JP2017101538A - Bearing force structure and bearing force method of wooden building - Google Patents

Bearing force structure and bearing force method of wooden building Download PDF

Info

Publication number
JP2017101538A
JP2017101538A JP2016218710A JP2016218710A JP2017101538A JP 2017101538 A JP2017101538 A JP 2017101538A JP 2016218710 A JP2016218710 A JP 2016218710A JP 2016218710 A JP2016218710 A JP 2016218710A JP 2017101538 A JP2017101538 A JP 2017101538A
Authority
JP
Japan
Prior art keywords
resin plate
foamed resin
pair
members
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016218710A
Other languages
Japanese (ja)
Other versions
JP2017101538A5 (en
JP6962681B2 (en
Inventor
芳英 春城
Yoshihide Haruki
芳英 春城
俊彦 松
Toshihiko Matsu
俊彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2017101538A publication Critical patent/JP2017101538A/en
Publication of JP2017101538A5 publication Critical patent/JP2017101538A5/ja
Application granted granted Critical
Publication of JP6962681B2 publication Critical patent/JP6962681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing force structure and a bearing force method of a wooden building having a persistent bearing force structure, without rupturing at a stretch even when receiving a strong horizontal load such as a large earthquake.SOLUTION: A wooden building is constituted by arranging a plurality of frame members having a space part enclosed by a pair of columns and a pair of horizontal members so as to make a pair in the respective first direction and second direction, and comprises a plurality of first foam resin plate-like members fitted in a first space part of requiring wall bearing force and a plurality of second foam resin plate-like members fitted in a second space part of not requiring the wall bearing force. The first foam resin plate-like members act as a bearing wall by receiving compressive force by a horizontal load by a side surface via the columns when the horizontal load is added in the first or the second direction by contacting a short side directional side surface with the columns. The second foam resin plate-like members comprise a compressive force reduction part for reducing the compressive force, and reduce the compressive force when the horizontal load in the first or the second direction is added to the columns.SELECTED DRAWING: Figure 1

Description

本発明は木造建築物の耐力構造及び耐力工法に関し、特に例えば壁耐力構造と断熱性能を兼ね備えた木造建築物の耐力構造及び耐力工法に関するものである。   The present invention relates to a load-bearing structure and a load-bearing method for a wooden building, and more particularly, to a load-bearing structure and a load-bearing method for a wooden building that have both a wall load-bearing structure and heat insulation performance, for example.

図14は従来の木造建築物の一部の立面図であって、平常時の場合(左図)と、地震による水平力が加わって変形した場合(右図)を示す。木造建築物は、1対の柱1a,1bと1対の横架材2a,2bからなる矩形の構造部材3を、建物のけた行方向(建物の平面から見て横方向、以下「X方向」ともいう)および張り間方向(建物の平面から見て奥行方向又は縦方向、以下「Y方向」ともいう)に、それぞれの方向に複数組み合わせて構造材としている。
そして、木造建築物は、柱1a,1bと横架材2a,2bからなる矩形の構造部材3の空間部4に必要十分な壁がない場合に、平常時では水平荷重(又は水平力)が加わらないので問題ないが、地震や台風の発生により一定値以上の水平荷重が加わると、建物が倒壊してしまう危険性がある。
FIG. 14 is an elevation view of a part of a conventional wooden building, showing a normal case (left figure) and a case where a horizontal force due to an earthquake is applied and deformed (right figure). A wooden building has a rectangular structural member 3 made up of a pair of pillars 1a, 1b and a pair of horizontal members 2a, 2b. ”) And tensioning direction (depth direction or longitudinal direction when viewed from the plane of the building, hereinafter also referred to as“ Y direction ”), a plurality of combinations in each direction are used as a structural material.
And when a wooden building does not have a necessary and sufficient wall in the space part 4 of the rectangular structural member 3 which consists of pillar 1a, 1b and horizontal member 2a, 2b, a horizontal load (or horizontal force) is normal. There is no problem because it does not apply, but there is a risk that the building will collapse if a horizontal load exceeding a certain value is applied due to the occurrence of an earthquake or typhoon.

地震や台風などの水平荷重に対して建物の倒壊を防止するために、木造建築物では耐力壁とした耐力構造が必要である。
わが国の木造建築物の耐震設計は、関東大地震を契機にして、震度5程度の中規模の地震に対しては建物が損傷しないものとし、震度6〜7の稀に起こる大地震の場合にある程度の損傷があっても倒壊又は崩壊せず、人命を守るという考え方に基づくものである。
また、台風や積雪においても、この考え方に基づいて材料や壁量が定められている。
従来の木造建築物の耐力構造は、剛性だけで評価するものであったが、1995年の阪神大地震を契機として、粘りである靭性も考慮されるようになった。
In order to prevent the building from collapsing against horizontal loads such as earthquakes and typhoons, a wooden building requires a load-bearing structure as a load-bearing wall.
The seismic design of wooden buildings in Japan is based on the Great Kanto Earthquake, which assumes that buildings will not be damaged by medium-scale earthquakes with a seismic intensity of 5 or so. It is based on the idea of protecting human lives without collapsing or collapsing even if there is some damage.
Also, in the case of typhoons and snow cover, materials and wall amounts are determined based on this concept.
The conventional load-bearing structure of wooden buildings was evaluated only by rigidity, but with the 1995 Great Hanshin Earthquake, tenacity toughness has been considered.

建築基準法では、構造耐力上主要な部分である壁、柱及び横架材を木造とした建築物にあっては、全ての方向の水平力(又は水平荷重)に対して安全であるように、各階の張り間方向およびけた行方向に、それぞれ壁を設け又は筋かいを入れた軸組を釣り合い良く配置しなければならないと定めている。   In the Building Standard Law, in a building with wooden walls, pillars and horizontal members, which are the main parts in terms of structural strength, be safe against horizontal forces (or horizontal loads) in all directions. In addition, it is stipulated that shafts having walls or struts must be arranged in a balanced manner in the spanning direction and the column direction of each floor.

従来、木造建築物の壁耐力構造としては、筋かい,合板,土壁および貫(ぬき)等が知れている。合板や土壁は面で耐力を有するものである。
これらの耐力構造は、柱と梁又は土台(以下、梁・土台を総称して「横架材」という)に対して、筋かいが両端を釘付け等で固定(又は緊結)され、合板が1対の柱と1対の横架材の四辺に所定間隔で釘付け等により固定され、貫が1対の柱に固定されている。
ここで、これらの壁倍率は、土壁が壁倍率1で、筋かいが厚さ3cm以上で幅9cm以上の木材のものを壁倍率1.5倍、合板が壁倍率2.5倍とされる。壁倍率は、5倍以上あっても評価されず、最大でも5倍と看做される。
Conventionally, struts, plywood, earth walls, penetrations, and the like are known as wall strength structures of wooden buildings. Plywood and earth walls are proof in terms of surface.
These load-bearing structures are composed of pillars and beams or foundations (hereinafter collectively referred to as “horizontal members”), with the braces fixed (or tightly bonded) by nailing or the like at both ends. The four columns of the pair of columns and the pair of horizontal members are fixed at predetermined intervals by nailing or the like, and the through holes are fixed to the pair of columns.
Here, the wall magnification is such that the earth wall has a wall magnification of 1, the brace has a thickness of 3 cm or more and a width of 9 cm or more of wood with a wall magnification of 1.5 times, and the plywood has a wall magnification of 2.5 times. The The wall magnification is not evaluated even if it is 5 times or more, and is considered to be 5 times at the maximum.

これらの耐力構造は、地震等による一定荷重を超えると、破断して一気に耐力を無くし、木造建築物が崩れることになる。そのため、木造建築物が変形後も倒壊することなく、粘りのある耐力を有するものであることが求められる。すなわち、粘り強い耐力構造を有する木造建築物は、建物が一気に倒壊を起こし難いものであって、災害時における居住者の生存率を高めることに貢献できる。
従って、木造建築物は、粘り強い耐力構造であることが求められる。
If these load-bearing structures exceed a certain load due to an earthquake or the like, they will break and lose their load at once, and the wooden building will collapse. Therefore, the wooden building is required to have a tenacity without causing collapse after deformation. That is, a wooden building having a tenacity bearing structure is one in which the building is unlikely to collapse at a stretch, and can contribute to increasing the survival rate of residents in the event of a disaster.
Therefore, the wooden building is required to have a tenacious load-bearing structure.

一方、木造建築物では、省エネルギーのため、全ての外壁面に断熱材が施されている。断熱材としては、発泡樹脂製断熱材(具体的には押出法ポリスチレン保温材;一般に「XPS」と略称される)や、グラスファイバー保温材等が用いられている。
従来、押出法ポリスチレンフォーム保温材(XPS)は、保温材又は断熱材としてのみ用いられ、木造建築物の構造材として用いられることが殆んど無かった。
On the other hand, in the wooden building, in order to save energy, all outer wall surfaces are provided with heat insulating materials. As the heat insulating material, a foamed resin heat insulating material (specifically, an extruded polystyrene heat insulating material; generally abbreviated as “XPS”), a glass fiber heat insulating material, or the like is used.
Conventionally, an extruded polystyrene foam heat insulating material (XPS) is used only as a heat insulating material or a heat insulating material, and is hardly used as a structural material of a wooden building.

押出法ポリスチレンフォーム保温材を構造材として用いた従来技術として、特許文献1がある。
特許文献1は、筋かいの代わりに、帯部4と固定金物5と長さ調整手段6とからなる補強構造1を2つの構造材(柱及び梁)8,9に固定するとともに、補強部材3を取付けた木造建築物の補強構造を開示している。補強部材3は、柱及び梁等の構造材8,9の角に固定的に取り付けられるもので、小さな三角形の合成樹脂発泡体14を含む。この合成樹脂発泡体14の素材として、押出法ポリスチレンフォーム保温材を用いている。
すなわち、特許文献1は、主たる耐力構造材として補強構造1を設けるとともに、圧縮力の減衰のために従たる構造材として補強部材3を設けた技術である。
There exists patent document 1 as a prior art which used the extrusion method polystyrene foam heat insulating material as a structural material.
In Patent Document 1, instead of a brace, a reinforcing structure 1 composed of a band portion 4, a fixed hardware 5 and a length adjusting means 6 is fixed to two structural members (columns and beams) 8 and 9, and a reinforcing member The reinforcement structure of the wooden building which attached 3 is disclosed. The reinforcing member 3 is fixedly attached to the corners of the structural members 8 and 9 such as columns and beams, and includes a small triangular synthetic resin foam 14. As a material for the synthetic resin foam 14, an extruded polystyrene foam heat insulating material is used.
That is, Patent Document 1 is a technique in which a reinforcing structure 1 is provided as a main load-bearing structural material, and a reinforcing member 3 is provided as a structural material to be followed for attenuation of compressive force.

特開2007−40045号公報(図1〜図5)JP 2007-40045 (FIGS. 1 to 5)

従来の耐震構造である筋かいや合板や土壁は、何れも大地震のような一定強度を超える水平荷重を受けると破断もしくは耐力をなくし、一気に建物を倒壊させる問題があった。
特に、合板を用いた耐力壁構造は、柱に対して合板を所定間隔で釘打ちしたものであり、釘によって止められているだけなので、釘耐力が壁耐力となる。そのため、大地震のような一定強度を超える水平荷重を受けると、4隅付近の釘が抜けて破損し、その周辺部分の釘抜けが徐々に拡大し、やがて合板の耐力が大きく低下してしまう。
また、筋かいも、大地震のような一定強度を超える水平荷重を受けた場合に、柱と梁の留め金具にネジ止めしている部分のネジが柱や梁から抜け、筋かいの耐力が大きく低下してしまう。
合板や筋かいの耐力が大きく低下すると、木造建築物が一気に倒壊し、居住者の生命に重大な危害を及ぼすこともある。
そのため、木造建築物は粘り強い耐力構造であることが求められる。
The conventional brace, plywood and earth walls, which are conventional seismic structures, have the problem of breaking or losing their strength when subjected to a horizontal load exceeding a certain strength such as a large earthquake, causing the building to collapse at once.
In particular, the load bearing wall structure using plywood is a structure in which plywood is nailed at a predetermined interval with respect to a pillar, and is simply stopped by a nail, so that the nail strength becomes the wall strength. Therefore, when a horizontal load exceeding a certain strength such as a large earthquake is received, the nail near the four corners is pulled out and damaged, the nail pullout in the peripheral part gradually expands, and the durability of the plywood is eventually greatly reduced. .
In addition, when a horizontal load exceeding a certain strength, such as a large earthquake, is applied to the brace, the screws of the part that is screwed to the column and beam brackets come off the column and beam, and the strength of the brace is reduced. It will drop greatly.
If the strength of plywood and braces is greatly reduced, wooden buildings can collapse at once, causing serious harm to the lives of residents.
Therefore, a wooden building is required to have a tenacious load-bearing structure.

特許文献1は、補強構造1と補強部材3を取付けているので、取付け作業に多大な時間と労力を要し、高価となる。また、補強部材3が圧縮力を減衰するとしても、大地震の際には、留め金具が貫通している合成樹脂発泡体14の孔を広げるように破壊するか、留め金具を取り付けているネジ・ボルトが構造材から抜けると、合成樹脂発泡体14の機能である圧縮力の減衰を発揮できない場合もある。   In Patent Document 1, since the reinforcing structure 1 and the reinforcing member 3 are attached, a great amount of time and labor are required for the attaching operation, and the cost becomes high. Further, even if the reinforcing member 3 attenuates the compressive force, in the event of a large earthquake, the reinforcing member 3 is broken so as to widen the hole of the synthetic resin foam 14 through which the fastener penetrates, or the screw to which the fastener is attached. When the bolt is removed from the structural material, the compression force that is a function of the synthetic resin foam 14 may not be attenuated.

それゆえに、この発明の主たる目的は、大地震のような強い水平荷重を受けても一気に破断することなく、粘り強い耐力構造を有するような、木造建築物の耐力構造及び耐力工法を提供することである。
この発明の他の目的は、取付け作業に多大な時間と労力を要することなく、安価にして必要な耐力を有する、木造建築物の耐力構造及び耐力工法を提供することである。
Therefore, a main object of the present invention is to provide a load-bearing structure and a load-bearing method for a wooden building that have a tenacious load-bearing structure without breaking at a stretch even under a strong horizontal load such as a large earthquake. is there.
Another object of the present invention is to provide a load-bearing structure and a load-bearing method for a wooden building that are inexpensive and have the required strength without requiring a great amount of time and labor for installation work.

