JP2017096193A - ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、ダブルダウンコンダクタシステム用の健全性評価システム、及び風力発電装置 - Google Patents

ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、ダブルダウンコンダクタシステム用の健全性評価システム、及び風力発電装置 Download PDF

Info

Publication number
JP2017096193A
JP2017096193A JP2015230070A JP2015230070A JP2017096193A JP 2017096193 A JP2017096193 A JP 2017096193A JP 2015230070 A JP2015230070 A JP 2015230070A JP 2015230070 A JP2015230070 A JP 2015230070A JP 2017096193 A JP2017096193 A JP 2017096193A
Authority
JP
Japan
Prior art keywords
lightning
down conductor
conductors
receptor
double down
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015230070A
Other languages
English (en)
Other versions
JP6778366B2 (ja
Inventor
貞夫 赤星
Sadao Akaboshi
貞夫 赤星
修平 藤本
Shuhei Fujimoto
修平 藤本
山根 健次
Kenji Yamane
健次 山根
英器 本山
Hideki Motoyama
英器 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
National Institute of Maritime Port and Aviation Technology
Original Assignee
Central Research Institute of Electric Power Industry
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, National Institute of Maritime Port and Aviation Technology filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015230070A priority Critical patent/JP6778366B2/ja
Publication of JP2017096193A publication Critical patent/JP2017096193A/ja
Application granted granted Critical
Publication of JP6778366B2 publication Critical patent/JP6778366B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】レセプタに着雷した正常落雷とダウンコンダクタ等に着雷した異常落雷とを区別して判定することを可能とする。【解決手段】風車ブレード36の先端部に設けた導電性のレセプタ18と、レセプタ18に接続され、落雷により一時的に発生する落雷電流を接地部に導く2本のダウンコンダクタ20と、2本のダウンコンダクタ20を互いに絶縁すると共に一体的にモールドする絶縁体28を含む絶縁手段を設ける。【選択図】図1

Description

本発明は、ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、ダブルダウンコンダクタシステム用の健全性評価システム、及び風力発電装置に関する。
風力発電装置では風況(風の吹き方)の良好な場所、例えば洋上や山の尾根等、周りに高い構築物が無い様な場所に風車が建てられる。このような場所で雷雲が発生すると、風車が頻繁に落雷を受けることになる。
例えば日本海側では、冬季に対馬暖流による比較的暖かい海面にシベリアからの強い寒気が吹き込んで上昇気流が発生し、これにより洋上に雷雲が発生して落雷(冬季雷)が生じる。このような場所に風力発電装置を設けると、冬季雷が風車に直撃して破損に繋がるおそれがある。
そこで、風力発電装置には外部雷保護システムが設けられている。例えば、風車翼にレセプタ(避雷部材)と呼ばれる導体部材を設け、レセプタから落雷電流を地中に導くダウンコンダクタ(避雷導線)を設けることによって落雷電流を地中に導く保護システムが開示されている(特許文献1)。
