JP2017098274A - Heat sink device - Google Patents

Heat sink device Download PDF

Info

Publication number
JP2017098274A
JP2017098274A JP2014065494A JP2014065494A JP2017098274A JP 2017098274 A JP2017098274 A JP 2017098274A JP 2014065494 A JP2014065494 A JP 2014065494A JP 2014065494 A JP2014065494 A JP 2014065494A JP 2017098274 A JP2017098274 A JP 2017098274A
Authority
JP
Japan
Prior art keywords
fin
central
plane
heat sink
sink device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014065494A
Other languages
Japanese (ja)
Inventor
加藤 健次
Kenji Kato
健次 加藤
崇 米澤
Takashi Yonezawa
崇 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014065494A priority Critical patent/JP2017098274A/en
Priority to PCT/JP2014/073652 priority patent/WO2015145809A1/en
Priority to TW103133175A priority patent/TW201537135A/en
Publication of JP2017098274A publication Critical patent/JP2017098274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat sink device capable of efficiently cooling a driving device even when an installation direction of the integrated driving device is changed.SOLUTION: In a space constituted by a x direction, a y direction and a z direction, a surface of a base (6) positioned in parallel to the xy plane is divided into three sections, namely, a first section, a second section and a third section along the y direction and the shapes and arrangements of fins (7, 8, 9, 10) standing upright in each section are changed for each section to expand an intake area of natural convection.SELECTED DRAWING: Figure 1

Description

本発明は、制御回路内の発熱素子を冷却する放熱フィン(以下、フィンと省略する)が設けられたヒートシンク装置に関するものである。   The present invention relates to a heat sink device provided with heat radiating fins (hereinafter abbreviated as fins) for cooling heat generating elements in a control circuit.

従来から、半導体素子等といった電子部品(発熱素子)は、複数のフィンが設けられたヒートシンク装置によって冷却される。また、ヒートシンク装置内の収納部に設けられた制御回路が制御する駆動装置と、ヒートシンク装置とが一体化されることがある。   Conventionally, an electronic component (a heating element) such as a semiconductor element is cooled by a heat sink device provided with a plurality of fins. Further, the drive device controlled by the control circuit provided in the storage unit in the heat sink device may be integrated with the heat sink device.

具体的には、制御回路を収納する筐体の外面にフィンを設けたヒートシンク装置が一体的に取り付けられたモータが挙げられる(例えば、特許文献1参照)。ここで、特許文献1に記載の従来技術においては、ヒートシンク装置と一体化したモータの設置方向によらずに、ヒートシンク装置によってモータが自然空冷されるように構成されている。   Specifically, there is a motor in which a heat sink device provided with fins is integrally attached to the outer surface of a housing that houses a control circuit (see, for example, Patent Document 1). Here, in the prior art described in Patent Document 1, the motor is naturally air-cooled by the heat sink device regardless of the installation direction of the motor integrated with the heat sink device.

特開平11−122875号公報(6頁、図5)JP-A-11-122875 (page 6, FIG. 5)

しかしながら、従来技術には以下のような課題がある。
ヒートシンク装置と一体化した駆動装置を設置する場合、駆動装置の設置方向によって、一部のフィンの冷却性能や放熱能力が低下し、全体として冷却性能が低下するという問題がある。
However, the prior art has the following problems.
When a driving device integrated with a heat sink device is installed, there is a problem that the cooling performance and heat dissipation capability of some fins are lowered depending on the installation direction of the driving device, and the cooling performance is lowered as a whole.

より具体的に説明すると、特許文献1に記載の従来技術においては、モータの設置方向を変更した場合に、一部のフィンでは自然冷却が可能であるが、一部のフィンでは冷却性能や放熱能力が低下し、全体として冷却性能が低下する。その結果、制御回路内の半導体素子等といった電子部品(冷却対象部)の温度が上昇するという問題点がある。   More specifically, in the conventional technique described in Patent Document 1, when the motor installation direction is changed, some fins can be naturally cooled, but some fins have cooling performance and heat dissipation. The capacity decreases, and the cooling performance as a whole decreases. As a result, there is a problem that the temperature of an electronic component (cooling target part) such as a semiconductor element in the control circuit rises.

本発明は、前記のような課題を解決するためになされたものであり、一体化されている駆動装置の設置方向を変更しても、駆動装置を効率的に冷却することのできるヒートシンク装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and provides a heat sink device capable of efficiently cooling a drive device even when the installation direction of the integrated drive device is changed. The purpose is to obtain.

本発明におけるヒートシンク装置は、ベースの表面に複数のフィンが立設されるとともに、冷却対象部の放熱を行うヒートシンク装置であって、x方向、y方向およびz方向で構成される空間において、ベースの表面は、y方向に沿って、第1区画と第2区画と第1区画および第2区画に挟まれた第3区画とに3分割され、第1区画に立設される第1フィンと、第2区画に立設される第2フィンは、y−z平面と平行になるように構成され、第3区画に立設される第3フィンは、y−z平面と平行になるように構成され、第3フィンの両側面のそれぞれに立設される第4フィンおよび第5フィンは、y−z平面と平行でない平面と平行になるように構成され、第4フィンおよび第5フィンは、ベースと接触しないように、ベースの表面に対してz方向の隙間を有しているものである。   A heat sink device according to the present invention is a heat sink device in which a plurality of fins are erected on the surface of a base and radiates heat from a portion to be cooled, and the base in a space constituted by an x direction, a y direction, and a z direction The first surface is divided into three sections along the y direction into a first section, a second section, a first section and a third section sandwiched between the first section and the second section, and a first fin standing on the first section The second fin standing on the second section is configured to be parallel to the yz plane, and the third fin standing on the third section is parallel to the yz plane. The fourth fin and the fifth fin that are configured and are erected on both side surfaces of the third fin are configured to be parallel to a plane that is not parallel to the yz plane, and the fourth fin and the fifth fin are , Against the surface of the base to avoid contact with the base Those having a z-direction of the gap.

本発明によれば、ベースの表面を第1区画、第2区画および第3区画に3分割し、それぞれの区画に立設されるフィンの形状および配置を区画ごとに変化させることで、自然対流の吸気面積が拡大するようにする。これにより一体化されている駆動装置の設置方向を変更しても、駆動装置を効率的に冷却することのできるヒートシンク装置を得ることができる。   According to the present invention, the surface of the base is divided into three sections, a first section, a second section, and a third section, and the shape and arrangement of the fins standing in each section are changed for each section, thereby allowing natural convection. To increase the intake area. Thereby, even if the installation direction of the integrated drive device is changed, a heat sink device capable of efficiently cooling the drive device can be obtained.

本発明の実施の形態1による制御装置付きモータを水平設置した場合の斜視図である。It is a perspective view at the time of installing horizontally the motor with a control device by Embodiment 1 of the present invention. 本発明の実施の形態1による図1の制御装置付きモータのy軸方向から見た断面図である。It is sectional drawing seen from the y-axis direction of the motor with a control apparatus of FIG. 1 by Embodiment 1 of this invention. 本発明の実施の形態1による図1の制御装置付きモータのx軸方向から見た断面図である。It is sectional drawing seen from the x-axis direction of the motor with a control apparatus of FIG. 1 by Embodiment 1 of this invention. 本発明の実施の形態1による制御装置付きモータを垂直設置した場合の斜視図である。It is a perspective view at the time of installing vertically the motor with a control device by Embodiment 1 of the present invention. 本発明の実施の形態2による制御装置付きモータを水平に対して傾けて設置した場合の斜視図である。It is a perspective view at the time of installing the motor with a control apparatus by Embodiment 2 of this invention inclining with respect to the horizontal. 本発明の実施の形態3による制御装置付きモータを水平設置した場合の斜視図である。It is a perspective view at the time of installing horizontally the motor with a control device by Embodiment 3 of the present invention. 本発明の実施の形態3による制御装置付きモータを垂直設置した場合の斜視図である。It is a perspective view at the time of installing vertically the motor with a control device by Embodiment 3 of the present invention. 本発明の実施の形態4による制御装置付きモータを水平設置した場合の斜視図である。It is a perspective view at the time of installing horizontally the motor with a control device by Embodiment 4 of this invention. 本発明の実施の形態4による制御装置付きモータを垂直設置した場合の斜視図である。It is a perspective view at the time of installing vertically the motor with a control device by Embodiment 4 of this invention. 本発明の実施の形態5による制御装置付きモータを水平設置した場合の斜視図である。It is a perspective view at the time of installing horizontally the motor with a control device by Embodiment 5 of the present invention. 本発明の実施の形態5による制御装置付きモータを垂直設置した場合の斜視図である。It is a perspective view at the time of installing vertically the motor with a control apparatus by Embodiment 5 of this invention.

