JP2017098460A - Electrode forming method and electrode forming apparatus of back electrode type solar cell - Google Patents

Electrode forming method and electrode forming apparatus of back electrode type solar cell Download PDF

Info

Publication number
JP2017098460A
JP2017098460A JP2015230637A JP2015230637A JP2017098460A JP 2017098460 A JP2017098460 A JP 2017098460A JP 2015230637 A JP2015230637 A JP 2015230637A JP 2015230637 A JP2015230637 A JP 2015230637A JP 2017098460 A JP2017098460 A JP 2017098460A
Authority
JP
Japan
Prior art keywords
electrode
discharge
solar cell
electrode material
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015230637A
Other languages
Japanese (ja)
Inventor
洋 橋上
Hiroshi Hashigami
洋 橋上
渡部 武紀
Takenori Watabe
武紀 渡部
大塚 寛之
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015230637A priority Critical patent/JP2017098460A/en
Publication of JP2017098460A publication Critical patent/JP2017098460A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrode forming method for forming an electrode having good electric characteristics in a simple process at a low cost in a manufacturing process of a back electrode type solar cell.SOLUTION: By discharging and suspending each electrode material from each discharging port of discharging means provided with a plurality of first discharge ports for discharging an electrode material of a first polarity and a plurality of second discharge ports for discharging an electrode material of a second polarity being opposed to a back surface of a solar cell substrate and alternately arranged in a certain direction, the electrode material is applied to the back surface of the substrate and an electrode of the first polarity and an electrode of the second polarity are alternately formed.SELECTED DRAWING: Figure 1

Description

本発明は、裏面電極型太陽電池の電極形成方法および電極形成装置に関する。   The present invention relates to an electrode forming method and an electrode forming apparatus for a back electrode type solar cell.

結晶シリコン太陽電池の光電変換効率を向上させる手法として、近年では太陽電池基板の受光面の電極を廃し、正極と負極のすべての電極を受光面とは反対側の裏面(非受光面)に配置することで電極の影による光学的損失を無くした、裏面電極型(バックコンタクト型)太陽電池が広く検討されるようになってきた。   As a technique to improve the photoelectric conversion efficiency of crystalline silicon solar cells, in recent years, the electrodes on the light receiving surface of the solar cell substrate have been eliminated, and all the positive and negative electrodes are placed on the back surface (non-light receiving surface) opposite to the light receiving surface. As a result, a back electrode type (back contact type) solar cell in which optical loss due to the shadow of the electrode is eliminated has been widely studied.

図11は裏面電極型太陽電池100の基本構造を示す断面図である。図では基板101の上側を裏面、下側を受光面として示している。基板101の裏面には、p型の導電性を付与する添加物が高濃度拡散されたp領域102とn型の導電性を付与する添加物が高濃度拡散されたn領域103とが図面奥に向かってストライプ状に交互に形成されている。図11に示す例では、基板101の裏面に凹凸が形成され、凸部がp領域102、凹部がn領域103とされている。p領域102には正電極104が、n領域103には負電極105が、それぞれ形成されている。更に、光励起されたキャリアの再結合による損失を低減するために、基板101の受光面及び裏面の各電極が形成されていない部分は、パッシベーション膜106及びパッシベーション膜107でそれぞれ覆われている。なお、図には示されていないが、基板101の受光面にはパッシベーション膜106の形成に先立ち、数ミクロンの凹凸をもった光閉じ込めのためのテクスチャが形成されるのが一般的である。 FIG. 11 is a cross-sectional view showing the basic structure of the back electrode type solar cell 100. In the figure, the upper side of the substrate 101 is shown as the back surface, and the lower side is shown as the light receiving surface. On the back surface of the substrate 101, there are a p + region 102 in which an additive imparting p-type conductivity is diffused at a high concentration and an n + region 103 in which an additive imparting n-type conductivity is diffused at a high concentration. They are alternately formed in stripes toward the back of the drawing. In the example shown in FIG. 11, unevenness is formed on the back surface of the substrate 101, the convex portion is a p + region 102, and the concave portion is an n + region 103. A positive electrode 104 is formed in the p + region 102, and a negative electrode 105 is formed in the n + region 103. Further, in order to reduce loss due to recombination of photoexcited carriers, the portions of the substrate 101 where the electrodes on the light receiving surface and the back surface are not formed are covered with a passivation film 106 and a passivation film 107, respectively. Although not shown in the drawing, a texture for confining light having irregularities of several microns is generally formed on the light receiving surface of the substrate 101 prior to the formation of the passivation film 106.

裏面電極型太陽電池の電極は、光励起した電荷の収集効率を上げるために、互いに導電性が異なる添加物高濃度拡散領域を交互に微細に形成する必要があり、そのため、各領域に形成される電極も必然的に微細に形成する必要がある。しかし、電極の微細化は電気抵抗損を増大させるため、電極の形成に際しては、メッキを用いた厚膜電極形成の手法などが採用されてきた。   In order to increase the collection efficiency of the photoexcited charge, the electrodes of the back electrode type solar cell need to be formed with minutely high concentration diffusion regions of additives having different conductivity from each other. The electrode must be formed finely. However, since miniaturization of the electrode increases electrical resistance loss, a method of forming a thick film electrode using plating has been adopted in forming the electrode.

例えば、特許文献1には、高濃度拡散領域を覆う熱酸化膜をエッチングペーストで開口し、その上に3層からなるシード金属層をスパッタ形成し、更にその上にメッキレジストをパターニングした上で、シード層が露出している各部分に厚膜電極をメッキを用いて形成し、最後に電極間のメッキレジストとシード金属層を化学エッチングで除去することにより電極を形成する方法が開示されている。   For example, in Patent Document 1, a thermal oxide film covering a high concentration diffusion region is opened with an etching paste, a seed metal layer composed of three layers is formed thereon by sputtering, and a plating resist is patterned thereon. A method is disclosed in which a thick film electrode is formed by plating on each part where the seed layer is exposed, and finally the plating resist between the electrodes and the seed metal layer are removed by chemical etching to form an electrode. Yes.

また、特許文献2には、メッキを使用しない簡略化された方法として、パッシベーション膜にエッチングペーストを使ってコンタクトホールを設け、コンタクトホールに導電性ペーストを印刷して焼成することにより電極を形成する方法が開示されている。   Further, in Patent Document 2, as a simplified method that does not use plating, an electrode is formed by providing a contact hole using an etching paste in a passivation film, printing the conductive paste in the contact hole, and baking it. A method is disclosed.

米国特許第7897867号明細書US Patent No. 7,879,867 特開2008−10746号公報JP 2008-10746 A

エッチングペーストやスパッタ、更にメッキレジストを多用する形成方法は、工程が複雑になりコストが高くなるという問題がある。   The forming method using a lot of etching paste, sputtering, and plating resist has a problem that the process becomes complicated and the cost becomes high.

また、導電性ペーストをスクリーン印刷塗布する形成方法についても、仕事関数の違いなどに起因してp領域とn領域それぞれに適したペーストを適用する必要から、各ペーストについて印刷と乾燥の工程が必要になるという問題がある。また、電極材を凹部であるコンタクトホールに印刷塗布した場合、印刷版と塗布面との間に空隙が生じて塗膜が広がるという問題もある。更に、印刷製版が印刷時に伸縮するという本質的な性質に起因し、正極と負極の精密なパターン形成が困難であるという問題もある。 Also, with respect to the forming method of applying the conductive paste by screen printing, it is necessary to apply a paste suitable for each of the p + region and the n + region due to a difference in work function and the like. There is a problem that is necessary. In addition, when the electrode material is printed and applied to the contact hole which is a concave portion, there is a problem that a gap is generated between the printing plate and the coated surface and the coating film spreads. Further, there is a problem that it is difficult to form a precise pattern of the positive electrode and the negative electrode due to the essential property that the printing plate-making process expands and contracts during printing.

本発明の目的は、裏面電極型太陽電池の製造工程において、電極を簡易な工程で低コストに形成するための、裏面電極型太陽電池の電極形成方法および電極形成装置を提供することにある。   The objective of this invention is providing the electrode formation method and electrode formation apparatus of a back electrode type solar cell for forming an electrode at a low cost by a simple process in the manufacturing process of a back electrode type solar cell.