また、風力発電装置に落雷があったことを検出するための落雷検出装置が提案されている。例えば、風車翼の複数箇所にレセプタを設け、レセプタから落雷電流を地中に導く避雷導線と共に避雷導線を流れる避雷電流を検知して光信号を出力する光ファイバ電流センサを備えた落雷検出装置が開示されている(特許文献2)。当該落雷検出装置では、光ファイバ電流センサからの信号の種別を認識し、この種別に基づいて落雷箇所を判定する。
また、風車羽根に設けられたレセプタから引き出された導線の電気抵抗を測定するために導線に並列に計測用の測定ケーブルを設けた構成が開示されている(特許文献3)。
特許第5308538号公報 特開2012−117446号公報 特開2012−42473号公報
ところで、風車が落雷を受けた場合、外部雷保護システムが正常に機能して落雷電流が地中まで放電されれば本来であれば風力発電装置を停止させる必要はない。しかしながら、外部雷保護システムに溶損等の不具合が生じて落雷電流を放電できなくなる場合や外部雷保護システム以外の風車のブレード等に落雷した場合等を考慮して、落雷があった場合に風力発電装置を停止させて確認や補修を行うという管理が実施されている。そのため、正常な落雷であった場合にも風力発電装置を停止させることによって稼働率が低下してしまう。そこで、風力発電装置の稼働率を向上させる技術が望まれている。本発明は、レセプタに着雷した正常落雷とダウンコンダクタ等に着雷した異常落雷とを区別して判定することを可能とすることを目的とする。
請求項1に対応したダブルダウンコンダクタシステムは、風車ブレードの先端部に設けた導電性のレセプタと、前記レセプタに接続され、落雷により一時的に発生する落雷電流を接地部に導く2本のダウンコンダクタと、前記2本のダウンコンダクタを互いに絶縁すると共に一体的にモールドする絶縁体を含む絶縁手段とを備える。
請求項2に対応した上記ダブルダウンコンダクタシステムを用いた落雷判定システムは、前記レセプタ以外の部分への異常落雷を検出する異常落雷判定手段を備えることが好適である。
また、前記異常落雷判定手段は、前記風車ブレードの根元部に設けられ、前記落雷が有ったときの前記2本のダウンコンダクタのそれぞれの電流を計測する高周波電流計と、前記高周波電流計で計測された前記2本のダウンコンダクタの前記電流に基づいて異常落雷を判定する判定手段を設けることが好適である。
また、前記2本のダブルダウンコンダクタは、略同一の断面積を有し、前記判定手段は、前記高周波電流計で計測される前記2本のダウンコンダクタのそれぞれの前記電流が異なる場合に、前記風車ブレードへの異常落雷と判定することが好適である。
また、前記判定手段は、前記2本のダウンコンダクタの前記電流に基づいて前記風車ブレードに対する前記異常落雷の落雷位置を算出することが好適である。
また、前記判定手段は、前記高周波電流計で計測された前記2本のダウンコンダクタのそれぞれの前記電流が等しい場合に、前記レセプタへの正常落雷と判定することが好適である。
また、前記異常落雷判定手段は、前記レセプタの近傍の前記2本のダウンコンダクタ間に応力センサを備え、前記判定手段は、前記高周波電流計で計測された前記電流と前記応力センサで検出された前記2本のダウンコンダクタ間の応力に基づいて前記異常落雷を検出することが好適である。このとき、前記応力センサは、光ファイバ応力センサとすることがより好適である。
また、前記レセプタの近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられた電流センサを備え、前記判定手段は、前記高周波電流計で計測された前記電流と前記電流センサで検出された電流センサ電流に基づいて前記異常落雷を検出することが好適である。このとき、前記電流センサは、光ファイバ電流センサとすることがより好適である。
また、前記異常落雷判定手段は、前記レセプタの近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられたレセプタ側電流センサと、前記風車ブレードのハブ近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられたハブ側電流センサと、前記レセプタ側電流センサで検出された電流と前記ハブ側電流センサで計測された電流とに基づいて前記異常落雷を検出する判定手段を設けることが好適である。この場合も、前記レセプタ側電流センサ及び前記ハブ側電流センサは、光ファイバ電流センサとすることがより好適である。