以下、本発明によるヒートシンク装置を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。   Hereinafter, a heat sink device according to the present invention will be described with reference to the drawings according to a preferred embodiment. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted.

また、以下の各実施の形態では、本発明によって得られる効果を具体的に示すために、本願発明が適用される駆動装置の具体例として、モータ(制御装置付きモータ)を例示しながら詳細に説明する。さらに、以下の各実施の形態では、ヒートシンク装置のベースに立設される各フィンの形状、配置等を説明する際、互いに直交するx方向、y方向およびz方向で構成される3次元空間において、本願発明のヒートシンク装置と一体化したモータの軸方向をy方向と一致させ、ヒートシンク装置のベースをx−y平面と平行に位置させた状態を基準として説明する。   In the following embodiments, in order to specifically show the effects obtained by the present invention, a motor (motor with a control device) is illustrated in detail as a specific example of a drive device to which the present invention is applied. explain. Further, in each of the following embodiments, when describing the shape, arrangement, etc. of each fin standing on the base of the heat sink device, in a three-dimensional space composed of x, y, and z directions orthogonal to each other The description will be made on the basis of a state in which the axial direction of the motor integrated with the heat sink device of the present invention coincides with the y direction, and the base of the heat sink device is positioned in parallel with the xy plane.

実施の形態1.
図1は、本発明の実施の形態1による制御装置付きモータを水平設置した場合の斜視図、図2は、モータ軸方向の中央付近のy軸方向に見た断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view when a motor with a control device according to Embodiment 1 of the present invention is horizontally installed, and FIG. 2 is a cross-sectional view seen in the y-axis direction near the center in the motor axis direction.

図1に示すように、モータ1のモータフレーム2の上面にヒートシンク装置5が取り付けられている。また、ヒートシンク装置5は、制御装置3、筐体4、ベース6、前部フィン7(第1フィン)、後部フィン8(第2フィン)、中央第一フィン9(第3フィン)、および中央第二フィン10(第4フィンおよび第5フィン)を有する。   As shown in FIG. 1, a heat sink device 5 is attached to the upper surface of the motor frame 2 of the motor 1. Further, the heat sink device 5 includes the control device 3, the casing 4, the base 6, the front fin 7 (first fin), the rear fin 8 (second fin), the central first fin 9 (third fin), and the center. It has the 2nd fin 10 (4th fin and 5th fin).

ヒートシンク装置5の筐体4内(筐体4の収納部)には、モータ1の動作を制御する制御装置3が収納されており、筐体4の上部にはヒートシンクが一体成型されている。また、ヒートシンク装置5のベース6の表面には、複数のフィンとして、前部フィン7、後部フィン8、中央第一フィン9、および中央第二フィン10が立設されている。   A control device 3 that controls the operation of the motor 1 is housed in the housing 4 of the heat sink device 5 (a housing portion of the housing 4), and a heat sink is integrally formed on the top of the housing 4. A front fin 7, a rear fin 8, a central first fin 9, and a central second fin 10 are erected on the surface of the base 6 of the heat sink device 5 as a plurality of fins.

ここで、本実施の形態1におけるヒートシンク装置5は、x方向、y方向およびz方向で構成される空間において、ベース6の表面をy方向に沿って、第1区画と、第2区画と、第1区画および第2区画に挟まれた第3区画と、に3分割し、それぞれの区画に立設されるフィンの形状および配置を区画ごとに変化させるという技術的特徴を有する。   Here, the heat sink device 5 according to the first embodiment includes a first section, a second section, and a surface of the base 6 along the y direction in a space configured by the x direction, the y direction, and the z direction. It has the technical feature that it is divided into a third section sandwiched between the first section and the second section, and the shape and arrangement of the fins standing in each section are changed for each section.

すなわち、本実施の形態1において、第1区画に立設される前部フィン7と、第2区画に立設される後部フィン8は、y−z平面と平行になるように構成される。また、第3区画に立設される中央第一フィン9は、y−z平面と平行になるように構成される。さらに、中央第一フィン9の両側面のそれぞれに対称に立設される中央第二フィン10は、y−z平面と平行でない平面と平行になるように構成される。以降では、ベース6に立設される各フィンについて、さらに詳しく説明する。   That is, in the first embodiment, the front fins 7 standing in the first section and the rear fins 8 standing in the second section are configured to be parallel to the yz plane. Further, the central first fin 9 erected in the third section is configured to be parallel to the yz plane. Further, the central second fin 10 provided symmetrically on both side surfaces of the central first fin 9 is configured to be parallel to a plane that is not parallel to the yz plane. Hereinafter, each fin standing on the base 6 will be described in more detail.

ヒートシンク装置5のベース6のy軸方向の前部(第1区画)には、モータ1の軸(回転軸)と平行方向に複数枚の前部フィン7が設けられ、後部(第2区画)には、モータ1の軸と平行方向に複数枚の後部フィン8が設けられている。なお、図1から分かるように、後部フィン8のそれぞれのフィン幅は、前部フィン7のそれぞれのフィン幅よりも長い。すなわち、後部フィン8のy軸方向の長さは、前部フィン7よりも長くしている。   A plurality of front fins 7 are provided in the front part (first section) of the base 6 of the heat sink device 5 in the direction parallel to the axis (rotation axis) of the motor 1, and the rear part (second section). Are provided with a plurality of rear fins 8 in a direction parallel to the axis of the motor 1. As can be seen from FIG. 1, each fin width of the rear fin 8 is longer than each fin width of the front fin 7. That is, the length of the rear fin 8 in the y-axis direction is longer than that of the front fin 7.

ヒートシンク装置5のベース6のy軸方向の中央部(第3区画)には、モータ1の軸と平行方向に一枚の中央第一フィン9が設けられる。また、中央第一フィン9の両側面にはモータ1の軸と垂直方向でかつベース6とは接しないように複数の中央第二フィン10が設けられ、ベース6と中央第二フィン10の間には隙間11が生じるように構成されている。なお、図1から分かるように、中央第一フィン9のフィン厚(厚さ)は、中央第二フィン10のフィン厚よりも大きくしている。   One central first fin 9 is provided in a central portion (third section) in the y-axis direction of the base 6 of the heat sink device 5 in a direction parallel to the axis of the motor 1. A plurality of central second fins 10 are provided on both side surfaces of the central first fin 9 so as to be perpendicular to the axis of the motor 1 and not in contact with the base 6, and between the base 6 and the central second fin 10. Is configured to have a gap 11. As can be seen from FIG. 1, the fin thickness (thickness) of the central first fin 9 is larger than the fin thickness of the central second fin 10.

ヒートシンク装置5において、ヒートシンク(各フィン)を含む筐体4は、例えばアルミニウムから形成される。また、筐体4、前部フィン7、後部フィン8、中央第一フィン9および中央第二フィン10は、一体で形成されることが好ましい。   In the heat sink device 5, the housing 4 including the heat sink (each fin) is made of aluminum, for example. Moreover, it is preferable that the housing | casing 4, the front part fin 7, the rear part fin 8, the center 1st fin 9, and the center 2nd fin 10 are integrally formed.

図2に示すように、制御装置3の内部において、基板15にモータ1の回転動作を制御する電子部品14が両面実装されており、そのうちの発熱する半導体素子12が熱伝導性材料13を介してベース6と密着するように取り付けられる。なお、熱伝導性材料13には、例えばサーマルグリースやサーマルシートが用いられる。また、半導体素子12は、y軸方向に見た場合、中央第一フィン9と重なるように配置されることが好ましい。   As shown in FIG. 2, inside the control device 3, electronic components 14 that control the rotation operation of the motor 1 are mounted on both sides of the substrate 15, and the semiconductor element 12 that generates heat is interposed through the heat conductive material 13. Are attached so as to be in close contact with the base 6. For the heat conductive material 13, for example, thermal grease or a thermal sheet is used. The semiconductor element 12 is preferably arranged so as to overlap the central first fin 9 when viewed in the y-axis direction.

このような構成によれば、半導体素子12で発生した熱は、ヒートシンク装置5のベース6から前部フィン7、後部フィン8、中央第一フィン9に伝わる。中央第一フィン9に伝わった熱は、中央第二フィン10に伝わる。   According to such a configuration, the heat generated in the semiconductor element 12 is transmitted from the base 6 of the heat sink device 5 to the front fin 7, the rear fin 8, and the central first fin 9. The heat transmitted to the central first fin 9 is transmitted to the central second fin 10.

