first glass substrate 3 is inclined with respect to the center line 8b of the hole. The inclined angle θ1 is 0.1 ° to 30 °. On the other hand, the inclination angle θ2 at which the inner peripheral surface of the wiring hole 8 in the seal member 5 is inclined with respect to the center line 8b of the hole is 1 ° to 45 °. Further, as shown in FIG. 5, periodic irregularities according to the interference pattern are formed along the thickness direction on the inner peripheral surface of the wiring hole 8 in the seal member 5. The pitch P of the unevenness is 0.5 μm to 20 μm. Moreover, the height H of the site | part which became convex in the unevenness | corrugation will be 0.5 micrometer-5 micrometers. In addition, this periodic unevenness may be formed in the whole area | region of the internal peripheral surface in the sealing member 5 of the hole 8 for wiring, and may be formed only in a one part area | region. In addition, as shown in FIG. 6, the interface between the first glass substrate 3 and the sealing member 5 is partially peeled along the inner peripheral surface of the wiring hole 8. The width Y of the peeled interface is 0.1 μm to 50 μm. In addition, the dimension Z at which the interface opens along the thickness direction by peeling is 0.1 μm to 20 μm.

以下、上記の配線用孔の形成方法による主たる作用・効果について説明する。   Hereinafter, main actions and effects of the above-described wiring hole forming method will be described.

上記の配線用孔の形成方法により得られた液晶パネル1では、配線用孔8が、第一ガラス基板3とシール部材5との界面を境界として、第一ガラス基板3側とシール部材5側とが相互に逆向きのテーパーとなるように形成されている。これに加えて、配線用孔8のシール部材5中における内周面に、厚み方向に沿って周期的な凹凸が形成されている。そのため、この配線用孔8にメッキを施す、導電性ペーストを充填する等して、導電性材料を配線用孔8に導入すれば、当該配線用孔8の内周面と導電性材料とが引っ掛かりやすくなり、両者を強固に固定することが可能となる。   In the liquid crystal panel 1 obtained by the above method for forming a wiring hole, the wiring hole 8 is on the first glass substrate 3 side and the sealing member 5 side with the interface between the first glass substrate 3 and the sealing member 5 as a boundary. Are formed so as to be tapered in opposite directions. In addition to this, periodic irregularities are formed along the thickness direction on the inner peripheral surface of the sealing member 5 of the wiring hole 8. Therefore, if the conductive material is introduced into the wiring hole 8 by plating or filling the wiring hole 8 with a conductive paste, the inner peripheral surface of the wiring hole 8 and the conductive material are formed. It becomes easy to catch and it becomes possible to fix both firmly.

ここで、本発明に係る配線用孔の形成方法は、上記の実施形態で説明した態様に限定されるものではない。上記の実施形態の変形例として、パルスレーザーの光軸が、第一ガラス基板及び第二ガラス基板の厚み方向に対して傾斜するようにパルスレーザーの照射を行ってもよい。また、パルスレーザーの偏光は、直線偏光、楕円偏光、アジマス偏光、ラジアル偏光等、円偏光以外の偏光としてもよい。   Here, the method for forming a wiring hole according to the present invention is not limited to the mode described in the above embodiment. As a modification of the above embodiment, the pulse laser may be irradiated so that the optical axis of the pulse laser is inclined with respect to the thickness direction of the first glass substrate and the second glass substrate. Further, the polarized light of the pulse laser may be polarized light other than circularly polarized light, such as linearly polarized light, elliptically polarized light, azimuth polarized light, and radial polarized light.