請求項10に対応した上記ダウンコンダクタシステムに用いられる健全性評価システムは、前記風車ブレードの根元部に設けられ、前記落雷が有ったときの前記2本のダウンコンダクタのそれぞれ電流を計測する電流測定手段と、前記2本のダウンコンダクタのうちの1本の前記根元部に高電圧を印加する高電圧印加手段を備える。
また、前記高電圧印加手段による1本のダウンコンダクタへの前記高電圧の印加時に前記電流測定手段により計測された他のダウンコンダクタの前記電流に基づいて、前記2本のダウンコンダクタと前記レセプタの接続部の健全性を評価することが好適である。
また、前記高電圧の印加を遠隔場所から行うことが好適である。
請求項13に対応した風力発電装置は、上記ダブルダウンコンダクタシステム用の落雷判定システム、又は上記ダブルダウンコンダクタシステム用の健全性評価システムを備える。
請求項1に対応したダブルダウンコンダクタシステムによれば、風車ブレードの先端部に設けた導電性のレセプタと、前記レセプタに接続され、落雷により一時的に発生する落雷電流を接地部に導く2本のダウンコンダクタと、前記2本のダウンコンダクタを互いに絶縁すると共に一体的にモールドする絶縁体を含む絶縁手段と、を備えることで、レセプタに着雷した正常落雷とダウンコンダクタ等に着雷した異常落雷とを区別して判定する落雷判定システムを適用することができる。また、ダウンコンダクタが2本あるところ、1本が損傷しても他の1本で落雷電流を接地部に導く機能を補うことができる。また、2本のダウンコンダクタ間に例えば引力、斥力が働いても、2本のダウンコンダクタの位置関係を絶縁手段により保持できる。
また、上記ダブルダウンコンダクタシステムを用いた落雷判定システムによれば、前記レセプタ以外の部分への異常落雷を検出する異常落雷判定手段を備えることによって、レセプタに着雷した正常落雷とダウンコンダクタ等に着雷した異常落雷とを区別して判定することができる。
ここで、前記異常落雷判定手段は、前記風車ブレードの根元部に設けられ、前記落雷が有ったときの前記2本のダウンコンダクタのそれぞれの電流を計測する高周波電流計と、前記高周波電流計で計測された前記2本のダウンコンダクタの前記電流に基づいて異常落雷を判定する判定手段を設けることによって、前記2本のダウンコンダクタの前記電流に基づいて正常落雷と異常落雷とを判定することができる。
また、前記2本のダブルダウンコンダクタは、略同一の断面積を有し、前記判定手段は、前記高周波電流計で計測される前記2本のダウンコンダクタのそれぞれの前記電流が異なる場合に、前記風車ブレードへの異常落雷と判定することによって、前記2本のダウンコンダクタのそれぞれの前記電流の差のみから異常落雷を検出することができる。
また、前記判定手段は、前記2本のダウンコンダクタの前記電流に基づいて前記風車ブレードに対する前記異常落雷の落雷位置を算出することよって、正常落雷と異常落雷の区別のみならず、落雷位置を推定することができる。
また、前記判定手段は、前記高周波電流計で計測された前記2本のダウンコンダクタのそれぞれの前記電流が等しい場合に、前記レセプタへの正常落雷と判定することによって、前記2本のダウンコンダクタのそれぞれの前記電流の差が無いことのみから正常落雷を検出することができる。
また、前記異常落雷判定手段は、前記レセプタの近傍の前記2本のダウンコンダクタ間に応力センサを備え、前記判定手段は、前記高周波電流計で計測された前記電流と前記応力センサで検出された前記2本のダウンコンダクタ間の応力に基づいて前記異常落雷を検出することによって、前記2本のダウンコンダクタに同時に着雷した場合等においても異常落雷を正確に検出することができる。このとき、前記応力センサを光ファイバ応力センサとすることによって、前記応力センサを前記レセプタや前記ダウンコンダクタの付近に配置しても誘雷の可能性を低減することができる。
また、前記レセプタの近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられた電流センサを備え、前記判定手段は、前記高周波電流計で計測された前記電流と前記電流センサで検出された電流センサ電流に基づいて前記異常落雷を検出することによって、前記2本のダウンコンダクタに同時に着雷した場合等においても異常落雷を正確に検出することができる。このとき、前記電流センサを光ファイバ電流センサとすることによって、前記電流センサを前記レセプタや前記ダウンコンダクタの付近に配置しても誘雷の可能性を低減することができる。
