WO2024029210A1 - Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material - Google Patents

Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material Download PDF

Info

Publication number
WO2024029210A1
WO2024029210A1 PCT/JP2023/022235 JP2023022235W WO2024029210A1 WO 2024029210 A1 WO2024029210 A1 WO 2024029210A1 JP 2023022235 W JP2023022235 W JP 2023022235W WO 2024029210 A1 WO2024029210 A1 WO 2024029210A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
bearing
wall
gypsum
bearing wall
Prior art date
Application number
PCT/JP2023/022235
Other languages
French (fr)
Japanese (ja)
Inventor
潮 須藤
克己 新見
知哉 長谷川
琢治 山下
晃三 赤井
洋介 佐藤
Original Assignee
吉野石膏株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉野石膏株式会社 filed Critical 吉野石膏株式会社
Priority to JP2023544778A priority Critical patent/JP7359506B1/en
Priority to JP2023154949A priority patent/JP2024019393A/en
Publication of WO2024029210A1 publication Critical patent/WO2024029210A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

The present invention increases the wall magnification of a wooden structure load-bearing wall without additionally attaching a reinforcing material or stiffener, and without increasing the specific gravity and/or sheet thickness of a gypsum-based surface material. A gypsum-based load-bearing surface material 10 for a wooden structure load-bearing wall is configured from: a main material or a core material comprising a plate-shaped gypsum cured body in which inorganic fibers and an organic-based strength-improving material are blended so as to exhibit a nail-side surface resistance of 500 N or greater; and a paper member covering at least front and back surfaces of the main material or core material. This load-bearing surface material: has a surface density that falls within a range of 6.5-8.9 kg/m2 and a compressive stiffness of 6.5 N/mm2 or greater; exhibits, in an in-plane shearing test of the load-bearing wall, an ultimate displacement (δu) greater than 20×10-3 rad and an initial stiffness (K) of 2.0 kN/10-3 rad or greater; and raises a plasticity rate (μ) due to a reduction in yield point displacement (δv), not only the ultimate displacement. As a result, the wall magnification and short-term standard shear stiffness (P0) of the wooden structure load-bearing wall are effectively and efficiently increased.