また、上記の実施形態の変形例として、液晶パネルに対して第一ガラス基板側から照射するパルスレーザーのみでなく、新たに別のパルスレーザーを任意の方向から照射することで、シール部材中において第一ガラス基板側から照射したパルスレーザーと、新たに照射したパルスレーザーとを干渉させてもよい。このようにした場合でも、配線用孔のシール部材中における内周面に、干渉パターンに従った周期的な凹凸を形成することが可能である。   Further, as a modification of the above-described embodiment, not only the pulse laser that irradiates the liquid crystal panel from the first glass substrate side, but also a new pulse laser that is irradiated from any direction in the seal member. You may make the pulse laser irradiated from the 1st glass substrate side interfere with the newly irradiated pulse laser. Even if it does in this way, it is possible to form the periodic unevenness | corrugation according to an interference pattern in the internal peripheral surface in the sealing member of the hole for wiring.

さらに、上記の実施形態においては、液晶パネルに配線用孔を形成する態様となっているが、本発明に係る配線用孔の形成方法を適用することが可能な電子デバイスは、液晶パネルには限定されない。本方法は、対向して配置された二枚のガラス基板の相互間に樹脂でなる介在部材が介在した構造を有する他の電子デバイスを対象として、配線用孔を形成する場合にも同様に適用することができる。本発明を適用することが可能な電子デバイスとしては、例えば、有機ELパネル、タッチパネル等を挙げることが可能である。   Furthermore, in the above embodiment, the wiring hole is formed in the liquid crystal panel. However, an electronic device to which the wiring hole forming method according to the present invention can be applied is included in the liquid crystal panel. It is not limited. This method is also applicable to the case of forming wiring holes for other electronic devices having a structure in which an intervening member made of resin is interposed between two glass substrates arranged opposite to each other. can do. Examples of electronic devices to which the present invention can be applied include organic EL panels and touch panels.

1 液晶パネル
2 パルスレーザー
3 第一ガラス基板
4 第二ガラス基板
5 シール部材
8 配線用孔
8a 孔底
8b 中心線
D 深さ
θ1 傾斜角度
θ2 傾斜角度
DESCRIPTION OF SYMBOLS 1 Liquid crystal panel 2 Pulse laser 3 1st glass substrate 4 2nd glass substrate 5 Sealing member 8 Hole for wiring 8a Hole bottom 8b Center line D Depth θ1 Inclination angle θ2 Inclination angle

Claims (9)

