JP2017101902A - Combustion furnace to be used for power generating system - Google Patents

Combustion furnace to be used for power generating system Download PDF

Info

Publication number
JP2017101902A
JP2017101902A JP2015237430A JP2015237430A JP2017101902A JP 2017101902 A JP2017101902 A JP 2017101902A JP 2015237430 A JP2015237430 A JP 2015237430A JP 2015237430 A JP2015237430 A JP 2015237430A JP 2017101902 A JP2017101902 A JP 2017101902A
Authority
JP
Japan
Prior art keywords
furnace
combustion chamber
chamber
combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015237430A
Other languages
Japanese (ja)
Inventor
敏彦 久米
Toshihiko Kume
敏彦 久米
熊川 圭一
Keiichi Kumakawa
圭一 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagawa Co Ltd
Original Assignee
Kumagawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagawa Co Ltd filed Critical Kumagawa Co Ltd
Priority to JP2015237430A priority Critical patent/JP2017101902A/en
Publication of JP2017101902A publication Critical patent/JP2017101902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generating system using a small incinerator and heat exchanger with high thermal efficiency.SOLUTION: The present invention relates to a combustion furnace of a power generating system utilizing a waste combustion device. A primary combustion chamber burns dry distillation gas from a pyrolysis furnace. A secondary combustion chamber is a cavity continuous to the primary combustion chamber, and incinerates unburnt gas in the primary combustion chamber. An exchange chamber is arranged over both sides and an upper part of the secondary combustion chamber, and filled with a heat medium (for example, water). A returning smoke pipe consists of many pipes for returning smoke exhaust from the secondary combustion chamber from an end to a starting end direction of the secondary combustion chamber through both sides in the heat exchanger chamber. A going smoke pipe returns the smoke exhaust from the returning smoke pipe from the starting end to a rear end direction of the secondary combustion chamber through an upper side of the heat exchange chamber. In addition, steam obtained in the heat exchange chamber is supplied to a power generating turbine via an air-water separator and a steam header.SELECTED DRAWING: Figure 2

Description

本発明は、燃焼炉に関し、特に、廃棄物燃焼装置を利用した発電システムに使用する燃焼炉に関する。   The present invention relates to a combustion furnace, and more particularly to a combustion furnace used in a power generation system using a waste combustion apparatus.

近年、ゴミ焼却によって発生する熱を利用して発電することが広く行われるようになっている。一方で、発展途上国では、送電線を敷設することができないが、一般ゴミ、プラスチックゴミ、あるいは森林等の燃料資源は多い地域が数多くみられる。この場合、送電線を敷設するより、前記の燃料資源を利用した発電の方がコストメリットが大きいことになる。   In recent years, power generation using heat generated by incineration of garbage has been widely performed. On the other hand, in developing countries, transmission lines cannot be laid, but there are many areas where there are many fuel resources such as general garbage, plastic garbage, or forests. In this case, the power merit using the fuel resource has a greater cost merit than laying a transmission line.

焼却炉によって発生した熱を発電に利用しようとする場合、もちろん熱効率が高い方が望ましい。この場合、熱効率をできるだけ高くする必要上、ゴミを蒸し焼き状態にして乾留ガスを発生させる乾留ガス化炉と、当該乾留ガス化炉によって発生したガスを燃料とする燃焼炉を組み合わせる廃棄物燃焼装置を利用することが考えられる(例えば特開2001−342476参照)。   When the heat generated by the incinerator is used for power generation, it is of course desirable that the heat efficiency is high. In this case, in order to increase the thermal efficiency as much as possible, a waste combustion apparatus combining a dry distillation gasification furnace that generates waste gas in a steamed state and a combustion furnace that uses the gas generated by the dry distillation gasification furnace as fuel. It is conceivable to use (see, for example, JP-A-2001-342476).

更に、本願出願人は特許4381613号にて、一般可燃ゴミ廃棄物からは乾留ガスを採取して燃焼炉で燃焼し、プラスチックゴミからは油分を採取して、有効利用する廃棄物焼却システムを提案している。   Furthermore, the applicant of the present application proposes a waste incineration system in Japanese Patent No. 4381613 that collects dry distillation gas from general combustible waste and burns it in a combustion furnace, collects oil from plastic waste, and uses it effectively. doing.

このシステムによって、一般可燃ゴミ廃棄物の燃焼とプラスチック廃棄物の燃焼とを切替えて焼却処理を行うことができて、施設の面積を小さくすることができ、結果として高いコストパーフォーマンスを得ることができることになる。   With this system, it is possible to switch between the combustion of general combustible waste and the combustion of plastic waste to perform incineration, thereby reducing the area of the facility, resulting in high cost performance. It will be possible.

特開2001−342476号公報JP 2001-342476 A 特許特許4381613号公報Japanese Patent No. 4381613

従来の廃棄物燃焼装置に適用される燃焼炉は、燃料を燃やす1次燃焼室、当該1次燃焼室での未燃焼ガスを燃焼させる2次燃焼室、更に、2次燃焼室で得られた高熱気体から水蒸気を得る熱交換機を経て、熱処理をするようになっている。すなわち、燃焼する部位と熱交換する部位はそれぞれ異なる部位が担う構造になっており、設備が大型になり、コストパーフォーマンスもあまり良くなかった。   A combustion furnace applied to a conventional waste combustion apparatus was obtained in a primary combustion chamber for burning fuel, a secondary combustion chamber for burning unburned gas in the primary combustion chamber, and a secondary combustion chamber. Heat treatment is performed through a heat exchanger that obtains water vapor from a hot gas. That is, the site to be combusted and the site to exchange heat have different structures, and the equipment is large and the cost performance is not so good.