第1の発明は、1対の柱と1対の横架材によって囲まれた空間部を有する構造部材を、第1の方向にかつ対をなすようにそれぞれ複数配置し、第1の方向に直交する第2の方向であって対をなすように複数配置して構成される木造建築物において、複数の第1の発泡樹脂板状部材と、複数の第2の発泡樹脂板状部材を備える。
第1の発泡樹脂板状部材は、1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、壁耐力を必要とする複数箇所の第1の構造部材に含まれる第1の空間部のそれぞれの立面形状と略同等の形状に選ばれ、各第1の構造部材に固定(又は固着)されることなく、当該第1の構造部材に対応する第1の空間部にそれぞれ嵌め込まれる。
第2の発泡樹脂板状部材は、複数の構造部材のうちの壁耐力を必要としない複数箇所の第2の構造部材に含まれかつ複数の第1の空間部と開口部を除いた第2の空間部のそれぞれの立面形状と略同程度の形状に選ばれ、各第2の構造部材に固定(又は固着)されることなく、当該第2の構造部材に対応する第2の空間部のそれぞれに嵌め込まれる。
さらに、第1の発泡樹脂板状部材は、その短辺方向の側面が第1の構造部材に含まれる1対の柱に接することによって、水平方向から第1の方向又は第2の方向へ水平荷重(又は水平力)が加わるときに、当該柱を介して当該水平荷重による圧縮力を側面で受けることによって、耐力壁として作用する。
第2の発泡樹脂板状部材は、1対の柱の一方の柱から他方の柱に伝わる圧縮力を低減させる圧縮力低減部を有し、水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、圧縮力低減部によって一方の柱から他方の柱に伝わる圧縮力を低減させるように作用する。
In the first invention, a plurality of structural members each having a space surrounded by a pair of pillars and a pair of horizontal members are arranged in a first direction and in pairs, in the first direction. In a wooden building configured by arranging a plurality of pairs in a second direction orthogonal to each other, a plurality of first foamed resin plate-like members and a plurality of second foamed resin plate-like members are provided. .
The first foamed resin plate-shaped member is a plurality of first structural members that require wall strength among a plurality of structural members having a space portion surrounded by a pair of columns and a pair of horizontal members. Is selected to have a shape substantially equivalent to the elevational shape of each of the first space portions included in the first space portion, and is fixed (or fixed) to each first structural member, and corresponding to the first structural member. 1 is inserted into each space.
The second foamed resin plate-like member is included in a plurality of second structural members that do not require wall strength among the plurality of structural members, and is a second part excluding the plurality of first space portions and openings. The second space portion corresponding to the second structural member without being fixed (or fixed) to each second structural member is selected to have a shape that is approximately the same as the elevational shape of each space portion. Fitted into each of the.
Further, the first foamed resin plate-like member is horizontal in the first direction or the second direction from the horizontal direction by having the side surface in the short side direction in contact with the pair of columns included in the first structural member. When a load (or horizontal force) is applied, it acts as a load-bearing wall by receiving a compressive force due to the horizontal load on the side surface via the column.
The second foamed resin plate member has a compression force reducing portion that reduces the compression force transmitted from one column of the pair of columns to the other column, and from the horizontal direction to the first direction or the second direction. When a horizontal load is applied to each pair of columns, the compressive force reducing unit acts to reduce the compressive force transmitted from one column to the other column.

第1の発明によれば、大地震のような強い水平荷重を受けても、第1の発泡樹脂板状部材が空間部の詰め物(又はクッション)となっているので、一気に破断することなく、粘り強い耐力構造を有するような、木造建築物の耐力構造が得られる。
また、耐力を必要とする第1の空間部には第1の発泡樹脂板状部材を嵌め込み、耐力を必要としない第2の空間部には第2の発泡樹脂板状部材を嵌め込むだけで、固着又は緊結する必要がないので、取付け又は組立て作業が容易かつ迅速に行え、しかも第1の発泡樹脂板状部材および第2の発泡樹脂板状部材が断熱性能も兼ね備えているので、安価にして省エネを有しつつ必要な耐力を有する、木造建築物の耐力構造が得られる。
According to the first invention, even if a strong horizontal load such as a large earthquake is received, the first foamed resin plate-shaped member is the padding (or cushion) of the space portion, so that it does not break at a stretch, A load-bearing structure of a wooden building that has a tenacious load-bearing structure is obtained.
Further, the first foamed resin plate-like member is fitted into the first space portion that requires proof stress, and the second foamed resin plate-like member is fitted into the second space portion that does not require proof strength. Since there is no need for fixing or tightening, the mounting or assembling work can be performed easily and quickly, and the first foamed resin plate-like member and the second foamed resin plate-like member also have heat insulation performance, so that the cost can be reduced. Therefore, it is possible to obtain a load-bearing structure of a wooden building that has the required strength while having energy saving.

第2の発明は、第1の発明において、第2の発泡樹脂板状部材の圧縮力低減部が、水平荷重の加わる方向とは異なる方向であって、当該第2の発泡樹脂板状部材の短辺のある位置で板厚を薄くするように斜めのスリットを長辺方向に向けて形成したものである。そして、第2の発泡樹脂板状部材は、水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、スリットの部分で破断することにより2分割されて、圧縮力を低減させるように作用する。
第2の発明によれば、斜めのスリットを形成することにより、第2の発泡樹脂板状部材が第1の発泡樹脂板状部材と同じ材質・同じ板厚のものでも、壁耐力を低減した板状部材として使用できる。
According to a second invention, in the first invention, the compressive force reducing portion of the second foamed resin plate member is in a direction different from the direction in which the horizontal load is applied, and the second foamed resin plate member An oblique slit is formed in the long side direction so as to reduce the plate thickness at a position with a short side. The second foamed resin plate member is divided into two parts by breaking at the slit portion when a horizontal load is applied to each pair of columns from the horizontal direction to the first direction or the second direction. And acts to reduce the compression force.
According to the second invention, by forming the oblique slit, even if the second foamed resin plate-like member has the same material and thickness as the first foamed resin plate-like member, the wall strength is reduced. It can be used as a plate member.

第3の発明は、第1の発明において、第2の発泡樹脂板状部材の圧縮力低減部が、水平荷重の加わる方向とは異なる方向であって、当該第2の発泡樹脂板状部材の短辺のある位置で長辺方向に向けて斜めに切込み加工することによって2分割した部分である。
第3の発明によれば、第2の発泡樹脂板状部材を斜めに切込み加工することによって、2分割することにより、第2の発泡樹脂板状部材が第1の発泡樹脂板状部材と同じ材質・同じ板厚のものでも、壁耐力を低減した板状部材として使用できる。
According to a third invention, in the first invention, the compression force reducing portion of the second foamed resin plate-shaped member is in a direction different from the direction in which the horizontal load is applied, and the second foamed resin plate-shaped member This is a portion divided into two by cutting obliquely in the long side direction at a position with a short side.
According to the third invention, the second foamed resin plate-like member is the same as the first foamed resin plate-like member by dividing the second foamed resin plate-like member into two by obliquely cutting it. Even materials of the same thickness can be used as plate members with reduced wall strength.

第4の発明は、第1の発明において、第2の発泡樹脂板状部材が、第1の発泡樹脂板状部材の板厚よりも薄い板状部材を複数枚積層して構成され、当該複数枚の板状部材が積層して第2の空間部に嵌め込まれる。そして、第2の発泡樹脂板状部材は、水平荷重が各1対の柱に加わったとき、積層された複数枚の板状部材が水平方向に対して座屈(水平方向に湾曲)することにより圧縮力低減部として働き、その圧縮力を低減するように作用する。   According to a fourth invention, in the first invention, the second foamed resin plate-like member is configured by laminating a plurality of plate-like members thinner than the thickness of the first foamed resin plate-like member, The plate-shaped members are stacked and fitted into the second space. In the second foamed resin plate member, when a horizontal load is applied to each pair of columns, the plurality of stacked plate members are buckled (curved in the horizontal direction) in the horizontal direction. Acts as a compressive force reducing unit, and acts to reduce the compressive force.

第5の発明は、第1の発明ないし第4の発明において、1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、第1の方向および第2の方向のうちの間口に対して両外側の1/4の範囲の空間部は、壁耐力を必要とする複数箇所の第1の構造部材に含まれる第1の空間部と、壁耐力を必要としない第2の構造部材に含まれる第2の空間部を含む。また、1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、第1の方向および第2の方向のうちの間口に対して両外側の1/4の範囲を除く内側の空間部は、バランス上、壁耐力を必要としない第2の構造部材に含まれる第2の空間部となる。そして、第1の発泡樹脂板状部材が第1の空間部に嵌め込まれ、第2の発泡樹脂板状部材が第2の空間部に嵌め込まれる。
第5の発明によれば、バランスの良い壁配置の木造建築物の耐力構造が得られる。
According to a fifth invention, in the first invention to the fourth invention, the first direction and the second of the plurality of structural members having a space portion surrounded by the pair of pillars and the pair of horizontal members. The space part in the range of 1/4 on both outer sides with respect to the front opening in the direction of the wall requires the first space part included in the first structural member at a plurality of locations requiring the wall strength and the wall strength. A second space part included in the second structural member not included. Of the plurality of structural members having a space portion surrounded by a pair of pillars and a pair of horizontal members, 1/4 of both outer sides with respect to the front opening in the first direction and the second direction. The inner space portion excluding the range is a second space portion included in the second structural member that does not require wall strength for balance. Then, the first foamed resin plate member is fitted into the first space, and the second foam resin plate member is fitted into the second space.
According to the fifth aspect of the invention, a load-bearing structure for a wooden building with a well-balanced wall arrangement can be obtained.

第6の発明は、第1の発明ないし第4の発明において、第1の発泡樹脂板状部材として、短辺方向の側面による圧縮力が5ニュートン/平方センチメートル以上の発泡プラスチック系フォームが用いられる。   According to a sixth invention, in the first to fourth inventions, a foamed plastic foam having a compressive force of 5 Newton / square centimeter or more by a side surface in the short side direction is used as the first foamed resin plate member.

第7の発明は、1対の柱と1対の横架材によって囲まれた空間部を有する構造部材を、第1の方向にかつ対をなすようにそれぞれ複数配置し、第1の方向に直交する第2の方向であって対をなすように複数配置して構成される木造建築物における耐力工法であって、第1の工程ないし第4の工程を備える。
第1の工程では、1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、壁耐力を必要とする複数箇所の第1の構造部材に含まれる第1の空間部のそれぞれの立面形状と略同程度の形状に選ばれ、当該第1の構造部材と関連して耐力を発揮する壁構造となる複数の第1の発泡樹脂板状部材を準備する。
第2の工程では、複数の構造部材のうちの、壁耐力を必要としない複数個所の第1の構造部材に含まれかつ第1の空間部と窓やドア等の開口部を除いた第2の空間部のそれぞれの立面形状と略同程度の形状に選ばれ、1対の柱の一方の柱から他方の柱に伝わる圧縮力を低減させるような圧縮力低減部を有する複数の第2の発泡樹脂板状部材を準備する。
第3の工程では、第1の発泡樹脂板状部材を複数の第1の構造部材に固定することなく、当該第1の構造部材に対応する複数の第1の空間部にそれぞれ嵌め込む。
第4の工程では、第2の発泡樹脂板状部材を、第1の空間部と開口部を除いた第2の空間部のそれぞれに嵌め込む。
そして、第1の発泡樹脂板状部材の短辺方向の側面が第1の構造部材に含まれる1対の柱に接することによって、水平方向から第1の方向又は第2の方向へ水平荷重が加わるときに、当該柱を介して当該水平荷重による圧縮力を当該第1の発泡樹脂板状部材の側面で受けることによって、当該第1の発泡樹脂板状部材を耐力壁として作用させる。また、水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、一方の柱から他方の柱に伝わる圧縮力を低減させるように、第2の発泡樹脂板状部材を作用させる。
In the seventh invention, a plurality of structural members each having a space portion surrounded by a pair of pillars and a pair of horizontal members are arranged in a first direction and in pairs, in the first direction. This is a load-bearing method in a wooden building that is arranged in a plurality of pairs in a second direction orthogonal to each other, and includes a first step to a fourth step.
In the first step, among a plurality of structural members having a space surrounded by a pair of pillars and a pair of horizontal members, the first structural member included in a plurality of first structural members that require wall strength. A plurality of first foamed resin plate-like members having a wall structure which is selected to have a shape substantially the same as each of the elevational shapes of one space portion and exerts a proof stress in relation to the first structural member are prepared. To do.
In the second step, among the plurality of structural members, the second structural member is included in the first structural members at a plurality of locations that do not require wall strength, and the first space portion and the openings such as windows and doors are excluded. A plurality of second portions having a compressive force reducing portion that is selected to have a shape that is approximately the same as the elevational shape of each of the space portions and that reduces the compressive force transmitted from one column of the pair of columns to the other column. The foamed resin plate member is prepared.
In the third step, the first foamed resin plate member is fitted into the plurality of first spaces corresponding to the first structural member without being fixed to the plurality of first structural members.
In the fourth step, the second foamed resin plate member is fitted into each of the second space portion excluding the first space portion and the opening.
Then, the side surface in the short side direction of the first foamed resin plate-shaped member is in contact with a pair of columns included in the first structural member, so that a horizontal load is applied from the horizontal direction to the first direction or the second direction. When added, the first foamed resin plate-like member is caused to act as a load bearing wall by receiving a compressive force due to the horizontal load through the pillar on the side surface of the first foamed resin plate-like member. Further, the second foaming is performed so as to reduce the compressive force transmitted from one column to the other column when a horizontal load is applied to each pair of columns from the horizontal direction to the first direction or the second direction. A resin plate member is allowed to act.

第7の発明によれば、大地震のような強い水平荷重を受けても、第1の発泡樹脂板状部材が空間部の詰め物(又はクッション)となっているので、一気に破断することなく、粘り強い耐力構造を有するような、木造建築物の耐力工法が得られる。   According to the seventh invention, even if a strong horizontal load such as a large earthquake is received, the first foamed resin plate-like member is the padding (or cushion) of the space portion, so that it does not break at a stretch, A yield strength construction method for a wooden building having a persistent strength structure is obtained.

この発明によれば、大地震のような強い水平荷重を受けても、第1の発泡樹脂板状部材が空間部の詰め物(又はクッション)となっているので、一気に破断することなく、粘り強い耐力構造を有するような、木造建築物の耐力構造及び耐力工法が得られる。
また、取付け作業に多大な時間と労力を要することなく、安価にして必要な耐力と断熱性を発揮できる、木造建築物の耐力構造及び耐力工法が得られる。
According to this invention, even if it receives a strong horizontal load such as a large earthquake, since the first foamed resin plate-like member is a padding (or cushion) in the space portion, it does not break at a stretch, and it has a tenacious strength. A load-bearing structure and load-bearing method for a wooden building having a structure can be obtained.
In addition, a load-bearing structure and a load-bearing method for a wooden building can be obtained that can be provided at a low cost and exhibit the required strength and heat insulation properties without requiring a great amount of time and labor for mounting work.

この発明の一実施例の木造建築物の耐力構造の概要を説明するための立面斜視図である。It is an elevation perspective view for explaining an outline of a load-bearing structure of a wooden building according to an embodiment of the present invention. 図1に示す実施例の木造建築物の一部の平面図である。It is a top view of a part of wooden structure of the Example shown in FIG. この発明の一実施例の木造建築物の耐力構造に用いられる第1の発泡樹脂板状部材と第2の発泡樹脂板状部材の横断面図である。It is a cross-sectional view of the 1st foamed resin board member and the 2nd foamed resin board member used for the load-bearing structure of the wooden building of one Example of this invention. この実施例の木造建築物の耐力構造において地震による水平荷重を受けた場合に第1の発泡樹脂板状部材が圧縮力を受けた状態を説明するための概念図である。It is a conceptual diagram for demonstrating the state to which the 1st foamed resin plate-shaped member received the compressive force when receiving the horizontal load by an earthquake in the load-bearing structure of the wooden building of this Example. 木造建築物の耐力構造において、けた行方向と張り間方向のバランスを考慮した一例を示す平面図である。In the load-bearing structure of a wooden building, it is a top view which shows an example which considered the balance of the column direction and the tension direction. 図5の例における木造建築物の外観斜視図である。It is an external appearance perspective view of the wooden building in the example of FIG. 木造建築物の耐力構造においてけた行方向と張り間方向のバランスを考慮した他の例を示す平面図である。It is a top view which shows the other example which considered the balance of the row direction and spanning direction in the load-bearing structure of wooden buildings. この発明の一実施例の木造建築物の耐力構造においてけた行方向と張り間方向のバランスを考慮して一般化した配置例を説明するための平面図である。It is a top view for demonstrating the example of arrangement | positioning generalized in consideration of the balance of the row direction and the tension direction in the load-bearing structure of the wooden building of one Example of this invention. この発明の他の実施例の木造建築物の耐力構造を説明するための図である。It is a figure for demonstrating the load-bearing structure of the wooden building of the other Example of this invention. この発明のその他の実施例(第1の発泡樹脂板状部材の他の例)を示す概念図である。It is a conceptual diagram which shows the other Example (other examples of a 1st foamed resin plate-shaped member) of this invention. 第2の発泡樹脂板状部材の他の例を示す横断面図である。It is a cross-sectional view showing another example of the second foamed resin plate member. 第2の発泡樹脂板状部材のその他の例を示す横断面図である。It is a cross-sectional view showing another example of the second foamed resin plate member. スリット付の第2の発泡樹脂板状部材22の製造工程を説明するための概念図である。It is a conceptual diagram for demonstrating the manufacturing process of the 2nd foaming resin plate-shaped member 22 with a slit. 従来の木造建築物の一部の立面図である。It is an elevation view of a part of a conventional wooden building.