第一ガラス基板と、該第一ガラス基板に対向して配置された第二ガラス基板と、両基板の間に介在させた樹脂でなる介在部材とを備えた電子デバイスに対し、配線用孔を形成する方法であって、
前記電子デバイスに対して両基板のうちの一方の基板側からパルスレーザーを照射することで、該一方の基板及び前記介在部材を厚み方向に貫通し、且つ他方の基板の厚み内に孔底を有する前記配線用孔を形成することを特徴とする配線用孔の形成方法。
A wiring hole is formed in an electronic device including a first glass substrate, a second glass substrate disposed opposite to the first glass substrate, and an interposed member made of a resin interposed between the two substrates. A method of forming,
By irradiating the electronic device with a pulse laser from one of the two substrates, the one substrate and the interposition member are penetrated in the thickness direction, and a hole bottom is formed within the thickness of the other substrate. A method for forming a wiring hole, comprising forming the wiring hole.
前記他方の基板に形成する前記配線用孔の深さを、該他方の基板の厚みに対して50%以下とすることを特徴とする請求項1に記載の配線用孔の形成方法。   The method for forming a wiring hole according to claim 1, wherein a depth of the wiring hole formed in the other substrate is 50% or less with respect to a thickness of the other substrate. 前記パルスレーザーとして、波長8.5μm〜14μmのレーザーを用いると共に、前記他方の基板として、波長8.5μm〜14μmの光に対する反射率が5%以上の基板を用いることを特徴とする請求項1又は2に記載の配線用孔の形成方法。   A laser having a wavelength of 8.5 μm to 14 μm is used as the pulse laser, and a substrate having a reflectance of 5% or more for light having a wavelength of 8.5 μm to 14 μm is used as the other substrate. Or the formation method of the hole for wiring of 2. 前記第一ガラス基板と前記介在部材との界面を、前記配線用孔の内周面に沿って部分的に剥離させることを特徴とする請求項1〜3のいずれかに記載の配線用孔の形成方法。   4. The wiring hole according to claim 1, wherein an interface between the first glass substrate and the interposition member is partially peeled along an inner peripheral surface of the wiring hole. 5. Forming method. 第一ガラス基板と、該第一ガラス基板に対向して配置された第二ガラス基板と、両基板の間に介在させた樹脂でなる介在部材とを備えた電子デバイスであって、
両基板のうちの一方の基板及び前記介在部材を厚み方向に貫通し、且つ他方の基板の厚み内に孔底を有する配線用孔が形成され、
前記配線用孔の径が、前記一方の基板中において前記孔底側に移行するに連れて収縮すると共に、前記介在部材中において前記孔底側に移行するに連れて拡大していることを特徴とする電子デバイス。
An electronic device comprising a first glass substrate, a second glass substrate disposed to face the first glass substrate, and an interposed member made of a resin interposed between the two substrates,
A wiring hole penetrating one of the substrates and the interposition member in the thickness direction and having a hole bottom in the thickness of the other substrate is formed,
The diameter of the wiring hole shrinks as it moves toward the hole bottom in the one substrate, and expands as it moves toward the hole bottom in the interposition member. And electronic devices.
前記他方の基板に形成された前記配線用孔の深さが、該他方の基板の厚みに対して50%以下であることを特徴とする請求項5に記載の電子デバイス。   6. The electronic device according to claim 5, wherein a depth of the wiring hole formed in the other substrate is 50% or less with respect to a thickness of the other substrate. 前記配線用孔の内周面が孔の中心線に対して傾斜した傾斜角度が、前記一方の基板中において0.1°〜30°であり、且つ前記介在部材中において1°〜45°であることを特徴とする請求項5又は6に記載の電子デバイス。   The inclination angle at which the inner peripheral surface of the wiring hole is inclined with respect to the center line of the hole is 0.1 ° to 30 ° in the one substrate, and 1 ° to 45 ° in the interposition member. The electronic device according to claim 5, wherein the electronic device is provided. 前記配線用孔の前記介在部材中における内周面に、厚み方向に沿って周期的な凹凸が形成されていることを特徴とする請求項5〜7のいずれかに記載の電子デバイス。   8. The electronic device according to claim 5, wherein periodic irregularities are formed along the thickness direction on an inner peripheral surface of the wiring hole in the interposition member. 9. 前記第一ガラス基板と前記介在部材との界面が、前記配線用孔の内周面に沿って部分的に剥離していることを特徴とする請求項5〜8のいずれかに記載の電子デバイス。
The electronic device according to claim 5, wherein an interface between the first glass substrate and the interposition member is partially peeled along an inner peripheral surface of the wiring hole. .
JP2015236402A 2015-12-03 2015-12-03 Method of forming hole for wiring and electronic device Pending JP2017102315A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015236402A JP2017102315A (en) 2015-12-03 2015-12-03 Method of forming hole for wiring and electronic device
PCT/JP2016/083126 WO2017094457A1 (en) 2015-12-03 2016-11-08 Method for forming wiring hole, and electronic device
TW105137476A TW201732403A (en) 2015-12-03 2016-11-16 Method for forming wiring hole, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236402A JP2017102315A (en) 2015-12-03 2015-12-03 Method of forming hole for wiring and electronic device

Publications (1)

Publication Number Publication Date
JP2017102315A true JP2017102315A (en) 2017-06-08

Family

ID=58797077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236402A Pending JP2017102315A (en) 2015-12-03 2015-12-03 Method of forming hole for wiring and electronic device

Country Status (3)