(1)本発明の電極形成方法は、太陽電池基板の受光面とは反対側の裏面にすべての電極が形成される裏面電極型太陽電池の電極形成方法であって、第1極性の電極材を吐出する複数の第1の吐出口と第2極性の電極材を吐出する複数の第2の吐出口とが太陽電池基板の裏面に対向して或る方向(以下「X方向」という。)に交互に並ぶように設けられた吐出手段の吐出口から電極材を吐出し垂下することにより太陽電池基板の裏面に電極材を塗布して第1極性の電極と第2極性の電極を形成することを特徴とする。これにより、従来の方法と比べ、工程をシンプルにすることができ、製造コストを抑えることができる。   (1) The electrode forming method of the present invention is an electrode forming method for a back electrode type solar cell in which all electrodes are formed on the back surface opposite to the light receiving surface of the solar cell substrate, and the electrode material having the first polarity. And a plurality of second discharge ports for discharging the electrode material of the second polarity are opposed to the back surface of the solar cell substrate in a certain direction (hereinafter referred to as “X direction”). The electrode material is applied to the back surface of the solar cell substrate to form the first polarity electrode and the second polarity electrode by discharging and dropping the electrode material from the discharge ports of the discharge means provided so as to be alternately arranged. It is characterized by that. Thereby, compared with the conventional method, a process can be simplified and manufacturing cost can be held down.

(2)吐出手段の当該太陽電池基板との相対位置を、X方向に対して略直角かつ当該太陽電池基板の裏面に略平行な方向(以下「Y方向」という。)に直線的に変化させつつ、吐出口から電極材を吐出し当該太陽電池基板の裏面に垂下してもよい。これにより、電極材を太陽電池基板の裏面にストライプ状に、かつ広範囲に塗布することができる。   (2) The relative position of the discharge means with respect to the solar cell substrate is linearly changed in a direction substantially perpendicular to the X direction and substantially parallel to the back surface of the solar cell substrate (hereinafter referred to as “Y direction”). However, the electrode material may be discharged from the discharge port and hung on the back surface of the solar cell substrate. Thereby, an electrode material can be apply | coated to the back surface of a solar cell board | substrate in stripe form, and in a wide range.

(3)吐出手段として、複数の前記第1の吐出口が前記裏面に対向してX方向に一列に設けられた第1吐出手段と、複数の前記第2の吐出口が前記裏面に対向してX方向に一列に設けられた第2吐出手段と、を前記第1の吐出口と前記第2の吐出口とがX方向に交互に並ぶようにずらしてY方向に並べて配置したものを使用してもよい。これによっても、電極材を太陽電池基板の裏面にストライプ状に、かつ広範囲に同時に塗布することができる。   (3) As discharge means, a plurality of the first discharge ports are provided in a row in the X direction so as to face the back surface, and a plurality of the second discharge ports are opposed to the back surface. Second discharge means provided in a row in the X direction, and the first discharge ports and the second discharge ports that are shifted in the X direction and arranged in the Y direction are used. May be. This also makes it possible to apply the electrode material to the back surface of the solar cell substrate in a striped manner and simultaneously in a wide range.

(4)吐出手段の複数の吐出口からの電極材の吐出の有無を、吐出口ごとに制御するようにしてもよい。これにより、電極材を塗布する太陽電池基板の裏面の外形に応じて電極材の吐出の開始・終了タイミングを設定できるため、いかなる外形の基板に対しても万遍なく、かつ無駄なく電極材を塗布することができる。   (4) The presence or absence of discharge of the electrode material from the plurality of discharge ports of the discharge unit may be controlled for each discharge port. As a result, the start / end timing of discharge of the electrode material can be set in accordance with the outer shape of the back surface of the solar cell substrate to which the electrode material is applied, so that the electrode material can be applied to any outer shape substrate without waste. Can be applied.

(5)吐出手段を太陽電池基板に対してY方向に相対的に片道移動しつつ電極材を吐出した後、吐出手段をX方向に相対的に移動した上で、吐出手段を−Y方向に相対的に片道移動しつつ電極材を吐出してもよい。これにより、電極材を太陽電池基板の裏面の一部に塗布した後に未塗布部分にも塗布することができ、このような動作を繰り返すことで、広い基板にも万遍なく電極材を塗布することができる。   (5) After discharging the electrode material while moving the discharge means relative to the solar cell substrate in the Y direction, the discharge means is moved in the X direction, and then the discharge means is moved in the -Y direction. The electrode material may be discharged while moving relatively one way. As a result, the electrode material can be applied to the uncoated portion after being applied to a part of the back surface of the solar cell substrate, and the electrode material is uniformly applied to a wide substrate by repeating such an operation. be able to.

(6)電極材の塗布に際しては、所定の電極材を塗布すべき太陽電池基板の裏面の所定の領域に、所定の電極材が垂下されるように、太陽電池基板と吐出手段との位置関係を調整した上で電極材の塗布を行うとよい。これにより、太陽電池基板の裏面の所定の領域に正確に所定の電極を形成することができる。   (6) When applying the electrode material, the positional relationship between the solar cell substrate and the discharge means so that the predetermined electrode material hangs down in a predetermined region on the back surface of the solar cell substrate to which the predetermined electrode material is to be applied. The electrode material may be applied after adjusting the above. Thereby, a predetermined electrode can be accurately formed in a predetermined region on the back surface of the solar cell substrate.

(7)本発明の電極形成装置は、太陽電池基板の受光面とは反対側の裏面にすべての電極が形成される裏面電極型太陽電池の電極形成装置であって、第1極性の電極材を吐出する複数の第1の吐出口と第2極性の電極材を吐出する複数の第2の吐出口とが太陽電池基板の裏面に対向してX方向に交互に並ぶように設けられた吐出手段を備え、当該吐出手段の吐出口から電極材を吐出し垂下することにより太陽電池基板の裏面に電極材を塗布して第1極性の電極と第2極性の電極を形成することを特徴とする。これにより、従来の方法と比べ、工程をシンプルにすることができ、製造コストを抑えることができる。   (7) The electrode forming apparatus of the present invention is an electrode forming apparatus for a back electrode type solar cell in which all electrodes are formed on the back surface opposite to the light receiving surface of the solar cell substrate, and the first polarity electrode material A plurality of first discharge ports for discharging the liquid and a plurality of second discharge ports for discharging the electrode material of the second polarity are provided so as to be alternately arranged in the X direction facing the back surface of the solar cell substrate. And a first polarity electrode and a second polarity electrode are formed by applying the electrode material to the back surface of the solar cell substrate by discharging and dropping the electrode material from the discharge port of the discharge means. To do. Thereby, compared with the conventional method, a process can be simplified and manufacturing cost can be held down.

(8)本発明の電極形成装置は、吐出手段の太陽電池基板との相対位置をX方向に対して略直角かつ太陽電池基板の裏面に略平行な方向に変化させる移動手段と、吐出手段と移動手段を制御する制御手段と、を更に備え、制御手段が太陽電池基板と吐出手段との相対位置をY方向に直線的に変化させつつ電極材を吐出させるように構成してもよい。これにより、電極材を太陽電池基板の裏面にストライプ状に、かつ広範囲に塗布することができる。   (8) The electrode forming apparatus of the present invention includes a moving unit that changes a relative position of the discharging unit with the solar cell substrate in a direction substantially perpendicular to the X direction and substantially parallel to the back surface of the solar cell substrate, and a discharging unit. Control means for controlling the moving means, and the control means may discharge the electrode material while linearly changing the relative position between the solar cell substrate and the discharge means in the Y direction. Thereby, an electrode material can be apply | coated to the back surface of a solar cell board | substrate in stripe form, and in a wide range.

(9)吐出手段を、複数の第1の吐出口が太陽電池基板の裏面に対向してX方向に一列に設けられた第1吐出手段と、複数の第2の吐出口が太陽電池基板の裏面に対向してX方向に一列に設けられた第2吐出手段と、を第1の吐出口と第2の吐出口とがX方向に交互に並ぶようにずらしてY方向に並べて配置したものとしてもよい。これによっても、電極材を太陽電池基板の裏面にストライプ状に、かつ広範囲に同時に塗布することができる。   (9) The discharge means includes a first discharge means in which a plurality of first discharge ports are arranged in a row in the X direction so as to face the back surface of the solar cell substrate, and a plurality of second discharge ports are formed on the solar cell substrate. The second discharge means provided in a row in the X direction facing the back surface and arranged so that the first discharge ports and the second discharge ports are alternately arranged in the X direction and arranged in the Y direction. It is good. This also makes it possible to apply the electrode material to the back surface of the solar cell substrate in a striped manner and simultaneously in a wide range.