(実施例1)
図1はこの発明の一実施例の木造建築物の耐力構造の概要を説明するための立面斜視図であり、図2は図1に示す実施例の木造建築物の一部の平面図である。
図3はこの発明の一実施例の木造建築物の耐力構造に用いられる第1の発泡樹脂板状部材と第2の発泡樹脂板状部材の横断面図である。
次に、図1ないし図3を参照して、第1の実施例の木造建築物の耐力構造を説明する。
Example 1
FIG. 1 is an elevational perspective view for explaining an outline of a load-bearing structure of a wooden building according to an embodiment of the present invention. FIG. 2 is a plan view of a part of the wooden building according to the embodiment shown in FIG. is there.
FIG. 3 is a cross-sectional view of a first foamed resin plate-like member and a second foamed resin plate-like member used in the load-bearing structure of a wooden building according to an embodiment of the present invention.
Next, with reference to FIG. 1 thru | or FIG. 3, the load-bearing structure of the wooden building of the 1st Example is demonstrated.

木造建築物10は、1対の柱11(11は柱の総称であり、それぞれの配置位置別の柱を区別する場合は11a,11b・・・で示す)と1対の横架材12(12は横架材の総称であり、それぞれの配置位置別の横架材を区別する場合は12a,12b・・・で示す)からなる矩形又は枠状の構造部材13(13は構造部材の総称であり、それぞれの配置位置別の構造部材を区別する場合は13a,13b・・・で示す)を、建物のけた行方向(建物の平面から見て横方向又は「X方向」)および張り間方向(平面から見て奥行方向又は「Y方向」)に、それぞれ複数組み合わせて構成される。   The wooden building 10 has a pair of pillars 11 (11 is a general term for pillars, and is indicated by 11a, 11b... When distinguishing pillars according to respective arrangement positions) and a pair of horizontal members 12 ( 12 is a generic name for horizontal members, and a rectangular or frame-like structural member 13 (13 is a generic name for structural members), which is indicated by 12a, 12b,... In order to distinguish the structural members according to the respective arrangement positions, it is indicated by 13a, 13b... In the row direction of the building (lateral direction or “X direction” when viewed from the plane of the building) and the tension A plurality of combinations in each direction (depth direction or “Y direction” when viewed from the plane) are configured.

図1,図2では、1つの方向(例えばX方向)における2つの構造部材13a,13bと他の方向(Y方向)における1つの構造部材13nの例を示す。但し、図1では、作図上の簡易化のため、Y方向における構造部材13nを省略している。
より具体的には、1つの構造部材13aは、1対の柱11a,11bと1対の横架材12a,12bによって構成されて、これらの1対の柱11a,11bと1対の横架材12a,12bの4辺によって囲まれる空間部14aを有する。また、構造部材13bは、1対の柱11b,11cと1対の横架材12a,12bによって構成されて、これらの1対の柱11b,11cと1対の横架材12a,12bの4辺によって囲まれる空間部14bを有する。
この場合、隣接する構造部材13aおよび構造部材13bでは、柱13bと横架材12a,12bが共通となる。
また、構造部材13aに直交する方向(Y方向)には、構造部材13nが柱11aに隣接して設けられる。構造部材13nは、1対の柱11a,11nと1対の横架材12n,12mによって構成され、これらの1対の柱11a,11nと1対の横架材12n,12mの4辺によって囲まれる空間部14nを有する。
1 and 2 show examples of two structural members 13a and 13b in one direction (for example, the X direction) and one structural member 13n in the other direction (Y direction). However, in FIG. 1, the structural member 13n in the Y direction is omitted for simplification of drawing.
More specifically, one structural member 13a is composed of a pair of columns 11a and 11b and a pair of horizontal members 12a and 12b, and the pair of columns 11a and 11b and a pair of horizontal members. It has a space portion 14a surrounded by four sides of the materials 12a and 12b. The structural member 13b is composed of a pair of pillars 11b and 11c and a pair of horizontal members 12a and 12b. The pair of pillars 11b and 11c and the pair of horizontal members 12a and 12b are four. It has the space part 14b enclosed by the edge | side.
In this case, in the adjacent structural member 13a and structural member 13b, the column 13b and the horizontal members 12a and 12b are common.
Further, in the direction orthogonal to the structural member 13a (Y direction), the structural member 13n is provided adjacent to the column 11a. The structural member 13n includes a pair of pillars 11a and 11n and a pair of horizontal members 12n and 12m, and is surrounded by the four sides of the pair of pillars 11a and 11n and the pair of horizontal members 12n and 12m. It has a space portion 14n.

横架材12aは、布基礎(又はコンクリート基礎)15の上に水平に載置され、布基礎15に固定されて、土台となる。換言すると、木造建築物10の1階の場合は、横架材12aが土台で、横架材12bが梁であり、1対の横架材12a,12bが土台と梁から構成されことになる。また、木造建築物10の2階(又は2階以上)の場合は、横架材12aが1階の梁で、横架材12bが2階の梁である。すなわち、水平方向に載置又は設置された土台12aと梁12bを総称して横架材12という。   The horizontal member 12a is horizontally placed on a cloth foundation (or concrete foundation) 15, fixed to the cloth foundation 15, and serves as a foundation. In other words, in the case of the first floor of the wooden building 10, the horizontal member 12a is a base, the horizontal member 12b is a beam, and the pair of horizontal members 12a and 12b are formed of a base and a beam. . Further, in the case of the second floor (or two or more floors) of the wooden building 10, the horizontal member 12a is a beam on the first floor, and the horizontal member 12b is a beam on the second floor. That is, the base 12a and the beam 12b placed or installed in the horizontal direction are collectively referred to as a horizontal member 12.

図1,図2の実施例では、構造部材13aが耐力を有する壁(耐力壁)を必要とする構造材であり、構造部材13bが耐力を有しない壁を必要とする構造材の例を示す。
そして、この実施例では、圧縮強度を有する第1の発泡樹脂板状部材21(図3(a)参照)と、圧縮強度を有しないか圧縮強度の低減加工(若しくは低減処理)を施した第2の発泡樹脂板状部材22(図3(b)参照)の2種類の発泡樹脂板状部材が準備される。
なお、1対の柱11a,11bの間に間柱を入れることもあるが、その場合でも第1の発泡樹脂板状部材21の左右側面の耐力となる部分は1対の柱11a,11bで受けられるものである。
1 and 2, the structural member 13a is a structural material that requires a proof wall (bearing wall), and the structural member 13b is an example of a structural material that requires a proof wall. .
In this embodiment, the first foamed resin plate-like member 21 having compressive strength (see FIG. 3A) and the first foamed resin plate member 21 that has no compressive strength or has been subjected to a process of reducing (or reducing) the compressive strength. Two types of foamed resin plate-like members 22 (see FIG. 3B) are prepared.
In some cases, an inter-column is inserted between the pair of columns 11a and 11b. However, even in this case, the left and right side portions of the first foamed resin plate member 21 are received by the pair of columns 11a and 11b. It is what

第1の発泡樹脂板状部材21および第2の発泡樹脂板状部材22は、同じ材質の押出法ポリスチレンフォーム等が用いられる。第1の発泡樹脂板状部材21および第2の発泡樹脂板状部材22は、サイズ的に短辺方向の幅dが1対の柱11a,11b(又は11b,11c)の間隔と略同程度(同一又はそれよりも若干短く、例えば1〜3mm短く)、長辺方向の長さ(高さ)hが1対の横架材12a,12bの間隔と略同程度(同一又はそれよりも若干短く、例えば1〜3mm短く)選ばれる。
第1の発泡樹脂板状部材21および第2の発泡樹脂板状部材22は、圧縮強度の異なるものが用いられる。第1の発泡樹脂板状部材21の圧縮強度は、短辺方向の側面の圧縮力が0.5kgf(=4.9ニュートン、略5ニュートン)/平方センチメートル以上のものが選ばれる。
一方、第2の発泡樹脂板状部材21の圧縮強度は、短辺方向の側面の圧縮力が0.5kgf/cm又は5ニュートン(以下「N」と表記する)/cmを大きく下回る値であって、圧縮強度を考慮する必要のない程に低減されたもの(例えば土壁よりも小さな石膏ボードの壁倍率0.5以下のもの)が用いられる。
For the first foamed resin plate-like member 21 and the second foamed resin plate-like member 22, extruded polystyrene foam or the like of the same material is used. The first foamed resin plate-like member 21 and the second foamed resin plate-like member 22 are approximately the same as the interval between the pair of columns 11a, 11b (or 11b, 11c) in terms of size. (Same or slightly shorter than that, for example, 1 to 3 mm shorter), and the length (height) h in the long side direction is substantially the same as the interval between the pair of horizontal members 12a and 12b (same or slightly longer) Short, for example 1 to 3 mm shorter).
The first foamed resin plate-like member 21 and the second foamed resin plate-like member 22 have different compressive strengths. The compressive strength of the first foamed resin plate member 21 is selected such that the compressive force of the side surface in the short side direction is 0.5 kgf (= 4.9 Newton, approximately 5 Newton) / square centimeter or more.
On the other hand, the compressive strength of the second foamed resin plate member 21 is such that the compressive force of the side surface in the short side direction is significantly less than 0.5 kgf / cm 2 or 5 Newton (hereinafter referred to as “N”) / cm 2. In this case, a material that has been reduced to such an extent that it is not necessary to consider the compressive strength (for example, a gypsum board having a wall magnification of 0.5 or less than the earth wall) is used.

第2の発泡樹脂板状部材22は、第1の発泡樹脂板状部材21と同程度の材質および厚さのものを用いる場合に、圧縮強度を考慮する必要のない程に圧縮強度を低減加工する方法として、短辺方向の或る位置(例えば略中央)でありかつ長辺方向に沿って細長く主面に対して所定角度だけ斜めのスリット211が形成される(図3(b)参照)。
例えば、第2の発泡樹脂板状部材22は、全体の板厚をtとしたとき、スリット211の深さt1が板厚tの1/2〜3/4の範囲の深さ(好ましくは2/3程度の深さ)であって、スリット幅が2〜3mm程度、スリット角θが25度〜60度の範囲(好ましくは30度程度)に選ばれる。
第2の発泡樹脂板状部材22のスリット221を形成した部分(厚さt2の部分)は、スリット221を中心として第2の発泡樹脂板状部材22の左側部分223と右側部分224をつないだ連結部222になるとともに、耐力を低減させるように加工した部分(耐力低減部)となる。
When the second foamed resin plate-like member 22 is made of the same material and thickness as the first foamed resin plate-like member 21, the compression strength is reduced to such a degree that it is not necessary to consider the compressive strength. As a method of doing this, a slit 211 is formed at a certain position in the short side direction (for example, approximately the center) and slender along the long side direction by a predetermined angle with respect to the main surface (see FIG. 3B). .
For example, the second foamed resin plate member 22 has a depth t1 of the slit 211 in the range of 1/2 to 3/4 of the plate thickness t (preferably 2), where t is the total plate thickness. The depth is about 2/3 mm, and the slit angle θ is selected in the range of 25 to 60 degrees (preferably about 30 degrees).
The portion (thickness t2) where the slit 221 of the second foamed resin plate member 22 is formed connects the left portion 223 and the right portion 224 of the second foam resin plate member 22 around the slit 221. Along with the connection portion 222, a portion processed to reduce the proof stress (proof strength reducing portion).

このスリット221を形成した連結部222(耐力低減部分)の厚さt2は、比較的小さな地震(例えば震度5以下)による水平荷重の加わったときには耐力低減部が破断することなく、木造建築物10に重大な被害を及ぼすような比較的大きな地震(例えば震度6以上)による水平荷重の加わったときには連結部222が破断するような厚さに選ばれる。
また、スリット221の角度θ(すなわち、スリット221を形成した傾斜面の角度)は、比較的大きな地震による水平荷重の加わることによって、連結部222が破断したとき、第2の発泡樹脂板状部材22の左側部分223と右側部分224のそれぞれの傾斜面が接した状態で斜めに滑ることによって水平荷重を分散し、圧縮強度を低減するように働く。この連結部が破断した状態を図3(c)に示す。
The thickness t2 of the connecting portion 222 (strength reduction portion) in which the slit 221 is formed is such that the strength reduction portion does not break when a horizontal load is applied due to a relatively small earthquake (for example, seismic intensity 5 or less). The thickness is selected so that the connecting portion 222 is broken when a horizontal load is applied due to a relatively large earthquake (for example, seismic intensity of 6 or more) that causes serious damage to the joint.
In addition, the angle θ of the slit 221 (that is, the angle of the inclined surface on which the slit 221 is formed) is the second foamed resin plate member when the connecting portion 222 is broken by a horizontal load due to a relatively large earthquake. The horizontal load is dispersed and the compressive strength is reduced by sliding obliquely with the inclined surfaces of the left portion 223 and the right portion 224 in contact with each other. FIG. 3C shows a state in which the connecting portion is broken.

木造建築物10の建築に際して、図3(a)に示す第1の発泡樹脂板状部材21が空間部14a,14nに嵌め込まれ、図3(b)に示す第2の発泡樹脂板状部材22が空間部14bに嵌め込まれる。
このとき、建築作業員は、構造部材13aや構造部材13bに特別の加工のための作業を行うことなく、第1の発泡樹脂板状部材21と第2の発泡樹脂板状部材22を所定の空間部13a,13bに嵌め込むだけで良いので、嵌め込み作業を迅速かつ短時間に行え、しかも熟練者でなくても作業効率よく行える利点がある。
When building the wooden building 10, the first foamed resin plate member 21 shown in FIG. 3A is fitted into the spaces 14a and 14n, and the second foam resin plate member 22 shown in FIG. 3B. Is fitted into the space 14b.
At this time, the construction worker holds the first foamed resin plate-like member 21 and the second foamed resin plate-like member 22 in a predetermined manner without performing any special work on the structural member 13a or the structural member 13b. Since it is only necessary to fit in the spaces 13a and 13b, there is an advantage that the fitting work can be performed quickly and in a short time, and even a non-expert can perform the work efficiently.

好ましくは、第1の発泡樹脂板状部材21は、サイズ的に短辺方向の幅dが1対の柱11a,11bの間隔よりも若干短く(例えば1〜3mm短く、好ましくは2mm短く)、長辺方向の長さ(高さ)hが1対の横架材12a,12bの間隔よりも若干短く(例えば1〜3mm、好ましくは2mm短く)選ばれる。
これによって、第1の発泡樹脂板状部材21を1対の柱11a,11bと1対の横架材12a,12bによって囲まれる構造部材13aに嵌め込むとき、空間部14aの内側寸法よりも若干小さいので、隙間が生じ、第1の発泡樹脂板状部材21の嵌め込み作業が同一寸法の場合よりも容易かつ迅速に行える利点がある。
Preferably, the first foamed resin plate-like member 21 is slightly shorter in size in the short side width d than the distance between the pair of columns 11a and 11b (for example, 1 to 3 mm shorter, preferably 2 mm shorter), The length (height) h in the long side direction is selected to be slightly shorter (for example, 1 to 3 mm, preferably 2 mm shorter) than the distance between the pair of horizontal members 12a and 12b.
Accordingly, when the first foamed resin plate-like member 21 is fitted into the structural member 13a surrounded by the pair of columns 11a and 11b and the pair of horizontal members 12a and 12b, the inner dimension of the space portion 14a is slightly larger. Since it is small, there is an advantage that a gap is generated, and the fitting operation of the first foamed resin plate-like member 21 can be performed more easily and quickly than in the case of the same size.