また、前記異常落雷判定手段は、前記レセプタの近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられたレセプタ側電流センサと、前記風車ブレードのハブ近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられたハブ側電流センサと、前記レセプタ側電流センサで検出された電流と前記ハブ側電流センサで計測された電流とに基づいて前記異常落雷を検出する判定手段を設けることによって、前記2本のダウンコンダクタに同時に着雷した場合等においても異常落雷を正確に検出することができる。このとき、前記レセプタ側電流センサ及び前記ハブ側電流センサを光ファイバ電流センサとすることによって、前記応力センサを前記レセプタや前記ダウンコンダクタの付近に配置しても誘雷の可能性を低減することができる。
請求項10に対応した上記ダウンコンダクタシステムに用いられる健全性評価システムによれば、前記風車ブレードの根元部に設けられ、前記落雷が有ったときの前記2本のダウンコンダクタのそれぞれ電流を計測する電流測定手段と、前記2本のダウンコンダクタのうちの1本の前記根元部に高電圧を印加する高電圧印加手段を備えることによって、前記2本のダウンコンダクタの断線等を検知することができ、落雷判定システムの健全性の評価を容易にし、健全性を高めることができる。
また、前記高電圧印加手段による1本のダウンコンダクタへの前記高電圧の印加時に前記電流測定手段により計測された他のダウンコンダクタの前記電流に基づいて、前記2本のダウンコンダクタと前記レセプタの接続部及び前記2本のダウンコンダクタの健全性を評価することによって、落雷判定システムの健全性をより高い精度で確認することができる。
また、前記高電圧の印加を遠隔場所から行うことによって、洋上等の遠隔地に設置された風力発電装置の健全性を容易に確かめることができる。
請求項13に対応した風力発電装置は、上記ダブルダウンコンダクタシステム用の落雷判定システム、又は上記ダブルダウンコンダクタシステム用の健全性評価システムを備えることによって、正常落雷か異常落雷かをより正確に知ることが可能となる。したがって、風車が落雷を受けた場合、外部雷保護システムが正常に機能して落雷電流が地中まで放電されれば、本来であれば必要であった風力発電装置を停止させる必要がなくなり、風力発電装置の稼働率を向上させることができる。
本発明の実施の形態における風力発電装置の側面一部断面図である。 本発明の実施の形態における風力発電装置のブレードの構成を示す図である。 本発明の実施の形態におけるダブルダウンコンダクタの構成を示す断面図である。 異常落雷が生じたときの落雷判定処理について説明する図である。 冬季の雷モデルにおける落雷電流の時間変化を示す図である。 冬季の雷モデルを適用した場合のダブルダウンコンダクタに流れる電流の数値解析結果を示す図である。 夏季の雷モデルにおける落雷電流の時間変化を示す図である。 夏季の雷モデルを適用した場合のダブルダウンコンダクタに流れる電流の数値解析結果を示す図である。 断線が生じているときの落雷判定処理について説明する図である。 変形例1における応力センサの配置を示す構成図である。 変形例2における電流センサの配置を示す構成図である。 変形例2における光ファイバ電流センサの構成を示す断面図である。 変形例3における電流センサの配置を示す構成図である。 変形例3における落雷判定処理について説明する図である。 本発明の実施の形態及び変形例に適用した健全性評価システムの構成を示す図である。 本発明におけるパルス電圧源の構成を示す図である。 健全性評価システムによる健全性の評価処理について説明する図である。
<全体構成>
本発明の実施の形態における風力発電装置10は、図1及び図2に示すように、風車12、変圧器14、及び制御部16を含んで構成される。図1は、風力発電装置10の側面一部断面図を示す。図2は、風力発電装置10の風車12の構成図を示す。
風車12により風力エネルギーが電気エネルギーに変換される。この電気エネルギーは変圧器14によって電圧変換されて商用電源等の系統に連結される(交流リンク方式)。
また、風車12が落雷を受けた(受雷または着雷)ときには、レセプタ18、避雷導線(ダウンコンダクタ)20、タワー22、接地線端子盤24を含む外部雷保護系統に落雷電流が流れる。
<風力発電装置10の各構成>
風車12は、タワー22、ナセル30、主軸32、ハブ34、及びブレード36A〜36Cを含んで構成される。なお、以下では、風車12として3枚のブレードから構成される3枚羽タイプのものを例示する。
タワー22は、ナセル30やブレード36A〜36C等を地上から所定の高さに支持するための架台であって、例えば高さ60m程度の鋼鉄製の円筒形状から構成される。単一のタワー22を山の尾根や洋上等に運搬することが困難な場合があり、タワー22は複数の分割体から構成される。例えば図1ではタワー22が5つの分割円筒から構成されている。分割体の両端にあるフランジを位置合わせしてボルト留め等により固定して分割体を組み上げる。タワー22は中空となっており、主回路盤38や接地線端子盤24が収容される。