重力方向が−z方向の場合、図1中に矢印で示したような方向に流れる冷却風16が発生する。具体的には、前部フィン7の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の前面(−y方向)から吸気し、前部フィン7の間を通過し、上(+z方向)に流れる冷却風16が発生する。同様に、後部フィン8の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の後面(+y方向)から吸気し、後部フィン8の間を通過し、上(+z方向)に流れる冷却風16が発生する。   When the direction of gravity is the -z direction, cooling air 16 that flows in the direction indicated by the arrow in FIG. 1 is generated. Specifically, around the front fin 7, the temperature of the surrounding air rises due to the transmitted heat, and the air is sucked from the front surface (−y direction) of the housing 4 due to the density difference of the air. The cooling air 16 that passes between the two and flows upward (in the + z direction) is generated. Similarly, around the rear fin 8, the temperature of the surrounding air rises due to the transmitted heat, and the air is sucked from the rear surface (+ y direction) of the housing 4 due to the density difference of the air and passes between the rear fins 8. The cooling air 16 flowing upward (+ z direction) is generated.

また、中央第二フィン10の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体の側面(±x方向)から吸気し、中央第二フィン10および中央第一フィン9の間を通過し、上(+z方向)に流れる冷却風16が発生する。この冷却風16により、ベース6、前部フィン7、後部フィン8、中央第一フィン9、中央第二フィン10が自然空冷により冷却され、半導体素子12が冷却される。   Further, around the central second fin 10, the temperature of the surrounding air rises due to the transmitted heat, and the air is sucked from the side surface (± x direction) of the casing due to the density difference of the air. Cooling air 16 passing between the first fins 9 and flowing upward (+ z direction) is generated. With this cooling air 16, the base 6, the front fin 7, the rear fin 8, the central first fin 9, and the central second fin 10 are cooled by natural air cooling, and the semiconductor element 12 is cooled.

本願発明のヒートシンク装置5をモータ1に適用する場合、図1に示すように、前部フィン7と後部フィン8においては、モータ1の軸と平行方向(y軸方向)にフィンが配置され、中央第二フィン10おいては、モータ1の軸と垂直方向(x軸方向)にフィンが配置されるように、ヒートシンク装置5をモータ1に取り付ける。これにより、制御装置3の前面、後面、側面の全方向から冷却風16の吸気が可能となる。そして、吸気面積が拡大されることで、自然空冷の冷却風量が増加し、放熱特性を向上させることができる。   When the heat sink device 5 of the present invention is applied to the motor 1, as shown in FIG. 1, in the front fin 7 and the rear fin 8, fins are arranged in a direction parallel to the axis of the motor 1 (y-axis direction). In the central second fin 10, the heat sink device 5 is attached to the motor 1 so that the fin is arranged in a direction perpendicular to the axis of the motor 1 (x-axis direction). Thereby, the cooling air 16 can be sucked from all directions of the front surface, the rear surface, and the side surface of the control device 3. And by increasing the intake area, the amount of natural air-cooled cooling air can be increased, and the heat dissipation characteristics can be improved.

また、中央第一フィン9のフィン厚を中央第二フィン10のフィン厚よりも大きくすることで、中央第一フィン9のフィン効率が向上する。さらに、半導体素子12の熱が中央第一フィン9から中央第二フィン10に伝わるまでの熱抵抗が小さくなり、中央第二フィン10へ効率よく熱を伝えられるので放熱特性が向上する。   Further, the fin efficiency of the central first fin 9 is improved by making the fin thickness of the central first fin 9 larger than the fin thickness of the central second fin 10. Furthermore, the heat resistance until the heat of the semiconductor element 12 is transmitted from the central first fin 9 to the central second fin 10 is reduced, and heat can be efficiently transmitted to the central second fin 10, so that the heat dissipation characteristics are improved.

図3は、モータ1をLフランジ17に取り付けた状態を示す、x軸方向から見た側面図である。   FIG. 3 is a side view of the motor 1 attached to the L flange 17 as seen from the x-axis direction.

図3に示すように、モータ1は、前面をLフランジ17に固定して使用されることが多い。このように、モータ1をLフランジ17に固定すると前部フィン7の吸気部とLフランジ17が接近して吸気部の圧力損失が大きくなることが考えられる。   As shown in FIG. 3, the motor 1 is often used with its front surface fixed to an L flange 17. As described above, when the motor 1 is fixed to the L flange 17, it is conceivable that the intake portion of the front fin 7 and the L flange 17 approach and the pressure loss of the intake portion increases.

これに対して、ヒートシンク装置5では、後部フィン8のフィン幅を前部フィン7のフィン幅よりも長くすることで、モータ1の前面をLフランジ17に固定して使用される場合の対策を図っている。   On the other hand, in the heat sink device 5, the fin width of the rear fin 8 is made longer than the fin width of the front fin 7, so that a countermeasure when the front surface of the motor 1 is fixed to the L flange 17 is used. I am trying.

すなわち、後部フィン8の吸気部は開放されているため、吸気部の圧力損失は小さい。そのため、前部フィン7の間を流れる冷却風16は少なく、後部フィン8の間を流れる冷却風16は多くなる。したがって、後部フィン8のフィン幅を前部フィン7のフィン幅よりも長くすることで、効率的に冷却が可能となり、放熱特性が向上する。   That is, since the intake part of the rear fin 8 is open, the pressure loss of the intake part is small. Therefore, the cooling air 16 flowing between the front fins 7 is small, and the cooling air 16 flowing between the rear fins 8 is increased. Therefore, by making the fin width of the rear fin 8 longer than the fin width of the front fin 7, cooling can be efficiently performed and heat dissipation characteristics are improved.

図4は、モータ1をモータ1の軸が重力方向(+y方向)になるように配置した状態を示す斜視図である。   FIG. 4 is a perspective view showing a state in which the motor 1 is arranged so that the axis of the motor 1 is in the gravity direction (+ y direction).

従来では、モータの設置方向を図1に示す水平状態から図3に示す垂直状態に変更した場合に、一部のフィンでは自然冷却が可能であるが、一部のフィンでは冷却性能や放熱能力が低下し、全体として冷却性能が低下するという問題がある。   Conventionally, when the motor installation direction is changed from the horizontal state shown in FIG. 1 to the vertical state shown in FIG. 3, some fins can be naturally cooled, but some fins have cooling performance and heat dissipation capability. There is a problem that the cooling performance is lowered as a whole.

これに対して、ヒートシンク装置5では、中央第二フィン10とベース6の間に隙間11を設けていることで、モータの設置方向を変更した場合の対策を図っている。   On the other hand, in the heat sink device 5, the clearance 11 is provided between the central second fin 10 and the base 6, so that a countermeasure is taken when the motor installation direction is changed.

すなわち、図4に示すように、モータ1を重力方向が+y軸方向になるように垂直方向に配置しても、隙間11を冷却風16が流れて自然空冷されるので、ベース6を冷却することが可能となり、放熱特性が向上する。   That is, as shown in FIG. 4, even if the motor 1 is arranged in the vertical direction so that the direction of gravity is the + y-axis direction, the cooling air 16 flows through the gap 11 and is naturally cooled, so the base 6 is cooled. And the heat dissipation characteristics are improved.

以上、本実施の形態1によれば、x方向、y方向およびz方向で構成される3次元空間において、x−y平面と平行に位置するベースの表面における第1区画に立設される第1フィン(前部フィン)と、第2区画に立設される第2フィン(後部フィン)は、y−z平面と平行になるように構成され、第3区画に立設される第3フィン(中央第一フィン)は、y−z平面と平行になるように構成される。   As described above, according to the first embodiment, in the three-dimensional space composed of the x direction, the y direction, and the z direction, the first section is erected on the first section on the surface of the base located parallel to the xy plane. The first fin (front fin) and the second fin (rear fin) standing on the second section are configured to be parallel to the yz plane, and the third fin standing on the third section The (center first fin) is configured to be parallel to the yz plane.

第3フィンの両側面のそれぞれに立設される第4フィンおよび第5フィン(中央第二フィン)は、y−z平面と平行でない平面(実施の形態1ではx−z平面)と平行になるように構成され、第4フィンおよび第5フィンは、ベースと接触しないように、ベースの表面に対してz方向の隙間を有している。   The fourth fin and the fifth fin (central second fin) standing on both side surfaces of the third fin are parallel to a plane that is not parallel to the yz plane (the xz plane in the first embodiment). The fourth fin and the fifth fin have a gap in the z direction with respect to the surface of the base so as not to contact the base.

これにより、本願発明をモータに適用した場合、モータの前部、後部とモータの中央部でヒートシンク装置のフィンの方向が変わることとなるので、自然対流の吸気面積が拡大され、フィン間を通過する風量が増加し、冷却性能が向上する。また、中央第二フィンとベースの間に隙間を設けることで、モータを垂直方向に設置したときもフィン間に冷却風が流れ、冷却性能が向上する。   As a result, when the present invention is applied to a motor, the direction of the fins of the heat sink device changes between the front and rear portions of the motor and the central portion of the motor, so that the intake area of natural convection is expanded and passes between the fins. The air volume to be increased increases and the cooling performance is improved. Further, by providing a gap between the center second fin and the base, cooling air flows between the fins even when the motor is installed in the vertical direction, and the cooling performance is improved.