図4は図1の実施例において、地震による水平荷重を受けた場合に、第1の発泡樹脂板状部材21が圧縮力を受けて変形し、水平荷重を分散して柱に伝える状態を説明するための概念図である。
特に、図4では、左の(a)が水平荷重を受けない通常状態を示し、右の(b)が中規模程度以上の地震等により水平荷重を受けて木造建築物10が変形した状態を示す。
通常状態では、1対の柱11a,11b(又は11a,11n)と1対の横架材12a,12bからなる構造部材13a(又は13n)には水平荷重が加わらないので、第1の発泡樹脂板状部材21が圧縮力を受けることはない。この場合、第1の発泡樹脂板状部材21の立面形状が構造部材13a(又は13n)の空間部14a(又は14n)の形状より若干小さな形状に選ばれていると、第1の発泡樹脂板状部材21の一方の側面(図示では左側面)が対応する一方の柱に接していても、他方の側面(図示では右側面)が僅かな隙間を空けて他方の柱に対峙している。
FIG. 4 illustrates a state in which the first foamed resin plate-like member 21 is deformed by receiving a compressive force when the horizontal load due to the earthquake is received in the embodiment of FIG. It is a conceptual diagram for doing.
In particular, in FIG. 4, (a) on the left shows a normal state where no horizontal load is received, and (b) on the right shows a state where the wooden building 10 is deformed by receiving a horizontal load due to an earthquake of a medium scale or larger. Show.
In a normal state, since a horizontal load is not applied to the structural member 13a (or 13n) including the pair of pillars 11a and 11b (or 11a and 11n) and the pair of horizontal members 12a and 12b, the first foamed resin The plate member 21 does not receive a compressive force. In this case, if the elevational shape of the first foamed resin plate member 21 is selected to be slightly smaller than the shape of the space portion 14a (or 14n) of the structural member 13a (or 13n), the first foamed resin Even if one side surface (left side surface in the drawing) of the plate-shaped member 21 is in contact with the corresponding one column, the other side surface (right side surface in the drawing) faces the other column with a slight gap. .

地震・台風等による衝撃力が水平荷重として水平方向のX方向(第1の発泡樹脂板状部材21の短辺方向)に加わった場合は、水平荷重が比較的小さなとき、図4(a)に示すように、第1の発泡樹脂板状部材21が空間部14aとの隙間の間で僅かに移動し、水平荷重を柱11a,11bに伝達することもない。
ところが、水平荷重がある大きな値になると、図4(b)に示すように、1対の柱11a,11bの変形量が大きくなるため、第1の発泡樹脂板状部材21の一方側面(例えば左側面)の略上半分が柱11aに接し、他方側面(例えば右側面)の略下半分が柱11b(水平荷重がY方向に加わった場合は柱11n)に接した状態になり、図4(b)の斜線部分で示すように、第1の発泡樹脂板状部材21の両側面で圧縮力を受けることになる。
すなわち、第1の発泡樹脂板状部材21は、水平荷重の加わる方向によって、各側面の略上半分と略下半分で水平荷重を分散して圧縮力として受ける。例えば、図4(b)の左方向から水平荷重を受けた場合は、第1の発泡樹脂板状部材21の左側面の略上半分で柱11aからの荷重を受けて短辺方向で収縮し、その荷重を吸収しつつ分散しながら右側面の略下半分を介して柱11bへ伝達する。逆に、図4(b)の右方向から水平荷重を受けた場合は、第1の発泡樹脂板状部材21の右側面の略上半分で柱11bからの荷重を受けて短辺方向で収縮し、その荷重を吸収しつつ分散しながら左側面の略下半分を介して柱11aへ伝達する。
When an impact force due to an earthquake, a typhoon, or the like is applied as a horizontal load in the horizontal X direction (the short side direction of the first foamed resin plate member 21), when the horizontal load is relatively small, FIG. As shown in FIG. 3, the first foamed resin plate-like member 21 moves slightly between the gaps with the space 14a, and the horizontal load is not transmitted to the columns 11a and 11b.
However, when the horizontal load becomes a large value, as shown in FIG. 4 (b), the deformation amount of the pair of columns 11a and 11b increases, so one side surface of the first foamed resin plate member 21 (for example, The substantially upper half of the left side surface is in contact with the column 11a, and the substantially lower half of the other side surface (for example, the right side surface) is in contact with the column 11b (column 11n when a horizontal load is applied in the Y direction). As shown by the hatched portion in (b), the compressive force is received on both side surfaces of the first foamed resin plate member 21.
That is, the first foamed resin plate-like member 21 receives the horizontal load as a compressive force by dispersing the horizontal load in the substantially upper half and the substantially lower half of each side depending on the direction in which the horizontal load is applied. For example, when a horizontal load is received from the left direction in FIG. 4B, the load from the column 11a is received in the upper half of the left side surface of the first foamed resin plate member 21 and contracts in the short side direction. The load is transmitted to the column 11b through the substantially lower half of the right side while being dispersed while absorbing the load. On the contrary, when a horizontal load is received from the right direction in FIG. 4B, the load from the column 11b is received in the upper half of the right side surface of the first foamed resin plate-like member 21 and contracted in the short side direction. Then, while absorbing the load, the load is transmitted to the column 11a through the substantially lower half of the left side surface.

このとき、第1の発泡樹脂板状部材21は、柱11a,11bや横架材12a,12bに比べて遥かに弾性力に富むので、水平荷重を吸収しつつ分散しながら一方から他方へ伝達する。そのため、水平荷重が土壁,筋かい又は合板の耐力壁としての限界値を超えても、第1の発泡樹脂板状部材21が一気に破壊することなく、弾性力を保ったままで徐々に耐力を減少するように働く。
従って、土壁,筋かい又は合板の代わりに第1の発泡樹脂板状部材21を用いた木造建築物10は、第1の発泡樹脂板状部材21が空間部14の詰め物(又はクッション)となっているので、筋かいや合板を用いた木造建築物が倒壊する程度の大きな水平荷重を受けたとしても、一気に倒壊することを防止できる。
At this time, the first foamed resin plate-like member 21 is far more elastic than the columns 11a and 11b and the horizontal members 12a and 12b, so that the first foamed resin plate-like member 21 transmits from one side to the other while absorbing the horizontal load. To do. Therefore, even if the horizontal load exceeds the limit value as the load-bearing wall of the earth wall, brace or plywood, the first foamed resin plate-like member 21 does not break at a stretch, and the yield strength is gradually increased while maintaining the elastic force. Work to decrease.
Therefore, in the wooden building 10 using the first foamed resin plate-like member 21 instead of the earth wall, the brace or the plywood, the first foamed resin plate-like member 21 is the padding (or cushion) of the space portion 14. Therefore, even if a wooden building using braces or plywood is subjected to a large horizontal load that collapses, it can be prevented from collapsing at once.

次に、第1の発泡樹脂板状部材21が土壁,筋かい又は合板等の耐力壁と比較して、どの程度の耐力を有するかを考察する。
例えば、階高(横架材12aの上面から横架材12bの上面までの高さ)を280cmとし、横架材12bの高さを18cmとすれば、1対の横架材12a,12bの間隔が262cmとなる。また、柱芯間の長さLを90cmとし、柱寸法(太さ)10cm角の柱を用いる場合、柱間の長さは80cmとなる。
そして、第1の発泡樹脂板状部材21は、側面の圧縮強度を10N/cmとし、短期許容応力度を2/3、低減係数を0.75と仮定すると、その短期許容せん断耐力Paは第(1)式で表すことができる。
Pa=10N/cm×2/3×0.75=4.99N/cm ・・・(1)
ここで、圧縮強度が10N/cm以上の第1の発泡樹脂板状部材21の発泡プラスチック系フォームとしては、押出法ポリスチレンフォームがある。この押出法ポリスチレンフォームでは、その製造方法から、側面の圧縮強度が平面圧縮強度よりも低減されるので、上記(1)式では10N/cmとしている。
第1の発泡樹脂板状部材21が柱の変形に抵抗できる力Pは、その変形時に側面積の1/2近くとなることから、第(2)式で表される。
P=262cm×1/2×6.5cm×4.99N/cm
=4248N≒4.24kN ・・・(2)
その場合の壁倍率は、P×(1/1.96)×(1/L)に基づいて算定する。1.96は倍率=1を算定する数値(kN/m)で、Lは壁芯の長さ(m)を表す。
この場合の壁倍率は、第(3)式で表される。
壁倍率=4.24×(1/1.96)×(1/0.9)=2.40 ・・・(3)
従って、壁倍率は2.4となる。
第1の発泡樹脂板状部材21の壁倍率(2.4)を他の耐力壁と比較すれば、厚さ9mmの合板の壁倍率2.5倍と略同等となる。これらは、仮定計算によるものであって、実施に当たっては公的試験によるデータが採用される。
そして、第1の発泡樹脂板状部材21は、具体的には圧縮強度が10N/cm(約1kgf/cm)以上の発泡プラスチック系フォームとして、押出法ポリスチレンフォームが知られている。これ(押出法ポリスチレンフォーム)には、より具体的な材料として、例えばダウ工業株式会社のスタイロフォーム(登録商標)のA−XPS−B−3bが知られている。
なお、他社のこれと同等の圧縮強度を有する押出法ポリスチレンフォーム(A種押出法ポリスチレンフォーム3種)を用いてもよいことは、勿論である。
Next, it will be considered how much strength the first foamed resin plate-like member 21 has compared to a load-bearing wall such as a soil wall, a brace, or a plywood.
For example, if the floor height (height from the upper surface of the horizontal member 12a to the upper surface of the horizontal member 12b) is 280 cm and the height of the horizontal member 12b is 18 cm, the pair of horizontal members 12a and 12b The interval is 262 cm. In addition, when the length L between the column cores is 90 cm and a column having a column size (thickness) of 10 cm is used, the length between the columns is 80 cm.
Then, assuming that the first foamed resin plate member 21 has a compressive strength of the side surface of 10 N / cm 2 , a short-term allowable stress level of 2/3, and a reduction factor of 0.75, the short-term allowable shear strength Pa is It can be expressed by the formula (1).
Pa = 10 N / cm 2 × 2/3 × 0.75 = 4.99 N / cm 2 (1)
Here, as the foamed plastic foam of the first foamed resin plate member 21 having a compressive strength of 10 N / cm 2 or more, there is an extruded polystyrene foam. In this extruded polystyrene foam, the side surface compressive strength is reduced from the plane compressive strength due to the manufacturing method, and therefore, the above formula (1) is set to 10 N / cm 2 .
The force P with which the first foamed resin plate-like member 21 can resist the deformation of the column is approximately ½ of the side area at the time of the deformation, and is expressed by the formula (2).
P = 262 cm × 1/2 × 6.5 cm × 4.99 N / cm 2
= 4248N≈4.24kN (2)
The wall magnification in that case is calculated based on P × (1 / 1.96) × (1 / L). 1.96 is a numerical value (kN / m) for calculating the magnification = 1, and L represents the length (m) of the wall core.
The wall magnification in this case is expressed by the expression (3).
Wall magnification = 4.24 × (1 / 1.96) × (1 / 0.9) = 2.40 (3)
Therefore, the wall magnification is 2.4.
When the wall magnification (2.4) of the first foamed resin plate-like member 21 is compared with other bearing walls, the wall magnification of the 9 mm-thick plywood is approximately the same as 2.5 times. These are based on hypothetical calculations, and data from public tests are adopted for implementation.
For the first foamed resin plate member 21, an extruded polystyrene foam is known as a foamed plastic foam having a compressive strength of 10 N / cm 2 (about 1 kgf / cm 2 ) or more. For this (extruded polystyrene foam), as a more specific material, for example, A-XPS-B-3b of Styrofoam (registered trademark) of Dow Industries, Ltd. is known.
Of course, an extruded polystyrene foam having a compressive strength equivalent to that of other companies (type A extruded polystyrene foam 3 types) may be used.

上記計算上の結果によれば、上記条件の第1の発泡樹脂板状部材21は、壁倍率が合板と略同等になることが分かる。
壁倍率1の土壁と比べて、2.4倍あるので、側面の圧縮強度が1/2の5N/cm(約0.5kgf/cm)の発砲プラスチック系フォームでも第1の発泡樹脂板状部材21として用いることができる。
そして、第1の発泡樹脂板状部材21が空間部14の詰め物(又はクッション)となっているので、筋かいや合板を用いた木造建築物が倒壊する程度の水平荷重を受けたとしても、一気に破壊することもなく徐々に破壊されるので、木造建築物が倒壊するまでに時間的余裕を確保でき、居住者が逃げ出すことのできる可能性を高めることができる。
According to the calculation result, it can be seen that the wall magnification of the first foamed resin plate-like member 21 under the above conditions is substantially equal to that of the plywood.
Since it is 2.4 times as large as the earth wall with a wall magnification of 1, the foamed plastic foam of 5 N / cm 2 (about 0.5 kgf / cm 2 ) whose side compression strength is ½ is the first foamed resin. It can be used as the plate member 21.
And since the 1st foamed resin plate-shaped member 21 has become the stuffing (or cushion) of the space part 14, even if it receives the horizontal load of the grade which the wooden building using a brace and plywood collapses, Since it is gradually destroyed without being destroyed at once, it is possible to secure a time margin until the wooden building collapses, and to increase the possibility that the resident can escape.

一方、耐力を必要としない構造部材13bには、第2の発泡樹脂板状部材22が嵌め込まれているため、水平荷重がそのまま伝達されることがない。すなわち、第2の発泡樹脂板状部材22は、圧縮強度を5N/cm(約0.5kgf/cm)よりも大きく低減したものを用いるため、水平荷重が加わったときに次のように作用する。
所定以上の大きな水平荷重が加わった場合は、図3(c)に示すように、スリット211の形成位置の連結部222が破断するため、第2の発泡樹脂板状部材22がスリット221より左側部分223と右側部分224に2分割される。そのため、第2の発泡樹脂板状部材22は、左側部分223と右側部分224のぞれぞれの傾斜面が接しながら水平荷重を分散し、一方の柱11bから一方側面(左側面)に加わる水平荷重がそのまま伝わらず、大部分が低減されて他方側面を介して僅かに他方の柱11bに伝わることになる。そのため、第2の発泡樹脂板状部材22が耐力壁として働くこともない。
On the other hand, since the second foamed resin plate member 22 is fitted in the structural member 13b that does not require proof stress, the horizontal load is not transmitted as it is. That is, since the second foamed resin plate-like member 22 uses a material whose compressive strength is greatly reduced from 5 N / cm 2 (about 0.5 kgf / cm 2 ), when a horizontal load is applied, the following is performed. Works.
When a large horizontal load exceeding a predetermined level is applied, the connecting portion 222 at the position where the slit 211 is formed is broken as shown in FIG. 3C, so that the second foamed resin plate member 22 is on the left side of the slit 221. Divided into a part 223 and a right part 224. Therefore, the second foamed resin plate-like member 22 disperses the horizontal load while the inclined surfaces of the left portion 223 and the right portion 224 are in contact with each other, and is applied to one side surface (left side surface) from one column 11b. The horizontal load is not transmitted as it is, but most of it is reduced and transmitted to the other column 11b slightly through the other side surface. Therefore, the second foamed resin plate member 22 does not work as a load bearing wall.

また、第1の発泡樹脂板状部材21及び第1の発泡樹脂板状部材22は、何れも断熱材として使用される押出法ポリスチレンフォームを用いているので、充填断熱(又は内断熱)を兼ねることができ、断熱性能が高く、省エネルギー化を図れる。そして、筋かい・合板等の構造材と断熱材の両方を取り付ける場合に比べて、建築価格を安価にすることもできる。   Moreover, since the 1st foamed resin plate-shaped member 21 and the 1st foamed resin plate-shaped member 22 are both using the extrusion method polystyrene foam used as a heat insulating material, it serves also as filling heat insulation (or internal heat insulation). It has high heat insulation performance and can save energy. In addition, the construction price can be reduced as compared with the case where both a structural material such as a brace and plywood and a heat insulating material are attached.