上記特許4381613号の提案は、ダイオキシンを出さないでプラスチックゴミと一般燃焼ゴミを1つのシステムで処理できる点で有効ではあるが、本願の目的である発電にこの装置を適用するとなると、更に蒸気を得るための熱交換機能を追加する必要がある。当該熱交換機能を持たすための構造は、従来の構成を踏襲しようとすると、1次燃焼室、2次燃焼室とは別の構成となって、小型のシステムを組み上げることはできない。   The proposal of the above-mentioned Patent No. 4381613 is effective in that plastic waste and general combustion waste can be processed with one system without emitting dioxins. However, when this device is applied to power generation, which is the purpose of the present application, further steam is generated. It is necessary to add a heat exchange function to obtain. The structure for providing the heat exchange function is different from the primary combustion chamber and the secondary combustion chamber when trying to follow the conventional configuration, and a small system cannot be assembled.

本発明は上記従来の事情に鑑みて提案されたものであって、簡単な構成で、特許4381613号に開示の燃焼炉に効率的な熱交換機能を持たした構成を提供することを目的とするものである。   The present invention has been proposed in view of the above-described conventional circumstances, and an object thereof is to provide a configuration having an efficient heat exchange function in the combustion furnace disclosed in Japanese Patent No. 4381613 with a simple configuration. Is.

本発明は乾留炉と当該乾留炉からの乾留ガスを燃料とする燃焼炉とを備えた廃棄物燃焼装置を利用した発電システムの燃焼炉に関する。当該燃焼炉は以下の1次燃焼室、2次燃焼室、熱交換室、復煙管と、往煙管とを備えた構成となっている。   The present invention relates to a combustion furnace of a power generation system that uses a waste combustion apparatus including a carbonization furnace and a combustion furnace that uses carbonization gas from the carbonization furnace as a fuel. The combustion furnace includes a primary combustion chamber, a secondary combustion chamber, a heat exchange chamber, a flue pipe, and a forward smoke pipe.

1次燃焼室は前記乾留炉よりの乾留ガスを燃焼させる。前記2次燃焼室は、前記1次燃焼室に連続した空洞であって、前記1次燃焼室での未燃焼ガスを焼却する。前記熱交換室は、前記2次燃焼室の両サイドと上部に渡って配置され、熱媒体(例えば水)が充填される。復煙管は、前記2次燃焼室からの排煙が、当該2次燃焼室の終端から始端方向に、前記熱交換室内の両サイドを通って戻す多数のパイプよりなる。前記往煙管は、復煙管よりの排煙を前記2次燃焼室の始端から後端方向に前記熱交換室の上側を通って返す。   The primary combustion chamber burns dry distillation gas from the dry distillation furnace. The secondary combustion chamber is a cavity continuous to the primary combustion chamber, and incinerates unburned gas in the primary combustion chamber. The heat exchange chamber is disposed over both sides and the upper portion of the secondary combustion chamber, and is filled with a heat medium (for example, water). The flue pipe is composed of a number of pipes that return the smoke exhausted from the secondary combustion chamber from the end of the secondary combustion chamber toward the start end through both sides of the heat exchange chamber. The forward smoke pipe returns the flue gas from the exhaust pipe through the upper side of the heat exchange chamber from the start end to the rear end of the secondary combustion chamber.

前記、熱交換室に充填された熱媒体は、前記乾留炉の周壁で予熱された熱媒体を用いるとより効果を上げることができる。また、前記熱交換室で得られた蒸気は、気水分離機と蒸気ヘッダを介して発電用のタービンに供給されることになる。   The effect of the heat medium filled in the heat exchange chamber can be further improved by using a heat medium preheated on the peripheral wall of the dry distillation furnace. Further, the steam obtained in the heat exchange chamber is supplied to a power generation turbine through a steam separator and a steam header.

上記構成により、熱交換器が燃焼炉と一体になっているのでシステム全体を小型化かつ、熱効率を上げることができ、小規模であっても効率のよい熱交換ができ、小型の発電機を作動すことができる効果がある。   With the above configuration, since the heat exchanger is integrated with the combustion furnace, the entire system can be downsized and the thermal efficiency can be increased, and efficient heat exchange can be achieved even on a small scale. There is an effect that can be activated.

本発明の燃焼炉の外観を示す斜視図である。It is a perspective view which shows the external appearance of the combustion furnace of this invention. 本発明の分解斜視図である。It is an exploded perspective view of the present invention. 本発明による排煙の流れの方向を示す模式図である。It is a schematic diagram which shows the direction of the flow of the flue gas by this invention. 本発明を適用した発電システムを示すものである。1 shows a power generation system to which the present invention is applied. 本発明の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of this invention. 図5のA−A断面図である。It is AA sectional drawing of FIG. 図5のB−B断面図である。It is BB sectional drawing of FIG.

図1は本発明の燃焼炉のの燃焼炉の外観を示す斜視図であり、図2は分解斜視図、更に図3は本発明による排煙の流れの方向を示す模式図である。   FIG. 1 is a perspective view showing the appearance of a combustion furnace of the combustion furnace of the present invention, FIG. 2 is an exploded perspective view, and FIG. 3 is a schematic diagram showing the direction of smoke flow according to the present invention.