すなわち、筐体の前面、後面、側面から吸気できるので放熱特性が向上する。また、中央第二フィンとベースの間に隙間を設けているので、駆動装置本体を垂直方向に配置しても(モータの軸が重力方向になるように配置しても)、隙間を空気が流れてベースを冷却することができる。   That is, since heat can be drawn from the front, rear, and side surfaces of the housing, the heat dissipation characteristics are improved. In addition, since a gap is provided between the center second fin and the base, even if the drive device main body is arranged in the vertical direction (even if the motor shaft is arranged in the gravitational direction), the gap is filled with air. It can flow and cool the base.

また、第3フィンのフィン厚は、第4フィンおよび第5フィンのそれぞれのフィン厚よりも大きくなるように構成されている。これにより、半導体素子の熱が中央第一フィンを通して中央第二フィンへ伝わるまでの熱抵抗が小さくなり冷却性能が向上する。   The fin thickness of the third fin is configured to be larger than the thickness of each of the fourth fin and the fifth fin. Thereby, the thermal resistance until the heat of the semiconductor element is transferred to the central second fin through the central first fin is reduced, and the cooling performance is improved.

また、第2フィンにおけるy方向のフィン幅は、第1フィンにおけるy方向のフィン幅よりも長くなるように構成されている。これにより、本願発明をモータに適用し、ヒートシンク装置と一体化したモータの前面をLフランジに固定した場合であっても、冷却性能を向上させることができる。すなわち、このような構成を採用することで、前部フィンではモータの取り付けフランジ等があり空気が流入しにくいが、後部フィン周辺が開放されている場合に空気が流入しやすく、後部フィンの放熱面積が大きく冷却性能が向上する。   Further, the fin width in the y direction of the second fin is configured to be longer than the fin width in the y direction of the first fin. Thereby, even if it is a case where this invention is applied to a motor and the front surface of the motor integrated with the heat sink apparatus is fixed to L flange, a cooling performance can be improved. That is, by adopting such a configuration, the front fin has a motor mounting flange and the like, and it is difficult for air to flow in. However, when the periphery of the rear fin is open, air easily flows in and the heat radiation of the rear fin Large area improves cooling performance.

実施の形態2.
図5は、本発明の実施の形態2による制御装置付きモータを水平に対して傾けて設置した場合の斜視図である。図5に示すように、中央第一フィン9のフィン高さは、中央第二フィン10とベースの間に設けられる隙間の高さと同じにして、中央第一フィン9におけるz方向の上部端面に中央第二フィン10が立設されるようにする。すなわち、先の実施の形態1と比較して、中央第一フィン9のz軸方向の長さを短くして、中央第二フィン10の下面と接する位置までの高さにしている。
Embodiment 2. FIG.
FIG. 5 is a perspective view when the motor with a control device according to the second embodiment of the present invention is installed inclined with respect to the horizontal. As shown in FIG. 5, the fin height of the central first fin 9 is the same as the height of the gap provided between the central second fin 10 and the base, and the z-direction upper end surface of the central first fin 9 is set. The central second fin 10 is erected. That is, as compared with the first embodiment, the length of the central first fin 9 in the z-axis direction is shortened to a height that contacts the lower surface of the central second fin 10.

このような構成によれば、重力方向が+x方向になるようにモータ1を設置した場合に、半導体素子12で発生した熱は、ヒートシンク装置5のベース6から中央第一フィン9に伝わり、中央第一フィン9に伝わった熱は中央第二フィン10に伝わる。   According to such a configuration, when the motor 1 is installed so that the direction of gravity is the + x direction, the heat generated in the semiconductor element 12 is transmitted from the base 6 of the heat sink device 5 to the central first fin 9, and The heat transferred to the first fin 9 is transferred to the central second fin 10.

中央第二フィン10の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、+x方向から吸気し、中央第二フィン10の間を通過し、−x方向に流れる冷却風16が発生する。この冷却風16により、ベース6、中央第二フィン10が自然空冷により冷却され、半導体素子12が冷却される。   Around the central second fin 10, the temperature of the surrounding air rises due to the transmitted heat, and the air is sucked in from the + x direction due to the difference in air density, passes between the central second fins 10, and flows in the −x direction. Cooling air 16 is generated. With this cooling air 16, the base 6 and the central second fin 10 are cooled by natural air cooling, and the semiconductor element 12 is cooled.

ヒートシンク装置5では中央第一フィン9のz軸方向の長さを短くしているため、中央第二フィン10の間をx軸方向に流れる冷却風16の流れを阻害しないため圧力損失が低く、冷却風量が増加し、放熱特性が向上する。   In the heat sink device 5, since the length of the central first fin 9 in the z-axis direction is shortened, the pressure loss is low because the flow of the cooling air 16 flowing in the x-axis direction between the central second fins 10 is not obstructed. Cooling air volume increases and heat dissipation characteristics improve.

また、先の実施の形態1と同様に、中央第一フィン9のフィン厚を中央第二フィン10のフィン厚よりも大きくすることで、中央第一フィン9のフィン効率が向上する。そして、半導体素子12の熱が中央第一フィン9から中央第二フィン10に伝わるまでの熱抵抗が小さくなり、中央第二フィン10へ効率よく熱を伝えられるので放熱特性が向上する。   Similarly to the first embodiment, the fin efficiency of the central first fin 9 is improved by making the fin thickness of the central first fin 9 larger than the fin thickness of the central second fin 10. And the heat resistance until the heat | fever of the semiconductor element 12 is transmitted from the center 1st fin 9 to the center 2nd fin 10 becomes small, and since heat can be efficiently transmitted to the center 2nd fin 10, the heat dissipation characteristic improves.

以上、本実施の形態2によれば、第3フィンにおけるz方向のフィン高さは、隙間と同じであり、第3フィンにおけるz方向の上部端面に第4フィンおよび第5フィンが立設されるように構成されている。   As described above, according to the second embodiment, the fin height in the z direction of the third fin is the same as the gap, and the fourth fin and the fifth fin are erected on the upper end surface in the z direction of the third fin. It is comprised so that.

これにより、ヒートシンク装置を傾けても中央第二フィン間をx軸方向に流れる冷却風の流れを阻害しないため、圧力損失が低く、冷却風量が増加し、放熱特性が向上する。より具体的には、本願発明をモータに適用した場合、モータ軸の円周方向に傾いても中央第二フィン間を空気が流れ、冷却性能が向上する。   Thereby, even if the heat sink device is tilted, the flow of the cooling air flowing in the x-axis direction between the central second fins is not hindered, so that the pressure loss is low, the cooling air volume is increased, and the heat radiation characteristics are improved. More specifically, when the present invention is applied to a motor, air flows between the central second fins even when the motor shaft is inclined in the circumferential direction, and the cooling performance is improved.

実施の形態3.
図6および図7は、本発明の実施の形態3による制御装置付きモータを示す斜視図である。ここで、図6は、重力方向が−z方向となるように設置した場合、図7は、重力方向が+y方向となるように設置した場合を示す。
Embodiment 3 FIG.
6 and 7 are perspective views showing a motor with a control device according to Embodiment 3 of the present invention. Here, FIG. 6 shows a case where the gravity direction is set to the −z direction, and FIG. 7 shows a case where the gravity direction is set to the + y direction.

図6および図7に示すように、ヒートシンク装置5のベース6のy軸方向の中央部にはモータ1の軸と平行方向に一枚の中央第一フィン9が設けられ、中央第一フィン9の側面にはベース6とは接しないよう複数の中央第二フィン10が設けられる。   As shown in FIGS. 6 and 7, one central first fin 9 is provided in the central portion of the base 6 of the heat sink device 5 in the y-axis direction in a direction parallel to the axis of the motor 1. A plurality of central second fins 10 are provided on the side surfaces of the first and second fins so as not to contact the base 6.

ここで、先の実施の形態1では、中央第二フィン10は、x−z平面と平行であるのに対して、本実施の形態3では、以下のように中央第二フィン10が構成される。すなわち、中央第一フィン9の一端面に立設されている中央第二フィン10は、z方向を中心にしてx−z平面を+y方向に回転させた平面と平行になるように構成される。また、中央第一フィン9の他端面に立設されている中央第二フィン10は、z方向を中心にしてx−z平面を−y方向に回転された平面と平行になるように構成されている。   Here, in the first embodiment, the central second fin 10 is parallel to the xz plane, whereas in the third embodiment, the central second fin 10 is configured as follows. The That is, the central second fin 10 erected on one end surface of the central first fin 9 is configured to be parallel to a plane obtained by rotating the xz plane in the + y direction around the z direction. . The central second fin 10 erected on the other end surface of the central first fin 9 is configured so that the xz plane is parallel to the plane rotated in the -y direction with the z direction as the center. ing.