Description

木構造耐力壁、木構造耐力壁の施工方法、木構造耐力壁の壁倍率増大方法、及び、石膏系耐力面材Wooden load-bearing walls, construction methods for wooden load-bearing walls, methods for increasing the wall magnification of wooden load-bearing walls, and gypsum load-bearing facing materials
 本開示は、木構造耐力壁、木構造耐力壁の施工方法、木構造耐力壁の壁倍率増大方法、及び、石膏系耐力面材に関する。より詳細には、釘(くぎ)側面抵抗を増大し、且つ面密度を低下した比較的低密度の石膏系耐力面材を用いるとともに、金属板等の補強材又は補剛材を付加的に取付けることなく、釘打ち部分の破壊又は破断等の作用を効果的に軽減し得る、木構造耐力壁、木構造耐力壁の施工方法、木構造耐力壁の壁倍率増大方法、及び、木構造耐力壁用の石膏系耐力面材に関する。 The present disclosure relates to a wooden structural load-bearing wall, a method for constructing a wooden structural load-bearing wall, a method for increasing the wall magnification of a wooden structural load-bearing wall, and a gypsum-based load-bearing wall material. More specifically, a relatively low-density gypsum-based load-bearing surface material with increased nail side resistance and reduced surface density is used, and reinforcing or stiffening materials such as metal plates are additionally installed. A wooden structural load-bearing wall, a construction method for a wooden structural load-bearing wall, a method for increasing the wall magnification of a wooden structural load-bearing wall, and a wooden structural load-bearing wall, which can effectively reduce the effects of destruction or breakage of nailed parts without causing damage. Concerning gypsum-based load-bearing surface materials.
 一般に、木構造建築物の工法は、木造軸組工法及び木造枠組壁工法に大別される。近年の大規模地震等の影響により、木構造建築物の耐震性等に関する研究が、我が国(日本国)において近年殊に注目されている。特許文献1(国際公開公報WO2019/203148A1)に記載される如く、我が国(日本国)における建築設計の実務においては、短期水平荷重(地震力、風圧等)に抗する木構造建築物の強度を示す指標として、構造耐力上有効な耐力壁の軸組長さ(建築平面図における壁の長さ)が一般に使用される。軸組長さの算定には、耐力壁の構造に相応した壁倍率が用いられる。壁倍率は、耐力壁の耐震性能又は耐力性能の指標であり、その数値が大きいほど、耐震強度が大きい。壁倍率の数値が大きい壁構造は、建築物全体の設計自由度及び耐震性を向上する上で有利である。 In general, construction methods for wooden structures are broadly divided into wooden frame construction methods and wooden frame wall construction methods. Due to the effects of recent large-scale earthquakes, research on the earthquake resistance of wooden structures has recently attracted particular attention in Japan. As described in Patent Document 1 (International Publication WO2019/203148A1), in the practice of architectural design in Japan, the strength of wooden structures to withstand short-term horizontal loads (earthquake force, wind pressure, etc.) is The frame length of the load-bearing wall (the length of the wall in the architectural plan), which is effective in terms of structural strength, is generally used as an indicator. In calculating the frame length, a wall magnification that is appropriate for the structure of the load-bearing wall is used. Wall magnification is an index of seismic performance or load-bearing performance of a load-bearing wall, and the larger the value, the greater the seismic strength. A wall structure with a large wall magnification is advantageous in improving the design freedom and seismic resistance of the entire building.
 長年に亘って我が国(日本国)で使用されてきた汎用の木構造耐力壁の壁倍率は、建築基準法施行令第46条、建設省告示第1100号(昭和56年6月1日)および国土交通省告示第1541号(平成13年10月15日)に規定されている。他方、このような汎用の壁構造に属しない近年の多くの耐力壁については、建築基準法施行令第46条第4項表1(八)に規定された国土交通大臣の認定に基づいて壁倍率を定める必要がある。このため、近年施工される比較的多くの木構造耐力壁の壁倍率は、指定性能評価機関が実施する性能試験に基づいて壁倍率を設定する必要があり、この性能試験の試験方法等は、各試験・検査機関が公表している「木造の耐力壁及びその倍率 性能試験・評価業務方法書」等に詳細に記載されている。 The wall magnification of general-purpose wooden structural load-bearing walls that have been used in Japan for many years is based on Article 46 of the Enforcement Order of the Building Standards Act, Ministry of Construction Notification No. 1100 (June 1, 1980), and It is stipulated in Ministry of Land, Infrastructure, Transport and Tourism Notification No. 1541 (October 15, 2001). On the other hand, many recent load-bearing walls that do not belong to such general-purpose wall structures are constructed based on the certification of the Minister of Land, Infrastructure, Transport and Tourism as stipulated in Article 46, Paragraph 4, Table 1 (8) of the Enforcement Order of the Building Standards Act. It is necessary to determine the magnification. For this reason, it is necessary to set the wall magnification of a relatively large number of wooden structure load-bearing walls constructed in recent years based on performance tests conducted by designated performance evaluation organizations. It is described in detail in the "Wooden Load-bearing Walls and Their Magnification Performance Testing and Evaluation Procedures Manual" published by each testing and inspection organization.
 特許文献1には、耐力壁の終局変位等を増大して壁倍率を向上する対策として、金属板等の補強材又は補剛材を釘打ち部分に配設し、釘打ち部分の破壊又は破断等を防止する面材補強方法が記載されている。このような補強材又は補剛材を使用した木構造耐力壁によれば、面材が耐え得る最大荷重の増大等に依存することなく、耐力面材の靱性及び変形追随性の向上によって終局変位等が増大し、比較的高い壁倍率を発揮する木構造耐力壁を構築することが可能になると考えられる。しかしながら、このような補強材又は補剛材を用いて終局変位等を増大させる構成の耐力壁構造によれば、補強材又は補剛材を耐力面材の表面に付加的に取付ける工程を面材製造プロセスに追加し、或いは、このような工程を木構造耐力壁の施工時に付加的に実施しなければならない。この種の工程は、石膏系面材の製造プロセスを煩雑化させ、或いは、建設工事の作業性を悪化させる要因となり得る。 Patent Document 1 discloses that, as a measure to increase the ultimate displacement of a load-bearing wall and improve the wall magnification, a reinforcing material or stiffening material such as a metal plate is provided in the nailed part, and the nailed part is destroyed or broken. A method of reinforcing face materials to prevent such problems is described. According to wooden structural load-bearing walls using such reinforcing materials or stiffening materials, the ultimate displacement can be reduced by improving the toughness and deformation followability of the load-bearing facing materials, without relying on an increase in the maximum load that the facing materials can withstand. It is thought that it will be possible to construct a wood structure load-bearing wall that exhibits a relatively high wall magnification. However, according to the load-bearing wall structure configured to increase the ultimate displacement etc. using such reinforcing materials or stiffening materials, the process of additionally attaching the reinforcing material or stiffening material to the surface of the load-bearing facing material is required. Such steps must be added to the manufacturing process or additionally performed during construction of the wood structural load-bearing wall. This type of process may complicate the manufacturing process of gypsum-based facing materials or may become a factor that worsens the workability of construction work.
 他方、木構造耐力壁の耐力面材として好適に使用可能な石膏系面材として、「構造用石膏ボード」が知られている。「構造用石膏ボード」は、特許第5642948号掲載公報(特許文献2)に記載された本出願人の技術に基づき、「強化石膏ボード」の釘側面抵抗を強化した石膏系面材である。釘側面抵抗は、JIS A 6901に定められた釘側面抵抗試験によって測定された面材の釘打部分のせん断耐力又はせん断強度である。釘側面抵抗については、本出願人の出願に係る特許第7012405号掲載公報(特許文献3)に比較的詳細に記載されているので、更なる詳細な説明については省略するが、釘側面抵抗は、本出願人が特許文献2において石膏系耐力面材の耐力判定要素として提唱した物性であり、本出願人が近年殊に注目している耐力因子の一つである。 On the other hand, "structural gypsum board" is known as a gypsum-based facing material that can be suitably used as a load-bearing facing material for wooden structural load-bearing walls. "Structural gypsum board" is a gypsum-based facing material that has strengthened the nail side resistance of "reinforced gypsum board" based on the technology of the applicant described in Patent No. 5,642,948 (Patent Document 2). Nail side resistance is the shear strength or shear strength of the nailed portion of the facing material measured by the nail side resistance test specified in JIS A 6901. Nail side resistance is described in relatively detail in Patent No. 7012405 (Patent Document 3) filed by the present applicant, so further detailed explanation will be omitted, but nail side resistance is is a physical property proposed by the present applicant as a strength determining factor for gypsum-based load-bearing surface materials in Patent Document 2, and is one of the strength factors that the present applicant has particularly focused on in recent years.
 構造用石膏ボード(GB-St)は、(普通)石膏ボード(GB-R)に比べて耐力面材としての耐力が全体的に向上するとともに、強化石膏ボード(GB-F)に比べて釘側面抵抗が向上した石膏系面材である。構造用石膏ボードは、現状では、750N以上(A種)又は500N以上(B種)の釘側面抵抗を有する石膏系面材として、JIS A 6901に規定されている。構造用石膏ボードを耐力面材として使用した木構造耐力壁は、(普通)石膏ボード又は強化石膏ボードを耐力面材として使用した木構造耐力壁に比べ、比較的高い壁倍率を発揮する。他方、構造用石膏ボードは、強化石膏ボードと同様、12.5mm以上の厚さと、0.75以上の比重とを必要とする。このため、構造用石膏ボードを固定した木構造耐力壁は、少なくとも約9.4kg/m2の面密度又は面重量(壁面の単位面積当りの耐力面材の質量(以下、「面密度」という。))を要する。 Structural gypsum board (GB-St) has improved overall strength as a load-bearing surface material compared to (ordinary) gypsum board (GB-R), and is more durable than reinforced gypsum board (GB-F). A gypsum-based facing material with improved side resistance. Structural gypsum board is currently defined in JIS A 6901 as a gypsum-based facing material having a nail side resistance of 750 N or more (Class A) or 500 N or more (Class B). A wooden structural load-bearing wall using structural gypsum board as a load-bearing facing material exhibits a relatively higher wall magnification than a wooden structural bearing wall using (usually) gypsum board or reinforced gypsum board as a load-bearing facing material. On the other hand, structural gypsum board, like reinforced gypsum board, requires a thickness of 12.5 mm or more and a specific gravity of 0.75 or more. For this reason, a wooden structural load-bearing wall to which structural gypsum board is fixed must have an areal density or areal weight (the mass of the load-bearing facing material per unit area of the wall surface (hereinafter referred to as "area density") of at least approximately 9.4 kg/ m2. .)) is required.
 特許文献3(特許第7012405号掲載公報)には、構造用石膏ボードと同等の短期基準せん断耐力(P0)を耐力壁に与えるが、構造用石膏ボードに比べて面密度が低下した石膏系耐力面材が記載されている。特許文献3に記載された石膏系面材は、500N以上の釘側面抵抗を発揮するように無機質繊維及び有機系強度向上材を配合した板状の石膏硬化体からなる主材又は芯材と、主材又は芯材の少なくとも表裏面を被覆する紙部材とから構成され、6.5~8.9kg/m2の範囲内の面密度を有する。特許文献3の石膏系面材は、板厚12mm未満であっても、比較的高い壁倍率を耐力壁に与えることができる。この石膏系面材は、構造用石膏ボード等の従来の石膏系耐力面材に比べ、面密度を低下して面材を軽量化する一方、降伏耐力の低下を比較的高い釘側面抵抗によって抑制することを意図して開発された耐力面材(以下、「低密度石膏系耐力面材」という。)である。この低密度石膏系耐力面材によれば、耐力壁の終局変位を増大させて耐力壁の塑性率を増大させ、これにより、耐力壁の壁倍率を増大させることができるので、木構造耐力壁としての所望の耐力とその軽量性及び施工性等とを両立させるといった観点から、実用的に極めて有利な石膏系耐力面材を提供することが可能になる。 Patent Document 3 (Japanese Patent Publication No. 7012405) describes a gypsum-based shear strength that gives a load-bearing wall a short-term standard shear strength (P0) equivalent to that of structural gypsum board, but has a lower areal density than structural gypsum board. The facing material is listed. The gypsum-based facing material described in Patent Document 3 has a main material or core material made of a plate-shaped gypsum hardened body blended with inorganic fibers and an organic strength improving material so as to exhibit a nail side resistance of 500 N or more; It is composed of a paper member covering at least the front and back surfaces of the main material or core material, and has an areal density within the range of 6.5 to 8.9 kg/m 2 . The gypsum-based facing material of Patent Document 3 can provide a load-bearing wall with a relatively high wall magnification even if the thickness is less than 12 mm. Compared to conventional gypsum-based load-bearing facing materials such as structural gypsum boards, this gypsum-based facing material reduces areal density and makes the facing material lighter, while suppressing the decline in yield strength through relatively high nail side resistance. This is a load-bearing facing material (hereinafter referred to as "low-density gypsum load-bearing facing material") that was developed with the intention of According to this low-density gypsum-based load-bearing surface material, it is possible to increase the ultimate displacement of the load-bearing wall and increase the plasticity ratio of the load-bearing wall, thereby increasing the wall magnification of the load-bearing wall. It becomes possible to provide a gypsum-based load-bearing surface material that is extremely advantageous in practice from the viewpoint of achieving both the desired load-bearing strength as well as its light weight and workability.
 尚、本明細書において、「石膏系耐力面材」の用語は、JIS A 6901(「せっこうボード製品」)に規定された(普通)石膏ボード、強化石膏ボード及び構造用石膏ボードだけでなく、上記低密度石膏系耐力面材(特許文献3)や、特許第6412431号掲載公報(特許文献4)に記載された石膏系耐力面材等の如く、石膏を主材とした石膏コア部分(芯材部分)の外面又は外層を石膏ボード用原紙等の紙部材で被覆してなる石膏系面材を包含する用語として記載したものである。 In this specification, the term "gypsum-based load-bearing surface material" refers not only to (ordinary) gypsum board, reinforced gypsum board, and structural gypsum board as defined in JIS A 6901 ("gypsum board products"). , the gypsum core part mainly made of gypsum, such as the low-density gypsum-based load-bearing facing material (Patent Document 3) and the gypsum-based load-bearing facing material described in Patent No. 6412431 (Patent Document 4), etc. This term is used to include gypsum-based facing materials in which the outer surface or outer layer of the core material (core material portion) is covered with a paper member such as base paper for gypsum board.
国際公開公報WO2019/203148A1International Publication WO2019/203148A1 特許第5642948号掲載公報Publication published in Patent No. 5642948 特許第7012405号掲載公報Publication published in Patent No. 7012405 特許第6412431号掲載公報Publication published in Patent No. 6412431
 本発明者等は、特許文献3において提案された低密度石膏系耐力面材を用いた耐力壁に関し、壁倍率を更に増大させるべく、上記性能試験を繰り返し実施した結果、パンチングシェア現象によるパンチングアウト破壊や、縁切れ等の現象を防止することにより、更なる壁倍率の増大が可能であることを認識した。パンチングアウト破壊等の釘打ち部分の破壊又は破断等は、例えば、特許文献1に記載された面材補強方法の如く、金属板等の補強材又は補剛材を釘打ち部分に配設することによって防止し得ると考えられる。 The present inventors repeatedly conducted the above performance tests in order to further increase the wall magnification regarding the load-bearing wall using the low-density gypsum-based load-bearing surface material proposed in Patent Document 3, and found that punching out due to the punching shear phenomenon It was recognized that it is possible to further increase the wall magnification by preventing phenomena such as destruction and edge tearing. Destruction or breakage of the nailed part such as punching-out failure can be avoided by arranging a reinforcing material or stiffening material such as a metal plate in the nailed part, as in the face material reinforcement method described in Patent Document 1, for example. It is thought that this can be prevented by
 しかしながら、前述のとおり、このような補強材又は補剛材を耐力面材の表面に付加的に取付ける工程を面材製造プロセスに追加し、或いは、このような工程を木構造耐力壁の施工時に付加的に実施した場合、石膏系面材の製造プロセスが煩雑化し、或いは、建設工事の作業性が悪化する事態が生じると想定される。 However, as mentioned above, the process of additionally attaching such reinforcing materials or stiffeners to the surface of the load-bearing cladding may be added to the cladding manufacturing process, or such a step may be carried out during the construction of the wood-structured load-bearing wall. If implemented additionally, it is assumed that the manufacturing process of gypsum-based facing materials will become complicated or the workability of construction work will deteriorate.
 本開示は、このような事情に鑑みてなされたものであり、その目的とするところは、釘側面抵抗が増大し、且つ面密度が低下した低密度石膏系耐力面材を使用する木構造耐力壁及びその施工方法において、金属板等の補強材又は補剛材を付加的に取付けることなく、パンチングシェア現象を抑制し又はパンチングアウト破壊の作用を軽減し、これにより、釘打ち部分の破壊又は破断等を抑制し又はその作用を軽減して壁倍率を更に増大させることができる、木構造耐力壁とその施工方法、木構造耐力壁の壁倍率増大方法、及び、石膏系耐力面材を提供することにある。 The present disclosure has been made in view of the above circumstances, and its purpose is to provide a wooden structure that uses a low-density gypsum-based load-bearing facing material with increased nail side resistance and reduced surface density. In walls and their construction methods, it is possible to suppress the punching shear phenomenon or reduce the effects of punch-out failure without additionally installing reinforcing materials such as metal plates or stiffening materials, thereby preventing the failure of nailed parts or Provides a wooden structure load-bearing wall and its construction method, a method for increasing the wall magnification of a wooden structure load-bearing wall, and a gypsum-based load-bearing surface material that can further increase the wall magnification by suppressing breakage or reducing its effect. It's about doing.
 本開示は、上記目的を達成すべく、石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に対して留め具によって留付けた構造を有する木構造耐力壁において、
 前記耐力面材は、板状の石膏硬化体からなる主材又は芯材と、該主材又は芯材の少なくとも表裏面を被覆する紙部材とから構成され、
 前記耐力面材は、壁面の単位面積当りの質量として特定される該耐力面材の面密度又は面重量として、6.5~8.9kg/m2の範囲内の面密度又は面重量を有するとともに、500N以上の釘側面抵抗を発揮し、且つ、少なくとも6.5N/mm2以上の圧縮強度を保有しており、
 前記留め具は、頭部及び胴部を有し、頭部の面積/胴部の断面積の面積比を6~13の範囲内の値に設定した金属製の釘からなり、
 壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位として、20×10-3radよりも大きい値の終局変位(δu)を有することを特徴とする、木構造耐力壁を提供する。
In order to achieve the above object, the present disclosure provides a wooden structure load-bearing wall having a structure in which a gypsum-based load-bearing surface material is fastened to a wooden structure wall base using a wooden frame construction method or a wooden frame wall construction method using fasteners.
The load-bearing surface material is composed of a main material or core material made of a plate-shaped gypsum hardened body, and a paper member that covers at least the front and back surfaces of the main material or core material,
The load-bearing facing material has an areal density or areal weight within the range of 6.5 to 8.9 kg/m 2 as the areal density or areal weight of the load-bearing facing material specified as the mass per unit area of the wall surface. At the same time, it exhibits a nail side resistance of 500N or more, and has a compressive strength of at least 6.5N/mm 2 or more,
The fastener is made of a metal nail having a head and a body, and the area ratio of the area of the head/the cross-sectional area of the body is set to a value within the range of 6 to 13,
As the ultimate displacement of the load-bearing wall measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m, the load-bearing wall has an ultimate displacement (δu) of a value larger than 20 × 10 -3 rad. We provide wooden structural load-bearing walls featuring:
 本開示は又、石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に固定する木構造耐力壁の施工方法において、
 板状の石膏硬化体からなる主材又は芯材と、該主材又は芯材の少なくとも表裏面を被覆する紙部材とから構成される石膏系耐力面材であって、壁面の単位面積当りの質量として特定される面密度又は面重量として、6.5~8.9kg/m2の範囲内の面密度又は面重量を有するとともに、500N以上の釘側面抵抗を発揮し且つ少なくとも6.5N/mm2以上の圧縮強度を有する石膏系耐力面材を前記木構造壁下地に対して留め具によって留付け、該留め具として、頭部の面積/胴部の断面積の面積比を6~13の範囲内の値に設定した金属製の釘を使用し、
 壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位(δu)として、20×10-3radよりも大きい値の終局変位を発揮する木構造耐力壁を構築することを特徴とする、木構造耐力壁の施工方法を提供する。
The present disclosure also provides a method for constructing a wooden structure load-bearing wall in which a gypsum-based load-bearing surface material is fixed to a wooden structure wall base of a wooden frame construction method or a wooden frame wall construction method,
A gypsum-based load-bearing surface material consisting of a main material or core material made of a plate-shaped hardened gypsum material and a paper member covering at least the front and back surfaces of the main material or core material, The areal density or areal weight specified as mass is within the range of 6.5 to 8.9 kg/ m2 , and the nail side resistance is 500 N or more and is at least 6.5 N/m2. A gypsum-based load-bearing surface material having a compressive strength of mm 2 or more is fastened to the wooden structure wall base using fasteners, and the fasteners have an area ratio of 6 to 13 of the area of the head/cross-sectional area of the body. using a metal nail set to a value within the range of
The ultimate displacement (δu) of the load-bearing wall measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m is greater than 20 × 10 -3 rad. Provided is a method for constructing a wooden structure load-bearing wall, which is characterized by constructing the wooden structure load-bearing wall.
 好ましくは、上記釘は、6.0~10.0mmの範囲内の頭径及び2.0~5.0mmの範囲内の胴径を有する。より好ましくは、釘は、6.8~9.0mmの範囲内の頭径及び2.2~4.2mmの範囲内の胴径を有し、頭部の面積/胴部の断面積の面積比(以下、「頭面積/胴断面積の面積比」という。)は、7~11の範囲内の値に設定される。好適には、上記釘の胴部は、均一な円形横断面を有するストレート・スムース形の胴部であり、尖塔形の先端部を備えており、上記釘の頭部は、頂面視円形輪郭を有する平頭フラット形又は平頭網目付き形の頭部であり、釘打ち作業によって上記耐力面材の外面に着座する環状且つ平坦な着座面と、上記耐力面材の外面が構成する壁面と実質的に同じ面内に釘打ち後に位置するように施工される平坦な頂面とを有する。 Preferably, the nail has a head diameter within the range of 6.0 to 10.0 mm and a body diameter within the range of 2.0 to 5.0 mm. More preferably, the nail has a head diameter within the range of 6.8 to 9.0 mm and a body diameter within the range of 2.2 to 4.2 mm, the area of the head being divided by the cross-sectional area of the body. The ratio (hereinafter referred to as "area ratio of head area/body cross-sectional area") is set to a value within the range of 7 to 11. Preferably, the body of the nail is a straight smooth body with a uniform circular cross-section and a spire-shaped tip, and the head of the nail has a circular profile in top view. The head has a flat head or a flat mesh head, and has an annular and flat seating surface that seats on the outer surface of the load-bearing surface material by nailing, and a wall surface constituted by the outer surface of the load-bearing surface material and substantially and a flat top surface constructed so as to be located in the same plane after nailing.
 好ましくは、石膏系耐力面材は、無機質繊維及び有機系強度向上材を主材又は芯材に混入して石膏系耐力面材としての最低限度の物性(くぎ側面抵抗:500N以上)を確保する一方、面材の面密度はむしろ低減され、比較的低い値(6.5~8.9kg/m2)に設定される。例えば、無機質繊維の配合量は、焼石膏100重量部当り0.3~5重量部、好ましくは2~4重量部である。配合される無機質繊維として、例えば、ガラス繊維、炭素繊維等が挙げられる。ガラス繊維を用いる場合には、径が5~25μm、長さが2~25mmのガラス繊維を好適に使用し得る。また、有機系強度向上材の配合量は、焼石膏100重量部当り、0.3~15重量部、好ましくは1~13重量部である。有機系強度向上材として、例えば、澱粉、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル等を好適に使用し得る。澱粉としては、未加工澱粉及び加工澱粉のいずれをも使用することができる。加工澱粉としては、物理的処理、化学的処理又は酵素的処理を施した澱粉が挙げられる。物理的処理を施した澱粉としては、α化澱粉を好適に使用し得る。化学的処理を施した澱粉としては、酸化澱粉、リン酸エステル化澱粉、尿素リン酸エステル化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、ヒドロキシエチル化澱粉、ヒドロキシプロピル化澱粉、カチオン化澱粉、アセチル化澱粉を好適に使用し得る。 Preferably, the gypsum-based load-bearing surface material has inorganic fibers and organic strength-improving materials mixed into the main material or core material to ensure minimum physical properties (nail side resistance: 500 N or more) as a gypsum-based load-bearing surface material. On the other hand, the areal density of the facing material is rather reduced and set to a relatively low value (6.5 to 8.9 kg/m 2 ). For example, the amount of inorganic fiber blended is 0.3 to 5 parts by weight, preferably 2 to 4 parts by weight, per 100 parts by weight of calcined gypsum. Examples of the inorganic fibers to be blended include glass fibers and carbon fibers. When using glass fibers, glass fibers having a diameter of 5 to 25 μm and a length of 2 to 25 mm can be suitably used. The amount of the organic strength improving material is 0.3 to 15 parts by weight, preferably 1 to 13 parts by weight, per 100 parts by weight of calcined gypsum. As the organic strength improving material, for example, starch, polyvinyl acetate, polyvinyl alcohol, polyacrylic, etc. can be suitably used. As starch, both unprocessed starch and processed starch can be used. The modified starch includes starch that has been subjected to physical treatment, chemical treatment, or enzymatic treatment. As the starch subjected to physical treatment, pregelatinized starch can be suitably used. Chemically treated starches include oxidized starch, phosphate starch, urea phosphate starch, hydroxypropylated phosphate cross-linked starch, hydroxyethylated starch, hydroxypropylated starch, cationized starch, and acetylated starch. Starch may be suitably used.
 尚、以下の本明細書の記載において、「石膏系耐力面材としての最低限度の物性」は、500N以上のくぎ側面抵抗を意味するものとする。また、石膏系耐力面材の圧縮強度を変動させる要因として、石膏スラリー(泥漿)の混練状態(混練時間、混練温度等)、石膏原料中に含まれる不純物の種類・量、石膏コアの断面性状、緻密性及び均一性等、石膏コアに含まれる気泡の量、サイズ及び分散状態、石膏コアの含水率又は含水量、石膏コアの比重などが知られている。これらの要因は、圧縮強度を増大又は低減する制御因子として使用し得るかもしれないが、製造条件(石膏原料の種類、泡剤等の添加剤の種類・使用量、混練水の水温、気温・湿度等)と密接に関連する制御因子であるばかりでなく、石膏コアの品質全般に関係しており、比較的低い面密度(6.5~8.9kg/m2の範囲内に面密度)において、所望の圧縮強度(6.5N/mm2以上の圧縮強度)を石膏系耐力面材に与え、しかも、無機質繊維と協働して所望の釘側面抵抗(500N以上の釘側面抵抗)を石膏系耐力面材に与えるという特定の用途に特化して使用し得る性質の制御因子ではない。他方、上記有機系強度向上材は、このような用途に特化して使用することができ、しかも、製造過程において石膏スラリーに付加的に含有せしめればよいので、石膏コアの圧縮強度を増大させる現実的且つ有効な手段を提供する。 In the following description of this specification, "minimum physical properties as a gypsum-based load-bearing surface material" means a nail side resistance of 500N or more. In addition, the factors that change the compressive strength of gypsum-based load-bearing facing materials include the mixing condition of the gypsum slurry (mixing time, mixing temperature, etc.), the type and amount of impurities contained in the gypsum raw material, and the cross-sectional properties of the gypsum core. , density and uniformity, the amount, size and dispersion state of air bubbles contained in the gypsum core, water content or water content of the gypsum core, specific gravity of the gypsum core, etc. are known. These factors may be used as control factors to increase or decrease compressive strength, but manufacturing conditions (type of gypsum raw material, type and amount of additives such as foaming agents, temperature of mixing water, air temperature, etc.) It is not only a controlling factor closely related to humidity (e.g. humidity), but also to the overall quality of the gypsum core, with a relatively low areal density (areal density within the range of 6.5-8.9 kg/ m2 ). In this method, the desired compressive strength (compressive strength of 6.5 N/mm 2 or more) is given to the gypsum-based load-bearing facing material, and in addition, the desired nail side resistance (nail side resistance of 500 N or more) is provided in cooperation with the inorganic fibers. It is not a property control factor that can be used specifically for the specific application of imparting to gypsum-based load-bearing facing materials. On the other hand, the above-mentioned organic strength-improving material can be used specifically for such applications, and can be added to the gypsum slurry during the manufacturing process, so it increases the compressive strength of the gypsum core. Provide practical and effective means.
 本開示に係る石膏系耐力面材の面密度の値(6.5~8.9kg/m2)は、構造用石膏ボード等の従来の石膏系耐力面材の面密度(約9.4kg/m2)よりもかなり小さな値である。このような面密度によれば、石膏系耐力面材の比重及び/又は板厚を低減し、これにより、耐力壁の自重を軽減し又は壁厚を低減することができる。他方、このような面密度の低減は、耐力壁の短期基準せん断耐力(P0)及び壁倍率を増大する従来の壁倍率増大方法(即ち、比重及び/又は板厚の増大によって最大耐力(Pmax)を増大させ、これにより、短期基準せん断耐力(P0)を増大させる従来の壁倍率増大方法)とは相反する条件である。しかしながら、特許文献3に記載したとおり、石膏系耐力面材としての最低限度の物性(くぎ側面抵抗:500N以上)を確保しつつ面密度を低下させると、石膏系耐力面材が潜在的に保有する靱性及び変形追随性が塑性域において顕在化する結果、耐力壁の終局変位(δu)及び塑性率(μ)がむしろ増大し、これにより、耐力壁の終局耐力(補正値)(Pu')が増大するので、必ずしも最大耐力(Pmax)を増大させることなく、短期基準せん断耐力(P0)及び壁倍率が増大し得る。 The areal density value (6.5 to 8.9 kg/m 2 ) of the gypsum-based load-bearing facing material according to the present disclosure is the same as the areal density (approximately 9.4 kg/m 2 ) of the conventional gypsum-based load-bearing facing material such as structural gypsum board. m 2 ). According to such a surface density, the specific gravity and/or plate thickness of the gypsum-based load-bearing facing material can be reduced, thereby reducing the weight of the load-bearing wall or reducing the wall thickness. On the other hand, such a reduction in areal density can be achieved by increasing the short-term nominal shear strength (P0) of the load-bearing wall and by increasing the wall magnification (i.e., increasing the maximum yield strength (Pmax) by increasing specific gravity and/or plate thickness). This is a condition that is contrary to the conventional method of increasing wall magnification, which increases the short-term standard shear strength (P0). However, as described in Patent Document 3, if the areal density is lowered while ensuring the minimum physical properties (nail side resistance: 500N or more) for a gypsum-based load-bearing surface material, the gypsum-based load-bearing surface material has the potential to As a result, the ultimate displacement (δu) and plasticity ratio (μ) of the load-bearing wall increase, and as a result, the ultimate strength (corrected value) (Pu') of the load-bearing wall increases. , the short-term standard shear strength (P0) and wall magnification can be increased without necessarily increasing the maximum yield strength (Pmax).