(10)制御手段は、吐出手段の複数の吐出口からの電極材の吐出の有無を、吐出口ごとに制御するように構成してもよい。これにより、電極材を塗布する太陽電池基板の裏面の外形に応じて電極材の吐出の開始・終了タイミングを設定できるため、いかなる外形の基板に対しても万遍なく、かつ無駄なく電極材を塗布することができる。   (10) The control unit may be configured to control, for each discharge port, whether or not the electrode material is discharged from a plurality of discharge ports of the discharge unit. As a result, the start / end timing of discharge of the electrode material can be set in accordance with the outer shape of the back surface of the solar cell substrate to which the electrode material is applied, so that the electrode material can be applied to any outer shape substrate without waste. Can be applied.

(11)制御手段は、吐出手段を太陽電池基板に対してY方向に相対的に片道移動させつつ電極材を吐出させた後、吐出手段をX方向に相対的に移動させた上で、吐出手段を−Y方向に相対的に片道移動させつつ電極材を吐出させるように制御してもよい。これにより、電極材を太陽電池基板の裏面の一部に塗布した後に未塗布部分にも塗布することができ、このような動作を繰り返すことで、広い基板にも万遍なく電極材を塗布することができる。   (11) The control means discharges the electrode material while moving the discharge means relative to the solar cell substrate in the Y direction, and then moves the discharge means relative to the X direction. Control may be performed so that the electrode material is discharged while the means is relatively moved in one direction in the -Y direction. As a result, the electrode material can be applied to the uncoated portion after being applied to a part of the back surface of the solar cell substrate, and the electrode material is uniformly applied to a wide substrate by repeating such an operation. be able to.

(12)所定の電極材を塗布すべき太陽電池基板の裏面の所定の領域に、所定の電極材が垂下されるように、太陽電池基板と吐出手段との位置関係を調整するアライメント機構を更に備えてもよい。これにより、太陽電池基板の裏面の所定の領域に正確に所定の電極を形成することができる。   (12) An alignment mechanism that adjusts the positional relationship between the solar cell substrate and the discharge means so that the predetermined electrode material is suspended in a predetermined region on the back surface of the solar cell substrate to which the predetermined electrode material is to be applied. You may prepare. Thereby, a predetermined electrode can be accurately formed in a predetermined region on the back surface of the solar cell substrate.

本発明の裏面電極型太陽電池の電極形成方法を説明する図である。It is a figure explaining the electrode formation method of the back electrode type solar cell of the present invention. 本発明の裏面電極型太陽電池の電極形成方法を説明する別の図である。It is another figure explaining the electrode formation method of the back electrode type solar cell of this invention. 電極材を基板にストライプ状に塗布する方法を説明する図である。It is a figure explaining the method of apply | coating an electrode material to a board | substrate at stripe form. 本発明の裏面電極型太陽電池の電極形成装置の機能ブロック図である。It is a functional block diagram of the electrode formation apparatus of the back electrode type solar cell of the present invention. 電極材を基板にストライプ状に塗布する方法を説明する別の図である。It is another figure explaining the method of apply | coating an electrode material to a board | substrate at stripe form. 電極材を吐出するタイミングを吐出口ごとに制御する必要性を説明する図である。It is a figure explaining the necessity to control the timing which discharges an electrode material for every discharge outlet. 電極材を吐出するタイミングを吐出口ごとに制御する場合の構成の一例を示す図である。It is a figure which shows an example of a structure in the case of controlling the timing which discharges an electrode material for every discharge outlet. 基板の幅が吐出手段の幅より広い場合の塗布方法を説明する図である。It is a figure explaining the application | coating method when the width | variety of a board | substrate is wider than the width | variety of a discharge means. 基板の所定の領域に所定の電極材を塗布している様子を示す図である。It is a figure which shows a mode that the predetermined electrode material is apply | coated to the predetermined area | region of a board | substrate. アライメント機構の必要性を説明する図である。It is a figure explaining the necessity of an alignment mechanism. 裏面電極型太陽電池の基本構造を示す断面図である。It is sectional drawing which shows the basic structure of a back electrode type solar cell.

以下、本発明の実施形態について図面に基づいて説明する。背景技術の説明に用いた図も含め、各図面において共通の構成要素については同じ符号を付し、必要な場合以外、説明の繰り返しは行わない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Constituent elements common to the drawings including those used for the description of the background art are denoted by the same reference numerals, and the description will not be repeated unless necessary.

図1及び図2は、本発明の裏面電極型太陽電池の電極形成方法を説明する図である。図1及び図2で示される裏面電極型太陽電池の断面は、図面上、基板101の上側が裏面側(非受光面側)、下側が受光面側としている。基板101の裏面には、p型の導電性を付与する添加物が高濃度拡散されたp領域102とn型の導電性を付与する添加物が高濃度拡散されたn領域103とが図面奥に向かってストライプ状に交互に形成されている。図1に示す例では、基板101の裏面に凹凸が形成され、凸部がp領域102、凹部がn領域103とされている。また、光励起されたキャリアの再結合による損失を低減するため、基板101の受光面及び裏面に、パッシベーション膜106及びパッシベーション膜107がそれぞれ形成されている。パッシベーション膜107は、図1に示すように予めp領域102の一部及びn領域103の一部が露出するように形成しても、図2に示すようにp領域102及びn領域103の全てが覆われるように形成してもよい。 FIG.1 and FIG.2 is a figure explaining the electrode formation method of the back surface electrode type solar cell of this invention. In the cross section of the back electrode type solar cell shown in FIGS. 1 and 2, the upper side of the substrate 101 is the back side (non-light receiving surface side) and the lower side is the light receiving surface side in the drawings. On the back surface of the substrate 101, there are a p + region 102 in which an additive imparting p-type conductivity is diffused at a high concentration and an n + region 103 in which an additive imparting n-type conductivity is diffused at a high concentration. They are alternately formed in stripes toward the back of the drawing. In the example shown in FIG. 1, irregularities are formed on the back surface of the substrate 101, and the convex portions are p + regions 102 and the concave portions are n + regions 103. In order to reduce loss due to recombination of photoexcited carriers, a passivation film 106 and a passivation film 107 are formed on the light receiving surface and the back surface of the substrate 101, respectively. Even if the passivation film 107 is formed in advance so that a part of the p + region 102 and a part of the n + region 103 are exposed as shown in FIG. 1, the p + region 102 and the n + as shown in FIG. You may form so that the whole area | region 103 may be covered.

正の極性の電極材203aを吐出する複数の吐出口202a及び負の極性の電極材203bを吐出する複数の吐出口202bが基板101の裏面に交互に形成されたp領域102及びn領域103にそれぞれ対向して交互に設けられた吐出手段201の、当該吐出口202a及び吐出口202bから電極材203a及び電極材203bをそれぞれ吐出して垂下し、それぞれp領域102及びn領域103に塗布する。電極材としては、例えば一般的な焼結性の導電性ペーストを適用することができる。図1に示すようにp領域102及びn領域103の一部が露出するようにパッシベーション膜107を形成した場合は、電極材203a及び電極材203bをそれぞれp領域102及びn領域103に直接塗布して電極材203aとp領域102aとの電気的接触及び電極材203bとn領域103との電気的接触をそれぞれ実現することができる。一方、図2に示すようにp領域102及びn領域103が全て覆われるようにパッシベーション膜107を形成した場合は、例えば、電極材203a及び電極材203bに低軟化点のガラスフリットなどを添加しておき、太陽電池の製造で一般的に用いられるファイアスルー技術を適用して電極材203a及び電極材203bをそれぞれp領域102及びn領域103に接触させる。具体的には例えば、パッシベーション膜107上に塗布された電極材203a及び電極材203bに対し、800℃程度の短時間熱処理を行い、電極材203a及び電極材203bの添加物でパッシベーション膜107を浸食させて電極材203aとp領域102aとの電気的接触及び電極材203bとn領域103との電気的接触をそれぞれ実現する。なお、この場合のパッシベーション膜107には主に酸化シリコン、窒化シリコン、炭化シリコン、酸化アルミニウム、酸化チタンなどの誘電体膜の使用が好適である。 A p + region 102 and an n + region in which a plurality of discharge ports 202 a that discharge a positive polarity electrode material 203 a and a plurality of discharge ports 202 b that discharge a negative polarity electrode material 203 b are alternately formed on the back surface of the substrate 101. In the discharge means 201 provided alternately opposite to each other 103, the electrode material 203a and the electrode material 203b are respectively discharged from the discharge port 202a and the discharge port 202b and dropped, and the p + region 102 and the n + region 103 are respectively dropped. Apply to. As the electrode material, for example, a general sinterable conductive paste can be applied. In the case where the passivation film 107 is formed so that a part of the p + region 102 and the n + region 103 is exposed as shown in FIG. 1, the electrode material 203a and the electrode material 203b are respectively made of the p + region 102 and the n + region 103. The electrode material 203a and the p + region 102a can be electrically applied to each other and the electrode material 203b and the n + region 103 can be electrically contacted with each other. On the other hand, when the passivation film 107 is formed so as to cover the p + region 102 and the n + region 103 as shown in FIG. 2, for example, a glass frit having a low softening point is applied to the electrode material 203a and the electrode material 203b. In addition, the electrode material 203a and the electrode material 203b are brought into contact with the p + region 102 and the n + region 103, respectively, by applying a fire-through technique generally used in the manufacture of solar cells. Specifically, for example, the electrode material 203a and the electrode material 203b applied on the passivation film 107 are subjected to short-time heat treatment at about 800 ° C., and the passivation film 107 is eroded by the additive of the electrode material 203a and the electrode material 203b. Thus, electrical contact between the electrode material 203a and the p + region 102a and electrical contact between the electrode material 203b and the n + region 103 are realized. In this case, it is preferable to use a dielectric film such as silicon oxide, silicon nitride, silicon carbide, aluminum oxide, or titanium oxide as the passivation film 107 in this case.