また、図6においては、特に、中央第二フィン10は、中央第一フィン9と接する根元位置よりも、先端の位置がモータ1の軸方向の前部方向(−y方向)になるように傾斜させて配置され、z軸方向から見ると中央第二フィン10がV字になるように構成している。その他の構成は、実施の形態1と同様である。   Further, in FIG. 6, in particular, the center second fin 10 is arranged such that the position of the tip is in the front direction (−y direction) in the axial direction of the motor 1 rather than the root position in contact with the center first fin 9. The central second fin 10 is configured to be V-shaped when viewed from the z-axis direction. Other configurations are the same as those in the first embodiment.

このような構成によれば、図6のように、重力方向が−z方向の場合は実施の形態1と同様の効果が得られる。   According to such a configuration, as shown in FIG. 6, when the gravity direction is in the −z direction, the same effect as in the first embodiment can be obtained.

一方、図7のように重力方向が+y方向の場合、半導体素子12で発生した熱は、ヒートシンク装置5のベース6から前部フィン7、後部フィン8、中央第一フィン9に伝わる。中央第一フィン9に伝わった熱は、中央第二フィン10に伝わる。   On the other hand, when the gravity direction is the + y direction as shown in FIG. 7, the heat generated in the semiconductor element 12 is transmitted from the base 6 of the heat sink device 5 to the front fin 7, the rear fin 8, and the central first fin 9. The heat transmitted to the central first fin 9 is transmitted to the central second fin 10.

重力方向が+y方向の場合、前部フィン7の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の上面(+z方向)から吸気し、前部フィン7の間を通過し、前面(−y方向)に流れる冷却風16が発生する。   When the direction of gravity is the + y direction, the temperature of the surrounding air rises around the front fin 7 due to the transmitted heat, and air is sucked from the upper surface (+ z direction) of the housing 4 due to the density difference of the air. Cooling air 16 that passes between the fins 7 and flows in the front surface (−y direction) is generated.

後部フィン8の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の後面(+y方向)から吸気し、後部フィン8の間を通過し、上面(+z方向)および中央第二フィン10方向(−y方向)に流れる冷却風16が発生する。   Around the rear fins 8, the temperature of the surrounding air rises due to the transmitted heat, and due to the density difference of the air, the air is sucked from the rear surface (+ y direction) of the housing 4, passes between the rear fins 8, and the upper surface ( + Z direction) and cooling air 16 flowing in the center second fin 10 direction (-y direction) is generated.

また、中央第二フィン10の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の上面(+z方向)から吸気し、中央第二フィン10および中央第一フィン9の間を通過し、側面(±x方向)に流れる冷却風16が発生する。この冷却風16により、ベース6、前部フィン7、後部フィン8、中央第一フィン9、中央第二フィン10が自然空冷により冷却され、半導体素子12が冷却される。   In addition, around the central second fin 10, the temperature of the surrounding air rises due to the transmitted heat, and the air is sucked from the upper surface (+ z direction) of the housing 4 due to the density difference of the air. Cooling air 16 that passes between the first fins 9 and flows to the side surface (± x direction) is generated. With this cooling air 16, the base 6, the front fin 7, the rear fin 8, the central first fin 9, and the central second fin 10 are cooled by natural air cooling, and the semiconductor element 12 is cooled.

このように、本実施の形態3におけるヒートシンク装置5では、中央第二フィン10は、中央第一フィン9と接する根元位置より、先端の位置がモータ1の軸方向の前部方向(−y方向)になるように傾斜させてz軸方向から見ると中央第二フィン10がV字になるように配置される。したがって、重力方向が+y方向となっても、筐体4の上部から吸気して側面から排気する冷却風16の流れが発生するため、自然空冷による放熱特性を向上させることができる。   As described above, in the heat sink device 5 according to the third embodiment, the center second fin 10 has the tip position in the axial direction of the motor 1 (−y direction) from the root position in contact with the center first fin 9. ) And the center second fin 10 is arranged in a V shape when viewed from the z-axis direction. Therefore, even if the gravity direction is the + y direction, the flow of the cooling air 16 that is sucked from the upper portion of the housing 4 and exhausted from the side surface is generated, so that the heat dissipation characteristics by natural air cooling can be improved.

また、先の実施の形態1と同様に、中央第一フィン9のフィン厚を中央第二フィン10のフィン厚よりも大きくすることで、中央第一フィン9のフィン効率が向上し、半導体素子12の熱が中央第一フィン9から中央第二フィン10に伝わるまでの熱抵抗が小さくなり、中央第二フィン10へ効率よく熱を伝えられるので放熱特性が向上する。   Similarly to the first embodiment, the fin efficiency of the central first fin 9 is improved by making the fin thickness of the central first fin 9 larger than the fin thickness of the central second fin 10. The heat resistance until 12 heat is transferred from the central first fin 9 to the central second fin 10 is reduced, and heat can be efficiently transmitted to the central second fin 10, so that the heat dissipation characteristics are improved.

また、先の実施の形態1と同様に、ヒートシンク装置5では後部フィン8のフィン幅を前部フィン7のフィン幅よりも長くすることで、モータ1の前部をLフランジ17に固定しても、効率的に冷却が可能となり、放熱特性が向上する。   Similarly to the first embodiment, the heat sink device 5 fixes the front portion of the motor 1 to the L flange 17 by making the fin width of the rear fin 8 longer than the fin width of the front fin 7. However, the cooling can be efficiently performed and the heat dissipation characteristics are improved.

また、先の実施の形態2と同様に、ヒートシンク装置5の中央第一フィン9のフィン高さを短くして、中央第二フィン10の下面と接する位置までの高さにすることで、重力方向がx方向の場合でも、中央第二フィン10の間をx軸方向に流れる冷却風16の流れを阻害しないため、圧力損失が低く、冷却風量が増加し、放熱特性が向上する。   Similarly to the second embodiment, the fin height of the central first fin 9 of the heat sink device 5 is shortened so that the height reaches a position in contact with the lower surface of the central second fin 10. Even when the direction is the x direction, the flow of the cooling air 16 flowing in the x-axis direction between the central second fins 10 is not obstructed, so that the pressure loss is low, the cooling air volume is increased, and the heat dissipation characteristics are improved.

以上、本実施の形態3によれば、第3フィンの両側面のそれぞれに立設される第4フィンおよび第5フィンについて、以下のように構成される。すなわち、第4フィンは、y−z平面と平行でない平面(実施の形態3ではz方向を中心にしてx−z平面を+y方向に回転させた平面)と平行になるように構成されている。また、第5フィンは、y−z平面と平行でない平面(実施の形態3ではz方向を中心にしてx−z平面を−y方向に回転された平面)と平行になるように構成されている。   As described above, according to the third embodiment, the fourth fin and the fifth fin provided upright on both side surfaces of the third fin are configured as follows. In other words, the fourth fin is configured to be parallel to a plane that is not parallel to the yz plane (in the third embodiment, the plane that is obtained by rotating the xz plane in the + y direction around the z direction). . In addition, the fifth fin is configured to be parallel to a plane that is not parallel to the yz plane (in the third embodiment, the xz plane is a plane rotated in the -y direction around the z direction). Yes.

これにより、ヒートシンク装置を傾けても筐体の上部から吸気して側面から排気する冷却風の流れが発生するため、自然空冷による放熱特性を向上させることができる。より具体的には、本願発明をモータに適用した場合、モータを垂直方向に配置しても(モータ軸が重力方向になるように配置しても)、筐体のフィンの側面から空気が排気されるため冷却性能が向上する。   Thereby, even if the heat sink device is tilted, a flow of cooling air that is sucked from the upper part of the housing and exhausted from the side surface is generated, so that the heat radiation characteristic by natural air cooling can be improved. More specifically, when the present invention is applied to a motor, air is exhausted from the side surfaces of the fins of the housing, even if the motor is arranged in the vertical direction (even if the motor shaft is arranged in the direction of gravity). Therefore, the cooling performance is improved.

実施の形態4.
図8および図9は、本発明の実施の形態4による制御装置付きモータを示す斜視図である。ここで、図8は、重力方向が−z方向となるように設置した場合、図9は、重力方向が+y方向となるように設置した場合を示す。
Embodiment 4 FIG.
8 and 9 are perspective views showing a motor with a control device according to Embodiment 4 of the present invention. Here, FIG. 8 shows a case where the gravity direction is set to the −z direction, and FIG. 9 shows a case where the gravity direction is set to the + y direction.