 更に、本発明者等は、石膏系耐力面材の圧縮強度の増大によって耐力壁の初期剛性(K)が増大する現象を多くの実験により知見し、かかる知見に基づき、鋭意研究を重ねた結果、石膏系耐力面材の圧縮強度を6.5N/mm2以上の値に増大させて耐力壁の初期剛性(K)を増大せしめ、これにより、耐力壁の終局変位(δu)を大きく低下させることなく、その降伏点変位(δv)を低下させ、この結果、塑性率(μ)が比較的大きく増大し得ることを認識するに至った。 Furthermore, the present inventors discovered through many experiments that the initial stiffness (K) of a load-bearing wall increases due to an increase in the compressive strength of a gypsum-based load-bearing surface material, and based on this knowledge, the inventors conducted extensive research. , increasing the compressive strength of the gypsum-based load-bearing surface material to a value of 6.5 N/mm 2 or more to increase the initial stiffness (K) of the load-bearing wall, thereby greatly reducing the ultimate displacement (δu) of the load-bearing wall. We have come to realize that the yield point displacement (δv) can be lowered without causing any damage, resulting in a relatively large increase in the plasticity modulus (μ).
 即ち、本開示によれば、石膏系耐力面材の圧縮強度を6.5N/mm2以上の値に増大させて耐力壁の初期剛性(K)を(好ましくは)2.0kN/10-3rad以上の値に増大せしめ、これにより、降伏点変位(δv)の値を例えば7.2×10-3rad以下の値に低減させることで、比較的高い終局変位(δu)の値と相俟って、塑性率(μ)の値を比較的大きく増大させることができ、この結果、終局耐力補正値(Pu')として、例えば、7.7kN以上の値を比較的容易に確保することができる。 That is, according to the present disclosure, the initial stiffness (K) of the load-bearing wall is (preferably) 2.0 kN/10 -3 by increasing the compressive strength of the gypsum-based load-bearing facing material to a value of 6.5 N/mm 2 or more. By increasing the yield point displacement (δv) to a value of, for example, 7.2×10 -3 rad or less, it is compatible with the relatively high value of the ultimate displacement (δu). As a result, the value of the plasticity modulus (μ) can be relatively greatly increased, and as a result, it is possible to relatively easily secure a value of 7.7 kN or more as the ultimate proof stress correction value (Pu'), for example. I can do it.
 ちなみに、特許文献3の低密度石膏系耐力面材を用いた耐力壁では、初期剛性(K)は、2.0kN/10-3rad未満の値(例えば、1.9kN/10-3rad)である。尚、前述の構造用石膏ボードは、加振時に生じ得る石膏系耐力面材と留め具との相対位置の変化に起因した石膏系耐力面材の引裂破壊を抑制すべく、釘側面抵抗という耐力因子に着目し、釘側面抵抗を所望の如く増大させるべく開発された石膏系耐力面材であり、上記特許文献3の低密度石膏系耐力面材は、所望の釘側面抵抗を確保しつつ面密度を低下させることにより、塑性域における石膏系耐力面材の靱性及び変形追随性を顕在化して塑性率(μ)及び終局耐力(補正値)(Pu')を増大せしめることを意図したものであり、いずれも、石膏系耐力面材の圧縮強度や、弾性域において生じる初期剛性を耐力向上因子として着目し又は考慮したものではなく、耐力壁の初期剛性と石膏系耐力面材の圧縮強度との構造的関係について検討し又は研究したものでもなかった。 By the way, in the load-bearing wall using the low-density gypsum-based load-bearing face material of Patent Document 3, the initial stiffness (K) is a value less than 2.0 kN/10 -3 rad (for example, 1.9 kN/10 -3 rad). It is. In addition, the above-mentioned structural gypsum board has a load-bearing force called nail side resistance in order to suppress tear failure of the gypsum-based load-bearing facing material due to changes in the relative position of the gypsum-based load-bearing facing material and fasteners that may occur during vibration. This is a gypsum-based load-bearing facing material that was developed to increase the nail side resistance as desired by focusing on factors. By lowering the density, the toughness and deformation followability of the gypsum-based load-bearing surface material in the plastic region are brought to light, and the plasticity ratio (μ) and ultimate proof stress (corrected value) (Pu') are intended to be increased. However, none of these methods focuses on or considers the compressive strength of the gypsum-based load-bearing wall material or the initial stiffness that occurs in the elastic region as factors for improving the strength, but rather the initial stiffness of the load-bearing wall and the compressive strength of the gypsum-based load-bearing wall material. Nor did it examine or study the structural relationships between the two.
 他方、本発明者等の実験によれば、面密度の増大によって圧縮強度は所望の如く増大し得るが、面密度を増大させると面材の自重が増大するだけでなく、終局変位が低下する傾向があることから、有機系強度向上材等による圧縮強度増大の作用を主に用いて圧縮強度を適切な値に増大させることが望ましい。即ち、本開示において、圧縮強度は、主として、適切な面密度の設定と、有機系強度向上材の配合等による圧縮強度増大の作用とによって所望の如く設定される。 On the other hand, according to experiments conducted by the present inventors, the compressive strength can be increased as desired by increasing the areal density, but increasing the areal density not only increases the self-weight of the facing material but also reduces the ultimate displacement. Therefore, it is desirable to increase the compressive strength to an appropriate value mainly by using the effect of increasing the compressive strength using an organic strength-improving material or the like. That is, in the present disclosure, the compressive strength is set as desired mainly by setting an appropriate areal density and increasing the compressive strength by adding an organic strength improving material or the like.
 好ましくは、面内せん断試験によって測定される耐力壁の降伏点変位(δv)として7.2×10-3rad以下の値を確保し、或いは、上記初期剛性(K)として2.2kN/10-3rad以上の値を確保し且つ上記降伏点変位(δv)として7.2×10-3rad以下の値を確保するべく、7.5N/mm2以上の上記圧縮強度を保有する。例えば、本開示に係る石膏系耐力面材において、降伏点変位(δv)=6.0×10-3rad、初期剛性(K)=2.5kN/10-3rad、終局耐力Pu=15.0kN、終局変位(δu)=30×10-3rad、塑性率(μ)=5.0、ばらつき係数β=1.0であると仮定すると、終局耐力(補正値)(Pu')は、9.0kNである。これに対し、仮に、前述の低密度石膏系耐力面材(特許文献3)と同様、初期剛性(K)=1.9kN/10-3rad(<2.0kN/10-3rad)に設定した場合には、終局耐力Pu=15.0、終局変位(δu)=30×10-3rad、ばらつき係数β=1.0であったとしても、降伏点変位(δv)=7.8×10-3rad、塑性率(μ)=3.8であり、終局耐力(補正値)(Pu')は、約7.7kNであるにすぎない。即ち、耐力面材の圧縮強度を増大させて初期剛性(K)が増大することにより、終局耐力(補正値)(Pu')が比較的大きく増大し、短期基準せん断耐力(P0)及び壁倍率を比較的大きく増大させることができる。 Preferably, the yield point displacement (δv) of the load-bearing wall measured by an in-plane shear test is 7.2×10 -3 rad or less, or the initial stiffness (K) is 2.2 kN/10. In order to ensure a value of -3 rad or more and a value of 7.2×10 -3 rad or less as the yield point displacement (δv), the compressive strength is 7.5 N/mm 2 or more. For example, in the gypsum-based load-bearing surface material according to the present disclosure, yield point displacement (δv) = 6.0 × 10 -3 rad, initial stiffness (K) = 2.5 kN/10 -3 rad, and ultimate yield strength Pu = 15. Assuming that 0 kN, ultimate displacement (δu) = 30 × 10 -3 rad, plasticity ratio (μ) = 5.0, and dispersion coefficient β = 1.0, the ultimate proof stress (corrected value) (Pu') is: It is 9.0kN. On the other hand, if the initial stiffness (K) is set to 1.9 kN/10 -3 rad (<2.0 kN/10 -3 rad), similar to the aforementioned low-density gypsum-based load-bearing surface material (Patent Document 3), In this case, even if the ultimate strength Pu = 15.0, the ultimate displacement (δu) = 30 × 10 -3 rad, and the dispersion coefficient β = 1.0, the yield point displacement (δv) = 7.8 × 10 -3 rad, plasticity ratio (μ) = 3.8, and ultimate proof stress (corrected value) (Pu') is only about 7.7 kN. In other words, by increasing the compressive strength of the load-bearing surface material and increasing the initial stiffness (K), the ultimate strength (corrected value) (Pu') increases relatively greatly, and the short-term standard shear strength (P0) and wall magnification increase. can be increased relatively significantly.
 本開示において、上記圧縮強度は、好ましくは、7.5~13.0N/mm2の範囲内の値、より好ましくは、8.0N/mm2以上の値に設定し得る。また、本開示において、上記初期剛性は、好ましくは、2.2kN/10-3rad~4.0kN/10-3radの範囲内の値、より好ましくは、2.4kN/10-3rad以上の値に設定し得る。更に、本開示によれば、上記降伏点変位(δv)は、好ましくは、3.5×10-3rad~7.2×10-3radの範囲内の値、より好ましくは、6.5×10-3rad以下の値に設定し得る。 In the present disclosure, the compressive strength can be preferably set to a value within the range of 7.5 to 13.0 N/mm 2 , more preferably 8.0 N/mm 2 or more. Further, in the present disclosure, the initial stiffness is preferably a value within the range of 2.2 kN/10 -3 rad to 4.0 kN/10 -3 rad, more preferably 2.4 kN/10 -3 rad or more. Can be set to a value of Furthermore, according to the present disclosure, the yield point displacement (δv) is preferably a value within the range of 3.5×10 −3 rad to 7.2×10 −3 rad, more preferably 6.5 It can be set to a value of ×10 −3 rad or less.
 本開示の好適な実施形態に係る石膏系耐力面材を備えた耐力壁によれば、面内せん断試験によって測定される塑性率(μ)として4.2以上且つ10.0以下の値、好ましくは、4.3以上の値が得られ、面内せん断試験によって測定される降伏耐力(Py)として、7.7kN以上であって、しかも、上記終局耐力(補正値)(Pu')よりも大きい値、好ましくは、8.0kN以上の値が得られる。尚、本発明者等の実験によれば、初期剛性(K)が増大すると、降伏耐力(Py)も増大する傾向があり、従って、前述の低密度石膏系耐力面材(特許文献3)と同様、降伏耐力(Py)は一般に、終局耐力(補正値)(Pu')よりも大きいことが認められた。 According to a load-bearing wall equipped with a gypsum-based load-bearing face material according to a preferred embodiment of the present disclosure, the plasticity modulus (μ) measured by an in-plane shear test is preferably 4.2 or more and 10.0 or less. A value of 4.3 or more is obtained, and the yield strength (Py) measured by an in-plane shear test is 7.7 kN or more, and moreover, it is higher than the ultimate yield strength (corrected value) (Pu') above. A large value, preferably 8.0 kN or more, is obtained. According to experiments conducted by the present inventors, as the initial stiffness (K) increases, the yield strength (Py) also tends to increase. Similarly, the yield strength (Py) was generally found to be larger than the ultimate yield strength (corrected value) (Pu').
 かくして、本開示に係る石膏系耐力面材は、石膏系耐力面材としての最低限度の物性を確保しつつ、面密度の低下により、塑性域における石膏系耐力面材の靱性及び変形追随性が向上して終局耐力(補正値)(Pu')を増大させるだけでなく、初期剛性(K)の増大及び降伏点変位(δv)の低下により、終局耐力(補正値)(Pu')を更に増大させ、これにより、金属板等の補強材又は補剛材を付加的に取付けることなく、石膏系耐力面材の面密度を増大させることもなく、木構造耐力壁の短期基準せん断耐力(P0)及び壁倍率を比較的大きく増大させることができる。また、本開示によれば、このような石膏系耐力面材を木構造壁下地に留付ける留め具として、頭面積/胴断面積の面積比を6~13の範囲内の値に設定した金属製の釘を使用し、これにより、金属板等の補強材又は補剛材を付加的に付設又は配設することなく、パンチングアウト破壊を効果的に抑制し又はその作用を軽減することができるので、石膏系耐力面材の上記作用と相俟って、木構造耐力壁の短期基準せん断耐力(P0)及び壁倍率を更に効果的又は効率的に増大させることができる。更には、上記耐力面材は、構造用石膏ボードや、前述の低密度石膏系耐力面材(特許文献3)と同様、主材又は芯材の少なくとも表裏面が紙部材で被覆されているので、従来の石膏ボード製造ラインで簡易に製造することができる。好ましくは、本開示の石膏系耐力面材は、芯材の表面又は表層を石膏ボード用原紙で被覆してなる積層構造を有する。尚、「表裏面」は、面材の端縁及び側縁(即ち、四周外縁部)の端面又は側面を除く面材の表面及び裏面を意味する。 In this way, the gypsum-based load-bearing facing material according to the present disclosure secures the minimum physical properties as a gypsum-based load-bearing facing material, while improving the toughness and deformation followability of the gypsum-based load-bearing facing material in the plastic region due to the reduction in areal density. In addition to increasing the ultimate yield strength (corrected value) (Pu'), the ultimate strength (corrected value) (Pu') is further increased by increasing the initial stiffness (K) and decreasing the yield point displacement (δv). As a result, the short-term standard shear capacity (P0 ) and wall magnification can be increased relatively significantly. Further, according to the present disclosure, as a fastener for fastening such a gypsum-based load-bearing surface material to a wooden structure wall foundation, a metal whose area ratio of head area/body cross-sectional area is set to a value within the range of 6 to 13 is used. This makes it possible to effectively suppress punch-out failure or reduce its effect without additionally attaching or arranging reinforcing or stiffening materials such as metal plates. Therefore, in combination with the above-mentioned effect of the gypsum-based load-bearing wall material, the short-term standard shear strength (P0) and wall magnification of the wooden structure load-bearing wall can be increased more effectively or efficiently. Furthermore, the above-mentioned load-bearing surface material, like the structural gypsum board and the aforementioned low-density gypsum-based load-bearing surface material (Patent Document 3), has at least the front and back surfaces of the main material or core material covered with paper members. , can be easily manufactured on a conventional gypsum board manufacturing line. Preferably, the gypsum-based load-bearing surface material of the present disclosure has a laminated structure in which the surface or surface layer of a core material is covered with base paper for gypsum board. In addition, "front and back surfaces" mean the front and back surfaces of the panel material excluding the edges and side edges (i.e., the four outer edges) of the panel material.
 好ましくは、上記石膏系耐力面材の板厚は、7.5mm以上12mm未満の値(より好ましくは、8.5mm以上且つ10mm以下の値)、例えば、9.5mm又は9.0mmに設定される。このような板厚の石膏系耐力面材は、12mm以上の板厚を要する構造用石膏ボードに比べ、木構造耐力壁の壁厚低下等を図る上で有利である。所望により、上記石膏硬化体は、980N以下の釘側面抵抗を有する。 Preferably, the plate thickness of the gypsum-based load-bearing surface material is set to a value of 7.5 mm or more and less than 12 mm (more preferably a value of 8.5 mm or more and 10 mm or less), for example, 9.5 mm or 9.0 mm. Ru. A gypsum-based load-bearing surface material having such a board thickness is advantageous in reducing the wall thickness of a wooden structural load-bearing wall, etc., compared to a structural gypsum board that requires a board thickness of 12 mm or more. Optionally, the gypsum cured body has a nail side resistance of 980N or less.
 好適には、上記石膏系耐力面材は、壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される耐力壁の終局変位(δu)として、24×10-3rad以上(好ましくは、26×10-3rad以上)の終局変位(δu)を耐力壁に生じさせる。比較的高い値に設定された終局変位(δu)の値は、耐力壁の初期剛性(K)の増大及び降伏点変位(δv)の低下と相俟って、塑性率(μ)の値を比較的大きく増大させるので、短期基準せん断耐力(P0)及び壁倍率を増大させる上で極めて有利である。尚、耐力壁の終局変位(δu)は、塑性域における耐力壁の靱性及び変形追随性を示す指標である。「木造の耐力壁及びその倍率 性能試験・評価業務方法書」によれば、面内せん断試験において1/15radを超えても荷重が低下せず、終局変位の値が得られない場合には、終局変位(δu)は1/15radに設定される。従って、終局変位(δu)の最大値は、1/15rad(66.7×10-3rad)である。 Preferably, the gypsum-based load-bearing surface material has an ultimate displacement (δu) of the load-bearing wall of 24×10 −3 measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m. An ultimate displacement (δu) of rad or more (preferably 26×10 -3 rad or more) is caused in the load-bearing wall. The value of the ultimate displacement (δu) set to a relatively high value, together with the increase in the initial stiffness (K) of the load-bearing wall and the decrease in the yield point displacement (δv), causes the value of the plasticity modulus (μ) to decrease. Since the increase is relatively large, it is extremely advantageous in increasing the short-term standard shear strength (P0) and wall magnification. Note that the ultimate displacement (δu) of the load-bearing wall is an index indicating the toughness and deformation followability of the load-bearing wall in the plastic region. According to the "Wooden Load-bearing Walls and Their Magnification Performance Testing and Evaluation Procedures", if the load does not decrease even after exceeding 1/15 rad in an in-plane shear test and the ultimate displacement value cannot be obtained, The final displacement (δu) is set to 1/15 rad. Therefore, the maximum value of the final displacement (δu) is 1/15 rad (66.7×10 −3 rad).
 好ましくは、上記石膏系耐力面材の比重は、0.65~0.96の範囲内、好適には、0.7~0.9の範囲内の値(より好適には、0.7~0.8の範囲内の値)に設定される。このような比重の石膏系耐力面材によれば、例えば、板厚は12mm未満であるが、1.0以上の比重を有し、従って、自重が比較的大きい特許文献4の石膏系面材の実施品(例えば、吉野石膏株式会社製「EXボード」(商品名))に比べ、面材を軽量化することができるので、木構造耐力壁の軽量化を図り、或いは、木構造耐力壁の施工性又はその建設作業の作業性等を改善する上で有利である。 Preferably, the specific gravity of the gypsum-based load-bearing surface material is within the range of 0.65 to 0.96, preferably within the range of 0.7 to 0.9 (more preferably, within the range of 0.7 to 0.9). 0.8). According to the gypsum-based load-bearing facing material having such a specific gravity, for example, the gypsum-based facing material of Patent Document 4 has a plate thickness of less than 12 mm but has a specific gravity of 1.0 or more, and therefore has a relatively large self-weight. Since the face material can be made lighter compared to products implemented in This is advantageous in improving the workability of construction work or the workability of construction work.
 また、本開示の好適な実施形態において、石膏系耐力面材の芯材(石膏コア部分)は、主として耐力劣化を防止する耐力劣化防止剤として、オルガノポリシロキサン化合物を含有する。このような耐力面材によれば、特許文献4に記載された石膏系耐力面材と同様、木造外壁の屋外壁面に施工可能な上記耐力面材を提供することができる。 Furthermore, in a preferred embodiment of the present disclosure, the core material (gypsum core portion) of the gypsum-based load-bearing surface material contains an organopolysiloxane compound as a strength deterioration inhibitor that mainly prevents strength deterioration. According to such a load-bearing surface material, similarly to the gypsum-based load-bearing surface material described in Patent Document 4, it is possible to provide the above-mentioned load-bearing surface material that can be constructed on the outdoor wall surface of a wooden exterior wall.
 他の観点より、本開示は、石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に対して留め具によって留付けることにより施工される、木構造耐力壁の壁倍率増大方法において、
 板状の石膏硬化体からなる主材又は芯材と、該主材又は芯材の少なくとも表裏面を被覆する紙部材とから前記耐力面材を構成し、
 壁面の単位面積当りの質量として特定される前記耐力面材の面密度又は面重量を6.5~8.9kg/m2に低減するとともに、前記耐力面材が500N以上の釘側面抵抗及び6.5N/mm2以上の圧縮強度を発揮するように、前記主材又は前記芯材の石膏硬化体の配合を設定し、
 前記留め具として、頭部の面積/胴部の断面積の面積比を6~13の範囲内の値に設定した金属製の釘を使用して、パンチングシェア現象を抑制し又はパンチングアウト破壊の作用を軽減し、
 壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位(δu)として、20×10-3radよりも大きい値の終局変位を得ることを特徴とする、木構造耐力壁の壁倍率増大方法を提供する。
From another perspective, the present disclosure provides a wall magnification of a wooden structure load-bearing wall constructed by fastening a gypsum-based load-bearing surface material to a wooden structure wall base using a wooden frame construction method or a wooden frame wall construction method using fasteners. In the augmentation method,
The load-bearing surface material is composed of a main material or core material made of a plate-shaped hardened gypsum body, and a paper member that covers at least the front and back surfaces of the main material or core material,
The areal density or areal weight of the load-bearing facing material, specified as the mass per unit area of the wall surface, is reduced to 6.5 to 8.9 kg/ m2 , and the load-bearing facing material has a nail side resistance of 500N or more and 6.5 kg/m2. The composition of the hardened gypsum of the main material or the core material is set so as to exhibit a compressive strength of .5 N/mm 2 or more,
As the fastener, a metal nail whose area ratio of the area of the head/the cross-sectional area of the body is set to a value within the range of 6 to 13 is used to suppress the punching shear phenomenon or to prevent punching-out failure. reduce the effect,
Obtaining an ultimate displacement of a value larger than 20×10 -3 rad as the ultimate displacement (δu) of the load-bearing wall measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m. Provided is a method for increasing the wall magnification of a wooden structural load-bearing wall, which is characterized by the following.
 このような壁倍率増大方法によれば、石膏系耐力面材の面密度を比重及び/又は板厚の低減により低下させ、これにより、耐力壁の自重を軽減し又は壁厚を低減することが可能になる。しかも、このような壁倍率増大方法によれば、前述のとおり、石膏系面材の低密度化によって石膏系面材の(塑性域の)靱性及び変形追随性が向上して終局変位(δu)の値が増大するばかりでなく、石膏系面材の圧縮強度の増大により、耐力壁の初期剛性(K)が増大し、これにより、降伏点変位(δv)の値が低減する。この結果、比較的小さい降伏点変位(δv)の値と、比較的大きい終局変位(δu)の値との相乗効果により、塑性率(μ=δu/δv)の値が比較的大きく増大し、かくして、木構造耐力壁における終局耐力(補正値)(Pu')として、7.7kN以上の値を比較的容易に確保することができる。 According to such a wall magnification increasing method, the areal density of the gypsum-based load-bearing wall material is reduced by reducing the specific gravity and/or the plate thickness, thereby reducing the self-weight of the load-bearing wall or reducing the wall thickness. It becomes possible. Moreover, according to such a method of increasing wall magnification, as mentioned above, the toughness and deformation followability of the gypsum-based facing material (in the plastic region) are improved by lowering the density of the gypsum-based facing material, and the ultimate displacement (δu) In addition to increasing the value of , the initial stiffness (K) of the load-bearing wall increases due to the increase in the compressive strength of the gypsum-based facing material, which reduces the value of the yield point displacement (δv). As a result, due to the synergistic effect of the relatively small value of yield point displacement (δv) and the relatively large value of ultimate displacement (δu), the value of plasticity modulus (μ = δu / δv) increases relatively greatly, In this way, it is possible to relatively easily secure a value of 7.7 kN or more as the ultimate strength (corrected value) (Pu') of the wooden structural load-bearing wall.
 本開示は更に、前述の施工方法において使用され、或いは、上記壁倍率増大方法において使用され、木造軸組工法又は木造枠組壁工法の木構造壁下地に対して前記留め具によって留付けられる木構造耐力壁用の石膏系耐力面材であって、
 500N以上の釘側面抵抗を発揮し且つ少なくとも6.5N/mm2以上の圧縮強度を保有するとともに、6.5~8.9kg/m2の範囲内の面密度又は面重量を有し、
 前記留め具と協働して、壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位(δu)を20×10-3radよりも大きい値に増大せしめることを特徴とする、石膏系耐力面材を提供する。
The present disclosure further provides a wooden structure that is used in the above-mentioned construction method or used in the above-mentioned wall magnification increasing method and is fastened by the fastener to a wooden structure wall base of a wooden frame construction method or a wooden frame wall construction method. A gypsum-based load-bearing surface material for load-bearing walls,
exhibits a nail side resistance of 500 N or more, has a compressive strength of at least 6.5 N/mm 2 or more, and has an areal density or areal weight within the range of 6.5 to 8.9 kg/m 2 ,
In cooperation with the fasteners, the ultimate displacement (δu) of the load-bearing wall, measured by an in-plane shear test using a load-bearing wall specimen with a wall length of 1.82 m, is lower than 20×10 −3 rad. To provide a gypsum-based load-bearing surface material characterized by increasing the load-bearing value to a large value.
 本開示に係る石膏系耐力面材によれば、面密度が低減した低密度の石膏系耐力面材を用いて耐力壁の靱性及び変形追随性を向上させるとともに、この耐力面材を木構造壁下地に対して留め具によって留付けてなる耐力壁に関し、その初期剛性(K)を増大させて降伏点変位(δv)を低下せしめ、これにより、塑性率(μ=δu/δv)を増大させ、短期基準せん断耐力(P0)及び壁倍率を増大させることが可能になる。本開示に係る石膏系耐力面材は、殊に、終局変位(δu)の値を容易に増大させ難い耐力壁や、その上限に近い終局変位(δu)を既に発揮している耐力壁に関し、壁厚の増大や壁体自重の増大等を招くことなく、短期基準せん断耐力(P0)及び壁倍率を更に増大させるための耐力面材として、効果的に使用し得る。しかも、本開示の石膏系耐力面材は、主材又は芯材の少なくとも表裏面が紙部材で被覆されているので、従来の石膏ボード製造ラインで簡易に製造することができる。 According to the gypsum-based load-bearing facing material according to the present disclosure, the toughness and deformation followability of a load-bearing wall are improved by using a low-density gypsum-based load-bearing facing material with a reduced areal density, and this load-bearing facing material is used for a wooden structure wall. Regarding a load-bearing wall that is fastened to the base with fasteners, its initial stiffness (K) is increased to lower the yield point displacement (δv), thereby increasing the plasticity modulus (μ = δu / δv). , it becomes possible to increase the short-term standard shear strength (P0) and wall magnification. The gypsum-based load-bearing surface material according to the present disclosure is particularly applicable to load-bearing walls whose ultimate displacement (δu) value is difficult to increase easily, and load-bearing walls that have already exerted an ultimate displacement (δu) close to its upper limit. It can be effectively used as a load-bearing surface material to further increase short-term standard shear strength (P0) and wall magnification without increasing wall thickness or wall weight. Furthermore, the gypsum-based load-bearing facing material of the present disclosure can be easily manufactured using a conventional gypsum board manufacturing line, since at least the front and back surfaces of the main material or core material are covered with paper members.
 このような石膏系耐力面材を備えた本開示の木構造耐力壁及びその施工方法、更には、このような石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に対して留め具によって留付けることをその構成とした木構造耐力壁の壁倍率増大方法によれば、特定の寸法及び形状(頭径D、胴径d、及び頭面積/胴断面積の比η)を有する金属製の釘を留め具として用いることにより、石膏系耐力面材のパンチングアウト破壊を効果的に抑制し又はその作用を軽減し、これにより、短期許容せん断耐力(Pa)及び壁倍率を比較的大きく改善し得る。即ち、本開示によれば、木構造耐力壁及びその施工方法、更には、木構造耐力壁の壁倍率増大方法において、金属板等の補強材又は補剛材を付加的に取付けることなく、石膏系面材の面密度(比重及び/又は板厚)を増大させることもなく(従って、耐力壁の自重及び/又は壁厚を増大させることもなく)、しかも、終局変位(δu)の値を更に増大させることもなく、耐力壁の短期基準せん断耐力(P0)及び壁倍率を更に増大させることができる。 The wooden structure load-bearing wall of the present disclosure equipped with such a gypsum-based load-bearing surface material and its construction method; On the other hand, according to a method for increasing the wall magnification of a wooden structural load-bearing wall, which consists of fastening it with fasteners, it is possible to obtain specific dimensions and shapes (head diameter D, body diameter d, and the ratio η of head area/body cross-sectional area). ) by using metal nails with can be improved relatively significantly. That is, according to the present disclosure, in a wooden structure load-bearing wall and its construction method, as well as a method for increasing the wall magnification of a wooden structure load-bearing wall, plaster can be installed without additionally attaching reinforcing materials or stiffening materials such as metal plates. It does not increase the areal density (specific gravity and/or plate thickness) of the system facing material (therefore, it does not increase the self-weight and/or wall thickness of the load-bearing wall), and the value of the ultimate displacement (δu) The short-term standard shear strength (P0) of the load-bearing wall and the wall magnification can be further increased without further increase.
 また、本開示に係る木構造建築物の耐力壁構造又はその施工方法、或いは、耐力壁施工方法によれば、このような石膏系耐力面材を木構造耐力壁において耐力面材として使用することにより、短期基準せん断耐力(P0)及び壁倍率を低下させることなく(或いは、効果的に増大させるとともに)、石膏系耐力面材の面密度を低減し、これにより、耐力壁の自重を軽減し又は壁厚を低減し、或いは、耐力壁の施工性等を改善することができる。 Further, according to the load-bearing wall structure of a wooden structure building, its construction method, or load-bearing wall construction method according to the present disclosure, such a gypsum-based load-bearing wall material can be used as a load-bearing wall material in a wooden structure load-bearing wall. As a result, the areal density of the gypsum-based load-bearing surface material can be reduced without reducing (or effectively increasing) the short-term standard shear strength (P0) and wall magnification, thereby reducing the self-weight of the load-bearing wall. Alternatively, the wall thickness can be reduced, or the workability of the load-bearing wall can be improved.
 更に、本開示に係る木構造建築物の耐力壁構造又はその施工方法、或いは、壁倍率増大方法によれば、初期剛性(K)を増大させて降伏点変位(δv)を低下せしめ、これにより、終局耐力(補正値)(Pu')を増大させ、短期基準せん断耐力(P0)及び壁倍率を増大させることができるので、石膏系面材に付加的に設けられる金属板等の補強材又は補剛材による補強又は補剛に依存することなく、石膏系面材の比重及び/又は板厚の増大に依存することもなく、しかも、終局変位(δu)の値の増大に大きく依存することもなく、壁倍率を増大させることが可能になる。 Furthermore, according to the load-bearing wall structure of a wooden structure building, its construction method, or wall magnification increasing method according to the present disclosure, the initial stiffness (K) is increased to lower the yield point displacement (δv), and thereby , the ultimate strength (corrected value) (Pu') can be increased, and the short-term standard shear strength (P0) and wall magnification can be increased. It does not depend on reinforcement or stiffening by stiffeners, does not depend on an increase in the specific gravity and/or plate thickness of the gypsum-based facing material, and is largely dependent on an increase in the value of the ultimate displacement (δu). This makes it possible to increase the wall magnification.