Country Link
JP (1) JP2017102315A (en)
TW (1) TW201732403A (en)
WO (1) WO2017094457A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017980A (en) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ Electronic device
JP2018017983A (en) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ Electronic device and manufacturing method therefor
JP2020177787A (en) * 2019-04-17 2020-10-29 セイコーエプソン株式会社 Manufacturing method of electro-optical device, manufacturing method of organic electroluminescence device, organic electroluminescence device, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779697B2 (en) * 2016-07-29 2020-11-04 株式会社ジャパンディスプレイ Electronic equipment and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131707A (en) * 1998-10-27 2000-05-12 Citizen Watch Co Ltd Liquid crystal panel
JP2001022294A (en) * 1999-07-07 2001-01-26 Canon Inc Double-sided display device and production of double- sided display device
JP2002040472A (en) * 2000-07-31 2002-02-06 Seiko Epson Corp Method for manufacturing liquid crystal device, liquid crystal device and electronic equipment
JP2008119698A (en) * 2006-11-08 2008-05-29 Takatori Corp Method and apparatus for drilling hole in substrate with co2 laser
KR101073563B1 (en) * 2010-02-08 2011-10-14 삼성모바일디스플레이주식회사 Display device and manufacturing method thereof
JP2014127701A (en) * 2012-12-27 2014-07-07 Ibiden Co Ltd Wiring board and method of manufacturing the same
JP2014154621A (en) * 2013-02-06 2014-08-25 Ibiden Co Ltd Printed wiring board, method of manufacturing printed wiring board
JP2015229167A (en) * 2014-06-04 2015-12-21 ビアメカニクス株式会社 Laser processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017980A (en) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ Electronic device
JP2018017983A (en) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ Electronic device and manufacturing method therefor
JP2020177787A (en) * 2019-04-17 2020-10-29 セイコーエプソン株式会社 Manufacturing method of electro-optical device, manufacturing method of organic electroluminescence device, organic electroluminescence device, and electronic device
JP7287084B2 (en) 2019-04-17 2023-06-06 セイコーエプソン株式会社 Electro-optical device manufacturing method and organic electroluminescent device manufacturing method

Also Published As

Publication number Publication date
WO2017094457A1 (en) 2017-06-08
TW201732403A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
WO2017094457A1 (en) Method for forming wiring hole, and electronic device
US11925062B2 (en) Display device having film with protruding portion
KR102651325B1 (en) Flexible display device with chamfered polarization layer
US10056573B2 (en) Organic light-emitting diode display panel, manufacturing method thereof and display
CN108447891A (en) A kind of production method of display panel, display panel and printer device
JP2009098425A (en) Liquid crystal display device and its manufacturing method
CN104035253A (en) Array substrate, preparation method of array substrate and display panel
WO2015135316A1 (en) Optical mask plate and laser stripping device
JP6822555B2 (en) module
KR20110008308A (en) Solar cell manufacturing method, and solar cell
WO2017012320A1 (en) Tft array substrate and manufacturing method and maintenance method therefor, and display panel
KR20120024461A (en) Method of manufacturing electronic element and electronic element
US20170285284A1 (en) Opto-electric hybrid board and method of manufacturing same
JP2018025757A (en) Electronic apparatus and method for producing the same
WO2023201860A1 (en) Blind via drilling method, device, apparatus and system based on selective laser absorption
TW201608941A (en) Display module substrate and manufacturing method thereof
WO2020207273A1 (en) Display motherboard and manufacturing and cutting methods therefor, display substrate and device
CN107634031B (en) Manufacturing method of display panel
JP2011119169A (en) Electro-optical apparatus and method of manufacturing the same
WO2016165173A1 (en) Long-line repair method for coa array substrate
US10295769B2 (en) Opto-electric hybrid board and method of manufacturing same
JP6643078B2 (en) Method for perforating glass plate and method for manufacturing solar cell module
US20140154463A1 (en) Substrate structure and manufacturing method thereof
CN105720080B (en) Organic light emitting display panel
JP5095460B2 (en) Semiconductor device and display device