(実施例1の変形例)
ところで、上述の段落番号[0037]の例では、第1の発泡樹脂板状部材21の具体的な材料の一例として、押出法ポリスチレンフォームの場合を説明したが、この発明の技術思想は側面の圧縮強度が5N/cm(約0.5kgf/cm)以上のその他の材質からなる発泡プラスチック系フォームを用いることもできる。
例えば、その他の発泡プラスチック系フォームとしては、ビーズ法ポリスチレンフォーム,硬質ウレタンフォーム,ポリエチレンフォーム,フェノールフォーム等を使用することができる。
以下に、第1の発泡樹脂板状部材21の他の例として、ビーズ法ポリスチレンフォームを用いる場合に,筋かい又は合板等の耐力壁と比較して、どの程度の耐力を有するかを考察する。
(Modification of Example 1)
By the way, in the example of the paragraph number [0037] described above, as an example of a specific material of the first foamed resin plate member 21, the case of the extruded polystyrene foam has been described. A foamed plastic foam made of other materials having a compressive strength of 5 N / cm 2 (about 0.5 kgf / cm 2 ) or more can also be used.
For example, as other foamed plastic foams, bead method polystyrene foam, rigid urethane foam, polyethylene foam, phenol foam and the like can be used.
Hereinafter, as another example of the first foamed resin plate-like member 21, when using a beaded polystyrene foam, it will be considered how much strength it has compared to a bearing wall such as a brace or plywood. .

次に、第1の発泡樹脂板状部材21の他の例のビーズ法ポリスチレンが土壁,筋かい又は合板等の耐力壁と比較して、どの程度の耐力を有するかを考察する。
例えば、構造部材13a,13bと空間部14a,14bの条件、すなわち階高,横架材12bの高さ,1対の横架材12a,12bの間隔,柱芯間の長さLおよび柱寸法(太さ)を上述の段落番号[0037]の場合と同条件にし、かつ第1の発泡樹脂板状部材21の高さ,幅および板厚tを上述の段落番号[0037]の場合と同条件とすれば、第1の発泡樹脂板状部材21の圧縮強度は下記の計算式(第(5)式)で表すことができる。
まず、ビーズ法ポリスチレンを用いた第1の発泡樹脂板状部材21は、押出法ポリスチレンフォームに比べて、側面の圧縮強度が低下するので、短期許容応力度を2/3、低減係数を0.75と仮定すると、その短期許容せん断耐力Paは第(4)式で表すことができる。
Pa=5N/cm×2/3×0.75=2.49N/cm ・・・(4)
圧縮強度が5N/cm以上の第1の発泡樹脂板状部材21の発泡プラスチック系フォームとしては、ビーズ法ポリスチレンフォームがある。
第1の発泡樹脂板状部材21が柱の変形に抵抗できる力Pは、その変形時に側面積の1/2近くとなることから、第(5)式で表される。
P=262cm×1/2×6.5cm×2.49N/cm
=2120N≒2.12kN ・・・(5)
その場合の壁倍率は、P×(1/1.96)×(1/L)に基づいて算定する。ここで、1.96は倍率=1を算定する数値(kN/m)で、Lは壁芯の長さ(m)を表す。
この場合の壁倍率は、第(6)式で表される。
壁倍率=2.12×(1/1.96)×(1/0.9)=1.20 ・・・(6)
従って、壁倍率は1.2となる。
Next, it will be considered how much strength the bead polystyrene of another example of the first foamed resin plate-like member 21 has compared to a load-bearing wall such as a soil wall, brace or plywood.
For example, the conditions of the structural members 13a and 13b and the space portions 14a and 14b, that is, the floor height, the height of the horizontal member 12b, the distance between the pair of horizontal members 12a and 12b, the length L between the column cores, and the column dimensions (Thickness) is the same as in the case of the paragraph number [0037] described above, and the height, width and plate thickness t of the first foamed resin plate member 21 are the same as in the case of the paragraph number [0037] described above. If the conditions are satisfied, the compressive strength of the first foamed resin plate-like member 21 can be expressed by the following calculation formula (formula (5)).
First, since the first foamed resin plate-like member 21 using beaded polystyrene has a compressive strength on the side surface lower than that of extruded polystyrene foam, the short-term allowable stress level is 2/3, and the reduction factor is 0. Assuming that 75, the short-term allowable shear strength Pa can be expressed by equation (4).
Pa = 5 N / cm 2 × 2/3 × 0.75 = 2.49 N / cm 2 (4)
As the foamed plastic foam of the first foamed resin plate member 21 having a compressive strength of 5 N / cm 2 or more, there is a bead method polystyrene foam.
The force P with which the first foamed resin plate-like member 21 can resist the deformation of the column is approximately ½ of the side area at the time of the deformation, and is expressed by the expression (5).
P = 262 cm × 1/2 × 6.5 cm × 2.49 N / cm 2
= 2120N≈2.12kN (5)
The wall magnification in that case is calculated based on P × (1 / 1.96) × (1 / L). Here, 1.96 is a numerical value (kN / m) for calculating the magnification = 1, and L represents the length (m) of the wall core.
The wall magnification in this case is expressed by the formula (6).
Wall magnification = 2.12 × (1 / 1.96) × (1 / 0.9) = 1.20 (6)
Therefore, the wall magnification is 1.2.

土壁の壁倍率1でも十分な耐力となることから、第1の発泡樹脂板状部材21としては圧縮強度に応じた多種多様の材質のものを選べることとなる。
従って、ビーズ法ポリスチレンフォームを素材とする第1の発泡樹脂板状部材21であっても、空間部14の詰め物(又はクッション)となっているので、土壁を用いた木造建築物が倒壊する程度の水平荷重を受けたとしても、一気に破壊することなく徐々に破壊される。そのため、木造建築物が倒壊するまでに時間的余裕を確保でき、居住者が逃げ出すことのできる可能性を高めることができる利点がある。
Since sufficient strength is obtained even at a wall magnification of 1 for the earth wall, the first foamed resin plate-like member 21 can be selected from a wide variety of materials according to the compressive strength.
Therefore, even if it is the 1st foamed resin plate-shaped member 21 which uses a bead method polystyrene foam as a raw material, since it is the filling (or cushion) of the space part 14, the wooden building using a dirt wall will collapse. Even if a horizontal load of a certain degree is received, it is gradually destroyed without breaking at a stretch. Therefore, there is an advantage that a time margin can be secured before the wooden building collapses, and the possibility that the resident can escape is increased.

上記第(1)式および第(4)式の短期許容せん断耐力Paの条件を満たす発泡プラスチック系フォームの具体例(市販されている製品)の一例として、その種類と各種類別の圧縮強度を下記表に示す。
As an example of a foamed plastic foam satisfying the short-term allowable shear strength Pa of the above formulas (1) and (4) (commercially available product), the types and compressive strengths for each type are shown below. Shown in the table.

さらに、上述の実施例では、第1の発泡樹脂板状部材21の高さが1枚で1対の横架材12a,12bの間隔と同じ262cmの場合を説明したが、他の例として、それよりも短い2枚をつなぎ合わせて使用してもよい。例えば、幅が同じのもので、高さが180cmと82cm(又は200cmと62cm)の2枚を上下につなぎ合わせて使用してもよい。   Furthermore, in the above-described embodiment, the case where the height of the first foamed resin plate-like member 21 is 262 cm which is the same as the interval between the pair of horizontal members 12a and 12b has been described, but as another example, You may connect and use two sheets shorter than that. For example, two sheets having the same width and a height of 180 cm and 82 cm (or 200 cm and 62 cm) may be used by connecting them vertically.

図3(b)に示す第2の発泡樹脂板状部材22の変形例として、スリット221を短辺(幅)方向の異なる位置であって、高さ方向に沿って複数本形成してもよい。これによって、水平荷重に対する耐力をより一層低減することができる。   As a modification of the second foamed resin plate member 22 shown in FIG. 3B, a plurality of slits 221 may be formed at different positions in the short side (width) direction and along the height direction. . Thereby, the proof stress with respect to a horizontal load can be reduced further.

図5は、この発明の一実施例の木造建築物の耐力構造において、けた行方向と張り間方向のバランスを考慮した一例を示す平面図であり、図6は図5の例における木造建築物の外観斜視図である。
図5及び図6の例では、けた行き方向(図5の横方向;X方向)と張り間方向(図5の奥行方向;Y方向)にそれぞれ複数の構造部材13があり、X方向の両外側(左右外側)に第1の構造部材13a,13d,13f,13jが配置されるとともに、Y方向の両外側(上下外側)に第1の構造部材13n,13m,13o,13pが配置され、それ以外の部分には窓16が形成されるか、耐力を必要としない第2の構造部材13b,13g,13h,13iが配置される場合を示す。
そして、第1の構造部材13a,13d,13f,13j,13n,13m,13o,13pに対応する空間部14a,14d,14f,14j,14n,14m,14o,14pには、第1の発泡樹脂板状部材21が嵌め込まれる。第2の構造部材13b,13g,13h,13iに対応する空間部14b,14g,14h,14iには、第2の発泡樹脂板状部材22が嵌め込まれる。
換言すると、図5の例では、木造建築物10の四隅の角の柱に隣接する構造部材13a,13d,13f,13j,13n,13m,13o,13pに第1の発泡樹脂板状部材21が嵌め込まれることになる。
FIG. 5 is a plan view showing an example in consideration of the balance between the column direction and the tension direction in the load-bearing structure of a wooden building according to an embodiment of the present invention, and FIG. 6 is a wooden building in the example of FIG. FIG.
In the example of FIGS. 5 and 6, there are a plurality of structural members 13 in each of the gap direction (lateral direction in FIG. 5; X direction) and the tension direction (depth direction in FIG. 5; Y direction). The first structural members 13a, 13d, 13f, and 13j are disposed on the outer side (left and right outer sides), and the first structural members 13n, 13m, 13o, and 13p are disposed on both outer sides (upper and lower outer sides) in the Y direction. The case where the window 16 is formed in a part other than that, or the 2nd structural members 13b, 13g, 13h, and 13i which do not require proof stress are arrange | positioned is shown.
The first foamed resin is formed in the space portions 14a, 14d, 14f, 14j, 14n, 14m, 14o, and 14p corresponding to the first structural members 13a, 13d, 13f, 13j, 13n, 13m, 13o, and 13p. The plate-like member 21 is fitted. The second foamed resin plate member 22 is fitted into the spaces 14b, 14g, 14h, 14i corresponding to the second structural members 13b, 13g, 13h, 13i.
In other words, in the example of FIG. 5, the first foamed resin plate-like member 21 is provided on the structural members 13 a, 13 d, 13 f, 13 j, 13 n, 13 m, 13 o, and 13 p adjacent to the pillars at the four corners of the wooden building 10. Will be fitted.

このように、木造建築物10において、耐力を必要とする第1の構造部材13a,13d,13f,13j,13n,13m,13o,13pに耐力を有する第1の発泡樹脂板状部材21を嵌め込み、耐力を必要としない第2の構造部材13b,13g,13h,13iに耐力を有しない第2の発泡樹脂板状部材22を嵌め込むことにより、耐力壁を木造建築物10の全体でバランス(又は釣り合い)よく配置するのは、次の理由による。
木造建築物10は、あらゆる方向から荷重が加わることになるが、地震又は台風による荷重を検討する場合に、水平方向のX方向とY方向の成分に分けて考察している。その場合、全ての構造部材の空間部に同じ耐力を有する第1の発泡樹脂板状部材21を嵌め込むと、対となる第1の発泡樹脂板状部材21の数量による差によって木造建築物10の全体に回転によるねじれが生じ、木造建築物10を倒壊させてしまう場合がある。
そこで、対となる第1の発泡樹脂板状部材21の数量に差が出ないか、大きく異ならないように、X方向(対をなす上辺と下辺)とY方向(対をなす左辺と右辺)の両方向で対をなす各辺の耐力のバランスを保つように工夫したものである。
In this way, in the wooden building 10, the first foamed resin plate-like member 21 having the proof strength is fitted into the first structural members 13a, 13d, 13f, 13j, 13n, 13m, 13o, and 13p that require the proof strength. By fitting the second foamed resin plate member 22 having no proof strength into the second structural members 13b, 13g, 13h, and 13i that do not require proof strength, the proof wall is balanced in the whole wooden building 10 ( (Or balance) The reason for the good arrangement is as follows.
The wooden building 10 is subjected to loads from all directions. However, when considering a load due to an earthquake or a typhoon, the horizontal structure is divided into components in the X direction and the Y direction. In that case, if the 1st foamed resin plate-shaped member 21 which has the same yield strength is inserted in the space part of all the structural members, according to the difference by the quantity of the 1st foamed resin plate-shaped member 21 used as a pair, the wooden building 10 May be twisted due to rotation, causing the wooden building 10 to collapse.
Therefore, the X direction (the upper side and the lower side making a pair) and the Y direction (the left side and the right side making a pair) so that there is no difference in the quantity of the first foamed resin plate members 21 that make a pair or a great difference. It was devised to maintain the balance of proof strength of each side that makes a pair in both directions.

次に、X方向とY方向の両方向で耐力壁をバランスよく配置する方法について考察する。
図5の例に示す平面構造の木造建築物10の場合は、X方向がY方向よりも長いので、窓16を除く全ての壁面に第1の発泡樹脂板状部材21を嵌め込むと、X方向とY方向の耐力壁のバランスを保つことができない。特に、X方向においては、上辺と下辺が窓16を配置した下辺と窓を配置しない上辺で、壁耐力の差が大きくなり、X方向の向かい合う辺(上辺と下辺)の耐力バランスが大きく異なってしまうことになる。
そこで、図5の例では、耐力構造的に重要性の低いX方向の中央に近い構造部材13b,13g(左辺から2番目の構造部材),13h,13i(左辺から3番目と4番目の構造部材)に耐力を有しない第2の発泡樹脂板状部材21を入れることにより、X方向の外側壁面の耐力壁となる第1の発泡樹脂板状部材21の数を上辺と下辺で同数(又は大きく差が生じない程度)とし、Y方向の外側壁面の耐力壁となる第1の発泡樹脂板状部材21の数を左辺と右辺で同数とし、全体的に耐力壁のバランスを取るようにしている。換言すると、図5の例では、木造建築物10の4隅の角柱に接する各構造部材13a,13d,13f,13j,13n,13m,13oおよび13pには、耐力壁となる第1の発泡樹脂板状部材21が嵌め込まれる。
このようにバランスよく耐力壁(第1の発泡樹脂板状部材21)を配置して、水平方向のあらゆる方向から水平荷重が加わった場合でも、回転による建物全体としてのねじれが生じるのを防止している。
Next, a method for arranging the bearing walls in a balanced manner in both the X direction and the Y direction will be considered.
In the case of the wooden structure 10 having a planar structure shown in the example of FIG. 5, the X direction is longer than the Y direction, and therefore, when the first foamed resin plate-like member 21 is fitted into all wall surfaces except the window 16, X The balance between the bearing wall in the direction and the Y direction cannot be maintained. In particular, in the X direction, the difference in wall strength is large between the upper side and the lower side where the window 16 is arranged and the upper side where the window is not arranged, and the strength balance of the opposite sides (upper side and lower side) in the X direction is greatly different. Will end up.
Therefore, in the example of FIG. 5, structural members 13b and 13g (second structural members from the left side), 13h and 13i (third and fourth structures from the left side) that are close to the center in the X direction, which are less important in terms of yield strength. By inserting the second foamed resin plate-like member 21 having no proof strength into the member), the same number of the first foamed resin plate-like members 21 serving as the load-bearing walls on the outer wall surface in the X direction (or the upper side and the lower side) (or The number of first foamed resin plate-like members 21 that will be the load-bearing walls on the outer wall surface in the Y direction is the same on the left side and the right side so that the load-bearing walls are balanced as a whole. Yes. In other words, in the example of FIG. 5, each of the structural members 13 a, 13 d, 13 f, 13 j, 13 n, 13 m, 13 o, and 13 p in contact with the four corner prisms of the wooden building 10 is the first foamed resin that becomes a bearing wall. The plate-like member 21 is fitted.
Thus, the load-bearing wall (first foamed resin plate-like member 21) is arranged in a well-balanced manner, and even when a horizontal load is applied from all directions in the horizontal direction, it is possible to prevent the entire building from being twisted due to rotation. ing.