このように、本発明の裏面電極型太陽電池の電極形成方法及び電極形成装置は、基板の裏面に電極材を垂下して塗布し硬化させるだけで容易に電極を形成できるため、従来の物理蒸着・メッキを用いた形成方法やスクリーン印刷による形成方法と比べ、工程をシンプルにすることができ、また、電極材として安価な導電性ペーストを使用できるため、製造コストも抑えることができる。また、電極の線幅についても、スクリーン印刷によって形成した場合と同程度に形成することができ、精密なパターン形成を容易に行うことができる。   As described above, the electrode forming method and the electrode forming apparatus of the back electrode type solar cell according to the present invention can easily form an electrode simply by dripping and applying an electrode material on the back surface of the substrate, and thus the conventional physical vapor deposition. -Compared with the formation method using plating and the formation method by screen printing, the process can be simplified, and since an inexpensive conductive paste can be used as the electrode material, the manufacturing cost can be reduced. Further, the line width of the electrode can be formed to the same extent as that formed by screen printing, and a precise pattern can be easily formed.

また、基板101の裏面への電極材203a及び電極材203bの塗布に際しては、吐出手段201の基板101との相対位置を、吐出口202a及び吐出口202bが並んでいる方向(X方向)に対して略直角かつ基板101の裏面に略平行な方向(Y方向)に直線的に変化させつつ、吐出手段201の吐出口202a及び吐出口202bから電極材203a及び電極材203bをそれぞれ吐出し基板101の裏面に垂下してもよい。図3は吐出手段201の基板101との相対位置を変化させつつ電極材203a及び電極材203bを基板101の裏面に垂下している様子を示したものである。   Further, when the electrode material 203a and the electrode material 203b are applied to the back surface of the substrate 101, the relative position of the discharge means 201 with respect to the substrate 101 is set with respect to the direction in which the discharge ports 202a and 202b are arranged (X direction). The electrode material 203a and the electrode material 203b are respectively discharged from the discharge port 202a and the discharge port 202b of the discharge means 201 while changing linearly in a direction (Y direction) substantially perpendicular to the back surface of the substrate 101. You may hang down on the back side. FIG. 3 shows a state in which the electrode material 203 a and the electrode material 203 b are suspended from the back surface of the substrate 101 while changing the relative position of the ejection means 201 to the substrate 101.

例えば、吐出手段201を固定しておき、基板101を−Y方向に直線的に移動させつつ、吐出手段201の吐出口202a及び吐出口202bから電極材203a及び電極材203bをそれぞれ垂下させる。これにより、電極材203a及び電極203bを基板101の裏面にストライプ状に塗布することができる。   For example, the ejection unit 201 is fixed, and the electrode material 203a and the electrode material 203b are suspended from the ejection port 202a and the ejection port 202b of the ejection unit 201 while moving the substrate 101 linearly in the −Y direction. Thereby, the electrode material 203a and the electrode 203b can be applied to the back surface of the substrate 101 in stripes.

図4に電極材をストライプ状に塗布するための電極形成装置の機能ブロック図を示す。移動手段301は、吐出手段201の基板101との相対位置を変化させる機構であり、吐出手段201を移動させる機構として構成してもよいし、基板101を移動させる機構として構成してもよいし、両方を移動させる機構として構成してもよい。ストライプ状に塗布するには、移動手段301による相対位置の変更態様と吐出手段201による電極材203の吐出のタイミングを制御する必要があるため、例えばコンピュータや専用の装置により構成された制御手段302を更に設け、これにより移動手段301による吐出手段201の相対的な移動態様と吐出手段201による吐出タイミングを制御するとよい。   FIG. 4 shows a functional block diagram of an electrode forming apparatus for applying the electrode material in stripes. The moving unit 301 is a mechanism that changes the relative position of the discharge unit 201 with respect to the substrate 101, and may be configured as a mechanism that moves the discharge unit 201, or may be configured as a mechanism that moves the substrate 101. The mechanism may be configured to move both. In order to apply in a striped manner, it is necessary to control the change of the relative position by the moving unit 301 and the discharge timing of the electrode material 203 by the discharge unit 201. Therefore, for example, the control unit 302 configured by a computer or a dedicated device. In this way, the relative movement mode of the ejection unit 201 by the movement unit 301 and the ejection timing by the ejection unit 201 may be controlled.

また、図5に示すように、第1極性の電極用の第1の電極材203aを吐出する第1の吐出手段201aの複数の吐出口202aと、第1極性と異なる第2極性の電極用の第2の電極材203bを吐出する第2の吐出手段201bの複数の吐出口202bと、がX方向に交互に並ぶようにずらして、第1の吐出手段201aと第2の吐出手段201bとをY方向に並べて配置して使用してもよい。   Further, as shown in FIG. 5, a plurality of discharge ports 202a of the first discharge means 201a for discharging the first electrode material 203a for the first polarity electrode, and for the second polarity electrode different from the first polarity The plurality of discharge ports 202b of the second discharge unit 201b that discharges the second electrode material 203b are shifted so as to be alternately arranged in the X direction, and the first discharge unit 201a and the second discharge unit 201b May be arranged and used in the Y direction.

このような構成によっても、第1の極性の電極材203aと第2の極性の電極材203bとを基板101の裏面に交互にストライプ状に、かつ広範囲に同時に塗布することができる。   Also with such a configuration, the first polarity electrode material 203a and the second polarity electrode material 203b can be applied to the back surface of the substrate 101 alternately in stripes and simultaneously in a wide range.