本燃焼炉2の1次燃焼室2Xには、乾留ガス化炉(後述)からの乾留ガスが流入する分岐ダクト(後述)4のガス流入口40を備える一方、油化装置(後述)で得られた油(あるい別途供給される油)を燃焼させる二次バーナ28を備える。前記ガス流入口40からの乾留ガスは、初期的には前記二次バーナ28の燃焼によって燃焼するが、前記油化装置からの油は、乾留ガスの着火時のみ必要であり、炉内の温度が上がると乾留ガスは二次バーナ28の燃焼がなくても自然燃焼する。もっとも、乾留炉2が故障したときには前記油化装置の油あるいは別途供給される油を利用した油炊きボイラーとして機能する。   The primary combustion chamber 2X of the combustion furnace 2 is provided with a gas inlet 40 of a branch duct (described later) 4 into which dry distillation gas from a dry distillation gasification furnace (described later) flows. A secondary burner 28 is provided for burning the oil (or separately supplied oil). The dry distillation gas from the gas inlet 40 is initially combusted by the combustion of the secondary burner 28, but the oil from the oil generator is required only when the dry distillation gas is ignited, and the temperature in the furnace As the value rises, the dry distillation gas spontaneously burns even if the secondary burner 28 does not burn. But when the carbonization furnace 2 fails, it functions as an oil cooking boiler using the oil of the said oil refiner or the oil supplied separately.

図2(a)に示すように、前記1次燃焼室2Xに連続して2次燃焼室2Yが設けられ、当該2次燃焼室2Yにはブロア29で空気孔29aを介して空気が供給され、前記1次燃焼室2Xでの未燃焼のガスが完全燃焼し、ダイオキシンの分解ができるように構成される。   As shown in FIG. 2A, a secondary combustion chamber 2Y is provided continuously to the primary combustion chamber 2X, and air is supplied to the secondary combustion chamber 2Y through an air hole 29a by a blower 29. The unburned gas in the primary combustion chamber 2X is completely burned, and the dioxin can be decomposed.

この2次燃焼室2Yの両サイドと上側に渡って、炉壁を隔てて熱交換室90が設けられており、両サイドの各熱交換室90には、2次燃焼室2Yの末端(排煙方向下流側)から始端(排煙方向上流側)に向かって複数の復煙管91a、91bが配置され、更に当該復煙管91a、91bは、2次燃焼室の始端側で折り返して往煙管91cとなって前記上側の熱交換室90を経て、下流の排煙ダクト51(図4参照)に開かれるようになている。   A heat exchange chamber 90 is provided across both sides and the upper side of the secondary combustion chamber 2Y with a furnace wall therebetween, and each end of the secondary combustion chamber 2Y (exhaust gas) is provided in each heat exchange chamber 90 on both sides. A plurality of flue pipes 91a and 91b are arranged from the smoke direction downstream side to the start end (upstream side in the flue gas direction), and the flue pipes 91a and 91b are folded back at the start end side of the secondary combustion chamber to return the forward smoke pipe 91c. Then, after passing through the upper heat exchange chamber 90, it is opened to the downstream smoke exhaust duct 51 (see FIG. 4).

前記2次燃焼室は800〜900℃前後になるので、熱交換室90に充填された熱媒体は、前記熱交換室90を通過する煙管91a、91b、91cから与えられる熱量で蒸気になる。   Since the secondary combustion chamber is around 800 to 900 ° C., the heat medium filled in the heat exchange chamber 90 becomes steam with the amount of heat given from the smoke pipes 91a, 91b, 91c passing through the heat exchange chamber 90.

図3は上記した煙管91a、91b、91cを通しての排煙経路を示したものである。まず、1次燃焼室2Xで生成された排煙は、2次燃焼室で未燃焼のガスを燃焼させながら上流から下流に流れ(流路a)、次いで復煙管91a、91bを介して上流側に戻され(流路b)、更に、往煙管91cを介して下流側の排煙ダクト51に排煙される(流路c)。   FIG. 3 shows a smoke exhaust path through the above-described smoke pipes 91a, 91b, 91c. First, the flue gas generated in the primary combustion chamber 2X flows from the upstream to the downstream while burning unburned gas in the secondary combustion chamber (flow path a), and then upstream through the flue pipes 91a and 91b. (Flow path b), and further, smoke is discharged to the downstream smoke exhaust duct 51 via the forward smoke pipe 91c (flow path c).

図4は本発明が適用される廃棄物燃焼装置を用いた発電システムの概要を示す図である。   FIG. 4 is a diagram showing an outline of a power generation system using a waste combustion apparatus to which the present invention is applied.

この廃棄物燃焼装置は、処理物を乾留する乾留炉1と、乾留炉1から出される乾留ガスを燃焼させる本発明に係る燃焼炉2と、乾留ガスを油分とガス分とに分離させる油化装置3と、乾留炉1より乾留ガスを燃焼炉2と油化装置3とに選択的に導く分岐ダクト4とを備える。   This waste combustion apparatus includes a carbonization furnace 1 for carbonizing a treated product, a combustion furnace 2 according to the present invention for combusting a carbonization gas discharged from the carbonization furnace 1, and an oiling process for separating the carbonization gas into an oil component and a gas component. An apparatus 3 and a branch duct 4 that selectively guides the carbonization gas from the carbonization furnace 1 to the combustion furnace 2 and the oil generator 3 are provided.

また、この廃棄物燃焼装置は、燃焼炉2から出される排煙の熱を利用する温水ボイラ5と、排煙中の粉塵を除去する集塵装置7と、排煙を流動させるガスファン8と、ガスを大気中に放出する煙突9とを備えている。   The waste combustion apparatus includes a hot water boiler 5 that uses the heat of the flue gas emitted from the combustion furnace 2, a dust collector 7 that removes dust in the flue gas, and a gas fan 8 that causes the flue gas to flow. And a chimney 9 for releasing gas into the atmosphere.