本開示に係る木構造建築物の耐力壁の実施形態を概略的に示す正面図である。FIG. 1 is a front view schematically showing an embodiment of a load-bearing wall of a wooden structure building according to the present disclosure. 釘によって石膏系耐力面材を木構造軸組に固定した部分を部分拡大して示す耐力壁の部分断面図及び部分破断斜視図である。FIG. 2 is a partially enlarged partial cross-sectional view and a partially cutaway perspective view of a load-bearing wall showing a portion in which a gypsum-based load-bearing surface material is fixed to a wooden structural framework with nails. 図1に示す耐力壁構造体の面内せん断試験において使用された耐力壁試験体の構成を示す正面図、横断面図及び側面図である。2 is a front view, a cross-sectional view, and a side view showing the configuration of a load-bearing wall test piece used in an in-plane shear test of the load-bearing wall structure shown in FIG. 1. FIG. 任意の木構造耐力壁の面内せん断試験によって得られる荷重-変形角曲線の包絡線(実線で示す)を参考として示す線図であり、荷重-変形角曲線の包絡線を完全弾塑性モデルの荷重-変形角特性に変換した線形グラフを一点鎖線で示す図である。This is a diagram showing for reference the envelope of the load-deformation angle curve (indicated by a solid line) obtained by an in-plane shear test of an arbitrary wooden structure load-bearing wall. FIG. 3 is a diagram showing a linear graph converted into a load-deformation angle characteristic using a dashed-dotted line. 本開示の実施例に係る耐力壁を構成する釘と、石膏系耐力面材を木構造の軸組又は枠組に留付けるために従来より使用されてきた二種類の釘とに関し、頭径、胴径、及び頭面積/胴断面積の面積比を示す図表である。Regarding the nails constituting the load-bearing wall according to the embodiment of the present disclosure and the two types of nails conventionally used for fastening gypsum-based load-bearing surface materials to the frame or framework of a wooden structure, the head diameter, body It is a chart showing the diameter and the area ratio of head area/torso cross-sectional area. 図5に示す従来の二種類の釘(比較例1、2)を用いた木構造耐力壁に関し、面内せん断試験の試験結果を対比して示す図表及び線図である。FIG. 6 is a chart and a diagram showing a comparison of test results of an in-plane shear test regarding the wooden structural load-bearing wall using two conventional types of nails (Comparative Examples 1 and 2) shown in FIG. 5. 図5に示す従来の釘(比較例3)を用いた木構造耐力壁と、図5に示す本実施例の釘を用いた木構造耐力壁とに関し、面内せん断試験の試験結果を対比して示す図表及び線図である。The test results of the in-plane shear test were compared for the wooden structure load-bearing wall using the conventional nails (Comparative Example 3) shown in Figure 5 and the wooden structure load-bearing wall using the nails of the present example shown in Figure 5. FIG. 本開示を構成する石膏系耐力面材の物性、組成及び耐力試験結果を参考例1~4として示すとともに、比較例4に係る石膏系耐力面材の物性、組成及び耐力試験結果を示す図表である。The physical properties, composition, and proof test results of the gypsum-based load-bearing facing material constituting the present disclosure are shown as Reference Examples 1 to 4, and the chart shows the physical properties, composition, and proof-strength test results of the gypsum-based load-bearing facing material according to Comparative Example 4. be. 参考例1~4及び比較例4に関し、耐力壁構造体の面内せん断試験の試験結果を完全弾塑性モデルの荷重-変形角特性として示す線図である。3 is a diagram showing test results of in-plane shear tests of load-bearing wall structures as load-deformation angle characteristics of a perfect elastic-plastic model for Reference Examples 1 to 4 and Comparative Example 4. FIG. 石膏系耐力面材の圧縮強度を測定する圧縮強度測定方法を概念的に示す圧縮強度試験装置の部分正面図である。FIG. 2 is a partial front view of a compressive strength testing device conceptually showing a compressive strength measuring method for measuring the compressive strength of a gypsum-based load-bearing surface material.
 以下、添付図面を参照して、本開示の好適な実施形態に係る木構造耐力壁の構成について詳細に説明する。 Hereinafter, the configuration of a wooden structure load-bearing wall according to a preferred embodiment of the present disclosure will be described in detail with reference to the accompanying drawings.
[木構造耐力壁の全体構成について]
 図1は、本開示の好適な実施形態に係る木構造建築物の耐力壁の構成を概略的に示す正面図である。また、図2の(A)及び(B)はそれぞれ、図1に示す耐力壁に関し、釘によって石膏系耐力面材を木造軸組に固定した耐力壁の部分を部分拡大して示す耐力壁の部分断面図及び部分破断斜視図である。
[About the overall structure of wooden structural load-bearing walls]
FIG. 1 is a front view schematically showing the configuration of a load-bearing wall of a wooden structure building according to a preferred embodiment of the present disclosure. In addition, (A) and (B) in FIG. 2 respectively relate to the load-bearing wall shown in FIG. 1, and show partially enlarged portions of the load-bearing wall in which the gypsum-based load-bearing surface material is fixed to the wooden framework with nails. FIG. 2 is a partial cross-sectional view and a partially cutaway perspective view.
 図1に示す木構造耐力壁1は、石膏系耐力面材10を鉄筋コンクリート(RC)構造の布基礎F上の木造軸組に固定することによって構築された木造軸組構法の木構造耐力壁である。耐力面材10は、厚さ9.5mm、幅910mm及び高さ約2800~3030mm(例えば、約2900mm)の寸法を有し、6.5~8.9kg/m2の範囲内の面密度(例えば、面密度7.5kg/m2)を有する。面密度(面重量とも呼ばれる)は、壁面の正面視における壁面の単位面積(見付面積)当りの質量(重量)である。図2に示す如く、耐力面材10は、所定量の無機質繊維(ガラス繊維)及び有機系強度向上材(澱粉)を混入した平板状石膏コア(石膏芯材)11と、石膏コアの両面を被覆する石膏ボード用原紙(紙部材)12とから構成された石膏系耐力面材である。 The wooden structure load-bearing wall 1 shown in Fig. 1 is a wooden structure load-bearing wall of the wooden frame structure constructed by fixing a gypsum-based load-bearing face material 10 to a wooden frame on a cloth foundation F of a reinforced concrete (RC) structure. be. The load-bearing surface material 10 has dimensions of 9.5 mm in thickness, 910 mm in width, and about 2800 to 3030 mm (for example, about 2900 mm) in height, and has an areal density (in the range of 6.5 to 8.9 kg/m 2 ). For example, it has an areal density of 7.5 kg/m 2 ). The areal density (also called areal weight) is the mass (weight) per unit area (apparent area) of the wall when viewed from the front. As shown in FIG. 2, the load-bearing surface material 10 includes a flat gypsum core (gypsum core material) 11 mixed with a predetermined amount of inorganic fiber (glass fiber) and an organic strength improving material (starch), and both sides of the gypsum core. This is a gypsum-based load-bearing surface material composed of a covering gypsum board base paper (paper member) 12.
 耐力壁1は、アンカーボルトBによって布基礎Fの上面に固定された土台2を有する。耐力壁1は、この土台2と、土台2上に所定間隔を隔てて鉛直に配置された柱3、間柱4及び継手間柱4’と、柱3の上端(又は中間部)に支持された水平な横架材(梁、胴差、軒桁、妻桁)5と、上記耐力面材10とから概ね構成される。尚、軸組を構成する土台2、柱3、間柱4、継手間柱4’及び横架材5は、通常の木造建築物において採用される部材断面の木材(角材)である。 The load-bearing wall 1 has a base 2 fixed to the upper surface of a cloth foundation F by anchor bolts B. The load-bearing wall 1 consists of this foundation 2, columns 3, studs 4, and joint studs 4' arranged vertically on the foundation 2 at predetermined intervals, and horizontal columns supported by the upper end (or middle part) of the columns 3. It is generally composed of horizontal members (beams, girders, eave girders, girders) 5 and the load-bearing surface material 10 described above. The foundation 2, pillars 3, studs 4, joint studs 4', and horizontal members 5 that make up the frame are timbers (square timbers) with cross-sections that are used in ordinary wooden buildings.
 耐力面材10は、土台2、柱3、間柱4、継手間柱4’及び横架材5に対し、鉄製又はステンレス鋼製(本例では鉄製)の釘(くぎ)20によって固定される。釘20は、耐力面材10の四周外周帯域において間隔S1を隔てて配置されるとともに、鉛直方向に延びる耐力面材10の中央帯域において間隔S2を隔てて配置される。好ましくは、間隔S1は、50mm~200mmの範囲内の寸法(例えば、75mm)に設定され、間隔S2は、50mm~300mmの範囲内の寸法(例えば、150mm)に設定される。 The load-bearing surface material 10 is fixed to the foundation 2, columns 3, studs 4, joint studs 4', and horizontal members 5 with nails 20 made of iron or stainless steel (iron in this example). The nails 20 are arranged at intervals S1 in the four outer circumferential zones of the load-bearing panel 10, and are arranged at intervals S2 in the central zone of the load-bearing panel 10 extending in the vertical direction. Preferably, the spacing S1 is set to a dimension within the range of 50 mm to 200 mm (eg, 75 mm), and the spacing S2 is set to a dimension within the range of 50 mm to 300 mm (eg, 150 mm).
 図2に示す如く、釘20は、頂面視円形輪郭を有する平頭フラット形又は平頭網目付き形の頭部21と、均一な円形横断面を有するストレート・スムース形の胴部22と、胴部22の基端部に位置し、胴部22及び頭部21を一体的に連接する首部23と、胴部22の先端に位置する尖塔形の先端部24とから構成される鉄釘である。頭部21の下面は、耐力面材10の外面に着座する環状の着座面21bを構成する。首部23の外周部分は、局所的にテーパ状又は円錐状に若干拡径して頭部21に連続するので、着座面21bの径方向の寸法は、頭部21及び胴部22の径差とは必ずしも一致せず、径差よりも僅かに小さい値であるが、概ね径差と同等の値である。 As shown in FIG. 2, the nail 20 has a flat or meshed head 21 with a circular profile in top view, a straight and smooth body 22 with a uniform circular cross section, and a body 22 with a straight and smooth shape having a uniform circular cross section. This iron nail is composed of a neck part 23 located at the base end of the body part 22 and integrally connecting the body part 22 and the head part 21, and a steeple-shaped tip part 24 located at the tip of the body part 22. The lower surface of the head 21 constitutes an annular seating surface 21b that is seated on the outer surface of the load-bearing surface material 10. The outer circumferential portion of the neck portion 23 is locally tapered or conically expanded in diameter and continues to the head portion 21, so the radial dimension of the seating surface 21b is equal to the diameter difference between the head portion 21 and the body portion 22. Although they do not necessarily match and are slightly smaller than the diameter difference, they are approximately the same value as the diameter difference.
 一般に、釘20は、頭部21及び胴部22の材質及び形状の他、頭部21の直径(頭径D)、胴部22の直径(胴径d)及び釘20の全長(長さL)等によって特定される。本実施形態において、頭径D、胴径d及び長さLは夫々、7.07mm、2.45mm、約50mmであり、頭部21の頂面21aの見付面積と胴部22の横断面の面積との比η(即ち、頭面積/胴断面積)は、8.32である(図5参照)。本開示において、頭径Dは、好ましくは、6.0~10.0mmの範囲内、より好ましくは、6.8~9.0mmの範囲内の値に設定され、胴径dは、好ましくは、2.0~5.0mmの範囲内、より好ましくは、2.2~4.2mmの範囲内に設定される。また、頭面積/胴断面積の比ηは、好ましくは、6~13の範囲内、より好ましくは、7~11の範囲内の値に設定される。 Generally, in addition to the material and shape of the head 21 and body 22, the nail 20 has a diameter of the head 21 (head diameter D), a diameter of the body 22 (body diameter d), and a total length of the nail 20 (length L). ) etc. In this embodiment, the head diameter D, the trunk diameter d, and the length L are 7.07 mm, 2.45 mm, and about 50 mm, respectively, and the apparent area of the top surface 21a of the head 21 and the cross section of the trunk 22 are The ratio η (ie, head area/torso cross-sectional area) to the area of is 8.32 (see FIG. 5). In the present disclosure, the head diameter D is preferably set to a value within the range of 6.0 to 10.0 mm, more preferably within the range of 6.8 to 9.0 mm, and the trunk diameter d is preferably set to a value within the range of 6.8 to 9.0 mm. , is set within the range of 2.0 to 5.0 mm, more preferably within the range of 2.2 to 4.2 mm. Further, the ratio η of head area/body cross-sectional area is preferably set to a value within the range of 6 to 13, more preferably within the range of 7 to 11.
 耐力面材10の石膏コア11は、所定量の無機質繊維及び有機系強度向上材を含有し、500N以上の釘側面抵抗を有する。無機質繊維の配合量は、焼石膏100重量部当り0.3~5重量部、好ましくは2~4重量部である。配合される無機質繊維として、例えば、ガラス繊維、炭素繊維等が挙げられる。ガラス繊維を用いる場合には、径が5~25μm、長さが2~25mmのガラス繊維を好適に使用し得る。また、有機系強度向上材の配合量は、焼石膏100重量部当り、0.3~15重量部、好ましくは1~13重量部である。配合される有機系強度向上材として、例えば、澱粉、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル等が挙げられる。尚、澱粉としては、未加工澱粉及び加工澱粉のいずれも使用することができる。加工澱粉としては、物理的処理、化学的処理又は酵素的処理を施した澱粉が挙げられる。物理的処理を施した澱粉としては、α化澱粉を好適に使用し得る。化学的処理を施した澱粉としては、酸化澱粉、リン酸エステル化澱粉、尿素リン酸エステル化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、ヒドロキシエチル化澱粉、ヒドロキシプロピル化澱粉、カチオン化澱粉、アセチル化澱粉を好適に使用し得る。有機系強度向上材の配合は、比較的低い面密度(6.5~8.9kg/m2の範囲内に面密度)を確保しつつ、所望の圧縮強度(6.5N/mm2以上の圧縮強度)を耐力面材10に与えるとともに、無機質繊維と協働して耐力面材10の所望の釘側面抵抗(500N以上の釘側面抵抗)を達成し又は確保する効果的な手段であり、加えて、有機系強度向上材の配合が石膏系耐力面材の品質全般に大きく影響しないという点をも考慮すると、耐力面材10の釘側面抵抗を向上する上で、簡易で、しかも、現実的又は実務的に有効な手段である。 The gypsum core 11 of the load-bearing surface material 10 contains a predetermined amount of inorganic fibers and an organic strength improving material, and has a nail side resistance of 500N or more. The amount of inorganic fiber blended is 0.3 to 5 parts by weight, preferably 2 to 4 parts by weight, per 100 parts by weight of calcined gypsum. Examples of the inorganic fibers to be blended include glass fibers and carbon fibers. When using glass fibers, glass fibers having a diameter of 5 to 25 μm and a length of 2 to 25 mm can be suitably used. The amount of the organic strength improving material is 0.3 to 15 parts by weight, preferably 1 to 13 parts by weight, per 100 parts by weight of calcined gypsum. Examples of organic strength-improving materials to be blended include starch, polyvinyl acetate, polyvinyl alcohol, and polyacrylic. Note that as the starch, both unprocessed starch and processed starch can be used. The modified starch includes starch that has been subjected to physical treatment, chemical treatment, or enzymatic treatment. As the starch subjected to physical treatment, pregelatinized starch can be suitably used. Chemically treated starches include oxidized starch, phosphate starch, urea phosphate starch, hydroxypropylated phosphate cross-linked starch, hydroxyethylated starch, hydroxypropylated starch, cationized starch, and acetylated starch. Starch may be suitably used. The blending of the organic strength improving material ensures a relatively low areal density (area density within the range of 6.5 to 8.9 kg/m 2 ) while achieving the desired compressive strength (6.5 N/mm 2 or more). It is an effective means for imparting compressive strength) to the load-bearing facing material 10 and achieving or ensuring the desired nail side resistance (nail side resistance of 500 N or more) of the load-bearing facing material 10 in cooperation with the inorganic fibers, In addition, considering the fact that the blending of organic strength-improving materials does not greatly affect the overall quality of the gypsum-based load-bearing facing material, it is possible to improve the nail side resistance of the load-bearing facing material 10 by using simple and practical methods. It is a practical and effective means.
 耐力面材10の組成及び構造は、JIS A 6901に規定された「構造用石膏ボード」の組成及び構造と類似する。しかしながら、耐力面材10の面密度は、6.5~8.9kg/m2の範囲内の値(例えば、7.5kg/m2)である。従って、耐力面材10は、前述のとおり9.4kg/m2以上の面密度を要するJIS A 6901の「構造用石膏ボード」とは基本的に相違する。また、JIS A 6901に規定された「強化石膏ボード」が知られているが、「強化石膏ボード」も又、9.4kg/m2以上の面密度を要するので、耐力面材10は、「強化石膏ボード」とも基本的に相違する。更に、耐力面材10は、500N以上の釘側面抵抗を発揮するように無機質繊維及び有機系強度向上材を配合した主材又は芯材(石膏コア11)を有する点において、この他の「石膏ボード」とも相違する。即ち、耐力面材10は、現行のJIS A 6901に規定されたいずれの「石膏ボード」にも該当しない。本明細書においては、この意味において、耐力面材10を「石膏系耐力面材」として特定し又は表現するものとする。 The composition and structure of the load-bearing surface material 10 are similar to those of "structural gypsum board" specified in JIS A 6901. However, the surface density of the load-bearing surface material 10 is a value within the range of 6.5 to 8.9 kg/m 2 (for example, 7.5 kg/m 2 ). Therefore, the load-bearing surface material 10 is fundamentally different from the "structural gypsum board" of JIS A 6901, which requires an areal density of 9.4 kg/m 2 or more as described above. In addition, "reinforced gypsum board" specified in JIS A 6901 is known, but "reinforced gypsum board" also requires an areal density of 9.4 kg/m 2 or more, so the load-bearing surface material 10 is It is fundamentally different from "reinforced gypsum board." Furthermore, the load-bearing surface material 10 is different from other "gypsum" in that it has a main material or core material (gypsum core 11) containing inorganic fibers and an organic strength improving material so as to exhibit a nail side resistance of 500N or more. It is also different from "Board". That is, the load-bearing surface material 10 does not correspond to any "gypsum board" specified in the current JIS A 6901. In this specification, the load-bearing surface material 10 shall be specified or expressed as a "gypsum-based load-bearing surface material" in this sense.
 一般に、石膏硬化体からなる板状の主材又は芯材の表裏面を紙部材で被覆してなる石膏系耐力面材(「石膏ボード」「強化石膏ボード」及び「構造用石膏ボード」を含む)は、汎用の石膏ボード製造装置によって製造される。石膏ボード製造装置は、例えば、国際公開公報WO2019/058936に記載される如く、焼石膏、接着助剤、硬化促進剤、泡(又は泡剤)等の原料と、焼石膏のスラリー化に要する練り水とを混合して石膏スラリーを調製するミキサーを有する。石膏スラリーは、石膏ボード製造装置の搬送ベルト上の石膏ボード原紙(下紙)上に流し延べられ、石膏ボード原紙(上紙)が石膏スラリー上に積層される。かくして形成された帯状且つ3層構造の連続積層体は、石膏ボード製造装置を構成する粗切断装置、強制乾燥装置、裁断装置等の各装置によって加工され、所定寸法の石膏製品、即ち、石膏スラリーの硬化体(即ち、石膏コア)の両面を石膏ボード用原紙で被覆してなる石膏系面材に成形される。石膏系面材の比重は、主として、石膏スラリー中の泡の配合量によって調節される。 In general, gypsum-based load-bearing surface materials (including "gypsum board," "reinforced gypsum board," and "structural gypsum board") are made by covering the front and back sides of a plate-shaped main material or core material made of hardened gypsum with paper members ) is manufactured using general-purpose gypsum board manufacturing equipment. For example, as described in International Publication No. WO2019/058936, a gypsum board manufacturing device uses raw materials such as calcined gypsum, an adhesion aid, a hardening accelerator, and foam (or foaming agent), and the kneading required to slurry the calcined gypsum. It has a mixer that mixes with water to prepare gypsum slurry. The gypsum slurry is poured onto a gypsum board base paper (bottom paper) on a conveyor belt of a gypsum board manufacturing apparatus, and the gypsum board base paper (top paper) is laminated on top of the gypsum slurry. The strip-shaped continuous laminate having a three-layer structure thus formed is processed by each device, such as a rough cutting device, a forced drying device, and a cutting device, which constitute the gypsum board manufacturing device, and is processed into a gypsum product of a predetermined size, that is, a gypsum slurry. The hardened body (i.e., gypsum core) is coated on both sides with base paper for gypsum board to form a gypsum-based facing material. The specific gravity of the gypsum-based facing material is mainly adjusted by the amount of foam mixed in the gypsum slurry.
 JIS A 6901に規定された構造用石膏ボード、強化石膏ボード及び(普通)石膏ボードを耐力面材として用いた木構造耐力壁に関し、前述の建設省告示第1100号に規定された木造軸組構造の大壁造の面材耐力壁の壁倍率を例示すると、以下のとおりである。 Concerning wooden structural load-bearing walls using structural gypsum board, reinforced gypsum board, and (ordinary) gypsum board as load-bearing facing materials specified in JIS A 6901, wooden frame structures specified in the Ministry of Construction Notification No. 1100 mentioned above. An example of the wall magnification of a load-bearing wall in a large wall construction is as follows.
 構造用石膏ボード(A種)  1.7
 構造用石膏ボード(B種)  1.2
 強化石膏ボード       0.9
 (普通)石膏ボード     0.9
Structural gypsum board (class A) 1.7
Structural gypsum board (class B) 1.2
Reinforced gypsum board 0.9
(Normal) Gypsum board 0.9
 また、前述の国土交通省告示第1541号に規定された枠組壁工法耐力壁の壁倍率(たて枠相互間隔が50cmを超える耐力壁)を例示すると、以下のとおりである。 In addition, examples of the wall magnification of load-bearing walls using the frame wall construction method (load-bearing walls in which the interval between vertical frames exceeds 50 cm) specified in the above-mentioned Ministry of Land, Infrastructure, Transport and Tourism Notification No. 1541 are as follows.
 構造用石膏ボード(A種)  1.7
 構造用石膏ボード(B種)  1.5
 強化石膏ボード       1.3
 (普通)石膏ボード      1.0
Structural gypsum board (class A) 1.7
Structural gypsum board (class B) 1.5
Reinforced gypsum board 1.3
(Normal) Gypsum board 1.0
 このように建設省又は国土交通省の告示に規定された壁倍率の値は、個別に性能試験を行うことなく一般に採用し得る値である。但し、耐力面材としての有効性を認められる構造用石膏ボード、強化石膏ボード及び(普通)石膏ボードは、12mm以上の板厚を有するものに限定される。このため、新規素材・組成の面材や、板厚12mm未満の石膏系面材を耐力面材として有効に使用する場合、或いは、上記の値とは異なる壁倍率を採用する場合には、前述の性能試験を実施して壁倍率の値を定める必要がある。 In this way, the wall magnification values specified in the public notices of the Ministry of Construction or the Ministry of Land, Infrastructure, Transport and Tourism are values that can be generally adopted without conducting individual performance tests. However, structural gypsum boards, reinforced gypsum boards, and (ordinary) gypsum boards that are recognized to be effective as load-bearing surface materials are limited to those with a thickness of 12 mm or more. Therefore, when effectively using a facing material made of a new material/composition or a gypsum-based facing material with a thickness of less than 12 mm as a load-bearing facing material, or when adopting a wall magnification different from the above values, the above-mentioned It is necessary to conduct a performance test to determine the wall magnification value.
 前述のとおり、JIS A 6901に規定された前述の構造用石膏ボード及び強化石膏ボードは、面密度9.4kg/m2以上且つ比重0.75以上の物性を要する。これは、面材が耐え得る最大荷重を増大させ、木構造耐力壁の高い短期許容せん断耐力(従って、高い壁倍率)を確保する上で重要な条件であると考えられてきた。殊に、強化石膏ボードよりも高い釘側面抵抗を発揮することを条件とした構造用石膏ボードにおいては、このような面密度及び比重は、低減し得ないものと考えられてきた。即ち、面密度9.4kg/m2以上、比重0.75以上の物性を確保することは、前述の面内せん断試験において得られる耐力壁試験体(木構造耐力壁)の壁倍率を更に増大させる上では必須の条件であると考えられていた。しかしながら、近年の本発明者等の実験により、無機系繊維や有機系強度向上材を添加することにより構造用石膏ボードに匹敵する物性(釘側面抵抗)を与えられた石膏系面材において、面材の板厚を低減し、或いは、泡量を調節して石膏コアの比重を低減し、これにより面密度を低減すると、面材自体が潜在的に保有する靱性又は変形追随性が顕在化し、この結果、耐力壁の終局耐力を有効に利用し且つ耐力壁の塑性率を増大することができ、かくして、耐力壁の短期許容せん断耐力を更に向上し得ることが判明した。この点については、上記特許文献3に詳細に記載したとおりであるが、以下、木構造耐力壁の面内せん断試験の概要について説明するとともに、耐力壁の終局耐力の増大による耐力壁の塑性率の増大と、これに伴う耐力壁の短期許容せん断耐力及び壁倍率の向上とに関し、その一般的事項を参考として説明する。 As mentioned above, the above-mentioned structural gypsum board and reinforced gypsum board specified in JIS A 6901 require physical properties of an areal density of 9.4 kg/m 2 or more and a specific gravity of 0.75 or more. This has been considered to be an important condition in increasing the maximum load that the facing material can withstand and ensuring a high short-term permissible shear capacity (and therefore a high wall magnification) of timber structural load-bearing walls. In particular, it has been thought that such areal density and specific gravity cannot be reduced in structural gypsum boards that are required to exhibit higher nail side resistance than reinforced gypsum boards. In other words, ensuring the physical properties of an areal density of 9.4 kg/m 2 or more and a specific gravity of 0.75 or more will further increase the wall magnification of the load-bearing wall test specimen (wooden structure load-bearing wall) obtained in the above-mentioned in-plane shear test. It was considered to be an essential condition for achieving this. However, recent experiments by the present inventors have shown that a gypsum-based facing material with physical properties comparable to structural gypsum board (nail side resistance) by adding inorganic fibers and organic strength-improving materials By reducing the thickness of the material or adjusting the amount of foam to reduce the specific gravity of the gypsum core, thereby reducing the areal density, the latent toughness or deformability of the facing material itself will become apparent. As a result, it has been found that the ultimate strength of the load-bearing wall can be effectively utilized and the plasticity ratio of the load-bearing wall can be increased, thus further improving the short-term allowable shear strength of the load-bearing wall. This point is described in detail in Patent Document 3, but below we will explain the outline of the in-plane shear test for wooden structural load-bearing walls, and also explain the plasticity rate of the load-bearing wall due to the increase in the ultimate load-bearing strength of the load-bearing wall. The following describes general matters regarding the increase in the load-bearing wall and the associated improvement in the short-term allowable shear strength of the load-bearing wall and the wall magnification.
[木構造耐力壁の面内せん断試験の試験体について]
 図3は、図1に示す耐力壁構造体に関する面内せん断試験において使用された耐力壁試験体の構成を示す正面図、横断面図及び側面図である。
[About test specimens for in-plane shear tests of wooden structural load-bearing walls]
FIG. 3 is a front view, a cross-sectional view, and a side view showing the configuration of a load-bearing wall test piece used in the in-plane shear test regarding the load-bearing wall structure shown in FIG. 1.
 図3において、図1及び図2に示す構成要素又は構成部材に相当又は相応する耐力壁試験体の構成要素又は構成部材については、同一の参照符号が付されている。 In FIG. 3, components or components of the load-bearing wall test specimen that correspond to or correspond to the components or components shown in FIGS. 1 and 2 are given the same reference numerals.
 本発明者等は、「木造の耐力壁及びその倍率 性能試験・評価業務方法書」に記載された試験体仕様に従って、図1に示す耐力壁構造の試験体として、図3に示す耐力壁構造を有する壁幅1820mm、高さ2730mmの耐力壁試験体(以下、単に「試験体」という。)を製作し、無載荷式試験装置を用いた面内せん断試験を実施した。 The present inventors constructed the load-bearing wall structure shown in FIG. 3 as a test specimen of the load-bearing wall structure shown in FIG. A load-bearing wall test specimen (hereinafter simply referred to as the "test specimen") with a wall width of 1820 mm and a height of 2730 mm was manufactured, and an in-plane shear test was conducted using a non-loading test device.
 図3に示す試験体は、断面105×105mmのスギ製材の土台2及び柱3と、柱3によって支持された断面180×105mmのベイマツ製材の横架材5とからなる木造軸組の主要構造部を有する。柱3間の中央部には、断面45×105mmのスギ製材の継手間柱4’が立設され、柱3と継手間柱4’との間には、断面27×105mmのスギ製材の間柱4が立設される。スギ製材又はベイマツ製材の胴つなぎ5’が、柱3と間柱4との間に架設されるとともに、間柱4と継手間柱4’との間に架設される。試験用治具として、引き寄せ金物40が、土台2及び柱3の接合部に配設されるとともに、横架材5及び柱3の接合部に配設される。土台2、柱3、継手間柱4’、間柱4、横架材5及び胴つなぎ5’は、耐力壁構造の軸材を構成しており、これらの部材(軸材)によって矩形状の軸組が形成される。 The main structure of the test specimen shown in Fig. 3 is a wooden frame consisting of a base 2 and pillars 3 made of sawn cedar with a cross section of 105 x 105 mm, and a horizontal member 5 made of sawn Douglas fir with a cross section of 180 x 105 mm supported by the pillars 3. has a department. A joint stud 4' made of sawn cedar with a cross section of 45 x 105 mm is erected in the center between the columns 3, and a sawn cedar stud 4 with a cross section of 27 x 105 mm is installed between the column 3 and the joint stud 4'. It will be erected. A trunk link 5' made of sawn cedar or Douglas fir is installed between the pillar 3 and the stud 4, and also between the stud 4 and the joint stud 4'. As a test jig, a pulling hardware 40 is disposed at the joint between the base 2 and the column 3, and at the joint between the horizontal member 5 and the column 3. The foundation 2, columns 3, joint pillars 4', studs 4, horizontal members 5, and body joints 5' constitute the shaft members of the load-bearing wall structure, and these members (shaft members) form a rectangular frame. is formed.
 図3に示す試験体において、土台2及び横架材5の鉛直離間距離h1、胴つなぎ5’の高さh2、胴つなぎ5’に対する横架材5の相対高さh3を夫々、h1=2625mm、h2=1790mm、h3=835mmに設定し、柱3及び継手間柱4’の間隔(柱芯間隔)w1を、w1=910mmに設定し、壁の長さLは、1.82mに設定した。面材10は、胴つなぎ5’によって上下に分割され、下側の面材10aは、幅910mm、高さ1820mmの寸法を有し、上側に配置された面材10bは、幅910mm、高さ865mmの寸法を有する。面材10a、10bのかかり代寸法h4、h5を、30mmに設定した。 In the test specimen shown in FIG. 3, the vertical distance h1 between the foundation 2 and the horizontal member 5, the height h2 of the body joint 5', and the relative height h3 of the horizontal member 5 with respect to the body joint 5' are h1 = 2625 mm. , h2 = 1790 mm, h3 = 835 mm, the distance w1 between the pillar 3 and the joint pillar 4' (column core spacing) was set w1 = 910 mm, and the length L of the wall was set to 1.82 m. The panel 10 is divided into upper and lower parts by a body joint 5', the lower panel 10a has dimensions of 910 mm in width and 1820 mm in height, and the panel 10b disposed on the upper side has dimensions of 910 mm in width and 1820 mm in height. It has dimensions of 865 mm. The cover dimensions h4 and h5 of the face materials 10a and 10b were set to 30 mm.
 図3に示す試験体において、面材10a、10bを土台2、柱3、継手間柱4’、横架材5及び胴つなぎ5’に留付けるための釘20を、面材10a、10bの縁部帯域全周に亘って等間隔(間隔S1=75mm)に配列した。面材10a、10bを間柱4に留付けるための釘20を、面材10a、10bの鉛直中央帯域に等間隔(間隔S2=150mm)に配列した。 In the test specimen shown in FIG. 3, nails 20 for fastening the panels 10a, 10b to the base 2, pillars 3, joint pillars 4', horizontal members 5, and body joints 5' were attached to the edges of the panels 10a, 10b. They were arranged at equal intervals (spacing S1 = 75 mm) over the entire circumference of the zone. Nails 20 for fastening the facing materials 10a, 10b to the studs 4 were arranged at equal intervals (spacing S2 = 150 mm) in the vertical central zone of the facing materials 10a, 10b.
[木構造耐力壁の短期許容せん断耐力及び壁倍率に関する説明(本開示の前提)]
 図4は、任意の石膏系耐力面材を用いた面内せん断試験の試験結果を参考として示す説明用の図表及び線図であり、図4には、面内せん断試験によって一般に得られる荷重-変形角曲線が包絡線(実線で示す)として表示されている。図4を参照して、木構造耐力壁の面内せん断試験について説明するとともに、木構造耐力壁の短期許容せん断耐力及び壁倍率の求め方について説明する。
[Explanation regarding short-term allowable shear strength and wall magnification of wooden structural load-bearing walls (premises of this disclosure)]
Figure 4 is an explanatory chart and line diagram showing for reference the test results of an in-plane shear test using any gypsum-based load-bearing surface material. The deformation angle curve is displayed as an envelope (shown as a solid line). With reference to FIG. 4, an in-plane shear test of a wood structure load-bearing wall will be described, and a method for determining the short-term allowable shear strength and wall magnification of the wood structure load-bearing wall will be described.