また、吐出手段201(又は吐出手段201a及び吐出手段201b)の吐出口202a及び吐出口202bからの、電極材203a及び電極材203bの吐出のタイミングを吐出口ごとに制御してもよい。図6は吐出口ごとに電極材の吐出タイミングを制御する必要性を説明する図である。この説明では電極材の極性は問題にならないため、吐出手段、吐出口、電極材について、それぞれ吐出手段201、吐出口202、電極材203と極性を分けずに説明することとする。基板101の裏面の電極材203を塗布すべき領域のY方向の始点と終点が、図6(a)の網掛け部に示すように全ての吐出口202について一律である場合には、全ての吐出口202から同時に電極材203を吐出しつつ、吐出手段201の基板101との相対位置をY方向に移動させればよい。しかし、図6(b),(c)に示すような外形の基板のように、塗布すべき領域のY方向の始点と終点が吐出口202について一律でない場合には、吐出口ごとに吐出タイミングの制御が必要となる。例えば図6(b)に示す円形の基板の場合には、塗布開始当初は吐出手段201の中央周辺の吐出口202のみが基板101の裏面の塗布すべき領域と対向しているが、吐出手段201がY方向に移動するにつれて対向する吐出口202の数が吐出手段201の両端に向けて増えていき、やがて全ての吐出口202が基板101の裏面の塗布すべき領域と対向するが、更にY方向に移動していくと、今度は対向する吐出口202の数が吐出手段201の中央に向けて減っていく。そこで、複数の吐出口202からの電極材203の吐出のタイミングを吐出口ごとに制御する。基板101の外形に応じ、一部の吐出口202についてのみ制御を独立し、残りの吐出口202について一体的に制御するようにしてもよい。制御は、例えば制御手段302によって行う。   Further, the discharge timing of the electrode material 203a and the electrode material 203b from the discharge port 202a and the discharge port 202b of the discharge unit 201 (or the discharge unit 201a and the discharge unit 201b) may be controlled for each discharge port. FIG. 6 is a diagram for explaining the necessity of controlling the discharge timing of the electrode material for each discharge port. In this description, since the polarity of the electrode material does not matter, the discharge unit, the discharge port, and the electrode material will be described without dividing the polarity from the discharge unit 201, the discharge port 202, and the electrode material 203, respectively. When the start point and the end point in the Y direction of the region to which the electrode material 203 on the back surface of the substrate 101 is to be applied are uniform for all the discharge ports 202 as shown by the shaded portion in FIG. The relative position of the discharge means 201 and the substrate 101 may be moved in the Y direction while simultaneously discharging the electrode material 203 from the discharge port 202. However, when the starting point and the ending point in the Y direction of the region to be applied are not uniform with respect to the discharge port 202 as in the substrate having the outer shape as shown in FIGS. 6B and 6C, the discharge timing for each discharge port. Control is required. For example, in the case of the circular substrate shown in FIG. 6B, only the discharge port 202 around the center of the discharge means 201 is opposed to the area to be applied on the back surface of the substrate 101 at the beginning of the application. As 201 moves in the Y direction, the number of discharge ports 202 facing each other increases toward both ends of the discharge unit 201, and eventually all the discharge ports 202 face the region to be coated on the back surface of the substrate 101. As it moves in the Y direction, the number of opposing discharge ports 202 decreases toward the center of the discharge means 201 this time. Therefore, the discharge timing of the electrode material 203 from the plurality of discharge ports 202 is controlled for each discharge port. Depending on the outer shape of the substrate 101, only some of the discharge ports 202 may be controlled independently, and the remaining discharge ports 202 may be controlled integrally. Control is performed by the control means 302, for example.

これにより、電極材203を塗布する基板101の裏面の外形に応じて電極材203の吐出の開始・終了タイミングを設定できるため、いかなる外形の基板に対しても万遍なく、かつ無駄なく電極材を塗布することができる。   Thereby, since the start / end timing of discharge of the electrode material 203 can be set according to the outer shape of the back surface of the substrate 101 to which the electrode material 203 is applied, the electrode material can be applied to any outer shape of the substrate without any waste. Can be applied.

なお、図6の例では一体的な吐出手段201が複数の吐出口202を備える場合を示したが、外形が円形である場合(図6(b))のように、隣接する吐出口202がY方向に塗布する始点・終点が互いに異なっている場合には、図7(a)に示すように、吐出の制御が可能な吐出口202を1つだけ備える吐出手段201を、複数連結して配置してもよい。また、外形が矩形の四隅を欠いている場合(図6(c))のように、隣接する吐出口202がY方向に塗布する始点・終点が互いに同じである部分と互いに異なる部分が混在している場合には、図7(b)に示すように、塗布する始点・終点が同じである部分については、当該部分の複数の吐出口202を一体的な吐出手段201(吐出口202ごとの吐出制御ができなくても可)として構成し、始点・終点が異なる部分については吐出の制御が可能な吐出口202を1つだけ備える1以上の吐出手段201として構成し、これらを連結して使用してもよい。なお、いずれの場合も複数の吐出手段201を連結せずに個別にY方向に移動できるように構成し制御しても構わない。   In the example of FIG. 6, the case where the integral discharge means 201 includes a plurality of discharge ports 202 is shown. However, when the outer shape is circular (FIG. 6B), the adjacent discharge ports 202 are When the start point and the end point to be applied in the Y direction are different from each other, as shown in FIG. 7A, a plurality of discharge means 201 having only one discharge port 202 that can control discharge are connected. You may arrange. Further, as in the case where the outer shape lacks the four corners of the rectangle (FIG. 6 (c)), there are mixed portions where the start point and end point at which the adjacent discharge ports 202 apply in the Y direction are the same and different portions. 7 (b), with respect to a portion having the same start point and end point to be applied, a plurality of discharge ports 202 of the portion are connected to an integrated discharge means 201 (for each discharge port 202). It is also possible to perform the discharge control, and it is configured as one or more discharge means 201 having only one discharge port 202 that can control discharge for portions having different start points and end points. May be used. In either case, the plurality of ejection units 201 may be configured and controlled so that they can be individually moved in the Y direction without being connected.

また、吐出手段201(又は吐出手段201a及び吐出手段201b)のX方向の幅が基板101の幅より狭い場合には、吐出手段201(又は吐出手段201a及び吐出手段201b)を基板101に対して次のように相対移動させればよい。図8は基板の幅が吐出手段の幅より広い場合の塗布方法を説明する図である。この説明では電極材の極性は問題にならないため、吐出手段、吐出口、電極材について、それぞれ吐出手段201、吐出口202、電極材203と極性を分けずに説明することとする。図8(a)に示すように吐出手段201のX方向の幅が基板101の幅の半分であるとき、まず、吐出手段201を基板101に対してY方向に相対的に移動させつつ電極材203を吐出させることで、図8(b)に示すように基板101の左半分に電極材203をストライプ状に塗布することができる。続いて、図8(c)に示すように吐出手段201をX方向に相対的に移動させ、未塗布領域に到達した後、吐出手段201を−Y方向に相対的に移動させつつ電極材203を吐出させることで、図8(d)に示すように残りの半分にも電極材203をストライプ状に塗布することができる。X方向の幅がより広い基板101の場合は、吐出手段201のX方向への移動とY方向又は−Y方向の移動を、電極材203を吐出しつつ繰り返し行えばよい。なお、吐出手段201の相対的移動の制御と吐出手段201による電極材203の吐出タイミングの制御は、例えば制御手段302により行えばよい。   Further, when the width of the ejection unit 201 (or the ejection unit 201a and the ejection unit 201b) in the X direction is narrower than the width of the substrate 101, the ejection unit 201 (or the ejection unit 201a and the ejection unit 201b) is placed on the substrate 101. The relative movement may be performed as follows. FIG. 8 is a diagram for explaining a coating method when the width of the substrate is wider than the width of the discharge means. In this description, since the polarity of the electrode material does not matter, the discharge unit, the discharge port, and the electrode material will be described without dividing the polarity from the discharge unit 201, the discharge port 202, and the electrode material 203, respectively. As shown in FIG. 8A, when the width of the ejection unit 201 in the X direction is half the width of the substrate 101, first, the electrode member is moved while moving the ejection unit 201 relative to the substrate 101 in the Y direction. By discharging 203, the electrode material 203 can be applied to the left half of the substrate 101 in stripes as shown in FIG. Subsequently, as shown in FIG. 8C, the ejection unit 201 is moved relatively in the X direction, and after reaching the uncoated region, the electrode member 203 is moved while moving the ejection unit 201 relatively in the −Y direction. As shown in FIG. 8D, the electrode material 203 can be applied to the other half in a stripe shape. In the case of the substrate 101 having a wider width in the X direction, the movement of the discharge means 201 in the X direction and the movement in the Y direction or the −Y direction may be repeated while discharging the electrode material 203. Note that the relative movement of the discharge unit 201 and the discharge timing of the electrode material 203 by the discharge unit 201 may be controlled by the control unit 302, for example.

これにより、広い基板にも万遍なく電極材を塗布することができる。   Thereby, an electrode material can be uniformly applied to a wide substrate.