図8および図9に示すように、ヒートシンク装置5のベース6のy軸方向の中央部にはモータ1の軸と平行方向に一枚の中央第一フィン9が設けられ、中央第一フィン9の側面にはベース6とは接しないよう複数の中央第二フィン10が設けられる。   As shown in FIGS. 8 and 9, one central first fin 9 is provided in the central portion of the base 6 of the heat sink device 5 in the y-axis direction in a direction parallel to the axis of the motor 1. A plurality of central second fins 10 are provided on the side surfaces of the first and second fins so as not to contact the base 6.

ここで、本実施の形態4では、中央第二フィン10は、x方向を中心にしてx−z平面を−y方向に回転させた平面と平行になるように構成されている。すなわち、中央第二フィン10は、フィン上部がフィン下部よりもモータ1の前部方向となるように傾斜するように構成している。その他の構成は、先の実施の形態1と同様である。   Here, in the fourth embodiment, the central second fin 10 is configured to be parallel to a plane obtained by rotating the xz plane in the -y direction with the x direction as the center. That is, the central second fin 10 is configured so that the fin upper portion is inclined so as to be in the front direction of the motor 1 relative to the fin lower portion. Other configurations are the same as those of the first embodiment.

このような構成によれば、図8のように、重力方向が−z方向の場合においては、先の実施の形態1と同様の効果が得られる。   According to such a configuration, as shown in FIG. 8, when the gravity direction is the -z direction, the same effect as in the first embodiment can be obtained.

一方、図9のように重力方向が+y方向の場合、半導体素子12で発生した熱は、ヒートシンク装置5のベース6から前部フィン7、後部フィン8、中央第一フィン9に伝わる。中央第一フィン9に伝わった熱は中央第二フィン10に伝わる。   On the other hand, when the gravity direction is the + y direction as shown in FIG. 9, the heat generated in the semiconductor element 12 is transmitted from the base 6 of the heat sink device 5 to the front fin 7, the rear fin 8, and the central first fin 9. The heat transmitted to the central first fin 9 is transmitted to the central second fin 10.

重力方向が+y方向の場合、前部フィン7の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の上面(+z方向)から吸気し、前部フィン7の間を通過し、前面(−y方向)に流れる冷却風16が発生する。   When the direction of gravity is the + y direction, the temperature of the surrounding air rises around the front fin 7 due to the transmitted heat, and air is sucked from the upper surface (+ z direction) of the housing 4 due to the density difference of the air. Cooling air 16 that passes between the fins 7 and flows in the front surface (−y direction) is generated.

後部フィン8の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の後面(+y方向)から吸気し、後部フィン8の間を通過し、上面(+z方向)および中央第二フィン10方向(−y方向)に流れる冷却風16が発生する。   Around the rear fins 8, the temperature of the surrounding air rises due to the transmitted heat, and due to the density difference of the air, the air is sucked from the rear surface (+ y direction) of the housing 4, passes between the rear fins 8, and the upper surface ( + Z direction) and cooling air 16 flowing in the center second fin 10 direction (-y direction) is generated.

また、中央第二フィン10の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の側面(±x方向)および隙間11から吸気し、中央第二フィン10および中央第一フィン9の間を通過し、上面(+z方向)に流れる冷却風16が発生する。この冷却風16により、ベース6、前部フィン7、後部フィン8、中央第一フィン9、中央第二フィン10が自然空冷により冷却され、半導体素子12が冷却される。   In addition, around the central second fin 10, the temperature of the surrounding air rises due to the transmitted heat, and due to the difference in air density, air is sucked from the side surface (± x direction) of the housing 4 and the gap 11, and the central second fin 10. Cooling air 16 that passes between the fin 10 and the central first fin 9 and flows on the upper surface (+ z direction) is generated. With this cooling air 16, the base 6, the front fin 7, the rear fin 8, the central first fin 9, and the central second fin 10 are cooled by natural air cooling, and the semiconductor element 12 is cooled.

このように、本実施の形態4におけるヒートシンク装置5では、中央第二フィン10は、フィン上部がフィン下部よりもモータ1の前部方向になるように傾斜するように構成している。したがって、重力方向が+y方向となっても、筐体4の側面および隙間11から吸気して上面から排気する冷却風16の流れが発生するため、自然空冷による放熱特性を向上させることができる。   As described above, in the heat sink device 5 according to the fourth embodiment, the central second fin 10 is configured such that the fin upper portion is inclined so as to be in the front portion direction of the motor 1 relative to the fin lower portion. Therefore, even if the gravity direction becomes the + y direction, the flow of the cooling air 16 that is sucked from the side surface and the gap 11 of the housing 4 and exhausted from the upper surface is generated, so that the heat dissipation characteristics by natural air cooling can be improved.

また、先の実施の形態1と同様に、中央第一フィン9のフィン厚を中央第二フィン10のフィン厚よりも大きくすることで、中央第一フィン9のフィン効率が向上し、半導体素子12の熱が中央第一フィン9から中央第二フィン10に伝わるまでの熱抵抗が小さくなり、中央第二フィン10へ効率よく熱を伝えられるので放熱特性が向上する。   Similarly to the first embodiment, the fin efficiency of the central first fin 9 is improved by making the fin thickness of the central first fin 9 larger than the fin thickness of the central second fin 10. The heat resistance until 12 heat is transferred from the central first fin 9 to the central second fin 10 is reduced, and heat can be efficiently transmitted to the central second fin 10, so that the heat dissipation characteristics are improved.

また、先の実施の形態1と同様に、ヒートシンク装置5では後部フィン8のフィン幅を前部フィン7のフィン幅よりも長くすることで、モータ1の前部をLフランジ17に固定しても、効率的に冷却が可能となり、放熱特性が向上する。   Similarly to the first embodiment, the heat sink device 5 fixes the front portion of the motor 1 to the L flange 17 by making the fin width of the rear fin 8 longer than the fin width of the front fin 7. However, the cooling can be efficiently performed and the heat dissipation characteristics are improved.

また、先の実施の形態2と同様に、ヒートシンク装置5の中央第一フィン9のフィン高さを短くして、中央第二フィン10の下面と接する位置までの高さにすることで、重力方向がx方向の場合でも、中央第二フィン10の間をx軸方向に流れる冷却風16の流れを阻害しないため圧力損失が低く、冷却風量が増加し、放熱特性が向上する。   Similarly to the second embodiment, the fin height of the central first fin 9 of the heat sink device 5 is shortened so that the height reaches a position in contact with the lower surface of the central second fin 10. Even when the direction is the x direction, the flow of the cooling air 16 flowing in the x-axis direction between the central second fins 10 is not obstructed, so that the pressure loss is low, the cooling air volume is increased, and the heat dissipation characteristics are improved.

以上、本実施の形態4によれば、第4フィンおよび第5フィンは、y−z平面と平行でない平面(実施の形態4ではx方向を中心にしてx−z平面を−y方向に回転させた平面)と平行になるように構成されている。   As described above, according to the fourth embodiment, the fourth and fifth fins are planes that are not parallel to the yz plane (in the fourth embodiment, the xz plane is rotated about the x direction in the -y direction). It is comprised so that it may become parallel to the (planar) plane.

これにより、ヒートシンク装置を傾けても筐体の側面および隙間から吸気して上面から排気する冷却風の流れが発生するため、自然空冷による放熱特性を向上させることができる。より具体的には、本願発明をモータに適用した場合、モータを垂直方向に配置しても(モータ軸が重力方向になるように配置しても)、中央第二フィンの側面から吸気してモータと反対側の端部より排気されるため冷却性能が向上する。   Thereby, even if the heat sink device is tilted, a flow of cooling air that is sucked from the side surface and the gap of the housing and exhausted from the upper surface is generated, so that the heat radiation characteristic by natural air cooling can be improved. More specifically, when the present invention is applied to a motor, even if the motor is arranged in the vertical direction (even if the motor shaft is arranged in the gravitational direction), air is sucked from the side surface of the central second fin. Since the air is exhausted from the end opposite to the motor, the cooling performance is improved.

実施の形態5.
図10および図11は、本発明の実施の形態5による制御装置付きモータを示す斜視図である。ここで、図10は、重力方向が−z方向となるように設置した場合、図11は、重力方向が+y方向となるように設置した場合を示す。
Embodiment 5. FIG.
10 and 11 are perspective views showing a motor with a control device according to Embodiment 5 of the present invention. Here, FIG. 10 shows a case where the gravity direction is set to the −z direction, and FIG. 11 shows a case where the gravity direction is set to the + y direction.