 図4には、荷重-変形角曲線の包絡線を完全弾塑性モデルの荷重-変形角特性に変換した線形グラフが一点鎖線で示されている。完全弾塑性モデルは、初期剛性Kを示す線形弾性域の一次関数直線(Y=KX)と、降伏点σsからX軸と平行に延びる塑性変形域(塑性域)の直線(Y=Pu)とから構成される。降伏点σsは、弾性限界を示す。初期剛性Kは、弾性域の一次関数直線(Y=KX)の傾きを示す係数である。包絡線、X軸及びX=δuの各線分によって囲まれる領域の線図上の面積と、X軸、Y=KX、Y=Pu及びX=δuの各線分によって囲まれる領域の線図上の面積とは、等値である。尚、包絡線を完全弾塑性モデルに転換する手法は、「木造の耐力壁及びその倍率 性能試験・評価業務方法書」等の多くの文献に記載されており、材料力学上の周知事項でもあるので、その更なる説明については省略する。 In FIG. 4, a linear graph obtained by converting the envelope of the load-deformation angle curve into the load-deformation angle characteristic of a perfect elastic-plastic model is shown by a dashed-dotted line. The perfect elastic-plastic model consists of a linear function straight line (Y = KX) in the linear elastic region indicating the initial stiffness K, and a straight line (Y = Pu) in the plastic deformation region (plastic region) extending parallel to the X-axis from the yield point σs. It consists of The yield point σs indicates the elastic limit. The initial stiffness K is a coefficient indicating the slope of the linear function straight line (Y=KX) in the elastic region. The area on the diagram of the region surrounded by the envelope, the X axis, and each line segment of X = δu, and the area on the diagram of the region surrounded by the X axis, each line segment of Y = KX, Y = Pu, and X = δu Area is equivalent. The method of converting the envelope into a fully elastoplastic model is described in many documents such as ``Wooden load-bearing walls and their magnification performance test/evaluation business method'' and is a well-known matter in material mechanics. Therefore, further explanation thereof will be omitted.
 図4には、最大耐力Pmax、0.8Pmax荷重低下域、終局耐力Pu、降伏耐力Py、終局変位δu、降伏点変位δv及び降伏変位δyが示されている。終局変位δu及び降伏点変位δvは夫々、0.8Pmax荷重低下域及び降伏点σsにおける変形角の値である。降伏変位δyは、降伏耐力Py発現時の変形角の値である。また、塑性率μは、終局変位δu/降伏点変位δvの値(比率)である。荷重(耐力)が最大耐力Pmaxの発現後に0.8Pmaxに低下した時、壁体がその耐力を実質的に喪失したものと見做され、面内せん断試験は0.8Pmax荷重低下域において実質的に終了する。 FIG. 4 shows the maximum proof stress Pmax, 0.8Pmax load reduction area, ultimate proof stress Pu, yield proof strength Py, ultimate displacement δu, yield point displacement δv, and yield displacement δy. The ultimate displacement δu and the yield point displacement δv are the values of the deformation angle in the 0.8Pmax load reduction region and the yield point σs, respectively. The yield displacement δy is the value of the deformation angle when the yield strength Py is expressed. Moreover, the plasticity modulus μ is the value (ratio) of ultimate displacement δu/yield point displacement δv. When the load (proof strength) decreases to 0.8Pmax after the maximum proof stress Pmax has occurred, the wall is considered to have substantially lost its proof strength, and the in-plane shear test essentially ends in the 0.8Pmax load reduction region. do.
 壁倍率は、「木造軸組工法住宅の許容応力度設計[1](2017年版)」、第63頁及び第300頁(非特許文献1)等の多くの技術文献に記載される如く、図4に示す完全弾塑性モデルにより特定される耐力Pmax、Pu、Py及び変位δu、δv、δyに基づいて短期許容せん断耐力(Pa)を算定し、これを所定の耐力(壁長L(m)×1.96(kN/m))で除した値である。即ち、壁倍率は、短期許容せん断耐力(Pa)をこの基準数値(1.96L)で除して指数化した値である。 The wall magnification is as described in many technical documents such as “Allowable Stress Design for Wooden Frame Construction Method Houses [1] (2017 Edition)”, pages 63 and 300 (Non-Patent Document 1), The short-term allowable shear strength (Pa) is calculated based on the yield strength Pmax, Pu, Py and the displacements δu, δv, δy specified by the perfect elasto-plastic model shown in 4. x 1.96 (kN/m)). That is, the wall magnification is the value obtained by dividing the short-term allowable shear strength (Pa) by this reference value (1.96L) and converting it into an index.
 この点について更に説明すると、壁倍率の算出においては、原則として以下の4種類の耐力の値のうち最も小さい値を示す耐力を短期基準せん断耐力(P0)として特定し、短期基準せん断耐力(P0)に対し、所定の低減係数(α)(耐力低下の要因を評価する係数)を乗じる。一般に、石膏系耐力面材の場合、下記(1)又は(2)の耐力、即ち、降伏耐力(Py)又は終局耐力(補正値)(Pu')が最も小さな値を示す。尚、以下の各耐力の値(Py、Pu、Pmax)より求められる短期基準せん断耐力(P0)の値は、下記の値にばらつき係数(β)を乗じた値である。 To further explain this point, when calculating the wall magnification, as a general rule, the short-term standard shear capacity (P0) is specified as the short-term standard shear capacity (P0), and the short-term standard shear capacity (P0) is specified as the short-term standard shear capacity (P0). ) is multiplied by a predetermined reduction coefficient (α) (a coefficient for evaluating the cause of a decrease in proof strength). Generally, in the case of a gypsum-based load-bearing surface material, the yield strength (1) or (2) below, that is, the yield strength (Py) or the ultimate yield strength (corrected value) (Pu'), exhibits the smallest value. Note that the value of the short-term standard shear strength (P0) obtained from the values of each yield strength (Py, Pu, Pmax) below is the value obtained by multiplying the value below by the dispersion coefficient (β).
 (1)降伏耐力(Py)
 (2)塑性率(μ)に基づいて補正された終局耐力(Pu)の値(以下、「終局耐力(補正値)(Pu')」という。)
 (3)最大耐力(Pmax)の2/3の値
 (4)せん断変形角=1/120radの時の耐力(無載荷式又は載荷式の場合)
(1) Yield strength (Py)
(2) Value of ultimate proof stress (Pu) corrected based on plasticity ratio (μ) (hereinafter referred to as "ultimate proof stress (corrected value) (Pu')")
(3) Value of 2/3 of maximum proof stress (Pmax) (4) Proof strength when shear deformation angle = 1/120 rad (for unloaded type or loaded type)
 一般に、前述の構造用石膏ボード(特許文献2)を木構造壁下地に対して留め具によって留付けてなる耐力壁の短期基準せん断耐力(P0)は、上記4種類の耐力の値のうち降伏耐力(Py)によって特定される(P0=β×Py)。壁倍率は、前述のとおり、短期基準せん断耐力(P0)に低減係数(α)を乗じるとともに、所定の耐力(1.96L)で除した値であるので、構造用石膏ボードを木構造壁下地に対して留め具によって留付けてなる耐力壁の壁倍率は、降伏耐力(Py)に比例する。 In general, the short-term standard shear strength (P0) of a load-bearing wall made by fastening the above-mentioned structural gypsum board (Patent Document 2) to a wooden structure wall base using fasteners is It is specified by proof strength (Py) (P0 = β x Py). As mentioned above, the wall magnification is the value obtained by multiplying the short-term standard shear strength (P0) by the reduction coefficient (α) and dividing it by the predetermined strength (1.96L). The wall magnification of a load-bearing wall that is fastened to a load-bearing wall using fasteners is proportional to the yield strength (Py).
 他方、特許文献3に記載された石膏系面材、即ち、前述の低密度石膏系耐力面材を木構造壁下地に対して留め具によって留付けてなる耐力壁の短期基準せん断耐力(P0)は、通常は、上記4種類の耐力の値のうち終局耐力(補正値)(Pu')が最も小さい値を示し、従って、壁倍率を算定するための短期基準せん断耐力(P0)及び壁倍率は、構造用石膏ボードとは異なり、終局耐力(補正値)(Pu')に比例する。低密度石膏系耐力面材においては、その予期せぬ低密度化の効果として、面密度の低下に起因して石膏系耐力面材が潜在的に保有する靱性及び変形追随性が顕在化し、これにより、耐力壁の終局変位(δu)が増大して20×10-3radよりも大きい値の終局変位(δu)が得られる結果、特許文献3の低密度石膏系耐力面材を木構造壁下地に固定してなる耐力壁は、7.6kNよりも大きい終局耐力(補正値)(Pu')を発揮する。かくして、低密度石膏系耐力面材は、上記のとおり、構造用石膏ボードと比べて面密度が低減したにもかかわらず、構造用石膏ボードと同等の耐力を発揮する。 On the other hand, the short-term standard shear strength (P0) of a load-bearing wall formed by fastening the gypsum-based facing material described in Patent Document 3, that is, the aforementioned low-density gypsum-based load-bearing facing material to the wooden structure wall base using fasteners. Usually, the ultimate proof stress (corrected value) (Pu') is the smallest value among the above four types of proof stress values, and therefore, the short-term standard shear strength (P0) and wall multiplication factor are used to calculate the wall multiplication factor. Unlike structural gypsum board, is proportional to the ultimate strength (corrected value) (Pu'). In the case of low-density gypsum-based load-bearing facing materials, as an unexpected effect of the lower density, the latent toughness and deformation-following properties of the gypsum-based load-bearing facing materials become apparent due to the decrease in areal density. As a result, the ultimate displacement (δu) of the load-bearing wall increases and an ultimate displacement (δu) of a value larger than 20×10 -3 rad is obtained. A load-bearing wall fixed to the foundation exhibits an ultimate load-bearing force (corrected value) (Pu') greater than 7.6 kN. Thus, as described above, the low-density gypsum-based load-bearing surface material exhibits a load-bearing strength equivalent to that of structural gypsum board, despite having a reduced areal density compared to structural gypsum board.
 終局耐力(補正値)(Pu')は、終局耐力(Pu)及び塑性率(μ)に基づいて下式より求められる値であり、短期基準せん断耐力(P0)は、終局耐力(補正値)(Pu')と、その測定値のばらつき係数(β)とに基づいて下式より求められる値である。 The ultimate yield strength (corrected value) (Pu') is the value obtained from the formula below based on the ultimate yield strength (Pu) and the plasticity ratio (μ), and the short-term standard shear strength (P0) is the ultimate yield strength (corrected value) (Pu') and the variation coefficient (β) of the measured values, this value is obtained from the following formula.
 Pu'=Pu×0.2×(2μ-1)1/2
 P0=β×Pu'
Pu'=Pu×0.2×(2μ-1)1/2
P0=β×Pu'
 即ち、面密度を低減して面材自体が潜在的に保有する靱性又は変形追随性を顕在化せしめた特許文献3の石膏系耐力面材(即ち、低密度石膏系耐力面材)にあっては、耐力壁の終局変位(δu)が20×10-3radよりも大きな値に増大し、その結果、塑性率μ(=δu/δv)が増大して終局耐力(補正値)(Pu')が増大し、これにより、短期許容せん断耐力(Pa)が増大して壁倍率が増大する。本発明者等は、短期許容せん断耐力(Pa)及び壁倍率を更に増大させるべく面材の留付け構造及び塑性率μを更に検討し、釘20の寸法・形状を変更するとともに、初期剛性が増大して塑性率μが増大し得ることを知見し、本開示に至ったものである。以下、この点について説明する。 That is, in the gypsum-based load-bearing facing material (i.e., low-density gypsum-based load-bearing facing material) of Patent Document 3, which reduces the areal density and brings out the latent toughness or deformability of the facing material itself, The ultimate displacement (δu) of the load-bearing wall increases to a value larger than 20×10 -3 rad, and as a result, the plasticity ratio μ (=δu/δv) increases and the ultimate strength (corrected value) (Pu' ) increases, which increases the short-term allowable shear capacity (Pa) and increases the wall magnification. In order to further increase the short-term allowable shear strength (Pa) and wall magnification, the present inventors further investigated the fastening structure of the face material and the plasticity ratio μ, changed the dimensions and shape of the nail 20, and changed the initial rigidity. The present disclosure was based on the finding that the plasticity modulus μ can be increased by increasing the plasticity modulus μ. This point will be explained below.
[釘20の寸法・形状について]
 石膏系耐力面材を木構造の軸組又は枠組に固定してなる従来の木造耐力壁においては、一般に、石膏系耐力面材は、NZ50釘(めっき鉄丸釘:JIS A 5508)によって軸組又は枠組に固定されてきた。NZ50釘は、頭径6.6mm、胴径2.75mm及び釘の長さ50mmの寸法(JIS A 5508)を有し、頭面積/胴断面積の比ηは、5.76である。このような釘によって低密度石膏系耐力面材を木構造の軸組又は枠組に固定してなる木造耐力壁の試験体を用いた面内せん断試験においては、特許文献3に記載したとおり、終局変位(δu)が増大し、この結果、終局耐力(補正値)(Pu')、短期基準せん断耐力(P0)及び壁倍率が増大する。しかしながら、この面内せん断試験においては、試験体に作用する繰り返し加力によって釘穴が破壊してパンチングシェア現象が発生し、これに伴う石膏系耐力面材のパンチングアウト破壊によって試験体の耐力が急激にPu=0.8Pmaxに低下し、これにより、面内せん断試験が終了するという特性ないし特徴が認められた。従って、釘打ち部分の破壊又は破断を抑制し、石膏系耐力面材のパンチングアウト破壊を抑制しない限り、短期許容せん断耐力(Pa)及び壁倍率を更に増大させ難いと考えられる。尚、特許文献1に記載された面材補強方法の如く、金属板等の補強材又は補剛材を釘打ち部分に配設することによってパンチングアウト破壊を抑制又は軽減することも可能であるかもしれないが、このような補強材又は補剛材の付設又は配設は、前述のとおり、石膏系面材の製造プロセスの煩雑化や、建設工事の作業性の悪化を招く要因となる。
[About the dimensions and shape of the nail 20]
In conventional wooden load-bearing walls in which gypsum-based load-bearing facing materials are fixed to the frame or frame of a wooden structure, the gypsum-based load-bearing facing materials are generally assembled with NZ50 nails (plated iron round nails: JIS A 5508). Or it has been fixed to a framework. The NZ50 nail has dimensions (JIS A 5508) of a head diameter of 6.6 mm, a body diameter of 2.75 mm, and a nail length of 50 mm, and the ratio η of head area/body cross-sectional area is 5.76. As described in Patent Document 3, in an in-plane shear test using a test specimen of a wooden load-bearing wall in which a low-density gypsum-based load-bearing wall material is fixed to a framework or frame of a wooden structure with such nails, the final The displacement (δu) increases, and as a result, the ultimate strength (corrected value) (Pu'), the short-term standard shear strength (P0), and the wall magnification increase. However, in this in-plane shear test, the nail holes break due to repeated loads acting on the test specimen, causing a punching shear phenomenon, and the accompanying punch-out failure of the gypsum-based load-bearing surface material reduces the proof strength of the test specimen. A characteristic or feature was observed in which Pu suddenly decreased to 0.8Pmax, and the in-plane shear test was terminated. Therefore, it is considered difficult to further increase the short-term allowable shear strength (Pa) and wall magnification unless the failure or breakage of the nailed portion is suppressed and the punch-out failure of the gypsum-based load-bearing surface material is suppressed. Incidentally, as in the face material reinforcement method described in Patent Document 1, it may be possible to suppress or reduce punch-out failure by arranging a reinforcing material such as a metal plate or a stiffening material in the nailed part. However, as mentioned above, the attachment or arrangement of such reinforcing materials or stiffening materials becomes a factor that complicates the manufacturing process of the gypsum-based facing material and deteriorates the workability of construction work.
 図5は、本開示の実施例に係る耐力壁を構成する釘20と、比較例に係る耐力壁を構成する釘N1、N2に関し、頭径D、胴径d、長さL、及び頭面積/胴断面積の面積比ηを比較表として示す図表である。釘20の頭径D、胴径d、長さL、及び頭面積/胴断面積の面積比ηの値は、前述のとおりである。釘N1は、NZ50釘(JIS A 5508)として市場に流通している鉄釘であり、図5に示す値(頭径D=6.62mm、胴径d=2.83mm、頭面積/胴断面積の面積比η=5.48)は、市場において入手した任意の10本のNZ50釘の各部寸法を計測し、各計測値を平均した値であり、JIS A 5508に規定された値とは若干相違する。釘N2は、CN50釘(JIS A 5508)として市場に流通している鉄釘であり、図5に示す値(頭径D=6.67mm、胴径d=2.92mm、頭面積/胴断面積の面積比η=5.2)も又、市場において入手した任意の10本のCN50釘の各部寸法を計測し、各計測値を平均した値であり、JIS A 5508に規定された値とは若干相違する。尚、釘20、N1、N2の長さLは、いずれも約50mmである。 FIG. 5 shows the head diameter D, body diameter d, length L, and head area of nails 20 that constitute a load-bearing wall according to an example of the present disclosure, and nails N1 and N2 that constitute a load-bearing wall according to a comparative example. It is a chart showing the area ratio η of /body cross-sectional area as a comparison table. The values of the head diameter D, body diameter d, length L, and area ratio η of head area/body cross-sectional area of the nail 20 are as described above. Nail N1 is an iron nail distributed on the market as a NZ50 nail (JIS A 5508), and has the values shown in Figure 5 (head diameter D = 6.62 mm, body diameter d = 2.83 mm, head area/body cross section). The area ratio η = 5.48) is the value obtained by measuring the dimensions of each part of any 10 NZ50 nails obtained on the market and averaging the measured values, and is the value specified in JIS A 5508. Slightly different. Nail N2 is an iron nail distributed on the market as a CN50 nail (JIS A 5508), and has the values shown in Figure 5 (head diameter D = 6.67 mm, body diameter d = 2.92 mm, head area/body cross section). The area ratio η = 5.2) is also the value obtained by measuring the dimensions of each part of 10 arbitrary CN50 nails obtained on the market and averaging each measurement value, and is the value specified in JIS A 5508. are slightly different. Note that the lengths L of the nails 20, N1, and N2 are all approximately 50 mm.
 図6は、釘N1を用いた耐力壁(比較例1)と、釘N2を用いた耐力壁(比較例2)とに関し、面内せん断試験の試験結果を対比するための図表及び線図である。図7は、釘20を用いた耐力壁(本開示の実施形態)と、釘N1を用いた耐力壁(比較例3)とに関し、面内せん断試験の試験結果を対比するための図表及び線図である。実施形態及び比較例1~3の石膏系耐力面材10は、いずれも、所定量の無機質繊維(ガラス繊維)及び有機系強度向上材(澱粉)を混入した平板状石膏コア(石膏芯材)11と、石膏コアの両面を被覆する石膏ボード用原紙(紙部材)12とから構成される前述の低密度石膏系耐力面材であり、6.5~8.9kg/m2の範囲内の面密度、6.5N/mm2以上の圧縮強度、及び500N以上の釘側面抵抗を有する。 FIG. 6 is a diagram and diagram for comparing the test results of an in-plane shear test regarding a load-bearing wall using nail N1 (Comparative Example 1) and a load-bearing wall using nail N2 (Comparative Example 2). be. FIG. 7 shows a diagram and lines for comparing test results of an in-plane shear test regarding a load-bearing wall using nail 20 (embodiment of the present disclosure) and a load-bearing wall using nail N1 (comparative example 3). It is a diagram. The gypsum-based load-bearing surface materials 10 of the embodiment and comparative examples 1 to 3 are all made of a flat gypsum core (gypsum core material) mixed with a predetermined amount of inorganic fiber (glass fiber) and organic strength improving material (starch). 11 and gypsum board base paper (paper member) 12 that covers both sides of the gypsum core. density, compressive strength of 6.5N/mm2 or more, and nail side resistance of 500N or more.
 図6に示す試験結果より明らかなとおり、本発明者等は、石膏系耐力面材の場合、必ずしも太い釘(胴径dが比較例1よりも大きい比較例2)がパンチングアウト破壊を抑制する上で有効であるとは限らない(従って、短期許容せん断耐力(Pa)及び壁倍率を向上する上で有利であるとは限らない)ことを確認した。また、図7に示す試験結果より明らかなとおり、本発明者等は、石膏系耐力面材の場合、頭径D、胴径d、及び頭面積/胴断面積の比ηを適切に設定することにより、石膏系耐力面材のパンチングアウト破壊を抑制又は軽減し、短期許容せん断耐力(Pa)及び壁倍率を比較的大きく改善し得ることを確認した。以下、この点に関し、図6及び図7を参照して説明する。 As is clear from the test results shown in Figure 6, the present inventors have found that in the case of gypsum-based load-bearing surface materials, thicker nails (Comparative Example 2 with a larger body diameter d than Comparative Example 1) do not necessarily suppress punch-out failure. It was confirmed that this method is not necessarily effective in improving the short-term allowable shear strength (Pa) and wall magnification. Furthermore, as is clear from the test results shown in FIG. 7, the inventors appropriately set the head diameter D, body diameter d, and ratio η of head area/body cross-sectional area in the case of a gypsum-based load-bearing surface material. It was confirmed that this could suppress or reduce punch-out failure of gypsum-based load-bearing facing materials, and relatively significantly improve short-term allowable shear strength (Pa) and wall magnification. This point will be explained below with reference to FIGS. 6 and 7.
 一般に、釘N2(比較例2)の頭径D及び胴径dは、釘N1(比較例1)の頭径D及び胴径dに比べて大きく、従って、パンチングアウト破壊を抑制し又は軽減する上で有利であり、相対的に胴径dが小さい釘N1(細い釘)に比べ、せん断強度において優れると一般に認識されている。しかし、圧縮強度及び釘側面抵抗を増大した低密度石膏系耐力面材の場合、釘N2は、図6に示す如く、短期許容せん断耐力(Pa)を却って低下させる(従って、壁倍率を低下させる)ことが判明した。これは、面内せん断試験において、パンチングシェア現象が比較的早期に発生し、パンチングアウト破壊による釘打ち部分の破壊又は破断によって耐力(荷重)が早期にPu=0.8Pmaxに低下し(終局変位δuB<δuA)、壁体がその耐力を実質的に喪失したことに起因する。 Generally, the head diameter D and body diameter d of the nail N2 (Comparative Example 2) are larger than the head diameter D and body diameter d of the nail N1 (Comparative Example 1), thus suppressing or reducing punch-out fracture. It is generally recognized that the shear strength is superior to the nail N1 (thin nail), which has a relatively small body diameter d. However, in the case of low-density gypsum-based load-bearing facing material with increased compressive strength and nail side resistance, nail N2 actually reduces the short-term allowable shear strength (Pa) (therefore, reduces the wall magnification), as shown in Figure 6. )It has been found. This is because the punching shear phenomenon occurs relatively early in the in-plane shear test, and the proof stress (load) quickly decreases to Pu = 0.8Pmax (final displacement δuB <δuA), due to the wall having substantially lost its bearing strength.
 他方、釘20を用いた本実施例の耐力壁と、釘N1を用いた比較例3の耐力壁とを比較すると、図7に示す如く、釘20の胴径dは、釘N1(比較例3)の胴径dに比べて小さく、釘N1に比べてせん断強度が劣ると一般に認識される細い釘であるにもかかわらず、圧縮強度及び釘側面抵抗を増大した低密度石膏系耐力面材の場合には、必ずしも、そのような従来の認識又は知見は適応し難く、図7に示す如く、釘20は、釘N1に比べ、短期許容せん断耐力(Pa)を増大せしめる(従って、壁倍率を増大せしめる)。これは、頭面積/胴断面積の面積比ηの相違により、釘20において胴径d及び頭径Dの径差が拡大し、この結果、パンチングシェア現象の発生が遅延し、パンチングアウト破壊による釘打ち部分の破壊又は破断に起因する耐力(荷重)低下(Pu=0.8Pmax)の時期が遅延し、終局変位が増大(δuE>δuC)した結果であると考えられる。 On the other hand, when comparing the load-bearing wall of this example using the nail 20 and the load-bearing wall of Comparative Example 3 using the nail N1, as shown in FIG. 3) A low-density gypsum-based load-bearing surface material with increased compressive strength and nail side resistance, although it is a thin nail that is generally recognized to be smaller than the body diameter d and has inferior shear strength compared to Nail N1. In this case, such conventional recognition or knowledge is not necessarily applicable; as shown in FIG. 7, nail 20 increases the short-term allowable shear strength (Pa) compared to nail N1 (therefore, the wall ). This is because the diameter difference between the body diameter d and the head diameter D of the nail 20 increases due to the difference in the area ratio η of head area/body cross-sectional area, and as a result, the occurrence of the punching shear phenomenon is delayed, resulting in punching-out failure. This is thought to be the result of a delay in the timing of the decline in proof strength (load) (Pu = 0.8Pmax) due to failure or breakage of the nailed part, and an increase in the ultimate displacement (δuE > δuC).
 従って、頭径D及び胴径dを7.07mm及び2.45mmに夫々設定するとともに、頭面積/胴断面積を8.32に設定し、これにより、頭部21及び胴部22の径差を拡大し、低密度石膏系耐力面材の表面に着座する環状且つ平坦な着座面21b(図2参照)を十分に確保することにより、圧縮強度及び釘側面抵抗を増大した低密度石膏系耐力面材を用いた耐力壁1の短期許容せん断耐力(Pa)を効果的に増大させる(従って、壁倍率を効果的に増大させる)ことができる。但し、頭部21及び胴部22の径差の拡大だけではなく、以下の条件を併せて考慮する必要があると考えられる。 Therefore, the head diameter D and trunk diameter d are set to 7.07 mm and 2.45 mm, respectively, and the head area/torso cross-sectional area is set to 8.32. A low-density gypsum-based bearing surface material with increased compressive strength and nail side resistance by enlarging the area and ensuring a sufficient annular and flat seating surface 21b (see Figure 2) that seats on the surface of the low-density gypsum-based bearing surface material. The short-term allowable shear strength (Pa) of the load-bearing wall 1 using the facing material can be effectively increased (therefore, the wall magnification can be effectively increased). However, it is considered necessary to consider not only the increase in the diameter difference between the head 21 and the body 22, but also the following conditions.
 (1)面材10が釘打ち時に釘の貫入作用によって割れる現象を抑制するとともに、釘打ち機の使用に適した釘の頭径Dを考慮し、頭径Dを10mm以下、好ましくは、9mm以下に設定する。
(2)パンチングシェア現象を抑制してパンチングアウト破壊の作用を軽減すべく、頭径Dを6mm以上、好適には、6.8mm以上に設定する。
(3)面材10が釘打ち時に釘の貫入作用によって割れる現象を抑制するとともに、面内せん断試験時に面材の縁切れ現象が発生するのを抑制すべく、胴径dを5mm以下、好ましくは、4.2mm以下に設定する。
(4)過大な釘の曲げ変形が面内せん断試験時に発生するのを抑制すべく、胴径dを2mm以上、好ましくは、2.2mm以上に設定する。
(5)首部23の強度が極端に低下するのを抑制すべく、頭面積/胴断面積の比ηを13以下、好ましくは、11以下に設定する。
(6)パンチングシェア現象を抑制する効果を確保すべく、頭面積/胴断面積の比ηを6以上、好ましくは、7以上に設定する。
(1) In order to suppress the phenomenon that the face material 10 cracks due to the penetrating action of the nail during nailing, and in consideration of the nail head diameter D suitable for use with a nail gun, the head diameter D should be 10 mm or less, preferably 9 mm. Set as below.
(2) In order to suppress the punching shear phenomenon and reduce the effect of punching-out fracture, the head diameter D is set to 6 mm or more, preferably 6.8 mm or more.
(3) In order to suppress the phenomenon that the panel 10 cracks due to the penetrating action of the nail during nailing, and also to suppress the phenomenon of edge breakage of the panel during the in-plane shear test, the body diameter d is preferably 5 mm or less. is set to 4.2 mm or less.
(4) In order to prevent excessive bending deformation of the nail from occurring during the in-plane shear test, the body diameter d is set to 2 mm or more, preferably 2.2 mm or more.
(5) In order to prevent the strength of the neck portion 23 from decreasing excessively, the ratio η of head area/body cross-sectional area is set to 13 or less, preferably 11 or less.
(6) In order to ensure the effect of suppressing the punching shear phenomenon, the ratio η of head area/body cross-sectional area is set to 6 or more, preferably 7 or more.
 かくして、圧縮強度及び釘側面抵抗を増大した低密度石膏系耐力面材を用いた耐力壁1においては、頭径D、胴径d、及び頭面積/胴断面積の比ηを適切な数値範囲内の値に設定し、これにより、頭部21(釘頭)が面材10にめり込むのを抑制し、パンチングシェア現象を抑制又は軽減するとともに、釘打ち時に生じ得る面材10の割れ等を抑制することにより、耐力壁1の短期許容せん断耐力(Pa)を効果的に増大させる(従って、壁倍率を効果的に増大させる)ことができる。殊に、石膏系耐力面材10の場合、頭部21が面材表面と面一になり、しかも、面材10の被覆材(石膏ボード用原紙)12が破損又は損傷しないように釘打ちを行う必要があるが、殊に、頭部21が過大な頭径Dを有する場合、頭部21の頂面21aと面材10の表面とを面一にする際に、面材10が割れる現象が生じ易いので(上記(1))、このような現象を回避する意味においても、頭径D、胴径d、及び頭面積/胴断面積の比ηに関する上記設定は、重要である。 Thus, in the load-bearing wall 1 using a low-density gypsum-based load-bearing surface material with increased compressive strength and nail side resistance, the head diameter D, body diameter d, and ratio η of head area/body cross-sectional area are set within appropriate numerical ranges. This suppresses the head 21 (nail head) from sinking into the face material 10, suppresses or reduces the punching shear phenomenon, and prevents cracks in the face material 10 that may occur during nailing. By suppressing it, the short-term allowable shear strength (Pa) of the load-bearing wall 1 can be effectively increased (therefore, the wall magnification can be effectively increased). In particular, in the case of a gypsum-based load-bearing facing material 10, nailing is done so that the head 21 is flush with the surface of the facing material and the covering material (base paper for gypsum board) 12 of the facing material 10 is not damaged or damaged. However, in particular, when the head 21 has an excessively large head diameter D, the phenomenon that the face material 10 cracks when the top surface 21a of the head 21 and the surface of the face material 10 are made flush with each other. is likely to occur ((1) above), therefore, the above settings regarding the head diameter D, trunk diameter d, and ratio η of head area/torso cross-sectional area are important in order to avoid such a phenomenon.
[圧縮強度の増大による初期剛性の増大と、短期許容せん断耐力Pa及び壁倍率の増大について]
 本発明者は、上記の如く特定の寸法及び形状を有する釘20を使用して、圧縮強度及び釘側面抵抗を増大した低密度の耐力面材10を木構造の軸組又は枠組に固定することにより、耐力壁1の短期許容せん断耐力Pa及び壁倍率を増大し得ることを認識したが、本発明者は更に、圧縮強度の増大に伴って面材の初期剛性が増大することによっても、耐力壁1の短期許容せん断耐力Pa及び壁倍率が更に増大し得ることを認識した。即ち、特定の寸法及び形状を有する上記釘20と、圧縮強度及び釘側面抵抗が増大した低密度の耐力面材10とを用いることにより、パンチングシェア現象を抑制又は軽減し得るだけではなく、面材の初期剛性を増大させて塑性率μを増大させることができ、両者の相乗効果として、短期許容せん断耐力Pa及び壁倍率を効果的又は効率的に増大させることが可能になる。以下、圧縮強度の増大に伴う耐力面材10の初期剛性増大の作用と、これに起因した短期許容せん断耐力Pa及び壁倍率の増大について説明する。
[Increase in initial stiffness due to increase in compressive strength, increase in short-term allowable shear strength Pa and wall magnification]
The present inventor uses nails 20 having specific dimensions and shapes as described above to secure low density load-bearing facings 10 with increased compressive strength and nail side resistance to the frame or framework of a wood structure. Although the inventor recognized that the short-term allowable shear strength Pa and wall magnification of the load-bearing wall 1 can be increased by It has been recognized that the short-term permissible shear strength Pa of the wall 1 and the wall magnification can be further increased. That is, by using the nail 20 having a specific size and shape and the low-density load-bearing facing material 10 with increased compressive strength and nail side resistance, it is possible not only to suppress or reduce the punching shear phenomenon, but also to improve the surface resistance. By increasing the initial stiffness of the material, the plasticity modulus μ can be increased, and as a synergistic effect of both, it becomes possible to effectively or efficiently increase the short-term allowable shear strength Pa and the wall magnification. Hereinafter, the effect of increasing the initial rigidity of the load-bearing surface material 10 due to the increase in compressive strength, and the increase in short-term allowable shear strength Pa and wall magnification caused by this will be explained.
 前述のとおり、石膏系耐力面材10の圧縮強度及び釘側面抵抗は、澱粉、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル等の有機系強度向上材を無機質繊維とともに石膏スラリー混練用ミキサーに供給して適量の有機系強度向上材及び無機質繊維を石膏スラリーに含有せしめることによって増大される。石膏スラリーに対する上記有機系強度向上材の配合は、比較的低い面密度(6.5~8.9kg/m2の範囲内に面密度)を確保しつつ、所望の圧縮強度(6.5N/mm2以上の圧縮強度)を石膏系耐力面材10に与え、しかも、無機質繊維と協働して所望の釘側面抵抗(500N以上の釘側面抵抗)を石膏系耐力面材10に与える効果的な手段であり、加えて、有機系強度向上材の配合が石膏系耐力面材の品質全般に大きく影響しないという点をも考慮すると、簡易で、しかも、現実的又は実務的に有効な手段である。 As mentioned above, the compressive strength and nail side resistance of the gypsum-based load-bearing facing material 10 are determined by feeding organic strength-improving materials such as starch, polyvinyl acetate, polyvinyl alcohol, and polyacrylic together with inorganic fibers to a mixer for mixing gypsum slurry. It is increased by incorporating appropriate amounts of organic strength enhancers and inorganic fibers into the gypsum slurry. The blending of the above-mentioned organic strength improving material into the gypsum slurry ensures a relatively low areal density (area density within the range of 6.5 to 8.9 kg/m 2 ) while achieving the desired compressive strength (6.5 N/m 2 ). mm 2 or more) to the gypsum-based load-bearing facing material 10, and in cooperation with the inorganic fibers to give the gypsum-based load-bearing facing material 10 the desired nail side resistance (nail side resistance of 500 N or more). In addition, considering the fact that the combination of organic strength-improving materials does not significantly affect the overall quality of the gypsum-based load-bearing surface material, it is a simple and realistically or practically effective method. be.