また、基板101と吐出手段201(又は吐出手段201a及び吐出手段201b)との位置関係を調整するアライメント機構303を設けてもよい。電極材203a及び電極材203bの塗布に際しては、電極材203a及び電極材203bをそれぞれ塗布すべき基板101の裏面の所定の領域に、電極材203a及び電極材203bが垂下される必要がある。そのためには、吐出手段201(又は吐出手段201a及び吐出手段201b)の吐出口202a及び吐出口202bの間隔や位置が、基板101の裏面の電極材203a及び電極材203bを塗布すべき領域の間隔や位置と合っている必要がある。例えば図9に示すように、基板101の裏面にp領域102とn領域103が、図面奥に向けて交互にストライプ状に形成されている場合、吐出手段201において、第1極性たる正電極用の第1の電極材203aを吐出する吐出口202aがp領域102に対向するように、また第2極性たる負電極用の第2の電極材203bを吐出する吐出口202bがn領域103に対向するように、それぞれ形成されている必要がある。しかし、たとえ基板101の裏面と吐出手段201(又は吐出手段201a及び吐出手段201b)をそれぞれ適切に設計したとしても、吐出手段201(又は吐出手段201a及び吐出手段201b)が相対的に移動する方向と基板101の裏面において塗布されるべき領域が帯状に形成されている方向とが合っていなければ、各領域上に適切に電極材を垂下することはできない。例えば図10(a)に示すように、吐出手段201(又は吐出手段201a及び吐出手段201b)が相対的に移動するY方向と基板101の裏面においてp領域102とn領域103が帯状に形成されている方向(Y方向)とが合っていないような場合である。そこで、図10(b)に示すようにY方向とY方向とが合うように基板101と吐出手段201(又は吐出手段201a及び吐出手段201b)との位置関係を調整するアライメント機構303を設ける。アライメント機構303は、吐出手段201(又は吐出手段201a及び吐出手段201b)を動かして調整する機構として構成してもよいし、基板101を動かして調整する機構として構成してもよいし、両方を動かして調整する機構として構成してもよい。また、類似の機構を持つ移動手段301と一体的に構成してもよい。アライメント機能303の制御についても、制御手段302により行うようにしてもよいし、その他の方法により行うようにしてもよい。 Further, an alignment mechanism 303 that adjusts the positional relationship between the substrate 101 and the ejection unit 201 (or the ejection unit 201a and the ejection unit 201b) may be provided. When applying the electrode material 203a and the electrode material 203b, the electrode material 203a and the electrode material 203b need to be suspended in predetermined regions on the back surface of the substrate 101 to which the electrode material 203a and the electrode material 203b are to be applied, respectively. For this purpose, the interval or position between the discharge port 202a and the discharge port 202b of the discharge unit 201 (or the discharge unit 201a and the discharge unit 201b) is the interval between the regions where the electrode material 203a and the electrode material 203b on the back surface of the substrate 101 should be applied. It needs to match the position. For example, as shown in FIG. 9, when p + regions 102 and n + regions 103 are alternately formed in a stripe shape toward the back of the drawing on the back surface of the substrate 101, the discharge means 201 has a positive polarity corresponding to the first polarity. The discharge port 202a for discharging the first electrode material 203a for the electrode faces the p + region 102, and the discharge port 202b for discharging the second electrode material 203b for the negative electrode having the second polarity is n +. Each needs to be formed so as to face the region 103. However, even if the back surface of the substrate 101 and the discharge unit 201 (or the discharge unit 201a and the discharge unit 201b) are appropriately designed, the discharge unit 201 (or the discharge unit 201a and the discharge unit 201b) move relatively. If the region to be applied on the back surface of the substrate 101 does not match the direction in which the region is formed in a strip shape, the electrode material cannot be properly suspended on each region. For example, as shown in FIG. 10A, the p + region 102 and the n + region 103 are strip-shaped in the Y direction in which the discharge unit 201 (or the discharge unit 201a and the discharge unit 201b) relatively move and the back surface of the substrate 101. This is a case where the formed direction (Y + direction) does not match. Therefore, as shown in FIG. 10B, an alignment mechanism 303 is provided that adjusts the positional relationship between the substrate 101 and the ejection unit 201 (or the ejection unit 201a and the ejection unit 201b) so that the Y direction matches the Y + direction. . The alignment mechanism 303 may be configured as a mechanism that moves and adjusts the discharge unit 201 (or the discharge unit 201a and the discharge unit 201b), or may be configured as a mechanism that moves and adjusts the substrate 101, or both. You may comprise as a mechanism adjusted by moving. Moreover, you may comprise integrally with the moving means 301 which has a similar mechanism. Control of the alignment function 303 may also be performed by the control means 302 or may be performed by other methods.

アライメント機構303を設けることで、基板101と吐出手段201(又は吐出手段201a及び吐出手段201b)との位置関係を調整した上で電極材203a及び電極材203bの塗布を行うことができるため、太陽電池基板の裏面の所定の領域に正確に所定の電極を形成することができる。   By providing the alignment mechanism 303, the electrode material 203a and the electrode material 203b can be applied after adjusting the positional relationship between the substrate 101 and the ejection unit 201 (or the ejection unit 201a and the ejection unit 201b). A predetermined electrode can be accurately formed in a predetermined region on the back surface of the battery substrate.

本発明の裏面電極型太陽電池の電極形成装置の各構成要素及び電極形成方法は、必要に応じ併合・分割・形成順序の変更などを行っても構わない。また、各実施形態はあくまで例示であり、本発明において表現されている技術的思想の範囲内で適宜変更が可能である。そして、その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが請求の範囲の記載から明らかである。   The constituent elements and the electrode forming method of the electrode forming apparatus of the back electrode type solar cell of the present invention may be merged, divided, or changed in order of formation as necessary. Moreover, each embodiment is an illustration to the last, and can be suitably changed within the range of the technical idea expressed in this invention. And it is clear from the description of the scope of claims that the embodiment added with such changes or improvements can be included in the technical scope of the present invention.

直径200mmのインゴットから切り出した縦横156mmの疑似四角形単結晶シリコン基板を使用し、当該基板の裏面に、1.5mm幅の帯状の、51本のp領域と52本のn領域を、ストライプ状に交互に形成した。基板を移動手段である可動式ステージに真空チャックで固定し、アライメント機構であるCCDカメラとサーボモータとにより位置合わせを行った後、ステージを10cm/秒で直線的に移動させた。基板先端が光学式位置センサーで検知され、この信号により、p領域への塗布を担う第1の吐出手段とn領域への塗布を担う第2の吐出手段から、それぞれ正電極材と負電極材を吐出開始した。上記p領域とn領域の設計に対応し、第1の吐出手段は51の吐出口で構成され、第2の吐出手段は52の吐出口で構成されている。各吐出口の間隔は1.5mmであり、吐出口の内径は100μmである。これらのうち、疑似正方形の角にかかる部分については吐出制御を独立させ、上記位置センサーによる基板端検出から所定時間のタイムラグを設けて吐出させる制御を行った。吐出の停止は吐出時間で制御した。基板端から内側に約1mmのマージンを設けたため、最も長い部分で1.54秒間吐出を行って塗布を停止した。 A quasi-rectangular single crystal silicon substrate having a length and width of 156 mm cut out from an ingot with a diameter of 200 mm is used, and a strip of 51 p + regions and 52 n + regions with a width of 1.5 mm are formed on the back surface of the substrate. Formed alternately. The substrate was fixed to a movable stage as a moving means by a vacuum chuck, aligned with a CCD camera as an alignment mechanism and a servo motor, and then the stage was moved linearly at 10 cm / second. The front end of the substrate is detected by an optical position sensor, and a positive electrode material and a negative electrode are respectively detected from the first discharge means responsible for application to the p + region and the second discharge means responsible for application to the n + region. Discharge of the electrode material was started. Corresponding to the design of the p + region and the n + region, the first discharge unit is configured by 51 discharge ports, and the second discharge unit is configured by 52 discharge ports. The interval between the discharge ports is 1.5 mm, and the inner diameter of the discharge ports is 100 μm. Among these, the discharge control is made independent for the portion corresponding to the corner of the pseudo square, and the discharge is performed with a predetermined time lag from the detection of the substrate edge by the position sensor. Discharge stop was controlled by the discharge time. Since a margin of about 1 mm was provided on the inner side from the substrate edge, the application was stopped by discharging for 1.54 seconds at the longest portion.

このような方法により、基板の裏面にストライプ状に交互に形成された51本のp領域と52本のn領域に、正電極材と負電極材をそれぞれ塗布することができた。 By such a method, the positive electrode material and the negative electrode material could be applied to 51 p + regions and 52 n + regions alternately formed in a stripe pattern on the back surface of the substrate, respectively.