図7は木造建築物の耐力構造において、けた行方向(X方向)と張り間方向(Y方向)のバランスを考慮した他の例を示す平面図である。
図5では木造建築物が横長の長方形の場合を説明したが、木造建築物は建築主の希望により長方形又は正方形以外の複雑な平面形状になることもある。
図7では、正方形の一部の角に窪みを形成した(例えば、右上の角を小さな正方形の分だけ切欠いて内側に後退させた)平面形状の例を示す。
四角形の一部の角に窪みを形成した図7の平面形状の場合は、後述する図8の「外側辺の1/4」を検討する上で、X方向の間口の広い辺(下辺)と間口の狭い辺(上辺)で壁耐力を有する第1の発泡樹脂板状部材21を同数(図示例では2つ)配置し、Y方向の間口の広い辺(左辺)と間口の狭い辺(右辺)で壁耐力を有する第1の発泡樹脂板状部材21の同数(図示例では2つ)配置し、窓を除く他の壁部分には第2の発泡樹脂板状部材22を配置する。
右上の角の窪み部分(L字状部分)の壁面については、外側壁面より1/4の範囲から外れるので、耐力壁を考慮する必要がない。換言すれば、この部分(図7において、「21(or22)」と記載した壁部分)は、バランスを考慮する対象に含まれないので、第1の発泡樹脂板状部材21又は第2の発泡樹脂板状部材22の何れでもよい。
FIG. 7 is a plan view showing another example in consideration of the balance between the column direction (X direction) and the spanning direction (Y direction) in the load-bearing structure of a wooden building.
Although the case where the wooden building is a horizontally long rectangle has been described with reference to FIG. 5, the wooden building may have a complicated planar shape other than a rectangle or a square depending on the desire of the building owner.
FIG. 7 shows an example of a planar shape in which depressions are formed at some corners of a square (for example, the upper right corner is cut out by a small square and retracted inward).
In the case of the planar shape of FIG. 7 in which depressions are formed at some corners of a quadrangle, when considering “¼ of the outer side” in FIG. The same number (two in the illustrated example) of first foamed resin plate-like members 21 having wall strength at the narrow side (upper side) of the frontage is arranged, and the wide side (left side) of the frontage in the Y direction and the narrow side (right side) of the frontage ), The same number (two in the illustrated example) of the first foamed resin plate-like members 21 having wall strength is arranged, and the second foamed resin plate-like member 22 is arranged on the other wall portion excluding the window.
The wall surface of the upper right corner recess (L-shaped part) is out of the range of 1/4 from the outer wall surface, so there is no need to consider the bearing wall. In other words, since this portion (the wall portion described as “21 (or 22)” in FIG. 7) is not included in the balance consideration target, the first foamed resin plate-like member 21 or the second foamed member is not included. Any of the resin plate-like members 22 may be used.

図8はこの実施例の木造建築物の耐力構造において、けた行方向(X方向)と張り間方向(Y方向)のバランスを考慮して一般化した配置例を説明するための平面図である。
特に、けた行方向(X方向)と張り間方向(Y方向)に分けて第1の構造部材と第2の構造部材をバランス良く配置する目的で、X方向の間口を8つの桝目(点線)で構成し、Y方向の間口を6つの桝目で構成した場合において、X方向とY方向のどの位置に耐力を有する第1の発泡樹脂板状部材21を嵌め込むべきかを考察したものである。
FIG. 8 is a plan view for explaining a general arrangement example in consideration of the balance between the column direction (X direction) and the tension direction (Y direction) in the load-bearing structure of the wooden building of this embodiment. .
In particular, for the purpose of arranging the first structural member and the second structural member in a well-balanced manner by dividing them into a line direction (X direction) and a spanning direction (Y direction), the X-direction frontage has eight squares (dotted lines). In the case where the front edge in the Y direction is configured with six squares, the position in the X direction and the Y direction in which the first foamed resin plate member 21 having proof strength should be fitted is considered. .

特に、図8(a)は、けた行方向(X方向)にバランスよく耐力を発揮するために、どの位置に耐力を有する第1の発泡樹脂板状部材21を配置すべきかを考察した図である。
X方向にバランスよく耐力を発揮するためには、Y方向を4分割(2点鎖線)したときのそれぞれ1/4の範囲にある両外側(上下外側)のX方向に沿う壁であって、細かな(又は密の)斜線で示す壁に第1の発泡樹脂板状部材21を嵌め込み、粗い斜線で示す壁に第2の発泡樹脂板状部材22を嵌め込むものとする。
換言すると、X方向の下辺では、左端と右端と右から3番目の壁に第1の発泡樹脂板状部材21が嵌め込まれる。X方向の上辺では、左端,左から2番目と右端の壁に第1の発泡樹脂板状部材21が嵌め込まれ、左から3番目,4番目及び右から2番目の壁に第2の発泡樹脂板状部材22が嵌め込まれる。
ここで、X方向の上辺と下辺の壁に着目すると、耐力壁となるべき第1の発泡樹脂板状部材21が嵌め込まれる壁の数が上辺と下辺で同数となる。
また、窓の多い下辺には、第2の発泡樹脂板状部材22を嵌め込む余地がないが、窓を除いて壁のある上辺の左から3番目と4番目と右から2番目の壁には第2の発泡樹脂板状部材22を嵌め込むことにより、第2の発泡樹脂板状部材22を嵌め込んだ壁が耐力壁にならないようにする。これによって、X方向の上辺と下辺で耐力壁の数のバランスを取っている。
In particular, FIG. 8 (a) is a diagram that considers at which position the first foamed resin plate-like member 21 having the proof stress should be placed in order to exert a proof strength in a well-balanced direction (X direction). is there.
In order to exert a balanced strength in the X direction, it is a wall along the X direction on both outer sides (upper and lower outer sides) in the range of 1/4 each when the Y direction is divided into four (two-dot chain lines), It is assumed that the first foamed resin plate member 21 is fitted into a wall indicated by fine (or dense) diagonal lines, and the second foamed resin plate member 22 is fitted into a wall indicated by rough diagonal lines.
In other words, on the lower side in the X direction, the first foamed resin plate member 21 is fitted into the left end, the right end, and the third wall from the right. On the upper side in the X direction, the first foamed resin plate-like member 21 is fitted into the left end, the second wall from the left, and the right end wall, and the second foam resin from the third, fourth, and second walls from the left. The plate-like member 22 is fitted.
Here, paying attention to the upper and lower walls in the X direction, the number of walls into which the first foamed resin plate-like member 21 to be a load bearing wall is fitted is the same on the upper side and the lower side.
In addition, there is no room for fitting the second foamed resin plate-like member 22 in the lower side where there are many windows, but the third wall from the left and the fourth wall from the upper side of the wall except the window and the second wall from the right. By fitting the second foamed resin plate-like member 22, the wall into which the second foamed resin plate-like member 22 is fitted does not become a load-bearing wall. This balances the number of bearing walls on the upper and lower sides in the X direction.

図8(b)は、張り間方向(Y方向)にバランスよく耐力を発揮するために、どの位置に耐力を有する第1の発泡樹脂板状部材21を配置すべきかを考察した図である。
Y方向にバランスよく耐力を発揮するためには、X方向を4分割(2点鎖線)したときのそれぞれ1/4の範囲にある両外側(左右外側)のY方向に沿う壁であって、細かな斜線で示す壁に第1の発泡樹脂板状部材21を嵌め込み、粗い斜線で示す壁に第2の発泡樹脂板状部材22を嵌め込むものとする。
換言すると、Y方向の左辺では、左外側の全ての壁(3つ)と、左外側から1/4の範囲にある中央2枡の壁に、第1の発泡樹脂板状部材21が嵌め込まれる。Y方向の右辺では、右外側の下から1番目,2番目,上から1番目の壁と、左外側から1/4の範囲の下から1番目と上から1番目の壁に第1の発泡樹脂板状部材21が嵌め込まれる。
Y方向では、左辺と右辺の窓の大きさが異なり、窓の少ない右辺の右外側の下から3番目の壁に第2の発泡樹脂板状部材22を嵌め込む。
これによって、Y方向の左辺と右辺で壁のバランスを取ることができ、地震や台風の発生時の回転変形またはねじれによる木造建築物の倒壊を軽減できるという、特有の効果が奏される。
FIG. 8 (b) is a diagram that considers where to place the first foamed resin plate member 21 having proof strength in order to exert proof strength in a balanced direction (Y direction).
In order to demonstrate the yield strength in a balanced manner in the Y direction, the walls along the Y direction on both outer sides (left and right outer sides) each in the range of 1/4 when the X direction is divided into four (two-dot chain lines), It is assumed that the first foamed resin plate-like member 21 is fitted into the wall indicated by fine oblique lines, and the second foamed resin plate-like member 22 is fitted into the wall indicated by rough oblique lines.
In other words, on the left side in the Y direction, the first foamed resin plate-like member 21 is fitted into all the left outer walls (three) and the wall of the center 2 mm in the range of 1/4 from the left outer side. . On the right side in the Y direction, the first foam is on the first, second, and top first walls from the bottom right, and on the first and bottom walls from the bottom to the ¼ range from the left outside. The resin plate member 21 is fitted.
In the Y direction, the size of the windows on the left side and the right side is different, and the second foamed resin plate member 22 is fitted into the third wall from the lower right side of the right side with few windows.
As a result, the wall can be balanced between the left side and the right side in the Y direction, and a unique effect of reducing the collapse of the wooden building due to rotational deformation or twisting in the event of an earthquake or typhoon can be achieved.

(実施例2)
図9はこの発明の他の実施例の木造建築物の耐力構造を説明するための図であり、特に第1の発泡樹脂板状部材21と筋かいを併用した場合を示す。
この実施例では、図9(a)の平面図及び図9(b)の立面図に示すように、1対の柱11a,11bが筋かい17によって緊結され、筋かい17を除く空間部14aに第1の発泡樹脂板状部材21が嵌め込まれる。例えば、1対の柱11a,11bが10cm角の角材を用いた場合、厚みが3cmの筋かいであれば、第1の発泡樹脂板状部材21(6.5cm以下)と併用しても、柱11a,11bの厚みの範囲であり、第1の発泡樹脂板状部材21が柱11a,11bの面より突出することもない。
そして、第1の発泡樹脂板状部材21と筋かいを併用すれば、圧縮強度は両材料を合成したのと同程度に増大できる利点がある。しかも、第1の発泡樹脂板状部材21が第1式又は第2式のような圧縮強度を有するので、大きな地震による水平荷重を受けたとしても、その水平荷重が第1の発泡樹脂板状部材21と筋かいによって分散して受け止められるので、水平荷重の一部が弾力性のある第1の発泡樹脂板状部材21によって吸収しつつ分散され、水平荷重の全てが筋かいに加わることを防止しているので、筋かいの破壊を遅らせるか、防止することもできる。
(Example 2)
FIG. 9 is a view for explaining a load-bearing structure of a wooden building according to another embodiment of the present invention, and particularly shows a case where the first foamed resin plate member 21 and a brace are used in combination.
In this embodiment, as shown in the plan view of FIG. 9A and the elevation view of FIG. 9B, a pair of pillars 11a and 11b are fastened by a brace 17 and a space portion excluding the brace 17 The first foamed resin plate member 21 is fitted into 14a. For example, when a pair of pillars 11a and 11b is a square member having a 10 cm square, if it is a brace having a thickness of 3 cm, even if it is used in combination with the first foamed resin plate member 21 (6.5 cm or less), It is the range of the thickness of pillar 11a, 11b, and the 1st foamed resin plate-shaped member 21 does not protrude from the surface of pillar 11a, 11b.
If the first foamed resin plate member 21 and the brace are used together, there is an advantage that the compressive strength can be increased to the same extent as when both materials are synthesized. Moreover, since the first foamed resin plate member 21 has the compressive strength as in the first formula or the second formula, even if it receives a horizontal load due to a large earthquake, the horizontal load is the first foamed resin plate shape. Since the member 21 and the brace are distributed and received, a part of the horizontal load is dispersed while being absorbed by the elastic first foamed resin plate-like member 21 and all the horizontal load is applied to the brace. Because it prevents it, it can delay or prevent the destruction of the brace.

(実施例3)
図10はこの発明のその他の実施例(第1の発泡樹脂板状部材の他の例)を示す概念図であり、特に図10(a)が他の第1の発泡樹脂板状部材21aの横断面図、図10(b)がこの発明の他の実施例の木造建築物の一部の平面図である。
この実施例の第1の発泡樹脂板状部材21aは、図10(a)に示すように、その短辺の側面に僅かな傾斜面を形成することにより、横断面(空間部に嵌め込まれたときの平面)から見て台形状(短辺と長辺が平行な台形状)に形成される。すなわち、第1の発泡樹脂板状部材21aは、その短辺の一方辺(図示の下辺で外側となる面)の長さdが1対の柱11a,11bの間隔と同じ長さに選ばれ、他方辺(図示の上辺で内側となる面)の長さが1対の柱11a,11bの間隔よりも2xだけ短く(d−2x)選ばれることにより、1対の柱11a,11bに接する側面が僅かな傾斜を有するように構成される。ここで、xは例えば1〜2mm程度、傾斜角度は90度より若干(0.8〜2度)小さな角度である。
また、好ましくは、第1の発泡樹脂板状部材21aは、横架材12bに接する辺が内側面に傾斜して形成され、横架材12aに接する辺が主面に対して直角に選ばれる。すなわち、柱11a,11bと横架材12bに接する側面(主面から見て左右と上辺の3側面)が嵌め込んだときに内側となる面に向けて傾斜するように構成される。
上述のような第1の発泡樹脂板状部材21aは、図3(a)のものの側面を切削加工して作られる。
この第1の発泡樹脂板状部材21aは、図10(b)に示すように、台形状の上辺を奥行方向の面として、1対の柱11a,11bと1対の横架材12a,12bで囲まれる構造部材13aの空間部14aに嵌め込まれる。
この実施例のように第1の発泡樹脂板状部材21aを構成すれば、木造建築物の内側となる主面の平面形状が1対の柱11a,11bと1対の横架材12a,12bで囲まれる構造部材13aの空間部14aよりも若干小さいので、嵌め込み作業が容易かつ迅速に行えることに加えて、外側となる主面の平面形状が構造部材13aの空間部14aと同一なので、隙間がなく、断熱性に優れた発泡樹脂板状部材21aが得られる。また、横架材12aに接する辺を主面に対して直角にすれば、横架材12a上で水平に載置されることになり、立てた状態に安定して保持できる。
(Example 3)
FIG. 10 is a conceptual diagram showing another embodiment of the present invention (another example of the first foamed resin plate member). In particular, FIG. 10 (a) shows another first foamed resin plate member 21a. FIG. 10 (b) is a plan view of a part of a wooden building according to another embodiment of the present invention.
As shown in FIG. 10 (a), the first foamed resin plate-like member 21a of this embodiment is formed with a slight inclined surface on the side surface of the short side, thereby being fitted in the transverse section (space portion). It is formed in a trapezoidal shape (a trapezoidal shape in which the short side and the long side are parallel) as viewed from the plane. That is, in the first foamed resin plate-like member 21a, the length d of one side of the short side (the surface that is the outer side on the lower side in the drawing) is selected to be the same as the distance between the pair of columns 11a and 11b. The length of the other side (the surface on the inner side of the upper side in the drawing) is selected to be 2x shorter than the distance between the pair of columns 11a and 11b (d-2x), thereby contacting the pair of columns 11a and 11b. The side surface is configured to have a slight inclination. Here, x is, for example, about 1 to 2 mm, and the inclination angle is slightly smaller (0.8 to 2 degrees) than 90 degrees.
Preferably, the first foamed resin plate-like member 21a is formed such that the side in contact with the horizontal member 12b is inclined toward the inner surface, and the side in contact with the horizontal member 12a is selected at right angles to the main surface. . That is, it is configured to be inclined toward the inner surface when the side surfaces (three side surfaces of the left and right sides and the upper side as viewed from the main surface) that are in contact with the pillars 11a and 11b and the horizontal member 12b are fitted.
The first foamed resin plate-like member 21a as described above is made by cutting the side surface of the one shown in FIG.
As shown in FIG. 10 (b), the first foamed resin plate member 21a has a pair of columns 11a and 11b and a pair of horizontal members 12a and 12b with the upper side of the trapezoidal shape as a surface in the depth direction. Is fitted into the space 14a of the structural member 13a surrounded by
If the 1st foamed resin plate-shaped member 21a is comprised like this Example, the planar shape of the main surface used as the inner side of a wooden building will become a pair of pillar 11a, 11b and a pair of horizontal members 12a, 12b. Since the space 14a is slightly smaller than the space 14a of the structural member 13a surrounded by the structure, in addition to being able to perform the fitting operation easily and quickly, the planar shape of the outer main surface is the same as the space 14a of the structural member 13a. The foamed resin plate member 21a having excellent heat insulation is obtained. Further, if the side in contact with the horizontal member 12a is perpendicular to the main surface, it will be placed horizontally on the horizontal member 12a and can be stably held in an upright state.