 しかも、耐力面材10の圧縮強度の増大は、耐力壁1の初期剛性Kの増大に寄与し、これにより、耐力壁の終局変位δuを大きく低下させることなく、その降伏点変位δvを低下させ、その結果として、耐力壁1の塑性率μが比較的大きく増大し、かくして、短期許容せん断耐力Pa及び壁倍率が増大し得ることが、以下に説明するとおり、本発明者等の最近の実験により判明した。 Moreover, the increase in the compressive strength of the load-bearing wall 10 contributes to an increase in the initial stiffness K of the load-bearing wall 1, thereby reducing the yield point displacement δv without significantly reducing the ultimate displacement δu of the load-bearing wall. As a result, the plastic modulus μ of the load-bearing wall 1 increases relatively significantly, and thus the short-term allowable shear strength Pa and the wall magnification can increase, as explained in the following recent experiments by the present inventors. It was revealed by
 本発明者等は、図8の図表に示す参考例1~4及び比較例4に係る石膏系耐力面材を供試体として製作し、無載荷式試験装置を用いた面内せん断試験を実施した。図8に示す無機質繊維及び有機系強度向上材の配合量は、焼石膏100重量部当りの重量部で示されている。比較例4の石膏系耐力面材は、前述のとおり、所定量の無機質繊維(ガラス繊維)及び有機系強度向上材(澱粉)を混入した平板状石膏コア(石膏芯材)と、石膏コアの両面を被覆する石膏ボード用原紙(紙部材)とから構成される面材であり、いずれも、約7.4~約8.7kg/m2の範囲内の面密度を有し、従来の石膏系耐力面材(特許文献4)に比べて、木構造耐力壁の終局変位δu及び塑性率μが増大し、短期許容せん断耐力Pa及び壁倍率が増大する性能を有する。但し、参考例1~4及び比較例4の石膏系耐力面材は、本開示に係る釘20ではなく、従来の釘N1(NZ50釘)によって土台2、柱3、間柱4、継手間柱4’、横架材5及び胴つなぎ5’(図3に示す木造軸組)に留付けられた。これは、釘20の使用の効果又は影響をなくし、耐力面材10の圧縮強度増大に起因した耐力壁1の初期剛性Kの増大(従って、耐力壁1の塑性率μの増大)と、これに伴う短期許容せん断耐力Pa及び壁倍率の増大のみを評価するためである。尚、図8及び図9にその性能を示す耐力壁は、本開示に係る釘20を用いて耐力面材10を木造軸組に留付けた構造を有しないので、参考例1~4として図8及び図9に示されている。 The present inventors manufactured gypsum-based load-bearing surface materials according to Reference Examples 1 to 4 and Comparative Example 4 shown in the diagram of FIG. 8 as specimens, and conducted an in-plane shear test using a non-loading test device. . The blending amounts of the inorganic fibers and organic strength improving material shown in FIG. 8 are shown in parts by weight per 100 parts by weight of calcined gypsum. As mentioned above, the gypsum-based load-bearing surface material of Comparative Example 4 consists of a flat gypsum core (gypsum core material) mixed with a predetermined amount of inorganic fiber (glass fiber) and an organic strength improving material (starch), and a gypsum core material. It is a facing material composed of base paper for plasterboard (paper member) that covers both sides, and has an areal density within the range of about 7.4 to about 8.7 kg/m 2 , and is similar to conventional plasterboard. Compared to the system load-bearing surface material (Patent Document 4), it has the performance of increasing the final displacement δu and plasticity modulus μ of the wooden structure load-bearing wall, and increasing the short-term allowable shear strength Pa and wall magnification. However, the gypsum-based load-bearing surface materials of Reference Examples 1 to 4 and Comparative Example 4 were used not with the nails 20 according to the present disclosure, but with conventional nails N1 (NZ50 nails) to attach the foundations 2, columns 3, studs 4, and joint studs 4'. , were fastened to the horizontal members 5 and the trunk link 5' (wooden framework shown in FIG. 3). This eliminates the effect or influence of the use of the nails 20, and increases the initial stiffness K of the load-bearing wall 1 due to the increase in the compressive strength of the load-bearing wall 10 (and therefore increases the plasticity modulus μ of the load-bearing wall 1). This is to evaluate only the increase in short-term allowable shear strength Pa and wall magnification. Note that the load-bearing walls whose performance is shown in FIGS. 8 and 9 do not have a structure in which the load-bearing wall 10 is fastened to the wooden frame using the nails 20 according to the present disclosure, so the figures are shown as Reference Examples 1 to 4. 8 and 9.
 図8及び図9に示された試験結果を参照すると、参考例1~4及び比較例4の各試験体の試験結果は、概ね変形角=20×10-3radに達する前後において最大荷重(最大耐力)Pmax(図3)に達した後、直ちに破壊することなく、その後の繰り返し加力により、0.8Pmax荷重低下域の変形角、即ち、終局変位δu1~δu5(図9)に達するが、終局変位δu1~δu5は、概ね30×10-3rad程度の変形角である。これは、参考例1~4及び比較例4の各試験体が、最大荷重(最大耐力)Pmaxに達した後、最大荷重Pmax時の変形角の概ね1.5倍程度の変形角が生じるまで、その後の繰り返し加力によって塑性変形を持続することを意味する。このような塑性変形の持続性は、前述のとおり、石膏系耐力面材としての最低限度の物性(釘側面抵抗:500N以上)を確保しつつ、面密度を低下させ、石膏板自体が潜在的に保有する靱性又は変形追随性が顕在化したことに起因すると考えられる。 Referring to the test results shown in FIGS. 8 and 9, the test results for each test piece of Reference Examples 1 to 4 and Comparative Example 4 show that the maximum load ( After reaching the maximum yield strength) Pmax (Fig. 3), the deformation angle in the 0.8Pmax load reduction region, that is, the final displacement δu1 to δu5 (Fig. 9), is reached by repeated application of force without immediately breaking. , the final displacements δu1 to δu5 are deformation angles of approximately 30×10 −3 rad. This is until after each test specimen of Reference Examples 1 to 4 and Comparative Example 4 reaches the maximum load (maximum proof stress) Pmax, a deformation angle approximately 1.5 times the deformation angle at the maximum load Pmax occurs. , means that plastic deformation is maintained by repeated application of force. As mentioned above, the sustainability of such plastic deformation reduces the areal density and reduces the potential of the gypsum board itself while ensuring the minimum physical properties (nail side resistance: 500N or more) as a gypsum-based load-bearing surface material. This is thought to be due to the fact that the toughness or deformation-following properties possessed by the steel have become apparent.
 他方、参考例1~4及び比較例4の各圧縮強度等を比較すると、比較例4の石膏系耐力面材の圧縮強度は、6.0N/mm2であり、参考例1~4の石膏系耐力面材の圧縮強度(6.5N/mm2以上)に比べて相対的に低く、比較例4の石膏系耐力面材は、参考例1~4の石膏系耐力面材に比べ、短期許容せん断耐力Pa及び壁倍率が相対的に低下している。 On the other hand, when comparing the compressive strength etc. of Reference Examples 1 to 4 and Comparative Example 4, the compressive strength of the gypsum-based load-bearing surface material of Comparative Example 4 is 6.0 N/mm 2 , and the compressive strength of the gypsum-based load-bearing surface material of Comparative Example 4 is 6.0 N/mm 2 The compressive strength of the gypsum-based load-bearing facing material of Comparative Example 4 is relatively low compared to the compressive strength of the gypsum-based load-bearing facing material (6.5 N/mm 2 or more), and the short-term The allowable shear strength Pa and wall magnification are relatively reduced.
[耐力面材の圧縮強度の測定について]
 図10には、石膏系耐力面材の圧縮強度測定方法が概略的に示されている。
[About measuring the compressive strength of load-bearing surface materials]
FIG. 10 schematically shows a method for measuring the compressive strength of a gypsum-based load-bearing surface material.
 本発明者等が行った石膏系耐力面材の圧縮強度の測定に際し、図10に示す如く、実施例、参考例及び比較例に係る石膏系耐力面材を4cm×4cmの寸法の平板に切断し、実施例、参考例及び比較例について、複数枚の試験片101を製作し、複数枚の同一試験片101を接着せずに4枚積層してなる試験片積層体100を測定装置の上下の載荷板102、103の間に介挿させた。そして、上下の載荷ロッド104によって鉛直方法の圧縮荷重Fv(及び反力Rv)を試験片積層体100に印加し、石膏硬化体からなる主材又は芯材、即ち、試験片101の石膏コア部分を破壊し、破壊時の圧縮荷重Fvを測定した。測定装置として、精密万能試験機(島津製作所製「オートグラフ」、型式:AG-10NKI)を使用した。本発明者等は、試験片積層体100を構成するいずれかの試験片101が圧縮破壊した時点の圧縮荷重Fvを測定し、この測定値を試験片100の面積(16cm2)で除した値を各石膏系耐力面材の圧縮強度として特定した。 When measuring the compressive strength of gypsum-based load-bearing facing materials conducted by the present inventors, the gypsum-based load-bearing facing materials of Examples, Reference Examples, and Comparative Examples were cut into flat plates with dimensions of 4 cm x 4 cm, as shown in Figure 10. For Examples, Reference Examples, and Comparative Examples, a plurality of test pieces 101 were manufactured, and a test piece laminate 100 formed by laminating four of the same test pieces 101 without bonding them was placed on the top and bottom of the measuring device. It was inserted between the loading plates 102 and 103 of. Then, a vertical compressive load Fv (and reaction force Rv) is applied to the test piece laminate 100 by the upper and lower loading rods 104, and the main material or core material made of hardened gypsum, that is, the gypsum core portion of the test piece 101. was destroyed, and the compressive load Fv at the time of destruction was measured. As a measuring device, a precision universal testing machine ("Autograph" manufactured by Shimadzu Corporation, model: AG-10NKI) was used. The present inventors measured the compressive load Fv at the time when any of the test pieces 101 constituting the test piece laminate 100 underwent compression failure, and calculated the value obtained by dividing this measured value by the area (16 cm 2 ) of the test piece 100. was specified as the compressive strength of each gypsum-based load-bearing surface material.
 かくして特定された参考例1~4及び比較例4の石膏系耐力面材の圧縮強度が、図8に示されている。図8に示すとおり、参考例1~4及び比較例4の石膏系耐力面材の初期剛性Kは、圧縮強度の増減に概ね対応して変化し、圧縮強度を高めることにより、初期剛性Kの値を増大させることができる。また、図8に示すとおり、初期剛性Kの増減により塑性率μを変化させ、終局耐力(補正値)Pu'及び短期許容せん断耐力Paの値を変化させることができる。参考例1~4の諸物性によれば、石膏系耐力面材の圧縮強度が6.5N/mm2以上の値に増大することにより、図8に示すとおり、7.8kN以上の値の終局耐力(補正値)Pu'(5.85kN以上の短期許容せん断耐力Pa)が得られる。 The compressive strengths of the gypsum-based load-bearing facing materials of Reference Examples 1 to 4 and Comparative Example 4 thus identified are shown in FIG. As shown in Figure 8, the initial stiffness K of the gypsum-based load-bearing surface materials of Reference Examples 1 to 4 and Comparative Example 4 changes roughly corresponding to the increase or decrease in compressive strength. The value can be increased. Further, as shown in FIG. 8, by increasing or decreasing the initial stiffness K, the plasticity modulus μ can be changed, and the values of the ultimate proof stress (corrected value) Pu′ and the short-term allowable shear proof stress Pa can be changed. According to the physical properties of Reference Examples 1 to 4, as the compressive strength of the gypsum-based load-bearing surface material increases to a value of 6.5 N/mm 2 or more, the final value of 7.8 kN or more is achieved as shown in Figure 8. Proof strength (corrected value) Pu' (short-term allowable shear strength Pa of 5.85 kN or more) is obtained.
 即ち、参考例1~4の石膏系耐力面材は、6.5N/mm2以上の圧縮強度を有し、これに伴う初期剛性Kの増大及び降伏点変位δvの低下により、比較的高い塑性率μを有し、この結果として、参考例1~4の試験体の終局耐力(補正値)Pu'及び短期許容せん断耐力Paは、Pu'=7.8~11.9kN、Pa=5.85~8.92であり、この値は、比較例4の試験体の終局耐力(補正値)(=7.62kN)及び短期許容せん断耐力Pa(=5.72kN)に比べて顕著に増大した値である。また、低減係数α=0.75、ばらつき係数β=1.0と仮定すると、参考例1~4の試験体の壁倍率は、1.64~2.50であり、比較例4の試験体の壁倍率(1.60)に対し、顕著に増大している。換言すると、耐力面材10の圧縮強度の増大により、耐力壁1の初期剛性Kが増大し、この結果、耐力壁の終局変位δuが大きく低下することなく、降伏点変位δvが低下し、これにより、耐力壁1の塑性率μ(=δu/δv)が比較的大きく増大し、かくして、短期許容せん断耐力Pa及び壁倍率が増大したものと考えられる。 That is, the gypsum-based load-bearing face materials of Reference Examples 1 to 4 have a compressive strength of 6.5 N/mm 2 or more, and due to the associated increase in initial stiffness K and decrease in yield point displacement δv, relatively high plasticity. As a result, the ultimate strength (corrected value) Pu' and short-term allowable shear strength Pa of the test specimens of Reference Examples 1 to 4 are as follows: Pu' = 7.8 to 11.9 kN, Pa = 5. 85 to 8.92, and this value was significantly increased compared to the ultimate yield strength (corrected value) (=7.62 kN) and short-term allowable shear strength Pa (=5.72 kN) of the test specimen of Comparative Example 4. It is a value. Further, assuming that the reduction coefficient α = 0.75 and the variation coefficient β = 1.0, the wall magnification of the test specimens of Reference Examples 1 to 4 is 1.64 to 2.50, and the wall magnification of the test specimen of Comparative Example 4 is 1.64 to 2.50. The wall magnification (1.60) is significantly increased. In other words, due to the increase in the compressive strength of the load-bearing wall 10, the initial stiffness K of the load-bearing wall 1 increases, and as a result, the yield point displacement δv decreases without significantly reducing the ultimate displacement δu of the load-bearing wall. As a result, the plastic modulus μ (=δu/δv) of the load-bearing wall 1 increased relatively significantly, and thus the short-term allowable shear strength Pa and the wall magnification increased.
 [初期剛性Kの増大に伴う塑性率μの増大について]
 前述のとおり、終局耐力(補正値)Pu'は、終局耐力Puを塑性率μに基づいて補正した値であり、短期許容せん断耐力Paは、終局耐力(補正値)Pu'に対して所定の低減係数α及びばらつき係数βを乗じた値であり、壁倍率は、短期許容せん断耐力Paを所定の耐力基準値(L×1.96)で除した値である。従って、壁倍率及び短期許容せん断耐力Paは、終局耐力Puの値に比例するとともに、塑性率μの増大に伴って増大する。塑性率μは、終局変位δuと比例し、降伏点変位δvに反比例する値であり、従って、終局変位δuを増大させ、或いは、降伏点変位δvを低減させることにより、壁倍率及び短期許容せん断耐力Paを増大させることができる。
[About the increase in the plasticity modulus μ due to the increase in the initial stiffness K]
As mentioned above, the ultimate yield strength (corrected value) Pu' is the value obtained by correcting the ultimate yield strength Pu based on the plasticity ratio μ, and the short-term allowable shear strength Pa is a predetermined value for the ultimate yield strength (corrected value) Pu'. It is a value multiplied by a reduction coefficient α and a dispersion coefficient β, and the wall magnification is a value obtained by dividing the short-term allowable shear strength Pa by a predetermined strength reference value (L×1.96). Therefore, the wall magnification and the short-term allowable shear strength Pa are proportional to the value of the ultimate strength Pu and increase as the plasticity ratio μ increases. The plasticity modulus μ is a value that is proportional to the ultimate displacement δu and inversely proportional to the yield point displacement δv. Therefore, by increasing the ultimate displacement δu or decreasing the yield point displacement δv, the wall magnification and short-term allowable shear Yield strength Pa can be increased.
 図9には、参考例1~4及び比較例4の各試験体の試験結果が、完全弾塑性モデルの荷重-変形角特性の線形グラフとして示されている。また、図9には、初期剛性K=2.0kN/10-3radに設定した線形弾性域の一次関数直線Y=KXが、本開示における初期剛性Kの基準線として二点鎖線で示されている。更に、図9には、参考例1~4及び比較例4の各試験体に関し、線形弾性域の一次関数直線Y=K1X~Y=K5X、終局耐力Pu1~Pu5、降伏点σs1~σs5が示されている。図8に示すとおり、参考例1~4の各試験体の初期剛性は、最小値においてK4=2.04kN/10-3radであり、最大値においてK3=2.91kN/10-3radである。他方、比較例4の試験体の初期剛性は、K5=1.94kN/10-3radである。初期剛性Kは、Y=KXの一次関数直線の勾配として図9に顕れており、初期剛性Kが2.0kN/10-3rad以上の値を示す参考例1~4の試験体においては、Y=K1-4Xの各一次関数直線は、初期剛性K=2.0kN/10-3radの基準線よりも急勾配の直線として図9に表され、初期剛性K5が2.0kN/10-3rad未満の値を示す比較例4では、Y=K5Xの一次関数直線は、初期剛性K=2.0kN/10-3radの基準線よりも緩勾配の直線として図9に表されている。即ち、圧縮強度を増大させた参考例1~4の各試験体においては、初期剛性K1-4が2.0kN/10-3rad以上の値を示し、この結果として、比較的小さい降伏点変位δv1~δv4が得られ、比較的大きい終局変位δu1~δu4及び終局耐力Pu1~Pu4と相俟って、比較例4と比べて相対的に大きい終局耐力(補正値)Pu'、短期許容せん断耐力Pa及び壁倍率が図8に示す如く得られる。 In FIG. 9, the test results of each of the test specimens of Reference Examples 1 to 4 and Comparative Example 4 are shown as a linear graph of the load-deformation angle characteristic of a perfect elastic-plastic model. Further, in FIG. 9, a linear function straight line Y=KX in the linear elastic region set to the initial stiffness K=2.0 kN/10 -3 rad is shown by a chain double-dashed line as a reference line for the initial stiffness K in the present disclosure. ing. Furthermore, FIG. 9 shows the linear elastic range linear function straight line Y=K1X to Y=K5X, the ultimate yield strength Pu1 to Pu5, and the yield point σs1 to σs5 for each of the test specimens of Reference Examples 1 to 4 and Comparative Example 4. has been done. As shown in Figure 8, the initial stiffness of each test specimen of Reference Examples 1 to 4 is K4 = 2.04 kN/10 -3 rad at the minimum value, and K3 = 2.91 kN/10 -3 rad at the maximum value. be. On the other hand, the initial stiffness of the test specimen of Comparative Example 4 is K5=1.94 kN/10 -3 rad. The initial stiffness K appears in FIG. 9 as the gradient of the linear function line of Y=KX, and in the test specimens of Reference Examples 1 to 4 in which the initial stiffness K is 2.0 kN/10 -3 rad or more, Each linear function line of Y=K1-4X is represented in FIG. 9 as a straight line with a steeper slope than the reference line of initial stiffness K=2.0 kN/10 -3 rad, and the initial stiffness K5 is 2.0 kN/10 - In Comparative Example 4, which shows a value of less than 3 rad, the linear function line of Y=K5X is represented in FIG. 9 as a straight line with a gentler slope than the reference line of initial stiffness K=2.0 kN/10 -3 rad. . That is, in each of the test specimens of Reference Examples 1 to 4 with increased compressive strength, the initial stiffness K1-4 showed a value of 2.0 kN/10 -3 rad or more, and as a result, the yield point displacement was relatively small. δv1 to δv4 are obtained, and together with relatively large ultimate displacements δu1 to δu4 and ultimate proof strengths Pu1 to Pu4, a relatively large ultimate proof stress (corrected value) Pu' and short-term allowable shear strength compared to Comparative Example 4 are obtained. Pa and wall magnification are obtained as shown in FIG.
 図8及び図9に示す如く、参考例1~4の各試験体の初期剛性Kは、2.0kN/10-3radよりも大きく、比較例4の試験体の初期剛性Kは、2.0kN/10-3radよりも小さく、参考例1~4の試験体の降伏点変位δv1~δv4は、比較例4の試験体の降伏点変位δv5よりも顕著に小さい。図8に示すとおり、参考例1~4の試験体によって得られる壁倍率及び短期許容せん断耐力Paは、比較例4の試験体によって得られる壁倍率及び短期許容せん断耐力Paの値よりも著しく大きい。これは、降伏点変位δvの低下に伴う塑性率μの増大が、壁倍率及び短期許容せん断耐力Paの増大に比較的大きく寄与した結果であると考えられる。 As shown in FIGS. 8 and 9, the initial stiffness K of each test piece of Reference Examples 1 to 4 is greater than 2.0 kN/10 -3 rad, and the initial stiffness K of the test piece of Comparative Example 4 is 2.0 kN/10 -3 rad. The yield point displacements δv1 to δv4 of the test specimens of Reference Examples 1 to 4 are significantly smaller than the yield point displacement δv5 of the test specimen of Comparative Example 4. As shown in Figure 8, the wall magnification and short-term allowable shear strength Pa obtained by the test specimens of Reference Examples 1 to 4 are significantly larger than the values of the wall magnification and short-term permissible shear strength Pa obtained by the test specimen of Comparative Example 4. . This is considered to be the result of the increase in the plasticity modulus μ accompanying the decrease in the yield point displacement δv, which contributed relatively significantly to the increase in the wall magnification and the short-term allowable shear strength Pa.
 以上説明したとおり、本実施例に係る耐力壁1は、以下の特徴を有する。
(1)耐力面材10は、500N以上の釘側面抵抗を発揮し且つ6.5N/mm2以上の圧縮強度を保有するように無機質繊維及び有機系強度向上材を配合した板状の石膏硬化体からなる主材又は芯材と、主材又は芯材の少なくとも表裏面を被覆する紙部材とから構成される。壁面の単位面積当りの質量として特定される耐力面材10の面密度は、6.5~8.9kg/m2の範囲内の値に設定される。このように圧縮強度及び釘側面抵抗を増大した低密度の石膏系耐力面材10を用いた耐力壁1においては、頭径Dを6.0~10.0mmの範囲内、胴径dを2.0~5.0mmの範囲内、頭面積/胴断面積の比ηを6~13の範囲内の値に設定することにより、頭部21が面材10にめり込むのを抑制し、パンチングシェア現象を抑制又は低減するとともに、釘打ち時に生じ得る面材10の割れを抑制し、しかも、耐力壁1の短期許容せん断耐力Paを効果的に増大させる(従って、壁倍率を効果的に増大させる)ことができる。
(2)上記の如く圧縮強度及び釘側面抵抗を増大した低密度の石膏系耐力面材10を用いた耐力壁1においては、その終局変位δuは、例えば、28.09×10-3~34.98×10-3radに増大し、従って、従来の石膏系耐力面材(例えば、特許文献4に記載された石膏系耐力面材)を用いた耐力壁の終局変位δuが20×10-3rad程度の値であったことと対比すると、耐力壁1の終局変位δuは、顕著に増大する。
(3)上記の如く圧縮強度及び釘側面抵抗を増大した低密度の石膏系耐力面材10を用いた耐力壁1においては、参考例1~4(図8及び図9)に係る耐力壁1の降伏点変位δv1~δv4として説明した如く、初期剛性Kの増大に伴って、6.04×10-3~6.80×10-3radに低下しており、この値は、比較例4に係る耐力壁の降伏点変位δv5=7.26×10-3radと比べ、顕著に低下した値である。即ち、上記参考例1~4として説明した耐力面材10は、耐力壁1の終局変位δu1~δu4を増大して塑性率μを増大するだけではなく、耐力壁1の降伏点変位δv1~δv4の低下によっても塑性率μを増大するので、壁倍率及び短期許容せん断耐力Paを比較的大きく増大することができる。
As explained above, the load-bearing wall 1 according to this embodiment has the following features.
(1) The load-bearing surface material 10 is a plate-shaped plaster hardened material containing inorganic fibers and organic strength-improving materials so as to exhibit a nail side resistance of 500 N or more and a compressive strength of 6.5 N/mm 2 or more. It is composed of a main material or core material consisting of a body, and a paper member covering at least the front and back surfaces of the main material or core material. The surface density of the load-bearing surface material 10, which is specified as the mass per unit area of the wall surface, is set to a value within the range of 6.5 to 8.9 kg/m 2 . In the load-bearing wall 1 using the low-density gypsum-based load-bearing facing material 10 with increased compressive strength and nail side resistance, the head diameter D is within the range of 6.0 to 10.0 mm, and the body diameter d is 2. By setting the head area/body cross-sectional area ratio η within the range of .0 to 5.0 mm, the head 21 is prevented from sinking into the face material 10, and the punching shear is reduced. In addition to suppressing or reducing the phenomenon, cracking of the face material 10 that may occur during nailing is suppressed, and moreover, the short-term allowable shear strength Pa of the load-bearing wall 1 is effectively increased (therefore, the wall magnification is effectively increased). )be able to.
(2) In the load-bearing wall 1 using the low-density gypsum-based load-bearing facing material 10 with increased compressive strength and nail side resistance as described above, the ultimate displacement δu is, for example, 28.09×10 -3 to 34 Therefore, the ultimate displacement δu of a load-bearing wall using a conventional gypsum-based load-bearing facing material (for example, the gypsum-based load-bearing facing material described in Patent Document 4) increases to 20×10 -3 rad . Compared to the value of about 3 rad, the ultimate displacement δu of the load-bearing wall 1 increases significantly.
(3) In the load-bearing wall 1 using the low-density gypsum-based load-bearing facing material 10 with increased compressive strength and nail side resistance as described above, the load-bearing wall 1 according to Reference Examples 1 to 4 (FIGS. 8 and 9) As explained above, the yield point displacement δv1 to δv4 decreases to 6.04×10 -3 to 6.80×10 -3 rad as the initial stiffness K increases, and this value This value is significantly lower than the yield point displacement δv5=7.26×10 −3 rad of the load-bearing wall. That is, the load-bearing face material 10 described as Reference Examples 1 to 4 above not only increases the ultimate displacement δu1 to δu4 of the load-bearing wall 1 and increases the plasticity modulus μ, but also increases the yield point displacement δv1 to δv4 of the load-bearing wall 1. Since the plasticity modulus μ is also increased by a decrease in , the wall magnification and the short-term allowable shear strength Pa can be relatively greatly increased.
 以上、本開示の好適な実施形態及び実施例について詳細に説明したが、本開示は上記実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本開示の範囲内で種々の変形又は変更が可能であることはいうまでもない。 Although the preferred embodiments and examples of the present disclosure have been described in detail above, the present disclosure is not limited to the above embodiments and examples, and within the scope of the present disclosure described in the claims. It goes without saying that various modifications or changes are possible.
 例えば、上記実施形態及び実施例は、木構造建築物の1階レベルの耐力壁に関するものであるが、本開示は、2階又は3階レベルの耐力壁についても同様に適用し得るものである。2階又は3階レベルの耐力壁の場合、耐力面材の下端部は、2階床又は3階床レベルの横架材等に留付けられる。 For example, although the above embodiments and examples relate to a load-bearing wall at the first floor level of a wooden structure building, the present disclosure can be similarly applied to a load-bearing wall at the second or third floor level. . In the case of a load-bearing wall at the second or third floor level, the lower end of the load-bearing face member is fastened to a horizontal member or the like at the second or third floor level.
 また、上記実施形態及び実施例は、木造軸組工法且つ大壁造の耐力壁構造に関するものであるが、木造軸組工法の真壁造又は床勝(床先行)・大壁造の耐力壁構造に本開示を適用してもよい。変形例として、木造枠組壁工法の耐力壁構造に本開示を適用してもよく、この場合、耐力面材は、土台、柱及び横架材に換えて、縦枠、下枠、上枠等に留付けられる。 In addition, the above embodiments and examples relate to load-bearing wall structures using wooden frame construction methods and large walls; The present disclosure may be applied to. As a modified example, the present disclosure may be applied to the load-bearing wall structure of the wooden frame wall construction method, and in this case, the load-bearing surface materials are vertical frames, lower frames, upper frames, etc. instead of the foundations, columns, and horizontal members. It is fastened to.
 更に、図3に示す試験体は、石膏板を上下に分割し、高さ方向中間位置に胴つなぎを配設した構造のものであるが、木造軸組の全高と実質的に同じ高さ寸法の石膏板を用いて面内せん断試験を実施してもよい。後者の場合には、更に短期基準せん断耐力を増大し得ると考えられる。 Furthermore, the test specimen shown in Figure 3 has a structure in which the gypsum board is divided into upper and lower parts and a trunk joint is placed in the middle position in the height direction, but the height dimension is substantially the same as the total height of the wooden framework. An in-plane shear test may be performed using a gypsum board. In the latter case, it is considered that the short-term standard shear strength can be further increased.
 本開示は、木構造建築物の木構造耐力壁及びその施工方法に適用される。殊に、本開示は、6.5~8.9kg/m2の範囲内の面密度を有し、500N以上の釘側面抵抗を発揮するように無機質繊維及び有機系強度向上材を混入した板状の石膏硬化体を主材又は芯材とする低密度の石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に金属製の釘によって留付け、耐力面材を木構造壁下地によって構造的に一体的に保持するように構成された木構造耐力壁及びその施工方法に適用される。本開示は又、このような石膏系耐力面材を用いた木構造耐力壁の壁倍率増大方法に適用される。本開示は更に、このような木構造耐力壁、その壁倍率増大方法及びその施工方法において使用される石膏系耐力面材に適用される。本開示によれば、特定の形状及び寸法を有する金属製の釘を用いて耐力面材を木構造壁下地に留付けることにより、補強材又は補剛材を付加的に取付けることなく、石膏系面材の比重及び/又は板厚を増大することもなく、しかも、終局変位(δu)の値を更に増大させることもなく、木構造耐力壁の壁倍率を増大することができるので、その実用的価値又は効果は、顕著である。 The present disclosure is applied to a wooden structural load-bearing wall of a wooden structural building and a construction method thereof. In particular, the present disclosure provides a board having an areal density in the range of 6.5 to 8.9 kg/m 2 and mixed with inorganic fibers and an organic strength-enhancing material so as to exhibit a nail side resistance of 500 N or more. A low-density gypsum-based load-bearing surface material with hardened gypsum as the main material or core material is fastened with metal nails to the wooden structure wall base of the wooden frame construction method or wooden frame wall construction method, and the load-bearing surface material is attached to the wooden structure. It is applied to a load-bearing wooden structure wall constructed to be structurally integrally held by a structural wall base and its construction method. The present disclosure also applies to a method for increasing the wall magnification of a wooden structure load-bearing wall using such a gypsum-based load-bearing wall material. The present disclosure further applies to such a wooden structure load-bearing wall, a method for increasing the wall magnification thereof, and a gypsum-based load-bearing surface material used in the construction method thereof. According to the present disclosure, by fastening a load-bearing fascia to a wooden structural wall base using metal nails having a specific shape and dimensions, gypsum-based It is possible to increase the wall magnification of a wooden structural load-bearing wall without increasing the specific gravity and/or thickness of the facing material, and without further increasing the value of the ultimate displacement (δu). The value or effect is significant.
 本国際出願は、2022年7月30日に出願した日本国特許出願第2022-122390号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2022-122390 filed on July 30, 2022, and the entire contents of that application are incorporated into this international application.
1 耐力壁
2 土台
3 柱
4 間柱
4’ 継手間柱
5 横架材(梁、胴差、軒桁、妻桁)
5’ 胴つなぎ
10、10a、10b 石膏系耐力面材
11 平板状石膏コア(石膏芯材)
12 石膏ボード用原紙(紙部材)
20 釘(留め具)
21 頭部
21a 頂面
21b 着座面
22 胴部
23 首部
24 先端部
D 頭径
d 胴径
L 長さ
η 頭面積/胴断面積の面積比
1 Load-bearing wall 2 Foundation 3 Column 4 Stud 4' Joint stud 5 Horizontal members (beam, girder, eave girder, girder)
5' Trunk joints 10, 10a, 10b Gypsum-based load-bearing surface material 11 Flat gypsum core (gypsum core material)
12 Base paper for gypsum board (paper component)
20 Nails (fasteners)
21 Head 21a Top surface 21b Seating surface 22 Trunk 23 Neck 24 Tip D Head diameter d Trunk diameter L Length η Area ratio of head area/torso cross-sectional area