縦横156mmの単結晶シリコン基板を使用し、当該基板の裏面に、1.5mm幅の帯状の、50本のp領域と50本のn領域を、ストライプ状に交互に形成した。基板を可動式ステージに真空チャックで固定し、CCDカメラとサーボモータにより位置合わせを行った後、ステージを10cm/秒で直線的に移動させた。p領域への塗布を担う第1の吐出手段とn領域への塗布を担う第2の吐出手段は共に25の吐出口で構成され、各吐出口の間隔は1.5mmであり、吐出口の内径は100μmである。各吐出手段はセットで基板の片側半分をカバーするように配置されている。基板先端が光学式位置センサーで検知され、この信号により第1の吐出手段と第2の吐出手段からそれぞれ正電極材と負電極材を吐出し、1.54秒間の吐出を行って、基板片側半分の塗布を完了した。この直後、ステージを電極材塗布方向と直交する方向に75mm移動させた後、初回の塗布とは逆方向へ10cm/秒で直線的に移動させた。これと同時に各吐出手段から2回目の吐出を開始し、1.54秒間吐出を行って塗布を停止した。 A single crystal silicon substrate having a length and width of 156 mm was used, and 50 p + regions and 50 n + regions each having a width of 1.5 mm were alternately formed in a stripe pattern on the back surface of the substrate. The substrate was fixed to a movable stage with a vacuum chuck, aligned with a CCD camera and a servo motor, and then the stage was linearly moved at 10 cm / second. The first discharge means responsible for application to the p + region and the second discharge means responsible for application to the n + region are both composed of 25 discharge ports, and the interval between the discharge ports is 1.5 mm. The inner diameter of the outlet is 100 μm. Each discharge means is arranged to cover one half of the substrate as a set. The front end of the substrate is detected by an optical position sensor, and by this signal, a positive electrode material and a negative electrode material are discharged from the first discharge means and the second discharge means, respectively, and discharge is performed for 1.54 seconds. Half application was completed. Immediately after this, the stage was moved 75 mm in a direction orthogonal to the electrode material application direction, and then moved linearly at a rate of 10 cm / second in the direction opposite to the first application. At the same time, the second ejection was started from each ejection means, and the ejection was stopped for 1.54 seconds.

このように電極材の塗布を、基板の半分ずつ2回に分けて行った場合においても、基板の裏面にストライプ状に交互に形成された50本のp領域と50本のn領域に、正電極材と負電極材をそれぞれ塗布することができた。 In this way, even when the electrode material is applied twice in half each of the substrate, the 50 p + regions and 50 n + regions alternately formed in stripes on the back surface of the substrate are applied. The positive electrode material and the negative electrode material could be applied respectively.

100 裏面電極型太陽電池
101 基板
102 p領域
103 n領域
104 正電極
105 負電極
106、107 パッシベーション膜
201、201a、201b 吐出手段
202、202a、202b 吐出口
203、203a、203b 電極材
301 移動手段
302 制御手段
303 アライメント機構
100 Back electrode type solar cell 101 Substrate 102 p + region 103 n + region 104 Positive electrode 105 Negative electrode 106, 107 Passivation film 201, 201a, 201b Discharge means 202, 202a, 202b Discharge port 203, 203a, 203b Electrode material 301 Movement Means 302 Control means 303 Alignment mechanism

Claims (12)

太陽電池基板の受光面とは反対側の裏面にすべての電極が形成される裏面電極型太陽電池の電極形成方法であって、
第1極性の電極材を吐出する複数の第1の吐出口と第2極性の電極材を吐出する複数の第2の吐出口とが前記裏面に対向して或る方向(以下「X方向」という。)に交互に並ぶように設けられた吐出手段の前記吐出口から前記電極材を吐出し垂下することにより前記裏面に前記電極材を塗布して第1極性の電極と第2極性の電極を形成することを特徴とする裏面電極型太陽電池の電極形成方法。
An electrode forming method for a back electrode type solar cell in which all electrodes are formed on the back surface opposite to the light receiving surface of the solar cell substrate,
A plurality of first discharge ports for discharging the first polarity electrode material and a plurality of second discharge ports for discharging the second polarity electrode material face the back surface in a certain direction (hereinafter referred to as “X direction”). The electrode material is applied to the back surface by discharging and dropping from the discharge port of the discharge means provided so as to be alternately arranged in the first and second polarity electrodes. A method for forming an electrode of a back electrode type solar cell, characterized by comprising:
前記吐出手段の前記太陽電池基板との相対位置を、X方向に対して略直角かつ前記裏面に略平行な方向(以下「Y方向という。」)に直線的に変化させつつ、前記吐出口から前記電極材を吐出することを特徴とする請求項1に記載の裏面電極型太陽電池の電極形成方法。   While the relative position of the discharge means with respect to the solar cell substrate is linearly changed in a direction substantially perpendicular to the X direction and substantially parallel to the back surface (hereinafter referred to as “Y direction”), from the discharge port. 2. The electrode forming method for a back electrode type solar cell according to claim 1, wherein the electrode material is discharged. 前記吐出手段として、複数の前記第1の吐出口が前記裏面に対向してX方向に一列に設けられた第1吐出手段と、複数の前記第2の吐出口が前記裏面に対向してX方向に一列に設けられた第2吐出手段と、を前記第1の吐出口と前記第2の吐出口とがX方向に交互に並ぶようにずらしてY方向に並べて配置したものを使用することを特徴とする請求項1又は2に記載の裏面電極型太陽電池の電極形成方法。   As the discharge means, a plurality of the first discharge ports are arranged in a row in the X direction so as to face the back surface, and a plurality of the second discharge ports are faced to the back surface. A second discharge means provided in a line in the direction is used, wherein the first discharge port and the second discharge port are arranged so as to be alternately arranged in the X direction and arranged in the Y direction. The method for forming an electrode of a back electrode type solar cell according to claim 1 or 2. 前記吐出手段の複数の前記吐出口からの前記電極材の吐出の有無を、前記吐出口ごとに制御することを特徴とする請求項1から3のいずれか1項に記載の裏面電極型太陽電池の電極形成方法。   4. The back electrode type solar cell according to claim 1, wherein presence or absence of discharge of the electrode material from the plurality of discharge ports of the discharge unit is controlled for each of the discharge ports. 5. Electrode forming method. 前記吐出手段を前記太陽電池基板に対してY方向に相対的に片道移動しつつ前記電極材を吐出した後、前記吐出手段をX方向に相対的に移動した上で、前記吐出手段を−Y方向に相対的に片道移動しつつ前記電極材を吐出することを特徴とする請求項1から4のいずれか1項に記載の裏面電極型太陽電池の電極形成方法。   After discharging the electrode material while moving the discharge means relative to the solar cell substrate in the Y direction, the discharge means is moved in the X direction, and then the discharge means is -Y The method for forming an electrode of a back electrode type solar cell according to any one of claims 1 to 4, wherein the electrode material is discharged while moving one way relatively in a direction. 所定の前記電極材を塗布すべき前記裏面の所定の領域に、所定の前記電極材が垂下されるように、前記太陽電池基板と前記吐出手段との位置関係を調整した上で前記電極材の塗布を行うことを特徴とする請求項1から5のいずれか1項に記載の裏面電極型太陽電池の電極形成方法。   The positional relationship between the solar cell substrate and the discharge means is adjusted so that the predetermined electrode material is suspended in a predetermined region on the back surface to which the predetermined electrode material is to be applied. Application | coating is performed, The electrode formation method of the back electrode type solar cell of any one of Claim 1 to 5 characterized by the above-mentioned. 太陽電池基板の受光面とは反対側の裏面にすべての電極が形成される裏面電極型太陽電池の電極形成装置であって、
第1極性の電極材を吐出する複数の第1の吐出口と第2極性の電極材を吐出する複数の第2の吐出口とが前記裏面に対向してX方向に交互に並ぶように設けられた吐出手段を備え、当該吐出手段の前記吐出口から前記電極材を吐出し垂下することにより前記裏面に前記電極材を塗布して第1極性の電極と第2極性の電極を形成することを特徴とする裏面電極型太陽電池の電極形成装置。
An electrode forming device for a back electrode type solar cell in which all electrodes are formed on the back surface opposite to the light receiving surface of the solar cell substrate,
A plurality of first discharge ports for discharging the first polarity electrode material and a plurality of second discharge ports for discharging the second polarity electrode material are provided so as to be alternately arranged in the X direction facing the back surface. A first polarity electrode and a second polarity electrode are formed by applying the electrode material to the back surface by discharging the electrode material from the discharge port of the discharge means and dropping it down. An electrode forming apparatus for a back electrode type solar cell.
前記吐出手段の前記太陽電池基板との相対位置をX方向に対して略直角かつ前記裏面に略平行な方向に変化させる移動手段と、
前記吐出手段と前記移動手段を制御する制御手段と、
を更に備え、
前記制御手段は、前記相対位置をY方向に直線的に変化させつつ前記電極材を吐出させるように制御することを特徴とする請求項7に記載の裏面電極型太陽電池の電極形成装置。
Moving means for changing the relative position of the discharge means to the solar cell substrate in a direction substantially perpendicular to the X direction and substantially parallel to the back surface;
Control means for controlling the discharge means and the moving means;
Further comprising
8. The electrode forming apparatus for a back electrode type solar cell according to claim 7, wherein the control means controls the discharge of the electrode material while linearly changing the relative position in the Y direction.
前記吐出手段は、複数の前記第1の吐出口が前記裏面に対向してX方向に一列に設けられた第1吐出手段と、複数の前記第2の吐出口が前記裏面に対向してX方向に一列に設けられた第2吐出手段と、を前記第1の吐出口と前記第2の吐出口とがX方向に交互に並ぶようにずらしてY方向に並べて配置したものであることを特徴とする請求項7又は8に記載の裏面電極型太陽電池の電極形成装置。   The discharge means includes a first discharge means in which a plurality of the first discharge ports are arranged in a row in the X direction so as to face the back surface, and a plurality of the second discharge ports that face the back surface. Second discharge means provided in a line in the direction, wherein the first discharge ports and the second discharge ports are arranged so as to be alternately arranged in the X direction and arranged in the Y direction. The electrode forming apparatus for a back electrode type solar cell according to claim 7 or 8, wherein the electrode forming device is a back electrode type solar cell. 前記制御手段は、前記吐出手段の複数の前記吐出口からの前記電極材の吐出の有無を、前記吐出口ごとに制御することを特徴とする請求項7から9のいずれか1項に記載の裏面電極型太陽電池の電極形成装置。   The said control means controls the presence or absence of discharge of the said electrode material from the said several discharge port of the said discharge means for every said discharge port, The any one of Claim 7 to 9 characterized by the above-mentioned. Electrode forming apparatus for back electrode type solar cell. 前記制御手段は、前記吐出手段を前記太陽電池基板に対してY方向に相対的に片道移動させつつ前記電極材を吐出させた後、前記吐出手段をX方向に相対的に移動させた上で、前記吐出手段を−Y方向に相対的に片道移動させつつ前記電極材を吐出させるように制御することを特徴とする請求項7から10のいずれか1項に記載の裏面電極型太陽電池の電極形成装置。   The control means discharges the electrode material while moving the discharge means in one direction relative to the solar cell substrate in the Y direction, and then moves the discharge means relative to the X direction. The back electrode solar cell according to any one of claims 7 to 10, wherein the electrode member is controlled to be discharged while the discharge means is relatively moved in one direction in the -Y direction. Electrode forming device. 所定の前記電極材を塗布すべき前記裏面の所定の領域に、所定の前記電極材が垂下されるように、前記太陽電池基板と前記吐出手段との位置関係を調整するアライメント機構を更に備えることを特徴とする請求項7から11のいずれか1項に記載の裏面電極型太陽電池の電極形成装置。
An alignment mechanism for adjusting the positional relationship between the solar cell substrate and the discharge means so that the predetermined electrode material is suspended in a predetermined region on the back surface to which the predetermined electrode material is to be applied; The electrode forming apparatus for a back electrode type solar cell according to any one of claims 7 to 11, wherein:
JP2015230637A 2015-11-26 2015-11-26 Electrode forming method and electrode forming apparatus of back electrode type solar cell Pending JP2017098460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015230637A JP2017098460A (en) 2015-11-26 2015-11-26 Electrode forming method and electrode forming apparatus of back electrode type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230637A JP2017098460A (en) 2015-11-26 2015-11-26 Electrode forming method and electrode forming apparatus of back electrode type solar cell