前記廃棄物は、一般可燃ゴミ廃棄物又はプラスチック廃棄物、あるいは木材等であり、乾留炉1の上部に設けた投入口12より乾留炉1内に投下される。   The waste is general combustible waste, plastic waste, wood, or the like, and is dropped into the dry distillation furnace 1 from the inlet 12 provided at the upper part of the dry distillation furnace 1.

なお、この投入口12には、投入口12の上端開口を開閉する上蓋13と、投入口12の中間高さを開閉するシャッター14とが設けられ、たとえばシャッター14を閉じた状態で上蓋13を開けて所定量の一般廃棄物、プラスチック廃材、木材等を投入口12に投下した後、上蓋13を閉じてからシャッター14を開いて廃棄物を乾留炉1内に落下させるようにしている。   The inlet 12 is provided with an upper lid 13 that opens and closes the upper end opening of the inlet 12 and a shutter 14 that opens and closes the intermediate height of the inlet 12. For example, the upper lid 13 is closed with the shutter 14 closed. After opening and dropping a predetermined amount of general waste, plastic waste, wood, etc. into the inlet 12, the upper lid 13 is closed and then the shutter 14 is opened to drop the waste into the dry distillation furnace 1.

前記乾留炉1の炉底15は耐火物からなり、炉側壁16及び天井17は冷却水が流通するウォータージャケットで構成され、これら炉側壁16、天井17、火格子18、これを支持する炉内壁19及び前記シャッター14に熱媒体(冷却水)を流通させるようにしている。   The bottom 15 of the dry distillation furnace 1 is made of a refractory material, and the furnace side wall 16 and the ceiling 17 are constituted by a water jacket through which cooling water flows, and these furnace side walls 16, the ceiling 17, the grate 18, and the furnace inner wall that supports the furnace wall. 19 and the shutter 14 are made to circulate a heat medium (cooling water).

また、前記分岐ダクト4の周壁にもウォータジャケットが形成され、前記乾留炉1の炉側壁16及び天井17のウォータジャケットと連通され、更に、前記燃焼炉2の周囲に設けられた熱交換室90にも連通する構成としておくとよい。これによって、熱交換室90では前記炉側壁16等で予備加熱された水を加熱することになるので、より効率的な加熱ができることになる。   A water jacket is also formed on the peripheral wall of the branch duct 4, communicated with the water jacket 16 of the dry distillation furnace 1 and the water jacket of the ceiling 17, and further, a heat exchange chamber 90 provided around the combustion furnace 2. It is better to have a configuration that communicates with each other. Thus, in the heat exchange chamber 90, water preheated by the furnace side wall 16 and the like is heated, so that more efficient heating can be performed.

また、熱媒体(冷却水)はタービン94である程度消費されることになるが、消費された分は外部から補充されることになる。   Further, the heat medium (cooling water) is consumed to some extent by the turbine 94, but the consumed amount is replenished from the outside.

ところで、前記投入口12より乾留炉1内に投下された廃棄物は、火格子18に受止められ、火格子18の下方から乾留炉1内に火炎を噴出す一次バーナ20により乾留炉1内を加熱することにより乾留される。   By the way, the waste dropped into the dry distillation furnace 1 from the charging port 12 is received by the grate 18 and is injected into the dry distillation furnace 1 by the primary burner 20 that jets a flame into the dry distillation furnace 1 from below the grate 18. Is heated to dry distillation.

なお、この一次バーナ20には、油化回収タンク41(後述)より、燃料ポンプ47で油が供給され、当該油の燃焼で乾留炉1内は下記の所定の温度に保たれる。もちろん燃焼には空気が必要であり、一次ファン21より燃焼用空気が供給される。   The primary burner 20 is supplied with oil by a fuel pump 47 from an oil recovery tank 41 (described later), and the inside of the dry distillation furnace 1 is maintained at the following predetermined temperature by the combustion of the oil. Of course, air is required for combustion, and combustion air is supplied from the primary fan 21.

乾留炉1内で廃棄物を数百度、たとえば300〜600℃に加熱すると、炭素化合物である一般可燃ゴミ廃棄物又はプラスチック廃棄物が、ダイオキシンを発生することなく乾留されて、揮発する部分と揮発しない炭素質とに熱分解され、揮発せずに残る炭素質が火格子18の間から炉底15上に落下する。この炭素物質(いわゆる炭)は、別途の燃料として利用できることになる。   When the waste is heated to several hundred degrees, for example, 300 to 600 ° C. in the carbonization furnace 1, the carbon combustible waste or plastic waste is carbonized without generating dioxin, and volatilized and volatilized. The carbonaceous matter that has been pyrolyzed to the carbonaceous matter that has not been volatilized falls from between the grate 18 onto the furnace bottom 15. This carbon material (so-called charcoal) can be used as a separate fuel.

また、乾留により揮発した部分は乾留ガスとして分岐ダクト4により燃焼炉2または油化装置3に導かれる。   Further, the portion volatilized by the dry distillation is led to the combustion furnace 2 or the oil generator 3 by the branch duct 4 as a dry distillation gas.