なお、この実施例の発泡樹脂板状部材21aは、木造建築物の耐力構造の構造材としての用途に限らず、断熱材としてのみの用途に用いてもよい。その場合も、嵌め込み作業が容易かつ迅速に行えるとともに、断熱性能の向上を図れる利点がある。   In addition, you may use the foamed resin plate-shaped member 21a of this Example not only as a use as a structural material of the load-bearing structure of a wooden building but only as a heat insulating material. Even in this case, there is an advantage that the fitting operation can be performed easily and quickly and the heat insulation performance can be improved.

(実施例4)
図11はこの発明のその他の実施例の第2の発泡樹脂板状部材を示す横断面図であり、特に第2の発泡樹脂板状部材22aを2分割したものである。
この実施例では、第2の発泡樹脂板状部材22aがスリット221の形成に代えて、第1の発泡樹脂板状部材21を短辺のほぼ中央位置で斜めに長辺方向に沿って裁断したものである。斜めに裁断する角度は、図3(b)に示す第2の発泡樹脂板状部材のスリット221の角度と同様に選ばれる。
この実施例の2分割した第2の発泡樹脂板状部材22aを空間部14bに嵌め込む際に、作業員が2回の嵌め込み作業しなければならないという煩わしさがあるが、図3(b)に示すスリット付の第2の発泡樹脂板状部材22と同様に圧縮力を低減できる利点がある。
言い換えれば、図3(b)に示す第2の発泡樹脂板状部材22は、この実施例の2分割した第2の発泡樹脂板状部材に比べて、容易かつ迅速に嵌め込み作業を行える利点がある。
Example 4
FIG. 11 is a cross-sectional view showing a second foamed resin plate member according to another embodiment of the present invention. In particular, the second foamed resin plate member 22a is divided into two parts.
In this embodiment, the second foamed resin plate-like member 22a is cut in the long side direction obliquely at substantially the center position of the short side instead of forming the slit 221. Is. The angle to be cut obliquely is selected in the same manner as the angle of the slit 221 of the second foamed resin plate member shown in FIG.
When the second foamed resin plate member 22a divided into two in this embodiment is fitted into the space portion 14b, there is an inconvenience that the worker has to do the fitting work twice, but FIG. 3 (b). There exists an advantage which can reduce a compressive force similarly to the 2nd foaming resin plate-shaped member 22 with a slit shown in FIG.
In other words, the second foamed resin plate member 22 shown in FIG. 3 (b) has an advantage that it can be fitted easily and quickly compared with the second divided foam resin plate member of this embodiment. is there.

(実施例5)
図12はこの発明のさらにその他の実施例の第2の発泡樹脂板状部材22bを示す横断面図であり、特に第2の発泡樹脂板状部材22bが薄い複数枚の板状部材225〜227を積層して構成した例を示す。
この実施例では、第2の発泡樹脂板状部材22bが薄い複数枚の板状部材225〜227を積層して構成される。そして、薄い複数枚の板状部材225〜227を積層して空間部14bへ嵌め込むことにより、1つの第2の発泡樹脂板状部材22bとして機能させる。
薄い複数枚の板状部材225〜227を積層して第2の発泡樹脂板状部材22bを構成すれば、水平荷重が加わったときに、各板状部材225〜227が薄いため湾曲し座屈するので、水平荷重を十分に(又は1枚の厚い発泡樹脂板状部材のように)受け止めることができない。その結果として、薄い複数枚の板状部材225〜227を積層した第2の発泡樹脂板状部材22bが耐力を減少させるように働く。
また、水平荷重に対する発泡樹脂板状部材の圧縮強度は、側面の面積が大きく影響するが、複数枚の板状部材を積層すれば、それぞれの板状部材の側面の面積が積層枚数分の1以下になることに加えて、1枚の厚いものに比べて湾曲し座屈するため、圧縮強度が減少する。そのため、薄い板状部材を複数枚積層して厚みを同程度にしたものでも、圧縮強度を大幅に減少させることができる。
(Example 5)
FIG. 12 is a cross-sectional view showing a second foamed resin plate-like member 22b according to still another embodiment of the present invention, and in particular, a plurality of plate-like members 225 to 227 having a thin second foamed resin plate-like member 22b. An example in which these are stacked is shown.
In this embodiment, the second foamed resin plate member 22b is formed by laminating a plurality of thin plate members 225 to 227. Then, a plurality of thin plate-like members 225 to 227 are stacked and fitted into the space portion 14b to function as one second foamed resin plate-like member 22b.
If the second foamed resin plate-like member 22b is configured by laminating a plurality of thin plate-like members 225-227, when a horizontal load is applied, each plate-like member 225-227 is thin and is bent and buckled. Therefore, the horizontal load cannot be received sufficiently (or like one thick foamed resin plate-like member). As a result, the second foamed resin plate-like member 22b in which a plurality of thin plate-like members 225 to 227 are stacked works to reduce the proof stress.
Further, the compressive strength of the foamed resin plate member with respect to the horizontal load is greatly influenced by the area of the side surface. In addition to the following, the compressive strength decreases because it is bent and buckled as compared to a thick one. Therefore, even if a plurality of thin plate-like members are laminated to have the same thickness, the compressive strength can be greatly reduced.

(実施例6)
図13はスリット付の第2の発泡樹脂板状部材22の製造工程を説明するための概念図である。
図1および図3(b)に示される、壁耐力を必要としない構造部材13bに嵌め込まれるスリット付の第2の発泡樹脂板状部材22は、図3(b)を参照して説明したように構成されるが、より具体的には図13のような製造工程によって製造される。
先ず、図13(a)に示すように、第1の発泡樹脂板状部材21が準備される。この第1の発泡樹脂板状部材21の製造は、押出法ポリスチレンフォーム等の製造工程によって製造される。
次に、図13(b)(c)に示すように、第1の発泡樹脂板状部材21の移送経路に、丸鋸刃31を回転軸32に支持し、丸鋸刃31をスリット角θの角度だけ傾けるように、回転軸32を傾けてモータ33の回転軸に連結する。スリット角θは図3(b)を参照して説明した角度に選ばれ、移送テーブル台から丸鋸刃31を突出させる長さがスリット221の深さt2に選ばれる。
そして、丸鋸刃31の設置された移送テーブル台上を第1の発泡樹脂板状部材22の短辺の略中央から長辺方向(図13(b)の白抜矢印の方向)に沿って第1の発泡樹脂板状部材21を押し出す。このとき、第1の発泡樹脂板状部材21は、その下面(裏側面)が丸鋸刃31に削られながら移動されるため、斜めのスリット221が長辺方向に細長く形成されることになる。
このように、一方主面に対して所定角度だけ傾斜させかつ長辺方向に沿って細長いスリット221を形成したものが、図1及び図3(b)に示すような、第2の発泡樹脂板状部材22となる。
(Example 6)
FIG. 13 is a conceptual diagram for explaining a manufacturing process of the second foamed resin plate member 22 with slits.
The second foamed resin plate member 22 with slits fitted into the structural member 13b that does not require wall strength shown in FIG. 1 and FIG. 3 (b) is as described with reference to FIG. 3 (b). More specifically, it is manufactured by a manufacturing process as shown in FIG.
First, as shown to Fig.13 (a), the 1st foamed resin plate-shaped member 21 is prepared. The first foamed resin plate-shaped member 21 is manufactured by a manufacturing process such as extrusion polystyrene foam.
Next, as shown in FIGS. 13B and 13C, the circular saw blade 31 is supported on the rotary shaft 32 in the transfer path of the first foamed resin plate member 21, and the circular saw blade 31 is moved to the slit angle θ. The rotary shaft 32 is tilted and connected to the rotary shaft of the motor 33 so as to be tilted by the angle. The slit angle θ is selected to be the angle described with reference to FIG. 3B, and the length for projecting the circular saw blade 31 from the transfer table base is selected as the depth t2 of the slit 221.
Then, on the transfer table on which the circular saw blade 31 is installed, along the long side direction (the direction of the white arrow in FIG. 13B) from the approximate center of the short side of the first foamed resin plate member 22. The first foamed resin plate member 21 is extruded. At this time, since the first foamed resin plate-like member 21 is moved while its lower surface (back side surface) is scraped by the circular saw blade 31, the oblique slit 221 is formed to be elongated in the long side direction. .
In this way, the second foamed resin plate as shown in FIGS. 1 and 3B is formed by inclining a predetermined angle with respect to the one main surface and forming the elongated slit 221 along the long side direction. The member 22 is formed.

この発明は、木造建築物の耐力構造又は耐力工法として木造建築物に利用でき、産業上の利用可能性が高い。   The present invention can be used for wooden buildings as a load-bearing structure or a load-bearing method for wooden buildings, and has high industrial applicability.

付記Appendix

特許請求の範囲に記載した技術的思想以外に、上述の実施例3(図10に示す第1の発泡樹脂板状部材21a)で把握される技術的思想を列挙すると、以下の通りである。
1対の柱と1対の横架材によって囲まれた空間部を有する構造部材を、第1の方向にかつ対をなすようにそれぞれ複数配置し、第1の方向に直交する第2の方向であって対をなすように複数配置して構成される木造建築物に用いられる発泡樹脂板状部材(第1の発泡樹脂板状部材)である。
発泡樹脂板状部材は、構造部材に含まれる空間部に嵌め込まれる、建築用材料として用いられる。この発泡樹脂板状部材は、その短辺における嵌め込み方向の内側面が1対の柱の間隔の長さより短くかつ外側面が1対の柱の間隔の長さと同一に形成され、1対の柱に接する面が傾斜して形成されることにより、その横断面形状が台形状に選ばれることを特徴とする。
In addition to the technical ideas described in the claims, the technical ideas grasped in the above-described Example 3 (first foamed resin plate member 21a shown in FIG. 10) are listed as follows.
A plurality of structural members each having a space portion surrounded by a pair of pillars and a pair of horizontal members are arranged in a first direction and in pairs, and a second direction orthogonal to the first direction It is a foamed resin plate-like member (first foamed resin plate-like member) used for a wooden building that is arranged in a plurality so as to form a pair.
The foamed resin plate member is used as a building material that is fitted into a space part included in the structural member. The foamed resin plate-like member is formed such that the inner side in the fitting direction on the short side is shorter than the length of the pair of columns and the outer side is the same as the length of the pair of columns. The cross-sectional shape is selected to be trapezoidal when the surface in contact with is inclined.

この発泡樹脂板状部材によれば、発泡樹脂板状部材の嵌め込み作業が容易かつ迅速に行えるとともに、断熱性能を高めることができる。   According to this foamed resin plate-shaped member, the work of fitting the foamed resin plate-shaped member can be performed easily and quickly, and the heat insulation performance can be enhanced.

特許請求の範囲に記載した技術的思想以外に、上述の実施例6(図13に示す第2の発泡樹脂板状部材22)で把握される技術的思想を列挙すると、以下の通りである。
1対の柱と1対の横架材によって囲まれた空間部を有する構造部材を、第1の方向にかつ対をなすようにそれぞれ複数配置し、第1の方向に直交する第2の方向であって対をなすように複数配置して構成される木造建築物に用いられるスリット付の発泡樹脂板状部材(第2の発泡樹脂板状部材)である。構造部材は、壁耐力を必要とする複数箇所の第1の構造部材と、壁耐力を必要としない複数箇所の第2の構造部材とを含む。
スリット付の発泡樹脂板状部材は、第2の構造部材に含まれる第2の空間部に嵌め込まれる、建築用材料として用いられる。
この発泡樹脂板状部材は、その平面形状が第2の空間部の立面形状と略同程度の形状に選ばれ、その主面に対して所定の角度を有し、かつ短辺の或る位置でその長辺方向に沿って細長く形成されたスリットを有することを特徴とする。
In addition to the technical ideas described in the claims, the technical ideas grasped in the above-described Example 6 (second foamed resin plate-like member 22 shown in FIG. 13) are listed as follows.
A plurality of structural members each having a space portion surrounded by a pair of pillars and a pair of horizontal members are arranged in a first direction and in pairs, and a second direction orthogonal to the first direction It is a foamed resin plate member with a slit (second foamed resin plate member) used in a wooden building that is arranged in a plurality so as to form a pair. The structural member includes a plurality of first structural members that require wall strength and a plurality of second structural members that do not require wall strength.
The foamed resin plate member with the slit is used as a building material that is fitted into the second space portion included in the second structural member.
The foamed resin plate-like member has a planar shape selected to be approximately the same as the elevational shape of the second space, has a predetermined angle with respect to the main surface, and has a short side. It is characterized by having a slit formed elongated along the long side direction at a position.

この発泡樹脂板状部材によれば、1対の柱の一方の柱から他方の柱に伝わる圧縮力を低減させる圧縮力低減部(連結部222に相当)を有し、水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、圧縮力低減部によって一方の柱から他方の柱に伝わる圧縮力を低減させるように作用させることが出来る。そのため、壁面となる空間部に嵌め込んだとき、壁耐力を発揮することなく、水平荷重に対して木造建築物全体のバランスを良くすることに役立ち、断熱機能だけを発揮することができる。   According to this foamed resin plate-like member, it has the compression force reducing portion (corresponding to the connecting portion 222) that reduces the compression force transmitted from one column of the pair of columns to the other column, and the first from the horizontal direction. When a horizontal load is applied to each pair of columns in the direction or the second direction, the compressive force reducing portion can act to reduce the compressive force transmitted from one column to the other column. For this reason, when fitted in a space serving as a wall surface, it is possible to improve the balance of the entire wooden building against the horizontal load without exhibiting the wall strength, and only the heat insulating function can be exhibited.

発泡樹脂板状部材22は、スリットを形成した連結部222によって2つの板状部材を連結するように構成される。   The foamed resin plate-like member 22 is configured to connect two plate-like members by a connecting portion 222 having a slit.

発泡樹脂板状部材22は、スリット221の深さが板厚の1/2〜3/4の範囲の深さであって、主面に対して25〜60度の角度に選ばれる。
これによって、大きな地震による水平荷重を受けたとき、スリットを形成した連結部222で破断し、2つの板状部材223,224に分割され、傾斜面で水平荷重を分散するように働く。
The foamed resin plate-like member 22 is selected at an angle of 25 to 60 degrees with respect to the main surface, with the depth of the slit 221 being in the range of 1/2 to 3/4 of the plate thickness.
As a result, when a horizontal load due to a large earthquake is received, it breaks at the connecting portion 222 having a slit and is divided into two plate-like members 223 and 224 so that the horizontal load is distributed on the inclined surface.