Publications (1)

Publication Number Publication Date
JP2017098460A true JP2017098460A (en) 2017-06-01

Family

ID=58818149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230637A Pending JP2017098460A (en) 2015-11-26 2015-11-26 Electrode forming method and electrode forming apparatus of back electrode type solar cell

Country Status (1)

Country Link
JP (1) JP2017098460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778239A1 (en) * 2019-08-16 2021-02-17 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method and device for parallel extruding of pressurized medium onto a substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527622A (en) * 2004-02-05 2007-09-27 アドベント ソーラー,インク. Electrode configuration of emitter covering back electrode type silicon solar cell
JP2010141326A (en) * 2008-12-09 2010-06-24 Palo Alto Research Center Inc Micro-extrusion printhead with nozzle valves
JP2010521824A (en) * 2007-03-16 2010-06-24 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Solar cell
JP2010228349A (en) * 2009-03-27 2010-10-14 Brother Ind Ltd Liquid delivering apparatus
JP2011198982A (en) * 2010-03-19 2011-10-06 Dainippon Screen Mfg Co Ltd Pattern-forming device
JP2013065532A (en) * 2011-09-20 2013-04-11 Dainippon Screen Mfg Co Ltd Manufacturing method of electrode for battery and manufacturing method of battery
JP2013191714A (en) * 2012-03-14 2013-09-26 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JP2015015292A (en) * 2013-07-03 2015-01-22 株式会社日立ハイテクノロジーズ Wiring formation device
JP2015038928A (en) * 2013-08-19 2015-02-26 株式会社Screenホールディングス Pattern shaping device, pattern shaping method, and pattern formation device
JP2015109364A (en) * 2013-12-05 2015-06-11 信越化学工業株式会社 Solar cell manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527622A (en) * 2004-02-05 2007-09-27 アドベント ソーラー,インク. Electrode configuration of emitter covering back electrode type silicon solar cell
JP2010521824A (en) * 2007-03-16 2010-06-24 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Solar cell
JP2010141326A (en) * 2008-12-09 2010-06-24 Palo Alto Research Center Inc Micro-extrusion printhead with nozzle valves
JP2010228349A (en) * 2009-03-27 2010-10-14 Brother Ind Ltd Liquid delivering apparatus
JP2011198982A (en) * 2010-03-19 2011-10-06 Dainippon Screen Mfg Co Ltd Pattern-forming device
JP2013065532A (en) * 2011-09-20 2013-04-11 Dainippon Screen Mfg Co Ltd Manufacturing method of electrode for battery and manufacturing method of battery
JP2013191714A (en) * 2012-03-14 2013-09-26 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JP2015015292A (en) * 2013-07-03 2015-01-22 株式会社日立ハイテクノロジーズ Wiring formation device
JP2015038928A (en) * 2013-08-19 2015-02-26 株式会社Screenホールディングス Pattern shaping device, pattern shaping method, and pattern formation device
JP2015109364A (en) * 2013-12-05 2015-06-11 信越化学工業株式会社 Solar cell manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778239A1 (en) * 2019-08-16 2021-02-17 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method and device for parallel extruding of pressurized medium onto a substrate
CN112397609A (en) * 2019-08-16 2021-02-23 弗劳恩霍夫应用研究促进协会 Method and device for parallel extrusion of printing media onto a substrate

Similar Documents

Publication Publication Date Title
US8178777B2 (en) Method of manufacturing solar cell and solar cell manufactured thereby
EP1955863B1 (en) Printing mask
KR20110004438A (en) Methods to pattern diffusion layers in solar cells and solar cells made by such methods
KR20080054357A (en) Solar cell fabrication using extruded dopant-bearing materials
JP6879913B2 (en) Solar cell electrode forming method and solar cell electrode forming screen printing machine
DE102009011371A1 (en) Apparatus for etching a substrate and method for etching a substrate using the same
CN105576135B (en) The preparation method and product of all solid state perovskite mesoscopic solar cells of large area
WO2009038372A2 (en) Thin film type solar cell and method for manufacturing the same
JP2014504026A (en) Non-contact bus bar for solar cell and method for manufacturing non-contact bus bar
JP2017098460A (en) Electrode forming method and electrode forming apparatus of back electrode type solar cell
US10763378B2 (en) Double printing method and screen stencil for improving the tensile force of the electrode of solar panel
US20130109133A1 (en) Rear-point-contact process or photovoltaic cells
CN108075017B (en) Manufacturing method of IBC battery
US20150027527A1 (en) Solar Cell and Process for Producing a Solar Cell
KR20120134892A (en) Buried contact solar cell using laser and ink-jet and the manufacturing method thereof
JP2012524386A (en) Elongated solar cell and edge contact
JP2006210385A (en) Method for manufacturing solar battery
KR20060069307A (en) Solar cell and method of manufacturing the same
KR20130047320A (en) Solar cell and manufacturing method thereof
CN113871499A (en) N-based silicon back contact solar cell and preparation method thereof
KR101012518B1 (en) An apparatus and a method for forming electrode patterns of solar cell using multi-dispensing method
JPS6173386A (en) Manufacture of photovoltaic device
JP2017183327A (en) Method of manufacturing solar battery and printing device
JP6420706B2 (en) Passivation film forming method for solar cell and passivation film forming apparatus for solar cell
KR101502790B1 (en) Apparatus comprising dual sintering chamber for manufacturing solar cell and manufacturing method of solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618