図10および図11に示すように、ヒートシンク装置5のベース6のy軸方向の中央部にはモータ1の軸と平行方向に一枚の中央第一フィン9が設けられ、中央第一フィン9の側面にはベース6とは接しないよう複数の中央第二フィン10が設けられる。   As shown in FIGS. 10 and 11, one central first fin 9 is provided in the central portion of the base 6 of the heat sink device 5 in the y-axis direction in a direction parallel to the axis of the motor 1. A plurality of central second fins 10 are provided on the side surfaces of the first and second fins so as not to contact the base 6.

ここで、本実施の形態5では、中央第二フィン10は、x方向を中心にしてx−z平面を+y方向に回転させた平面と平行になるように構成されている。すなわち、中央第二フィン10は、フィン上部がフィン下部よりモータ1の後部方向となるように傾斜するように構成している。その他の構成は、実施の形態1と同様である。   Here, in the fifth embodiment, the central second fin 10 is configured to be parallel to a plane obtained by rotating the xz plane in the + y direction around the x direction. That is, the center second fin 10 is configured so that the fin upper portion is inclined so as to be in the rear portion direction of the motor 1 from the fin lower portion. Other configurations are the same as those in the first embodiment.

このような構成によれば、図10のように、重力方向が−z方向の場合は実施の形態1と同様の効果が得られる。   According to such a configuration, as shown in FIG. 10, when the direction of gravity is the -z direction, the same effect as in the first embodiment can be obtained.

一方、図11のように、重力方向が+y方向の場合、半導体素子12で発生した熱は、ヒートシンク装置5のベース6から前部フィン7、後部フィン8、中央第一フィン9に伝わる。中央第一フィン9に伝わった熱は、中央第二フィン10に伝わる。   On the other hand, when the gravity direction is the + y direction as shown in FIG. 11, the heat generated in the semiconductor element 12 is transmitted from the base 6 of the heat sink device 5 to the front fin 7, the rear fin 8, and the central first fin 9. The heat transmitted to the central first fin 9 is transmitted to the central second fin 10.

重力方向が+y方向の場合、前部フィン7の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の上面(+z方向)から吸気し、前部フィン7の間を通過し、前面(−y方向)に流れる冷却風16が発生する。   When the direction of gravity is the + y direction, the temperature of the surrounding air rises around the front fin 7 due to the transmitted heat, and air is sucked from the upper surface (+ z direction) of the housing 4 due to the density difference of the air. Cooling air 16 that passes between the fins 7 and flows in the front surface (−y direction) is generated.

後部フィン8の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の後面(+y方向)から吸気し、後部フィン8の間を通過し、上面(+z方向)および中央第二フィン10方向(−y方向)に流れる冷却風16が発生する。   Around the rear fins 8, the temperature of the surrounding air rises due to the transmitted heat, and due to the density difference of the air, the air is sucked from the rear surface (+ y direction) of the housing 4, passes between the rear fins 8, and the upper surface ( + Z direction) and cooling air 16 flowing in the center second fin 10 direction (-y direction) is generated.

また、中央第二フィン10の周囲では、伝わった熱により周囲の空気の温度が上昇し、空気の密度差により、筐体4の上面(+z方向)から吸気し、中央第二フィン10および中央第一フィン9の間を通過し、側面(±x方向)および隙間11に流れる冷却風16が発生する。この冷却風16により、ベース6、前部フィン7、後部フィン8、中央第一フィン9、中央第二フィン10が自然空冷により冷却され、半導体素子12が冷却される。   In addition, around the central second fin 10, the temperature of the surrounding air rises due to the transmitted heat, and the air is sucked from the upper surface (+ z direction) of the housing 4 due to the density difference of the air. Cooling air 16 that passes between the first fins 9 and flows through the side surfaces (± x direction) and the gaps 11 is generated. With this cooling air 16, the base 6, the front fin 7, the rear fin 8, the central first fin 9, and the central second fin 10 are cooled by natural air cooling, and the semiconductor element 12 is cooled.

このように、本実施の形態5におけるヒートシンク装置5では、中央第二フィン10は、フィン上部がフィン下部よりモータ1の後部方向になるように傾斜するように構成している。したがって、重力方向が+y方向となっても、筐体4の上面から吸気して側面および隙間11から排気する冷却風16の流れが発生するため、自然空冷による放熱特性を向上させることができる。   As described above, in the heat sink device 5 according to the fifth embodiment, the central second fin 10 is configured so that the fin upper portion is inclined so as to be in the rear portion direction of the motor 1 from the fin lower portion. Therefore, even if the gravity direction is the + y direction, the flow of the cooling air 16 that is sucked from the upper surface of the housing 4 and exhausted from the side surface and the gap 11 is generated, so that the heat dissipation characteristics by natural air cooling can be improved.

また、先の実施の形態1と同様に、中央第一フィン9のフィン厚を中央第二フィン10のフィン厚よりも大きくすることで、中央第一フィン9のフィン効率が向上し、半導体素子12の熱が中央第一フィン9から中央第二フィン10に伝わるまでの熱抵抗が小さくなり、中央第二フィン10へ効率よく熱を伝えられるので放熱特性が向上する。   Similarly to the first embodiment, the fin efficiency of the central first fin 9 is improved by making the fin thickness of the central first fin 9 larger than the fin thickness of the central second fin 10. The heat resistance until 12 heat is transferred from the central first fin 9 to the central second fin 10 is reduced, and heat can be efficiently transmitted to the central second fin 10, so that the heat dissipation characteristics are improved.

また、先の実施の形態1と同様に、ヒートシンク装置5では後部フィン8のフィン幅を前部フィン7のフィン幅よりも長くすることで、モータ1の前部をLフランジ17に固定しても、効率的に冷却が可能となり、放熱特性が向上する。   Similarly to the first embodiment, the heat sink device 5 fixes the front portion of the motor 1 to the L flange 17 by making the fin width of the rear fin 8 longer than the fin width of the front fin 7. However, the cooling can be efficiently performed and the heat dissipation characteristics are improved.

また、先の実施の形態2と同様に、ヒートシンク装置5の中央第一フィン9のz軸方向の長さを短くして、中央第二フィン10の下面と接する位置までの高さにすることで、重力方向がx方向の場合でも、中央第二フィン10の間をx軸方向に流れる冷却風16の流れを阻害しないため圧力損失が低く、冷却風量が増加し、放熱特性が向上する。   Further, similarly to the second embodiment, the length of the central first fin 9 of the heat sink device 5 in the z-axis direction is shortened to a height that contacts the lower surface of the central second fin 10. Even when the gravity direction is the x direction, the flow of the cooling air 16 flowing in the x-axis direction between the central second fins 10 is not hindered, so that the pressure loss is low, the cooling air volume is increased, and the heat radiation characteristics are improved.

以上、本実施の形態5によれば、第4フィンおよび第5フィンは、y−z平面と平行でない平面(実施の形態5ではx方向を中心にしてx−z平面を+y方向に回転させた平面)と平行になるように構成されている   As described above, according to the fifth embodiment, the fourth fin and the fifth fin are planes that are not parallel to the yz plane (in the fifth embodiment, the xz plane is rotated in the + y direction around the x direction). Configured to be parallel to

これにより、重力方向が+y方向となっても、筐体の上面から吸気して側面および隙間から排気する冷却風の流れが発生するため、自然空冷による放熱特性を向上させることができる。より具体的には、本願発明をモータに適用した場合、モータを垂直方向に配置しても(モータ軸が重力方向になるように配置しても)、中央第二フィンのモータと反対側の端部から吸気して側面およびベースと中央第二フィンの隙間から排気されるので冷却性能が向上する。   Thereby, even if the gravity direction becomes the + y direction, a flow of cooling air that is sucked from the upper surface of the housing and exhausted from the side surface and the gap is generated, so that the heat dissipation characteristics by natural air cooling can be improved. More specifically, when the present invention is applied to a motor, even if the motor is arranged in the vertical direction (even if the motor shaft is arranged in the direction of gravity), the central second fin on the opposite side of the motor. Since the air is sucked from the end and exhausted from the side surface and the gap between the base and the central second fin, the cooling performance is improved.

1 モータ、2 モータフレーム、3 制御装置、4 筐体、5 ヒートシンク装置、6 ベース、7 前部フィン、8 後部フィン、9 中央第一フィン、10 中央第二フィン、11 隙間、12 半導体素子(冷却対象部)、13 熱伝導性材料、14 電子部品、15 基板、16 冷却風、17 Lフランジ。   1 motor, 2 motor frame, 3 control device, 4 housing, 5 heat sink device, 6 base, 7 front fin, 8 rear fin, 9 central first fin, 10 central second fin, 11 gap, 12 semiconductor element ( Cooling target part), 13 heat conductive material, 14 electronic component, 15 substrate, 16 cooling air, 17 L flange.