この分岐ダクト4は耐火物で形成され、図4に示すように、その分岐点には、モータM1(図示せず)により駆動される切替え弁25が設けられ、図示しない切替えスイッチをオペレータが手動操作してこの切替え弁25の位置を切替え、乾留ガスの出先を燃焼炉2または油化装置3に切替えるようにしている。   The branch duct 4 is formed of a refractory material, and as shown in FIG. 4, a switching valve 25 driven by a motor M1 (not shown) is provided at the branch point. By operating it, the position of the switching valve 25 is switched, and the destination of the dry distillation gas is switched to the combustion furnace 2 or the oil generator 3.

すなわち、一般可燃ゴミ廃棄物、木材を燃焼する場合には、乾留ガスが燃焼炉2に導かれるように、又、プラスチック廃棄物を処理する場合には、乾留ガスが油化装置3に導かれるように切替え弁25の位置が切替えられる。   That is, when combusting general combustible waste and wood, the dry distillation gas is guided to the combustion furnace 2, and when processing plastic waste, the dry distillation gas is guided to the oil generator 3. Thus, the position of the switching valve 25 is switched.

前記油化装置3には、直列に接続される複数段(ここでは2段)のコンデンサー30が設けられ、前記ガス検知器(図示せず)が検出する乾留ガスの濃度の大小により使用するコンデンサ30の段数が切替えられるようにしている。   The oil generator 3 is provided with a plurality of (in this case, two) condensers 30 connected in series, and the condenser used depending on the concentration of dry distillation gas detected by the gas detector (not shown). 30 stages can be switched.

ここで、各段のコンデンサ30は同様に構成され、縦筒状のタンクA、タンクBで液化された油分は下端の集油槽31に集められる。   Here, the capacitors 30 in each stage are configured in the same manner, and the oil components liquefied in the vertical cylindrical tanks A and B are collected in the oil collecting tank 31 at the lower end.

2基のコンデンサ30は、還流ガスの濃度によって使い分けられる。すなわち、分岐ダクト4から各コンデンサ30に流れ込む、還流ガスの濃度をガス検知器(図示せず)が検出し、その濃度を判定する。前記濃度が大きい場合には、乾留ガスを分岐ダクト4側から第1段のタンクAに導き、第1段、第2段の順に各コンデンサ30に流す。また、前記濃度が小さい場合には、分岐ダクト4より、乾留ガスを第2段のタンクBのみに流す。上記の操作を効率的に実行するためには、分岐ダクト4に各種の開閉弁を設ける必要があるが、ここの点は発明の本質ではないので説明を省略する。   The two capacitors 30 are selectively used depending on the concentration of the reflux gas. That is, a gas detector (not shown) detects the concentration of the reflux gas flowing from the branch duct 4 to each capacitor 30 and determines the concentration. When the concentration is high, the dry distillation gas is led from the branch duct 4 side to the first-stage tank A, and flows through the capacitors 30 in the order of the first and second stages. When the concentration is low, the dry distillation gas is allowed to flow only from the branch duct 4 to the second stage tank B. In order to efficiently execute the above operation, it is necessary to provide various opening / closing valves in the branch duct 4, but this point is not the essence of the invention, and thus the description thereof is omitted.

更に、前記油化装置2で油化されずに残ったOFFガスは、還流炉1に返され燃焼される(図4、経路X)。   Further, the OFF gas remaining without being liquefied by the oil refiner 2 is returned to the reflux furnace 1 and burned (FIG. 4, path X).

また、燃焼炉2からの排煙は、電動弁MKと1次ファン21を介して乾留炉1に還流できるようにしてある(図4、経路Y)。そして、図4に示すように、温度センサTICAR1によって燃焼炉1のガス温度を監視し、たとえば800℃以上の高温が2秒以上連続する高温の場合には、前記電動弁MKを開いて、燃焼炉2のガスの一部分を乾留炉1に還流させ、煙突9からのガス温度が一定値を上回らないようにしている。これによって、上記乾留炉1への還流ガスはバーナ20の燃焼補助となり、また,所定の温度以上ではバ−ナ20がなくても燃焼を持続することができる。   In addition, the flue gas from the combustion furnace 2 can be recirculated to the dry distillation furnace 1 via the electric valve MK and the primary fan 21 (FIG. 4, path Y). Then, as shown in FIG. 4, the gas temperature of the combustion furnace 1 is monitored by a temperature sensor TICAR1, and for example, when a high temperature of 800 ° C. or higher continues for 2 seconds or longer, the motor-operated valve MK is opened to perform combustion. A part of the gas in the furnace 2 is returned to the dry distillation furnace 1 so that the gas temperature from the chimney 9 does not exceed a certain value. As a result, the reflux gas to the carbonization furnace 1 serves as a combustion aid for the burner 20, and combustion can be continued at a predetermined temperature or higher without the burner 20.

また、燃焼炉2の炉内温度が一定時間以上連続して所定の温度以上にならない低温の場合には、前記電動弁MKを閉じ、ガスの全量を煙突9から大気中に放出させる。   When the furnace temperature of the combustion furnace 2 is a low temperature that does not continuously exceed a predetermined temperature for a predetermined time or longer, the motor-operated valve MK is closed, and the entire amount of gas is released from the chimney 9 to the atmosphere.

上述したように、燃焼炉2の炉内温度は800℃以上に保持されるように制御されているので、熱交換器90で充分な蒸気を発生させることができ、ここでの熱も充分に高い温度であり、排煙ダクト51を介して温水ボイラ5に供給される。燃焼炉2からの熱(前記往煙管91(c)から出されたガス)を温水ボイラ5の熱源に利用することにより、熱温度が、たとえば200℃以下に冷やされる。   As described above, since the furnace temperature of the combustion furnace 2 is controlled to be maintained at 800 ° C. or higher, sufficient heat can be generated by the heat exchanger 90, and the heat here is also sufficient. The temperature is high, and the hot water boiler 5 is supplied via the smoke exhaust duct 51. By using the heat from the combustion furnace 2 (gas emitted from the smoke pipe 91 (c)) as a heat source for the hot water boiler 5, the heat temperature is cooled to 200 ° C. or less, for example.