Claims (31)

  1.  石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に対して留め具によって留付けた構造を有する木構造耐力壁において、
     前記耐力面材は、板状の石膏硬化体からなる主材又は芯材と、該主材又は芯材の少なくとも表裏面を被覆する紙部材とから構成され、
     前記耐力面材は、壁面の単位面積当りの質量として特定される該耐力面材の面密度又は面重量として、6.5~8.9kg/m2の範囲内の面密度又は面重量を有するとともに、500N以上の釘側面抵抗を発揮し、且つ、少なくとも6.5N/mm2以上の圧縮強度を保有しており、
     前記留め具は、頭部及び胴部を有し、頭部の面積/胴部の断面積の面積比を6~13の範囲内の値に設定した金属製の釘からなり、
     壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位として、20×10-3radよりも大きい値の終局変位(δu)を有することを特徴とする、木構造耐力壁。
    In a wooden structure load-bearing wall that has a structure in which a gypsum-based load-bearing surface material is fastened to the wooden structure wall base using fasteners using the wooden frame construction method or the wooden frame wall construction method,
    The load-bearing surface material is composed of a main material or core material made of a plate-shaped gypsum hardened body, and a paper member that covers at least the front and back surfaces of the main material or core material,
    The load-bearing facing material has an areal density or areal weight within the range of 6.5 to 8.9 kg/m 2 as the areal density or areal weight of the load-bearing facing material specified as the mass per unit area of the wall surface. At the same time, it exhibits a nail side resistance of 500N or more, and has a compressive strength of at least 6.5N/mm 2 or more,
    The fastener is made of a metal nail having a head and a body, and the area ratio of the area of the head/the cross-sectional area of the body is set to a value within the range of 6 to 13,
    As the ultimate displacement of the load-bearing wall measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m, the load-bearing wall has an ultimate displacement (δu) of a value larger than 20 × 10 -3 rad. A wooden structural load-bearing wall featuring:
  2.  請求項1に記載された木構造耐力壁において、
     前記釘の胴部は、均一な円形横断面を有するストレート・スムース形の胴部であり、尖塔形の先端部を備えており、前記釘の頭部は、頂面視円形輪郭を有する平頭フラット形又は平頭網目付き形の頭部であることを特徴とする、木構造耐力壁。
    The wooden structure load-bearing wall according to claim 1,
    The body of the nail is a straight smooth body with a uniform circular cross-section and a spire-shaped tip, and the head of the nail is a flat-headed body with a circular profile in top view. Wood structure load-bearing wall characterized by a head in the form of a shaped or flat-headed mesh.
  3.  請求項1に記載された木構造耐力壁において、
     前記釘は、釘打ち作業によって前記耐力面材の外面に着座する環状且つ平坦な着座面と、前記耐力面材の外面が構成する壁面と実質的に同じ面内に釘打ち後に位置するように施工される平坦な頂面とを有することを特徴する、木構造耐力壁。
    The wooden structure load-bearing wall according to claim 1,
    After nailing, the nail is located in substantially the same plane as an annular and flat seating surface that seats on the outer surface of the load-bearing surface material and a wall surface constituted by the outer surface of the load-bearing surface material. A wooden structural load-bearing wall, characterized in that it has a constructed flat top surface.
  4.  請求項1乃至3のいずれか1項に記載された木構造耐力壁において、
     前記耐力面材は、前記面内せん断試験によって測定される前記耐力壁の初期剛性(K)として2.2kN/10-3rad以上の値を確保すべく、7.5N/mm2以上の前記圧縮強度を保有することを特徴とする、木構造耐力壁。
    The wooden structure load-bearing wall according to any one of claims 1 to 3,
    The load-bearing surface material has a stiffness of 7.5 N/mm 2 or more in order to ensure an initial stiffness (K) of the load-bearing wall measured by the in-plane shear test of 2.2 kN/10 -3 rad or more. A wooden structural load-bearing wall that is characterized by its compressive strength.
  5.  請求項1乃至3のいずれか1項に記載された木構造耐力壁において、
     前記面内せん断試験によって測定される前記耐力壁の物性として、
     (1)7.2×10-3rad以下の降伏点変位(δv)、
     (2)4.2以上の塑性率(μ)、
     (3)7.7kN以上の終局耐力(Pu)の補正値(Pu')、及び
     (4)7.7kN以上の値であって、前記終局耐力(Pu)の補正値(Pu')よりも大きい降伏耐力(Py)、
    より構成される諸物性のうちの少なくとも1つの物性が、前記面密度又は面重量及び前記釘側面抵抗の設定と、パンチングシェア現象を抑制し又はパンチングアウト破壊の作用を軽減すべく設定された前記釘の頭径、胴径、及び頭部の面積/胴部の断面積の面積比の設定と、によって確保されることを特徴とする、木構造耐力壁。
    The wooden structure load-bearing wall according to any one of claims 1 to 3,
    The physical properties of the load-bearing wall measured by the in-plane shear test include:
    (1) Yield point displacement (δv) of 7.2×10 -3 rad or less,
    (2) Plasticity modulus (μ) of 4.2 or more,
    (3) A correction value (Pu') of the ultimate strength (Pu) of 7.7 kN or more, and (4) A value of 7.7 kN or more, which is lower than the correction value (Pu') of the ultimate strength (Pu). Large yield strength (Py),
    At least one of the physical properties consisting of the above-mentioned areal density or areal weight and the above-mentioned nail side resistance setting, and the above-mentioned property set to suppress the punching shear phenomenon or reduce the effect of punching-out fracture. A wooden structural load-bearing wall, which is secured by setting the nail head diameter, body diameter, and area ratio of head area/body cross-sectional area.
  6.  請求項1乃至3のいずれか1項に記載された木構造耐力壁において、
     前記耐力面材は、12mm未満の板厚、及び/又は、0.96以下の比重を有することを特徴とする、木構造耐力壁。
    The wooden structure load-bearing wall according to any one of claims 1 to 3,
    A wooden structural load-bearing wall, characterized in that the load-bearing face material has a thickness of less than 12 mm and/or a specific gravity of 0.96 or less.
  7.  請求項1に記載された木構造耐力壁において、
     前記耐力面材の前記主材又は前記芯材には、無機質繊維及び/又は有機系強度向上材が配合されていることを特徴とする、木構造耐力壁。
    The wooden structure load-bearing wall according to claim 1,
    A wooden structure load-bearing wall, characterized in that the main material or the core material of the load-bearing surface material contains an inorganic fiber and/or an organic strength improving material.
  8.  請求項1又は7に記載された木構造耐力壁において、
     前記石膏系耐力面材の主材又は芯材には、オルガノポリシロキサン化合物が配合されていることを特徴とする、木構造耐力壁。
    The wooden structure load-bearing wall according to claim 1 or 7,
    A wooden structural load-bearing wall, characterized in that the main material or core material of the gypsum-based load-bearing surface material contains an organopolysiloxane compound.
  9.  石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に固定する木構造耐力壁の施工方法において、
     板状の石膏硬化体からなる主材又は芯材と、該主材又は芯材の少なくとも表裏面を被覆する紙部材とから構成される石膏系耐力面材であって、壁面の単位面積当りの質量として特定される面密度又は面重量として、6.5~8.9kg/m2の範囲内の面密度又は面重量を有するとともに、500N以上の釘側面抵抗を発揮し且つ少なくとも6.5N/mm2以上の圧縮強度を有する石膏系耐力面材を前記木構造壁下地に対して留め具によって留付け、該留め具として、頭部の面積/胴部の断面積の面積比を6~13の範囲内の値に設定した金属製の釘を使用し、
     壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位(δu)として、20×10-3radよりも大きい値の終局変位を発揮する木構造耐力壁を構築することを特徴とする、木構造耐力壁の施工方法。
    In the construction method of a wooden structure load-bearing wall, in which a gypsum-based load-bearing surface material is fixed to the wooden structure wall base of the wooden frame construction method or the wooden frame wall construction method,
    A gypsum-based load-bearing surface material consisting of a main material or core material made of a plate-shaped hardened gypsum material and a paper member covering at least the front and back surfaces of the main material or core material, The areal density or areal weight specified as mass is within the range of 6.5 to 8.9 kg/ m2 , and the nail side resistance is 500 N or more and is at least 6.5 N/m2. A gypsum-based load-bearing surface material having a compressive strength of mm 2 or more is fastened to the wooden structure wall base using fasteners, and the fasteners have an area ratio of 6 to 13 of the area of the head/cross-sectional area of the body. using a metal nail set to a value within the range of
    The ultimate displacement (δu) of the load-bearing wall measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m is greater than 20 × 10 -3 rad. A method for constructing a wooden structure load-bearing wall, which is characterized by constructing a wooden structure load-bearing wall.
  10.  請求項9に記載された木構造耐力壁の施工方法において、
     前記釘の胴部は、均一な円形横断面を有するストレート・スムース形の胴部であり、尖塔形の先端部を備えており、前記釘の頭部は、頂面視円形輪郭を有する平頭フラット形又は平頭網目付き形の頭部であることを特徴とする、木構造耐力壁の施工方法。
    The method for constructing a wooden structure load-bearing wall according to claim 9,
    The body of the nail is a straight smooth body with a uniform circular cross-section and a spire-shaped tip, and the head of the nail is a flat-headed body with a circular profile in top view. A method of constructing a load-bearing wall made of wood, characterized by a head having a shape or a flat-head mesh shape.
  11.  請求項9に記載された木構造耐力壁の施工方法において、
     前記釘は、釘打ち作業によって前記耐力面材の外面に着座する環状且つ平坦な着座面と、前記耐力面材の外面が構成する壁面と実質的に同じ面内に釘打ち後に位置するように施工される平坦な頂面とを有することを特徴する、木構造耐力壁の施工方法。
    The method for constructing a wooden structure load-bearing wall according to claim 9,
    After nailing, the nail is located in substantially the same plane as an annular and flat seating surface that seats on the outer surface of the load-bearing surface material and a wall surface constituted by the outer surface of the load-bearing surface material. A method for constructing a wooden structural load-bearing wall, characterized by having a flat top surface.
  12.  請求項9乃至11のいずれか1項に記載された木構造耐力壁の施工方法において、
     前記耐力面材は、前記面内せん断試験によって測定される前記耐力壁の初期剛性(K)として2.2kN/10-3rad以上の値を確保すべく、7.5N/mm2以上の前記圧縮強度を保有することを特徴とする、木構造耐力壁の施工方法。
    The method for constructing a wooden structure load-bearing wall according to any one of claims 9 to 11,
    The load-bearing surface material has a stiffness of 7.5 N/mm 2 or more in order to ensure an initial stiffness (K) of the load-bearing wall measured by the in-plane shear test of 2.2 kN/10 -3 rad or more. A method of constructing a wooden structural load-bearing wall that is characterized by its compressive strength.
  13.  請求項9乃至11のいずれか1項に記載された木構造耐力壁の施工方法において、
     前記面内せん断試験によって測定される前記耐力壁の物性として、
     (1)7.2×10-3rad以下の降伏点変位(δv)、
     (2)4.2以上の塑性率(μ)、
     (3)7.7kN以上の終局耐力(Pu)の補正値(Pu')、及び
     (4)7.7kN以上の値であって、前記終局耐力(Pu)の補正値(Pu')よりも大きい降伏耐力(Py)、
    より構成される諸物性のうちの少なくとも1つの物性が、前記面密度又は面重量及び前記釘側面抵抗の設定と、パンチングシェア現象を抑制し又はパンチングアウト破壊の作用を軽減すべく設定された前記釘の頭径、胴径、及び頭部の面積/胴部の断面積の面積比の設定と、によって確保されることを特徴とする、木構造耐力壁の施工方法。
    The method for constructing a wooden structure load-bearing wall according to any one of claims 9 to 11,
    The physical properties of the load-bearing wall measured by the in-plane shear test include:
    (1) Yield point displacement (δv) of 7.2×10 -3 rad or less,
    (2) Plasticity modulus (μ) of 4.2 or more,
    (3) A correction value (Pu') of the ultimate strength (Pu) of 7.7 kN or more, and (4) A value of 7.7 kN or more, which is lower than the correction value (Pu') of the ultimate strength (Pu). Large yield strength (Py),
    At least one of the physical properties consisting of the above-mentioned areal density or areal weight and the above-mentioned nail side resistance setting, and the above-mentioned property set to suppress the punching shear phenomenon or reduce the effect of punching-out fracture. A method for constructing a wooden structural load-bearing wall, which is secured by setting the nail head diameter, body diameter, and area ratio of head area/body cross-sectional area.
  14.  請求項9乃至11のいずれか1項に記載された木構造耐力壁の施工方法において、
     前記耐力面材は、12mm未満の板厚、及び/又は、0.96以下の比重を有することを特徴とする、木構造耐力壁の施工方法。
    The method for constructing a wooden structure load-bearing wall according to any one of claims 9 to 11,
    A method for constructing a wooden structure load-bearing wall, characterized in that the load-bearing face material has a thickness of less than 12 mm and/or a specific gravity of 0.96 or less.
  15.  請求項9に記載された木構造耐力壁の施工方法において、
     前記耐力面材の前記主材又は前記芯材には、無機質繊維及び/又は有機系強度向上材が配合されていることを特徴とする、木構造耐力壁の施工方法。
    The method for constructing a wooden structure load-bearing wall according to claim 9,
    A method for constructing a wooden structure load-bearing wall, characterized in that the main material or the core material of the load-bearing surface material contains an inorganic fiber and/or an organic strength improving material.
  16.  請求項9又は15に記載された木構造耐力壁の施工方法において、
     前記石膏系耐力面材の主材又は芯材には、オルガノポリシロキサン化合物が配合されていることを特徴とする木構造耐力壁の施工方法。
    In the method for constructing a wooden structural load-bearing wall according to claim 9 or 15,
    A method for constructing a wooden structural load-bearing wall, characterized in that the main material or core material of the gypsum-based load-bearing surface material contains an organopolysiloxane compound.
  17.  石膏系耐力面材を木造軸組工法又は木造枠組壁工法の木構造壁下地に対して留め具によって留付けることにより施工される、木構造耐力壁の壁倍率増大方法において、
     板状の石膏硬化体からなる主材又は芯材と、該主材又は芯材の少なくとも表裏面を被覆する紙部材とから前記耐力面材を構成し、
     壁面の単位面積当りの質量として特定される前記耐力面材の面密度又は面重量を6.5~8.9kg/m2に低減するとともに、前記耐力面材が500N以上の釘側面抵抗及び6.5N/mm2以上の圧縮強度を発揮するように、前記主材又は前記芯材の石膏硬化体の配合を設定し、
     前記留め具として、頭部の面積/胴部の断面積の面積比を6~13の範囲内の値に設定した金属製の釘を使用して、パンチングシェア現象を抑制し又はパンチングアウト破壊の作用を軽減し、
     壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位(δu)として、20×10-3radよりも大きい値の終局変位を得ることを特徴とする、木構造耐力壁の壁倍率増大方法。
    In a method for increasing the wall magnification of a wooden structure load-bearing wall, which is constructed by fastening a gypsum-based load-bearing surface material to the wooden structure wall base of the wooden frame construction method or the wooden frame wall construction method using fasteners,
    The load-bearing surface material is composed of a main material or core material made of a plate-shaped hardened gypsum body, and a paper member that covers at least the front and back surfaces of the main material or core material,
    The areal density or areal weight of the load-bearing facing material, specified as the mass per unit area of the wall surface, is reduced to 6.5 to 8.9 kg/ m2 , and the load-bearing facing material has a nail side resistance of 500N or more and 6.5 kg/m2. The composition of the hardened gypsum of the main material or the core material is set so as to exhibit a compressive strength of .5 N/mm 2 or more,
    As the fastener, a metal nail whose area ratio of the area of the head/the cross-sectional area of the body is set to a value within the range of 6 to 13 is used to suppress the punching shear phenomenon or to prevent punching-out failure. reduce the effect,
    Obtaining an ultimate displacement of a value larger than 20×10 -3 rad as the ultimate displacement (δu) of the load-bearing wall measured by an in-plane shear test using a load-bearing wall test piece with a wall length of 1.82 m. A method for increasing the wall magnification of a wooden structural load-bearing wall.
  18.  請求項17に記載された木構造耐力壁の壁倍率増大方法において、
     前記釘の胴部は、均一な円形横断面を有するストレート・スムース形の胴部であり、尖塔形の先端部を備えており、前記釘の頭部は、頂面視円形輪郭を有する平頭フラット形又は平頭網目付き形の頭部であることを特徴とする、木構造耐力壁の壁倍率増大方法。
    The method for increasing the wall magnification of a wooden structure load-bearing wall according to claim 17,
    The body of the nail is a straight smooth body with a uniform circular cross-section and a spire-shaped tip, and the head of the nail is a flat-headed body with a circular profile in top view. A method for increasing the wall magnification of a load-bearing wall made of wood, characterized in that the head is shaped or flat-headed.
  19.  請求項17に記載された木構造耐力壁の壁倍率増大方法において、
     前記釘は、釘打ち作業によって前記耐力面材の外面に着座する環状且つ平坦な着座面と、前記耐力面材の外面が構成する壁面と実質的に同じ面内に釘打ち後に位置するように施工される平坦な頂面とを有することを特徴する、木構造耐力壁の壁倍率増大方法。
    The method for increasing the wall magnification of a wooden structure load-bearing wall according to claim 17,
    After nailing, the nail is located in substantially the same plane as an annular and flat seating surface that seats on the outer surface of the load-bearing surface material and a wall surface constituted by the outer surface of the load-bearing surface material. A method for increasing the wall magnification of a wooden structural load-bearing wall, characterized by having a flat top surface constructed.
  20.  請求項17乃至19のいずれか1項に記載された木構造耐力壁の壁倍率増大方法において、
     前記面内せん断試験によって測定される前記耐力壁の初期剛性(K)として2.2kN/10-3rad以上の値を確保すべく、7.5N/mm2以上の前記圧縮強度を前記耐力面材に保有せしめることを特徴とする、木構造耐力壁の壁倍率増大方法。
    In the method for increasing the wall magnification of a wooden structural load-bearing wall according to any one of claims 17 to 19,
    In order to ensure that the initial stiffness (K) of the load-bearing wall measured by the in-plane shear test is 2.2 kN/10 -3 rad or more, the compressive strength of 7.5 N/mm 2 or more is set to the load-bearing surface. A method for increasing the wall magnification of a load-bearing wall made of wood, characterized by retaining it in the timber.
  21.  請求項17乃至19のいずれか1項に記載された木構造耐力壁の壁倍率増大方法において、
     前記面内せん断試験によって測定される前耐力壁の物性として、
     (1)7.2×10-3rad以下の降伏点変位(δv)、
     (2)4.2以上の塑性率(μ)、
     (3)7.7kN以上の終局耐力(Pu)の補正値(Pu')、及び
     (4)7.7kN以上の値であって、前記終局耐力(Pu)の補正値(Pu')よりも大きい降伏耐力(Py)、
    より構成される諸物性のうち少なくとも1つの物性が、前記面密度又は面重量及び前記釘側面抵抗の設定と、パンチングシェア現象を抑制し又はパンチングアウト破壊の作用を軽減すべく設定された前記釘の頭径、胴径、及び頭部の面積/胴部の断面積の面積比の設定と、によって確保されることを特徴とする、木構造耐力壁の壁倍率増大方法。
    In the method for increasing the wall magnification of a wooden structural load-bearing wall according to any one of claims 17 to 19,
    The physical properties of the pre-bearing wall measured by the in-plane shear test are as follows:
    (1) Yield point displacement (δv) of 7.2×10 -3 rad or less,
    (2) Plasticity modulus (μ) of 4.2 or more,
    (3) A correction value (Pu') of the ultimate strength (Pu) of 7.7 kN or more, and (4) A value of 7.7 kN or more, which is lower than the correction value (Pu') of the ultimate strength (Pu). Large yield strength (Py),
    At least one of the physical properties consisting of the areal density or areal weight and the setting of the nail side resistance, and the nail set to suppress the punching shear phenomenon or reduce the effect of punching-out fracture. A method for increasing the wall magnification of a wooden structural load-bearing wall, characterized by setting the head diameter, body diameter, and area ratio of head area/body cross-sectional area.
  22.  請求項17乃至19のいずれか1項に記載された木構造耐力壁の壁倍率増大方法において、
     前記耐力面材は、12mm未満の板厚、及び/又は、0.96以下の比重を有することを特徴とする、木構造耐力壁の壁倍率増大方法。
    In the method for increasing the wall magnification of a wooden structural load-bearing wall according to any one of claims 17 to 19,
    A method for increasing wall magnification of a wooden structure load-bearing wall, characterized in that the load-bearing surface material has a thickness of less than 12 mm and/or a specific gravity of 0.96 or less.
  23.  請求項17に記載された木構造耐力壁の壁倍率増大方法において、
     前記耐力面材の前記主材又は前記芯材には、無機質繊維及び/又は有機系強度向上材が配合されていることを特徴とする、木構造耐力壁の壁倍率増大方法。
    The method for increasing the wall magnification of a wooden structure load-bearing wall according to claim 17,
    A method for increasing wall magnification of a wooden structural load-bearing wall, characterized in that the main material or the core material of the load-bearing surface material contains inorganic fibers and/or organic strength improving materials.
  24.  請求項17又は23に記載された木構造耐力壁の壁倍率増大方法において、
     前記石膏系耐力面材の主材又は芯材には、オルガノポリシロキサン化合物が配合されていることを特徴とする、木構造耐力壁の壁倍率増大方法。
    In the method for increasing the wall magnification of a wooden structural load-bearing wall according to claim 17 or 23,
    A method for increasing the wall magnification of a wooden structural load-bearing wall, characterized in that the main material or core material of the gypsum-based load-bearing surface material contains an organopolysiloxane compound.
  25.  請求項9に記載された木構造耐力壁の施工方法において使用され、或いは、請求項17に記載された木構造耐力壁の壁倍率増大方法において使用され、木造軸組工法又は木造枠組壁工法の木構造壁下地に対して前記留め具によって留付けられる、木構造耐力壁用の石膏系耐力面材であって、
     500N以上の釘側面抵抗を発揮し且つ少なくとも6.5N/mm2以上の圧縮強度を保有するとともに、6.5~8.9kg/m2の範囲内の面密度又は面重量を有し、
     前記留め具と協働して、壁の長さ1.82mの耐力壁試験体を用いた面内せん断試験によって測定される前記耐力壁の終局変位(δu)を20×10-3radよりも大きい値に増大せしめることを特徴とする、石膏系耐力面材。
    Used in the construction method of a wooden structure load-bearing wall according to claim 9, or used in the method for increasing the wall magnification of a wooden structure load-bearing wall according to claim 17, and used in the wooden frame construction method or the wooden frame wall construction method. A gypsum-based load-bearing surface material for a wooden structure load-bearing wall, which is fastened to a wooden structure wall base by the fasteners,
    exhibits a nail side resistance of 500 N or more, has a compressive strength of at least 6.5 N/mm 2 or more, and has an areal density or areal weight within the range of 6.5 to 8.9 kg/m 2 ,
    In cooperation with the fasteners, the ultimate displacement (δu) of the load-bearing wall, measured by an in-plane shear test using a load-bearing wall specimen with a wall length of 1.82 m, is lower than 20×10 −3 rad. A gypsum-based load-bearing surface material that is characterized by its ability to increase to a large value.
  26.  請求項25に記載された石膏系耐力面材において、
     前記耐力面材は、12mm未満の板厚、及び/又は、0.96以下の比重を有することを特徴とする、石膏系耐力面材。
    In the gypsum-based load-bearing surface material according to claim 25,
    A gypsum-based load-bearing surface material, wherein the load-bearing surface material has a thickness of less than 12 mm and/or a specific gravity of 0.96 or less.
  27.  請求項25又は26に記載された石膏系耐力面材において、
     前記面内せん断試験によって測定される前記耐力壁の初期剛性(K)として2.2kN/10-3rad以上の値を確保すべく、7.5N/mm2以上の前記圧縮強度を保有することを特徴とする、石膏系耐力面材。
    In the gypsum-based load-bearing surface material according to claim 25 or 26,
    In order to ensure that the initial stiffness (K) of the load-bearing wall measured by the in-plane shear test is 2.2 kN/10 -3 rad or more, the compressive strength is 7.5 N/mm 2 or more. A gypsum-based load-bearing surface material characterized by:
  28.  請求項25又は26に記載された石膏系耐力面材において、
     前記面内せん断試験によって測定される前記耐力壁の物性として、
     (1)7.2×10-3rad以下の降伏点変位(δv)、
     (2)4.2以上の塑性率(μ)、
     (3)7.7kN以上の終局耐力(Pu)の補正値(Pu')、及び
     (4)7.7kN以上の値であって、前記終局耐力(Pu)の補正値(Pu')よりも大きい降伏耐力(Py)、
    より構成される諸物性のうち少なくとも1つの物性が、前記面密度又は面重量及び前記釘側面抵抗の設定と、パンチングシェア現象を抑制し又はパンチングアウト破壊を低減すべく設定された前記釘の頭径、胴径、及び頭部の面積/胴部の断面積の面積比の設定と、によって確保されることを特徴とする、石膏系耐力面材。
    In the gypsum-based load-bearing surface material according to claim 25 or 26,
    The physical properties of the load-bearing wall measured by the in-plane shear test include:
    (1) Yield point displacement (δv) of 7.2×10-3 rad or less,
    (2) Plasticity modulus (μ) of 4.2 or more,
    (3) A correction value (Pu') of the ultimate strength (Pu) of 7.7 kN or more, and (4) A value of 7.7 kN or more, which is lower than the correction value (Pu') of the ultimate strength (Pu). Large yield strength (Py),
    At least one of the physical properties consisting of the areal density or areal weight and the setting of the nail side resistance, and the head of the nail set to suppress the punching shear phenomenon or reduce punch-out fracture. A gypsum-based load-bearing surface material that is secured by setting a diameter, a body diameter, and an area ratio of the area of the head/the cross-sectional area of the body.
  29.  請求項25又は26に記載された石膏系耐力面材において、
     前記石膏系耐力面材は、980N以下の釘側面抵抗を有することを特徴とする、石膏系耐力面材。
    In the gypsum-based load-bearing surface material according to claim 25 or 26,
    The gypsum-based load-bearing facing material is characterized in that the gypsum-based load-bearing facing material has a nail side resistance of 980N or less.
  30.  請求項25に記載された石膏系耐力面材において、
     前記耐力面材の前記主材又は前記芯材には、無機質繊維及び/又は有機系強度向上材が配合されていることを特徴とする、石膏系耐力面材。
    In the gypsum-based load-bearing surface material according to claim 25,
    A gypsum-based load-bearing surface material, characterized in that the main material or the core material of the load-bearing surface material contains an inorganic fiber and/or an organic strength improving material.
  31.  請求項25又は30に記載された石膏系耐力面材において、
     前記石膏系耐力面材の主材又は芯材には、オルガノポリシロキサン化合物が配合されていることを特徴とする、石膏系耐力面材。
    In the gypsum-based load-bearing surface material according to claim 25 or 30,
    A gypsum-based load-bearing surface material, characterized in that the main material or core material of the gypsum-based load-bearing surface material contains an organopolysiloxane compound.
PCT/JP2023/022235 2022-07-30 2023-06-15 Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material WO2024029210A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023544778A JP7359506B1 (en) 2022-07-30 2023-06-15 Wooden load-bearing walls, construction methods for wooden load-bearing walls, methods for increasing the wall magnification of wooden load-bearing walls, and gypsum load-bearing facing materials
JP2023154949A JP2024019393A (en) 2022-07-30 2023-09-21 wooden structure load-bearing wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022122390 2022-07-30
JP2022-122390 2022-07-30