主回路盤38は発電機42と変圧器14とを中継する中継局としての機能を備えており、また、風車12の運転動作を設計限界以下に保つように保護する保護制御機能も備えている。接地線端子盤24は、地中に埋設された接地極とダウンコンダクタとを中継するための端子を備えている。また、接地線端子盤24は、接地抵抗値を測定するための測定用端子を備えていてもよい。
ナセル30はタワー22の上部に配置され、主軸32、増速機40や発電機42等を収容する箱体である。主軸32の回転が増速機40に伝達され、さらに増速後の回転駆動力が発電機42に伝達されることで発電が行われる。また、ナセル30内には、後述する外部雷保護系統において回転系から静止系に落雷電流を伝送するためのブラシ48を備えている。なお、ブラシに代えてスリップリングを設けるようにしてもよい。
ハブ34はロータヘッドとも呼ばれ、ブレード36A〜36Cを主軸32に固定する。ハブ34は中空構造である。ブレード36A〜36Cは例えばガラス繊維強化プラスチック(GFRP)等の絶縁体から構成され、また軽量化を図るため中空構造を採っている。ブレード36A〜36Cの先端(最外径端)にはレセプタ18A〜18Cが取り付けられている。レセプタ18A〜18Cはアルミニウム等の導電性材料から構成され、主に雷を受ける部位(受雷部)として機能する。なお、図1に示す例ではブレード36A〜36Cの先端形状に沿ったいわゆるキャップタイプのレセプタ18A〜18Cを例示したが、この形態に限らない。例えばディスク形状またはロッド形状のレセプタ18A〜18Cをブレード36A〜36Cの先端に収容させてもよい。
また、ブレード36A〜36C内には、破線で示すダウンコンダクタ20A〜20Cが収容されている。ダウンコンダクタ20A〜20Cの一端はレセプタ18A〜18Cに接続され、他端は接続点46(ノード)でそれぞれ結線される。ダウンコンダクタ20A〜20Cは、例えば、円柱形の導電性材料とすることが好適である。
本実施の形態における風力発電装置10では、ダウンコンダクタ20A〜20Cのそれぞれが2本の導線からなるダブルダウンコンダクタの構成とされている。すなわち、レセプタ18A〜18Cに2本のダウンコンダクタ20A(20A−1,20A−2),20B(20B−1,20B−2),20C(20C−1,20C−2)がそれぞれ接続されて接続点46まで延設される。
図3は、2本のダウンコンダクタ20A−1,20A−2の構成を示す断面図である。図3は、ダウンコンダクタ20A−1,20A−2の延設方向に対して垂直な断面を示す。ダウンコンダクタ20A−1,20A−2は、絶縁体28によってモールドされ、互いに電気的に絶縁されるように並べて配置される。このとき、2本のダウンコンダクタ20A−1,20A−2の半径rは略同一とすることが好適である。その効果については後述する。ただし、ダウンコンダクタ20A−1,20A−2の半径rを異ならせてもよい。また、これに限定されるものではないが、2本のダウンコンダクタ20A−1,20A−2の間隔Dは、ダウンコンダクタ20A−1,20A−2の半径rよりも小さくすることが好適である。その効果については後述する。なお、ダウンコンダクタ20B−1,20B−2及びダウンコンダクタ20C−1,20C−2も同様に構成される。
このように、一つのレセプタ18に対して2本のダウンコンダクタ20を設けることによって、片方のダウンコンダクタ20に断線等の異常が生じたり、レセプタ18A〜18Cとの接続箇所が腐食し接続不良となった場合であっても他方の片方のダウンコンダクタ20によって落雷電流を接地極まで導くことができる。
また、2本のダウンコンダクタ20A−1,20A−2間に例えば引力、斥力が働いても、2本のダウンコンダクタの位置関係を絶縁体28により保持できる。
接続点46から接地までは、接続点46→ダウンコンダクタ20D→ブラシ48→ダウンコンダクタ20E→タワー22→ダウンコンダクタ20F→接地線端子盤24→接地極の放電経路49となる。
なお、タワー22が鋼鉄のように導電性を有する材料からなる場合は本実施の形態における構成でよいが、タワー22がガラス繊維強化プラスチック(GFRP)等の絶縁体からなる場合にはタワー22内部に導電性のダウンコンダクタを別途設けてもよい。
ダウンコンダクタ20A〜20Cには、それぞれ高周波電流計26A〜26Cが設けられる。ダウンコンダクタ20A−1,20A−2にはそれぞれ高周波電流計26A−1,26A−2、ダウンコンダクタ20B−1,20B−2にはそれぞれ高周波電流計26B−1,26B−2、ダウンコンダクタ20C−1,20C−2にはそれぞれ高周波電流計26C−1,26C−2が設けられる。高周波電流計26A〜26Cは、例えば、ロゴスキーコイル等を備えた計測器とすればよい。