ここで前記温水ボイラ5から得られる熱媒体の蒸気も一部前記蒸気ヘッダ93に供給され、タービン94の駆動に寄与することになり、また、タービン94で液体に戻った熱媒体が、前記したように熱交換器90に返されるとともに、温水ボイラ5に返されることになる。   Here, the steam of the heat medium obtained from the hot water boiler 5 is also partly supplied to the steam header 93 and contributes to the driving of the turbine 94, and the heat medium returned to the liquid by the turbine 94 is as described above. Thus, it is returned to the heat exchanger 90 and returned to the hot water boiler 5.

なお、ガス温度が集塵装置7の耐熱性能を下回る低温であるときには電動弁MKは閉弁し、前記乾留炉1への還流はなく全ガスが集塵装置7を通ってガス中の煤塵が除去されるようにしている。   When the gas temperature is a low temperature lower than the heat resistance performance of the dust collector 7, the motor-operated valve MK is closed, and there is no recirculation to the dry distillation furnace 1, and all the gas passes through the dust collector 7 and dust in the gas is discharged. To be removed.

以上説明したように、本発明は乾留炉で一般ゴミを乾留したときに発生する乾留ガスを焼却できる燃焼炉と、プラスチックを乾留したときに発生する乾留ガスを油化できる油化装置とを備えた廃棄物燃焼装置で、前記燃焼装置に熱交換機を外装させた構成としたので、発電用の熱媒体のガス(水蒸気ガス)が容易に効率的に得られる。   As described above, the present invention includes a combustion furnace capable of incinerating a dry distillation gas generated when general garbage is carbonized in a dry distillation furnace, and an oiling apparatus capable of liquefying the dry distillation gas generated when a plastic is carbonized. Since the waste combustion apparatus has a configuration in which a heat exchanger is externally mounted on the combustion apparatus, a heat medium gas (water vapor gas) for power generation can be obtained easily and efficiently.

また、乾留炉を乾留ガス化燃焼法における乾留処理と油化法における乾留処理とに併用することにより、各法専用の2基の乾留炉を設置する場合に比べて、乾留炉1の設置用地を狭くすることができるとともに、装置全体として安価にできるのである。   In addition, by using the carbonization furnace in combination with the carbonization process in the gasification combustion method and the gasification process in the oiling method, the site for installing the carbonization furnace 1 compared to the case of installing two carbonization furnaces dedicated to each method. As a result, the entire apparatus can be made inexpensive.

図5、図6、図7は本発明の焼却炉の別の実施形態を示すものである。   5, 6 and 7 show another embodiment of the incinerator of the present invention.

前記1次燃焼室2X、2次燃焼室2Yの周壁の外側はウォータジャッケト24で覆われた構成となっている。前記2次燃焼室2Yの内壁の軸方向に沿って、前記ウォータジャケット24に連通する通水管25が多数配列され当該2次燃焼室2Yでの燃焼熱を吸収する。更に、前記2次燃焼室2Yの内壁に沿って、吸熱フィン26が軸方向および周方向に沿って多数配列され、前記前記ウォータジャケット24に充填された熱媒体の熱吸収効率を高めるようになっている。   The outer side of the peripheral wall of the primary combustion chamber 2X and the secondary combustion chamber 2Y is covered with a water jacket 24. A large number of water pipes 25 communicating with the water jacket 24 are arranged along the axial direction of the inner wall of the secondary combustion chamber 2Y to absorb the heat of combustion in the secondary combustion chamber 2Y. Further, a large number of heat absorbing fins 26 are arranged along the axial direction and the circumferential direction along the inner wall of the secondary combustion chamber 2Y, so that the heat absorption efficiency of the heat medium filled in the water jacket 24 is increased. ing.

2次燃焼室2Yの排煙方向下流側に、熱交換室90が設けられる。当該熱交換室90は前記ウォータジャケット24に連通する水槽95と、排煙方向の上流(2次燃焼室)から下流に渡って前記水槽95を貫通する多数の煙管96とよりなる。前記2次燃焼室2Yで800〜900℃に加熱された排煙は前記多数の煙管96を介して下流側の排煙ダクト51に排出され、その過程で前記水槽91に充填された熱媒体を加熱することになる。この構成により、ウォータジャケット20に充填された熱媒体は更に効率よく加熱されることになる。   A heat exchange chamber 90 is provided downstream of the secondary combustion chamber 2Y in the direction of smoke emission. The heat exchange chamber 90 includes a water tank 95 communicating with the water jacket 24 and a plurality of smoke pipes 96 penetrating the water tank 95 from the upstream (secondary combustion chamber) in the smoke exhaust direction to the downstream. The flue gas heated to 800 to 900 ° C. in the secondary combustion chamber 2Y is discharged to the downstream flue gas duct 51 through the many smoke pipes 96, and the heat medium filled in the water tank 91 in the process is discharged. Will be heated. With this configuration, the heat medium filled in the water jacket 20 is heated more efficiently.