Publications (1)

Publication Number Publication Date
WO2024029210A1 true WO2024029210A1 (en) 2024-02-08

Family

ID=89848798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022235 WO2024029210A1 (en) 2022-07-30 2023-06-15 Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material

Country Status (1)

Country Link
WO (1) WO2024029210A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080142A (en) * 2019-11-22 2021-05-27 チヨダウーテ株式会社 Core material, gypsum board and method for producing core material
JP2022031910A (en) * 2020-04-06 2022-02-22 吉野石膏株式会社 Gypsum bearing face material of wooden building, bearing wall structure, and bearing wall construction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080142A (en) * 2019-11-22 2021-05-27 チヨダウーテ株式会社 Core material, gypsum board and method for producing core material
JP2022031910A (en) * 2020-04-06 2022-02-22 吉野石膏株式会社 Gypsum bearing face material of wooden building, bearing wall structure, and bearing wall construction method

Similar Documents

Publication Publication Date Title
WO2021205993A1 (en) Gypsum-based bearing surface material for wooden building, bearing wall structure, and bearing wall construction method
Selvaraj et al. Investigation on sheathing-fastener connection failures in cold-formed steel wall panels
Khaliq et al. Shear capacity of cold-formed light-gauge steel framed shear-wall panels with fiber cement board sheathing
JP7157475B2 (en) Load-bearing wall structure of wooden structure building and load-bearing wall construction method
JP2006077565A (en) Bearing wall and its construction method
JP7359506B1 (en) Wooden load-bearing walls, construction methods for wooden load-bearing walls, methods for increasing the wall magnification of wooden load-bearing walls, and gypsum load-bearing facing materials
WO2024029210A1 (en) Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material
Noh et al. Development of new prefabricated wall constructed using wood-wool cement composite panel
JP3122159U (en) Seismic reinforcement structure for buildings
WO2023058470A1 (en) Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material
JP5745989B2 (en) Reinforcing method for existing vertical walls in reinforced concrete structures
RU64233U1 (en) SEISMICALLY REINFORCED CONSTRUCTION FOR BUILDINGS AND STRUCTURES
US20220396963A1 (en) Hybrid Shear-Wall System for the Construction of Solid-Wood Buildings in Seismic Zones
WO2024024189A1 (en) Inorganic bearing surface material and bearing wall
JP2011226185A (en) Brick masonry structure
CN118056053A (en) Wood structure bearing wall, construction method of wood structure bearing wall, wall multiplying power increasing method of wood structure bearing wall, and gypsum type endurance surface material
JP2008038355A (en) Repair structure of existing outer wall
JP4279846B2 (en) Reinforcement structure of wooden frame building
Kitano et al. Experimental study on the strengthening and repair of R/C wall-frame structures with an opening by CF-sheets or CF-grids
JP3962647B2 (en) Wall structure
Yu et al. Optimization of cold-formed steel framed shear wall sheathed with corrugated steel sheets: experiments and dynamic analysis
Dastjerdi et al. Seismic performance of steel sheathed cold-formed steel shear walls
JP6768358B2 (en) Slab structure
Borchelt Building code requirements for brick veneer in seismic areas
JP3146648U (en) Load-bearing wall panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849770

Country of ref document: EP

Kind code of ref document: A1