10:木造建築物の耐力構造
11,11a〜11p:柱
12,12a,12b,12n,12m:横架材
13,13a〜13i:構造部材
14,14a〜14n:空間部
15:布基礎
16:窓
21,21a:第1の発泡樹脂板状部材
22,22a,22b:第2の発泡樹脂板状部材
221:スリット
222:連結部
10: Strength structure of wooden building 11, 11a to 11p: Pillar 12, 12a, 12b, 12n, 12m: Horizontal member 13, 13a to 13i: Structural member 14, 14a to 14n: Space 15: Cloth foundation 16: Windows 21, 21a: First foamed resin plate-like member 22, 22a, 22b: Second foamed resin plate-like member 221: Slit 222: Connecting portion

Claims (7)

1対の柱と1対の横架材によって囲まれた空間部を有する構造部材を、第1の方向にかつ対をなすようにそれぞれ複数配置し、第1の方向に直交する第2の方向であって対をなすように複数配置して構成される木造建築物において、
前記1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、壁耐力を必要とする複数箇所の第1の構造部材に含まれる第1の空間部のそれぞれの立面形状と略同等の形状に選ばれ、各第1の構造部材に固定されることなく、当該第1の構造部材に対応する第1の空間部にそれぞれ嵌め込まれる、複数の第1の発泡樹脂板状部材、および
前記複数の構造部材のうちの壁耐力を必要としない複数個所の第2の構造部材に含まれかつ前記複数の第1の空間部と開口部を除いた第2の空間部のそれぞれの立面形状と略同程度の形状に選ばれ、各第2の構造部材に固定されることなく、当該第2の構造部材に対応する第2の空間部のそれぞれに嵌め込まれる、複数の第2の発泡樹脂板状部材を備え、
前記第1の発泡樹脂板状部材は、その短辺方向の側面が前記第1の構造部材に含まれる1対の柱に接することによって、水平方向から第1の方向又は第2の方向へ水平荷重が加わるときに、当該柱を介して当該水平荷重による圧縮力を第1の発泡樹脂板状部材の側面によって受けて、耐力壁として作用し、
前記第2の発泡樹脂板状部材は、前記1対の柱の一方の柱から他方の柱に伝わる圧縮力を低減させる圧縮力低減部を有し、水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、圧縮力低減部によって一方の柱から他方の柱に伝わる圧縮力を低減させるように作用することを特徴とする、木造建築物の耐力構造。
A plurality of structural members each having a space portion surrounded by a pair of pillars and a pair of horizontal members are arranged in a first direction and in pairs, and a second direction orthogonal to the first direction However, in a wooden structure that is configured by arranging a plurality of pairs,
Of the plurality of structural members having a space portion surrounded by the pair of pillars and the pair of horizontal members, the first space portion included in the first structural members at a plurality of locations requiring wall strength. A plurality of first shapes are selected so as to be substantially equivalent to the respective elevational shapes, and are fitted into the first space portions corresponding to the first structural members without being fixed to the first structural members. A foamed resin plate-shaped member, and a second of the plurality of structural members that are included in the second structural member at a plurality of locations that do not require wall strength and excluding the plurality of first space portions and openings. The shape is selected to be approximately the same as the elevational shape of each of the space portions, and is fitted into each of the second space portions corresponding to the second structural member without being fixed to each second structural member. A plurality of second foamed resin plate members,
The first foamed resin plate-like member is horizontal from the horizontal direction to the first direction or the second direction by having a side surface in the short side direction in contact with a pair of columns included in the first structural member. When a load is applied, a compressive force due to the horizontal load is received by the side surface of the first foamed resin plate-like member via the pillar, and acts as a load bearing wall,
The second foamed resin plate-like member has a compression force reducing portion that reduces a compression force transmitted from one column of the pair of columns to the other column, and from the horizontal direction to the first direction or the second direction. When a horizontal load is applied to each pair of pillars in the direction, the compressive force reducing part acts to reduce the compressive force transmitted from one pillar to the other pillar, and the strength of the wooden building Construction.
前記第2の発泡樹脂板状部材の圧縮力低減部は、水平荷重の加わる方向とは異なる厚み方向であって、当該第2の発泡樹脂板状部材の短辺のある位置で板厚を薄くするように斜めのスリットを長辺方向に形成した部分であり、
前記第2の発泡樹脂板状部材は、水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、スリットの部分で破断することにより2分割されて、圧縮力を低減させるように作用することを特徴とする、請求項1に記載の木造建築物の耐力構造。
The compressive force reducing portion of the second foamed resin plate member has a thickness direction different from the direction in which the horizontal load is applied, and the plate thickness is reduced at a position where the short side of the second foam resin resin plate member is present. It is a part that formed diagonal slits in the long side direction,
The second foamed resin plate-like member is divided into two parts by breaking at the slit portion when a horizontal load is applied to each pair of columns from the horizontal direction to the first direction or the second direction. 2. The load-bearing structure for a wooden building according to claim 1, which acts to reduce a compressive force.
前記第2の発泡樹脂板状部材の圧縮力低減部は、水平荷重の加わる方向とは異なる厚み方向であって、当該第2の発泡樹脂板状部材の短辺のある位置で斜めに切込み加工したスリットを長辺方向に形成することによって2分割した部分であることを特徴とする、請求項1に記載の木造建築物の耐力構造。   The compressive force reducing portion of the second foamed resin plate member has a thickness direction different from a direction in which a horizontal load is applied, and is obliquely cut at a position with a short side of the second foamed resin plate member. The load-bearing structure of a wooden building according to claim 1, wherein the slit is a portion divided into two by forming the slit in the long side direction. 前記第2の発泡樹脂板状部材は、前記第1の発泡樹脂板状部材の板厚よりも薄い板状部材を複数枚積層して構成され、当該複数枚の板状部材が積層して前記第2の空間部に嵌め込まれ、
前記第2の発泡樹脂板状部材は、水平荷重が各1対の柱に加わったとき、積層された複数枚の板状部材が水平方向に対して座屈することにより圧縮力低減部として働き、その圧縮力を低減するように作用することを特徴とする、請求項1に記載の木造建築物の耐力構造。
The second foamed resin plate-like member is formed by laminating a plurality of plate-like members thinner than the thickness of the first foamed resin plate-like member, and the plurality of plate-like members are laminated. Fitted into the second space,
The second foamed resin plate-like member works as a compressive force reducing unit by buckling the horizontal plurality of plate-like members when a horizontal load is applied to each pair of columns, The load-bearing structure for a wooden building according to claim 1, which acts to reduce the compressive force.
前記1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、第1の方向および第2の方向のうちの間口に対して両外側の1/4の範囲の空間部は、壁耐力を必要とする複数箇所の第1の構造部材に含まれる第1の空間部と、壁耐力を必要としない第2の構造部材に含まれる第2の空間部を含み、
前記1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、第1の方向および第2の方向のうちの間口に対して両外側の1/4の範囲を除く内側の空間部は、バランス上、壁耐力を必要としない第2の構造部材に含まれる第2の空間部となり、
前記第1の発泡樹脂板状部材が、前記第1の空間部に嵌め込まれ、
前記第2の発泡樹脂板状部材が、前記第2の空間部に嵌め込まれることを特徴とする、請求項1ないし請求項4のいずれかに記載の木造建築物の耐力構造。
Of the plurality of structural members having a space portion surrounded by the pair of pillars and the pair of horizontal members, 1/4 of both outer sides with respect to the entrance in the first direction and the second direction The space portion of the range includes a first space portion included in the first structural member at a plurality of locations that requires wall strength and a second space portion included in the second structural member that does not require wall strength. Including
Of the plurality of structural members having a space portion surrounded by the pair of pillars and the pair of horizontal members, 1/4 of both outer sides with respect to the entrance in the first direction and the second direction The inner space portion excluding the range becomes a second space portion included in the second structural member that does not require wall strength for balance,
The first foamed resin plate member is fitted into the first space,
The load-bearing structure for a wooden building according to any one of claims 1 to 4, wherein the second foamed resin plate member is fitted into the second space.
前記第1の発泡樹脂板状部材は、短辺方向の側面による圧縮力が5ニュートン/平方センチメートル以上の発泡プラスチック系フォームであることを特徴とする、請求項1に記載の木造建築物の耐力構造。   2. The load-bearing structure for a wooden building according to claim 1, wherein the first foamed resin plate-shaped member is a foamed plastic foam having a compressive force of 5 Newton / square centimeter or more by a side surface in a short side direction. . 1対の柱と1対の横架材によって囲まれた空間部を有する構造部材を、第1の方向にかつ対をなすようにそれぞれ複数配置し、第1の方向に直交する第2の方向であって対をなすように複数配置して構成される木造建築物における耐力工法であって、
前記1対の柱と1対の横架材によって囲まれた空間部を有する複数の構造部材のうち、壁耐力を必要とする複数箇所の第1の構造部材に含まれる第1の空間部のそれぞれの立面形状と略同程度の形状に選ばれ、当該第1の構造部材と関連して耐力を発揮する壁構造となる複数の第1の発泡樹脂板状部材を準備する第1の工程、
前記複数の構造部材のうちの壁耐力を必要としない複数個所の第1の構造部材に含まれかつ前記第1の空間部と開口部を除いた第2の空間部のそれぞれの立面形状と略同程度の形状に選ばれ、前記1対の柱の一方の柱から他方の柱に伝わる圧縮力を低減させるような圧縮力低減部を有する複数の第2の発泡樹脂板状部材を準備する第2の工程、
前記第1の発泡樹脂板状部材を前記複数の第1の構造部材に固定することなく、当該第1の構造部材に対応する複数の第1の空間部にそれぞれ嵌め込む第3の工程、
前記第2の発泡樹脂板状部材を、前記第1の発泡樹脂板状部材が嵌め込まれるべき前記第1の空間部と開口部を除いた第2の空間部のそれぞれに嵌め込む第4の工程を備え、
前記第1の発泡樹脂板状部材の短辺方向の側面が前記第1の構造部材に含まれる1対の柱に接することによって、水平方向から第1の方向又は第2の方向へ水平荷重が加わるときに、当該柱を介して当該水平荷重による圧縮力を当該第1の発泡樹脂板状部材の側面で受けて、当該第1の発泡樹脂板状部材を耐力壁として作用させ、
水平方向から第1の方向又は第2の方向へ水平荷重が各1対の柱に加わったときに、一方の柱から他方の柱に伝わる圧縮力を低減させるように、前記第2の発泡樹脂板状部材を作用させることを特徴とする、木造建築物の耐力工法。
A plurality of structural members each having a space portion surrounded by a pair of pillars and a pair of horizontal members are arranged in a first direction and in pairs, and a second direction orthogonal to the first direction It is a load-bearing method in a wooden building configured by arranging a plurality of pairs,
Of the plurality of structural members having a space portion surrounded by the pair of pillars and the pair of horizontal members, the first space portion included in the first structural members at a plurality of locations requiring wall strength. A first step of preparing a plurality of first foamed resin plate-like members that are selected to have a shape substantially the same as each of the elevational shapes and have a wall structure that exerts a yield strength in association with the first structural member ,
Each elevational shape of the second space part included in the first structural member at a plurality of locations that does not require wall strength among the plurality of structural members and excluding the first space part and the opening part, A plurality of second foamed resin plate-like members having a compression force reducing portion that is selected to have substantially the same shape and that reduces the compression force transmitted from one column of the pair of columns to the other column are prepared. The second step,
A third step of fitting each of the first foamed resin plate-like members into the plurality of first spaces corresponding to the first structural member without fixing the first foamed resin plate-like member to the plurality of first structural members;
A fourth step of fitting the second foamed resin plate-like member into each of the second space portion excluding the first space portion and the opening portion into which the first foamed resin plate-like member is to be fitted. With
When the side surface in the short side direction of the first foamed resin plate-shaped member is in contact with a pair of columns included in the first structural member, a horizontal load is applied from the horizontal direction to the first direction or the second direction. When adding, the compressive force due to the horizontal load is received on the side surface of the first foamed resin plate-like member via the pillar, and the first foamed resin plate-like member acts as a load bearing wall,
The second foamed resin so as to reduce the compressive force transmitted from one pillar to the other pillar when a horizontal load is applied to each pair of pillars from the horizontal direction to the first direction or the second direction. A load-bearing method for a wooden building, characterized by causing a plate-like member to act.
JP2016218710A 2015-11-25 2016-11-09 Load-bearing structure and load-bearing method of wooden buildings Active JP6962681B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015229760 2015-11-25
JP2015229760 2015-11-25

Publications (3)

Publication Number Publication Date
JP2017101538A true JP2017101538A (en) 2017-06-08
JP2017101538A5 JP2017101538A5 (en) 2019-12-19
JP6962681B2 JP6962681B2 (en) 2021-11-05

Family

ID=59016469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218710A Active JP6962681B2 (en) 2015-11-25 2016-11-09 Load-bearing structure and load-bearing method of wooden buildings

Country Status (1)

Country Link
JP (1) JP6962681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204262A (en) * 2017-06-01 2018-12-27 芳英 春城 Load bearing structure of wooden building
JP2020033728A (en) * 2018-08-28 2020-03-05 積水ハウス株式会社 Urethane heat insulation bearing wall

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006756A2 (en) * 1978-06-28 1980-01-09 Jack Slater Load bearing composite panel
JPS58117923U (en) * 1982-02-03 1983-08-11 株式会社アイジ−技術研究所 insulation material
JPH09268666A (en) * 1996-03-29 1997-10-14 Aikoo Haujingu Center:Kk Execution work method of wooden house
JP2000204690A (en) * 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake-resistant heat insulating panel and earthquake-resistant heat insulating structure constructed thereof
JP2012026084A (en) * 2010-07-20 2012-02-09 Nichiha Corp Wall structure using bearing surface material in wooden building and construction method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006756A2 (en) * 1978-06-28 1980-01-09 Jack Slater Load bearing composite panel
JPS58117923U (en) * 1982-02-03 1983-08-11 株式会社アイジ−技術研究所 insulation material
JPH09268666A (en) * 1996-03-29 1997-10-14 Aikoo Haujingu Center:Kk Execution work method of wooden house
JP2000204690A (en) * 1999-01-18 2000-07-25 Kanegafuchi Chem Ind Co Ltd Earthquake-resistant heat insulating panel and earthquake-resistant heat insulating structure constructed thereof
JP2012026084A (en) * 2010-07-20 2012-02-09 Nichiha Corp Wall structure using bearing surface material in wooden building and construction method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204262A (en) * 2017-06-01 2018-12-27 芳英 春城 Load bearing structure of wooden building
JP6989909B2 (en) 2017-06-01 2022-01-12 芳英 春城 Bearing structure of wooden building
JP2020033728A (en) * 2018-08-28 2020-03-05 積水ハウス株式会社 Urethane heat insulation bearing wall
JP7064705B2 (en) 2018-08-28 2022-05-11 積水ハウス株式会社 Urethane insulation bearing wall

Also Published As

Publication number Publication date
JP6962681B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
CA2742547C (en) Wall structure using bearing wall panel for wooden building and construction method thereof
JP2007046235A (en) Vibration control panel and building
JP2017101538A (en) Bearing force structure and bearing force method of wooden building
US20100037547A1 (en) Insulated rim board and building structure employing same
JP2006077565A (en) Bearing wall and its construction method
JP5940416B2 (en) building
JP4093491B2 (en) Bearing wall arrangement structure and bearing wall used therefor
JP5762236B2 (en) Building load-bearing panels, and buildings and seismic reinforcement methods using the same
JP7304306B2 (en) Seismic wall
JP2017101538A5 (en)
JP7233153B2 (en) bearing wall
JP7036708B2 (en) Installation structure of building materials and building materials
JP6989909B2 (en) Bearing structure of wooden building
JP2810615B2 (en) Earthquake-resistant wall with vibration energy absorption function
JP5877114B2 (en) Strength panel and building, structure and machine using the same
JP2022046170A (en) Beam member
JP3962647B2 (en) Wall structure
JP5190904B1 (en) Seismic reinforcement structure for wooden houses
JP7308339B2 (en) bearing wall
JP2000204693A (en) Earthquake resistant heat insulating panel and earthquake resistant heat insulating structure using it
JPH09170284A (en) Bearing wall panel and bearing wall structure
WO2024029210A1 (en) Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material
JP6934845B2 (en) Dry fence
JP7054357B2 (en) Sash unit and frame structure
JP2010007311A (en) Vibration damper

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150