前記2次燃焼室は800〜900℃前後になるので、熱交換室90に充填された熱媒体は、前記熱交換室90を通過する煙管92から与えられる熱量で蒸気になる。ウォータジャケット24の上側に配置された気液分離器92は、水蒸気のみを蒸気ヘッダ93(図4)を介して発電用のタービン94に送りこむことになる。   Since the secondary combustion chamber is around 800 to 900 ° C., the heat medium filled in the heat exchange chamber 90 becomes steam with the amount of heat given from the smoke pipe 92 passing through the heat exchange chamber 90. The gas-liquid separator 92 disposed on the upper side of the water jacket 24 sends only water vapor to the power generation turbine 94 via the steam header 93 (FIG. 4).

一方、上記のように発電用タービン94に送り込まれた水蒸気は、タービン94で水に戻り、再び熱交換器90に戻るようになっている(図4参照)。   On the other hand, the steam fed into the power generation turbine 94 as described above returns to water in the turbine 94 and returns to the heat exchanger 90 again (see FIG. 4).

上記の燃焼装置を乾留炉を備えた燃焼システムに適用し、得られた上記で発電用タービンを駆動する点は図4で説明したとおりである。   The point that the above-described combustion apparatus is applied to a combustion system including a carbonization furnace and the power generation turbine is driven as described above is as described with reference to FIG.

以上説明したように、本発明は簡単なシステム構成で、炉全体を小型化でき、しかも熱効率が高く、一般廃棄物、プラスチックゴミ、木材等を利用することができので、開発途上国での利用、あるいは先進国であっても小規模な発電システムでの利用が可能となる。   As described above, the present invention has a simple system configuration, can downsize the entire furnace, has high thermal efficiency, and can use general waste, plastic garbage, wood, etc. Or, even in developed countries, it can be used with small-scale power generation systems.

1 乾留炉
2 燃焼炉
3 油化装置
2X 1次燃焼室
4 分岐ダクト
7 集塵装置
12投入口
13上蓋
14シャッター
15炉底
16炉側壁
17天井
18火格子
19炉内壁
20一次バーナ
28二次バーナ
29ブロア
29a空気孔
40ガス流入口
41化回収タンク
47燃料ポンプ
90熱交換室
51排煙ダクト
91a、91b、91c煙管
93蒸気ヘッダ
94タービン
DESCRIPTION OF SYMBOLS 1 Carbonization furnace 2 Combustion furnace 3 Oil refiner 2X Primary combustion chamber 4 Branch duct 7 Dust collector 12 Input port 13 Top cover 14 Shutter 15 Furnace bottom 16 Furnace side wall 17 Ceiling 18 Grate 19 Furnace inner wall 20 Primary burner 28 Secondary burner 29 Blower 29a Air hole 40 Gas inlet 41 Conversion recovery tank 47 Fuel pump 90 Heat exchange chamber 51 Smoke duct 91a, 91b, 91c Smoke pipe 93 Steam header 94 Turbine

Claims (6)

乾留炉と当該乾留炉からの乾留ガスを燃料とする燃焼炉とを備えた廃棄物燃焼装置を利用した発電システムの燃焼炉において、
前記乾留炉よりの乾留ガスを燃焼させる1次燃焼室と、
前記1次燃焼室に連続した空洞であって、前記1次燃焼室での未燃焼ガスを焼却する前記2次燃焼室と、
前記2次燃焼室の両サイドと上部に渡って配置され、熱媒体が充填される前記熱交換室と、
前記2次燃焼室からの排煙が、当該2次燃焼室の終端から始端方向に、前記熱交換室内の両サイドを通って戻す多数のパイプよりなる復煙管と、
復煙管よりの排煙を前記2次燃焼室の始端から後端方向に前記熱交換室の上側を通って排煙ダクトに開く前記往煙管と、
を備えたことを特徴とする燃焼炉。
In a combustion furnace of a power generation system using a waste combustion apparatus including a carbonization furnace and a combustion furnace that uses carbonization gas from the carbonization furnace as a fuel,
A primary combustion chamber for combusting carbonization gas from the carbonization furnace;
A cavity continuous to the primary combustion chamber, wherein the secondary combustion chamber incinerates unburned gas in the primary combustion chamber;
The heat exchange chamber disposed over both sides and the upper portion of the secondary combustion chamber and filled with a heat medium;
A flue gas pipe made up of a number of pipes, from which the flue gas from the secondary combustion chamber returns from the end of the secondary combustion chamber toward the start end through both sides of the heat exchange chamber;
The forward smoke pipe that opens the exhaust gas from the exhaust pipe through the upper side of the heat exchange chamber from the start end to the rear end direction of the secondary combustion chamber to the exhaust duct;
A combustion furnace characterized by comprising:
前記、燃焼炉に循環する水が、前記乾留炉の周壁で予熱された水である請求項1に記載の燃焼炉。   The combustion furnace according to claim 1, wherein the water circulating in the combustion furnace is water preheated on a peripheral wall of the dry distillation furnace. 前記熱交換器で発生した蒸気が蒸気ヘッドを介してタービンに供給される請求項1に記載の燃焼炉。   The combustion furnace according to claim 1, wherein steam generated in the heat exchanger is supplied to a turbine through a steam head. 乾留炉と当該乾留炉からの乾留ガスを燃料とする燃焼炉とを備えた廃棄物燃焼装置を利用した発電システムの燃焼炉において、
前記乾留炉よりの乾留ガスを燃焼させる1次燃焼室と、
前記1次燃焼室に連続した空洞であって、前記1次燃焼室での未燃焼ガスを焼却する2次燃焼室と、
前記1次燃焼室、2次燃焼室に渡って炉壁を覆うウォータジャッケットと、
前記2次燃焼室の周壁に沿って配設された前記ウォータジャケットに連通する水管と、
前記2次燃焼室の排煙方向下流側に配設され、前記ウォータジャケットと連通して熱媒体が充填されるとともに、前記2次燃焼室から下流側に貫通する複数の煙管が配設された熱交換室と
を備えたことを特徴とする燃焼炉。
In a combustion furnace of a power generation system using a waste combustion apparatus including a carbonization furnace and a combustion furnace that uses carbonization gas from the carbonization furnace as a fuel,
A primary combustion chamber for combusting carbonization gas from the carbonization furnace;
A secondary combustion chamber which is a cavity continuous to the primary combustion chamber and incinerates unburned gas in the primary combustion chamber;
A water jacket covering the furnace wall across the primary combustion chamber and the secondary combustion chamber;
A water pipe communicating with the water jacket disposed along the peripheral wall of the secondary combustion chamber;
Arranged downstream of the secondary combustion chamber in the direction of flue gas, communicating with the water jacket, filled with a heat medium, and disposed with a plurality of smoke pipes penetrating downstream from the secondary combustion chamber. A combustion furnace comprising a heat exchange chamber.
前記、燃焼炉に循環する水が、前記乾留炉の周壁で予熱された水である請求項4に記載の燃焼炉。   The combustion furnace according to claim 4, wherein the water circulating in the combustion furnace is water preheated on a peripheral wall of the dry distillation furnace. 前記熱交換器で発生した蒸気が蒸気ヘッドを介してタービンに供給される請求項4に記載の燃焼炉。   The combustion furnace according to claim 4, wherein steam generated in the heat exchanger is supplied to a turbine via a steam head.
JP2015237430A 2015-12-04 2015-12-04 Combustion furnace to be used for power generating system Pending JP2017101902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237430A JP2017101902A (en) 2015-12-04 2015-12-04 Combustion furnace to be used for power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237430A JP2017101902A (en) 2015-12-04 2015-12-04 Combustion furnace to be used for power generating system