Claims (7)

x方向、y方向およびz方向で構成される3次元空間において、x−y平面と平行に位置するベースの表面に複数のフィンが立設されるとともに、冷却対象部の放熱を行うヒートシンク装置であって、
前記ベースの表面は、前記y方向に沿って、第1区画と、第2区画と、前記第1区画および前記第2区画に挟まれた第3区画とに3分割され、
前記第1区画に立設される第1フィンと、前記第2区画に立設される第2フィンは、y−z平面と平行になるように構成され、
前記第3区画に立設される第3フィンは、前記y−z平面と平行になるように構成され、
前記第3フィンの両側面のそれぞれに立設される第4フィンおよび第5フィンは、前記y−z平面と平行でない平面と平行になるように構成され、
前記第4フィンおよび前記第5フィンは、前記ベースと接触しないように、前記ベースの表面に対して前記z方向の隙間を有している
ヒートシンク装置。
In a three-dimensional space composed of an x direction, a y direction, and a z direction, a heat sink device in which a plurality of fins are erected on the surface of a base located parallel to the xy plane, and heat is radiated from a cooling target portion There,
The surface of the base is divided into three along the y direction into a first section, a second section, and a third section sandwiched between the first section and the second section,
The first fin standing on the first section and the second fin standing on the second section are configured to be parallel to the yz plane,
The third fin standing on the third section is configured to be parallel to the yz plane,
The fourth fin and the fifth fin provided upright on both side surfaces of the third fin are configured to be parallel to a plane that is not parallel to the yz plane,
The heat sink device, wherein the fourth fin and the fifth fin have a gap in the z direction with respect to the surface of the base so as not to contact the base.
請求項1に記載のヒートシンク装置において、
前記第4フィンおよび前記第5フィンは、前記y−z平面と平行でない平面として、x−z平面と平行になるように構成されている
ヒートシンク装置。
The heat sink device according to claim 1,
The fourth fin and the fifth fin are configured to be parallel to the xz plane as a plane not parallel to the yz plane.
請求項1に記載のヒートシンク装置において、
前記第4フィンは、前記y−z平面と平行でない平面として、前記z方向を中心にして前記x−z平面を+y方向に回転させた平面と平行になるように構成され、
前記第5フィンは、前記y−z平面と平行でない平面として、前記z方向を中心にして前記x−z平面を−y方向に回転された平面と平行になるように構成されている
ヒートシンク装置。
The heat sink device according to claim 1,
The fourth fin is configured to be parallel to a plane obtained by rotating the xz plane in the + y direction around the z direction as a plane not parallel to the yz plane,
The fifth fin is configured as a plane that is not parallel to the yz plane so that the xz plane is parallel to a plane rotated in the -y direction around the z direction. .
請求項1に記載のヒートシンク装置において、
前記第4フィンおよび前記第5フィンは、前記y−z平面と平行でない平面として、前記x方向を中心にして前記x−z平面を+y方向または−y方向に回転させた平面と平行になるように構成されている
ヒートシンク装置。
The heat sink device according to claim 1,
The fourth fin and the fifth fin are planes not parallel to the yz plane, and are parallel to a plane obtained by rotating the xz plane in the + y direction or the -y direction around the x direction. The heat sink device is configured as follows.
請求項1から4のいずれか1項に記載のヒートシンク装置において、
前記第3フィンのフィン厚は、前記第4フィンおよび前記第5フィンのそれぞれのフィン厚よりも大きい
ヒートシンク装置。
The heat sink device according to any one of claims 1 to 4,
The fin thickness of the third fin is larger than the fin thickness of each of the fourth fin and the fifth fin.
請求項1から5のいずれか1項に記載のヒートシンク装置において、
前記第2フィンにおける前記y方向のフィン幅は、前記第1フィンにおける前記y方向のフィン幅よりも長い
ヒートシンク装置。
The heat sink device according to any one of claims 1 to 5,
The fin width in the y direction of the second fin is longer than the fin width in the y direction of the first fin.
請求項1から6のいずれか1項に記載のヒートシンク装置において、
前記第3フィンにおける前記z方向のフィン高さは、前記隙間と同じであり、前記第3フィンにおける前記z方向の上部端面に前記第4フィンおよび前記第5フィンが立設されている
ヒートシンク装置。
The heat sink device according to any one of claims 1 to 6,
The fin height in the z direction of the third fin is the same as that of the gap, and the fourth fin and the fifth fin are erected on the upper end surface in the z direction of the third fin. .
JP2014065494A 2014-03-27 2014-03-27 Heat sink device Pending JP2017098274A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014065494A JP2017098274A (en) 2014-03-27 2014-03-27 Heat sink device
PCT/JP2014/073652 WO2015145809A1 (en) 2014-03-27 2014-09-08 Heat sink device and motor with control device
TW103133175A TW201537135A (en) 2014-03-27 2014-09-25 Heat sink apparatus and motor with controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065494A JP2017098274A (en) 2014-03-27 2014-03-27 Heat sink device

Publications (1)

Publication Number Publication Date
JP2017098274A true JP2017098274A (en) 2017-06-01

Family

ID=54194388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065494A Pending JP2017098274A (en) 2014-03-27 2014-03-27 Heat sink device

Country Status (3)

Country Link
JP (1) JP2017098274A (en)
TW (1) TW201537135A (en)
WO (1) WO2015145809A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191994A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191995A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191991A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191993A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191992A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
WO2019151914A1 (en) * 2018-02-02 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Cooling device for dissipating heat from an object
WO2023037912A1 (en) * 2021-09-08 2023-03-16 日本電気株式会社 Heat sink
JP7442335B2 (en) 2019-03-08 2024-03-04 三菱電機株式会社 heat sink

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716512B (en) * 2016-09-21 2021-08-03 华为技术有限公司 Heat radiator
CN107043987A (en) * 2017-06-21 2017-08-15 苏州迅鲜纺织科技有限公司 A kind of weaving loom heat dissipation base

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3236137B2 (en) * 1993-07-30 2001-12-10 富士通株式会社 Semiconductor element cooling device
TW398649U (en) * 1998-12-04 2000-07-11 Foxconn Prec Components Co Ltd Compound radiator device
JP2002094272A (en) * 2000-09-11 2002-03-29 Fujikura Ltd Heat sink with fan
TWI251460B (en) * 2004-01-09 2006-03-11 Delta Electronics Inc Compound heat sink with multi-directional fins
JP2005303063A (en) * 2004-04-13 2005-10-27 Mitsubishi Electric Corp Heat sink
JP5614542B2 (en) * 2011-03-28 2014-10-29 株式会社安川電機 Motor control device
JP5249434B2 (en) * 2012-01-11 2013-07-31 ファナック株式会社 Servo amplifier with heat sink for heat dissipation having two sets of heat dissipation fins orthogonal to each other

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191994A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191995A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191991A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191993A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191992A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
WO2019151914A1 (en) * 2018-02-02 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Cooling device for dissipating heat from an object
US11985797B2 (en) 2018-02-02 2024-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Cooling device for dissipating heat from an object
JP7442335B2 (en) 2019-03-08 2024-03-04 三菱電機株式会社 heat sink
WO2023037912A1 (en) * 2021-09-08 2023-03-16 日本電気株式会社 Heat sink

Also Published As

Publication number Publication date
WO2015145809A1 (en) 2015-10-01
TW201537135A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2015145809A1 (en) Heat sink device and motor with control device
JP5949988B1 (en) Electronic equipment
US20130206367A1 (en) Heat dissipating module
US20120097372A1 (en) Heat sink
JP2016034019A (en) Heat module
TW201314425A (en) Radiator device and electronic device using same
JP7549469B2 (en) Electronic Control Unit
JP5785203B2 (en) Servo amplifier with cooling structure including heat sink
JP5052422B2 (en) Electronic equipment and heat sink
JP2015040673A (en) Cooling mechanism of electric component unit in outdoor equipment of air conditioner
JPWO2017158707A1 (en) Air conditioner outdoor unit
JP2014165227A (en) Electronic control device
JP2014036050A (en) Heat radiator and heat radiation system
US20170031394A1 (en) A heat-dissipating device including a vapor chamber and a radial fin assembly
JP6282966B2 (en) Motor control unit
JP4897107B2 (en) Electronics
JP2012160669A (en) Electronic component cooling device
CN102480899A (en) Cooling device
TWI501719B (en) Heat dissipation device
JP2010219085A (en) Heat sink for natural air cooling
JP3755535B2 (en) Heat transport device
JP2008089253A (en) Heat sink
JP2015011045A (en) Cooling structure of display device
JPWO2005013657A1 (en) Electronic equipment cooling system
JP7440622B2 (en) electronic control unit