Publications (1)

Publication Number Publication Date
JP2017101902A true JP2017101902A (en) 2017-06-08

Family

ID=59017943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237430A Pending JP2017101902A (en) 2015-12-04 2015-12-04 Combustion furnace to be used for power generating system

Country Status (1)

Country Link
JP (1) JP2017101902A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030548A (en) * 2019-04-01 2019-07-19 黑龙江赫尔特生物质能源发展有限公司 A kind of the modularization heat-exchange method and device of particularly suitable biomass combustion system
KR102063876B1 (en) * 2019-08-16 2020-01-08 김경환 Self-powered incinerator system
CN111911930A (en) * 2020-08-17 2020-11-10 内蒙古蒙投环境股份有限公司 Garbage carbonization pyrolysis method and water and gas heat exchange device
CN112628745A (en) * 2020-12-22 2021-04-09 深圳市深港产学研环保工程技术股份有限公司 Gradient temperature-changing pyrolysis system for treating household garbage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030548A (en) * 2019-04-01 2019-07-19 黑龙江赫尔特生物质能源发展有限公司 A kind of the modularization heat-exchange method and device of particularly suitable biomass combustion system
KR102063876B1 (en) * 2019-08-16 2020-01-08 김경환 Self-powered incinerator system
CN111911930A (en) * 2020-08-17 2020-11-10 内蒙古蒙投环境股份有限公司 Garbage carbonization pyrolysis method and water and gas heat exchange device
CN111911930B (en) * 2020-08-17 2023-03-28 广东冠亚环保科技有限公司 Garbage carbonization pyrolysis method and water and gas heat exchange device
CN112628745A (en) * 2020-12-22 2021-04-09 深圳市深港产学研环保工程技术股份有限公司 Gradient temperature-changing pyrolysis system for treating household garbage

Similar Documents

Publication Publication Date Title
US8234985B2 (en) Boiler producing steam from flue gases under optimized conditions
CN102788355B (en) Turbulent-style hazardous waste pyrolysis incinerator
CN100593097C (en) Self-burning simple harmless life refuse high temperature combustion furnace
JP6958489B2 (en) Energy storage and supply equipment by waste incinerator
JP2017101902A (en) Combustion furnace to be used for power generating system
JP4400467B2 (en) Method and apparatus for burning hydrous waste
KR200441449Y1 (en) Coal gas boiler
KR20170035090A (en) Water Energy pollution-free Incineration Boiler using thermal fusion property of Brown Gas
JP2019086271A (en) Waste heat recovery power generation system of small capacity incinerator
JP4608636B2 (en) Incinerator
KR102006957B1 (en) Recycling system of waste geat using the incinerator
CN105423308A (en) Petroleum coke assisted refuse disposal system combining microwave drying and plasma gasification
CN102278762A (en) Circulating fluidized incinerator
JP2008039365A (en) Incinerator
JP2012013266A (en) Power generation system, and cremator
JP2006170586A (en) Ceramic heater type indirect heat utilizing flue gas treating apparatus and incinerator using the apparatus
CN106152146A (en) Multifunctional garbage high-temperature gasification spray combustion electricity generation boiler
KR20060092320A (en) Combustion boiler of orgainic material
KR100704176B1 (en) An incineration boiler
CN202792041U (en) Turbulent-flow hazardous-waste pyrolysis incinerator
JP2007309162A (en) Waste incinerator power generation device
CN202938363U (en) Combined type coal-to-gas combustion heating furnace
CN106594747A (en) Improved harmless garbage incinerator
JPS60105815A (en) Small-sized dust incinerator
KR20100006637U (en) the multipurpose firewood burn up system by downward look type