高周波電流計26A〜26Cで計測された電流値は、送受信機44により制御部16に送信される。制御部16は、高周波電流計26A〜26Cにより計測された電流値に基づいて異常落雷を含む落雷の状況を判定する。なお、本実施の形態では、制御部16において落雷の状況を判定するものとしたが、他の外部装置にて高周波電流計26A〜26Cで計測された電流値を受けて落雷の状況を判定するものとしてもよい。送受信機44は、ハブ34やナセル30内に配置すればよく、風車12外、例えば制御部16の近傍に配置してもよい。
風力発電装置10では、レセプタ18、避雷導線(ダウンコンダクタ)20、接地線端子盤24、高周波電流計26及び制御部16を含む監視システムによって正常落雷か異常落雷かが判定される。ここで、正常落雷とは、レセプタ18への落雷があり、放電経路49を経由して放電された場合を意味する。また、異常落雷とは、レセプタ18以外に落雷し、ブレード36A〜36Cの表面を貫通して内部のダウンコンダクタ20A〜20Cに電流が流れる貫通落雷が含まれる。また、異常落雷には、ダウンコンダクタ20A〜20Cの一部が切断した状態でレセプタ18に落雷を受ける断線落雷が含まれる。貫通落雷や断線落雷が生じた場合、ブレード36A〜36Cに穿孔が生じたり、ブレード36A〜36C内の水分が気化して内部圧力が高まり部材の剥離が生じたりすることがある。
<落雷判定処理>
図4は、風力発電装置10による落雷の状態判定方法を説明するモデル図である。図4では、レセプタ18Aに落雷せずにダウンコンダクタ20A−1の途中に貫通落雷した例について示している。なお、ダウンコンダクタ20B−1,20B−2及びダウンコンダクタ20C−1,20C−2に落雷した場合についても以下の説明は同様となる。
2本のダウンコンダクタ20A−1,20A−2の長さをl、半径をr、距離をdとする。また、ダウンコンダクタ20A−1,20A−2の根元(接続点46付近)で計測される電流値をそれぞれI,Iとする。また、貫通落雷がレセプタ18Aからlstrの位置に着雷したものとする。このとき、着雷点の電位がVであり、接続点46の電位がVであるとすると電流I,I及び電圧V,Vは以下の数式(1),(2)で表わされる。
Figure 2017096193
Figure 2017096193
ここで、R(=R(l))は長さlのダウンコンダクタ20A−1,20A−2の抵抗値であり、数式(3)で表わされる。
Figure 2017096193
また、L(=L(l))は長さlのダウンコンダクタ20A−1,20A−2の自己インダクタンス(lstr以外の部分)であり、数式(4)で表わされる。
Figure 2017096193
また、L(=L(l))は長さlのダウンコンダクタ20A−1,20A−2の自己インダクタンス(lstrの部分)であり、数式(5)で表わされる。
Figure 2017096193
また、M(=M(l))は長さlのダウンコンダクタ20A−1,20A−2間の相互インダクタンスであり、数式(6)で表わされる。
Figure 2017096193
このようなモデルにおいて、落雷の入力電流Iの時間変化を設定することによって電流I,Iを算出することができる。すなわち、落雷による電流I(=I+I)を与えて、数式(1),(2)を数値解析することにより電流I,Iを算出することができる。
図5は、冬季の雷モデルにおける落雷の入力電流Iの例を示す。図6は、図5の入力電流Iの落雷が生じた場合にダウンコンダクタ20A−1,20A−2の半径r=0.003989m(面積50mm)、長さl=40m、距離d=0.01m、抵抗率ρ=1.680×10−8Ωm(銅の抵抗率)、透磁率μ=1.257×10−6H/m(銅の透磁率)として電流I(太実線),I(細実線)及び電流I,Iを時間積分した電荷量Q(太破線),Q(細破線)を数値解析した結果を示す。ただし、落雷の位置lstr=3.0mとした。
また、図7は、夏季の雷モデルにおける落雷の入力電流Iの例を示す。図8は、図7の入力電流Iの落雷が生じた場合にダウンコンダクタ20A−1,20A−2の半径r=0.003989m(面積50mm)、長さl=40m、距離d=0.01m、抵抗率ρ=1.680×10−8Ωm(銅の抵抗率)、透磁率μ=1.257×10−6H/m(銅の透磁率)として電流I(太実線),I(細実線)及び電流I,Iを時間積分した電荷量Q(太破線),Q(細破線)を数値解析した結果を示す。ただし、落雷の位置lstr=3.0mとした。
図6及び図8に示すように、ダウンコンダクタ20A−1の途中に貫通落雷した場合、高周波電流計26A−1,26A−2で測定される電流I,Iに差が生じる。着雷位置lstrが大きくなるほど電流I,Iの差は大きくなる。なお、レセプタ18Aに正常落雷した場合、電流I,Iに差は生じない。このように、電流I,Iの差に基づいて貫通落雷の検知が可能である。
また、電流I,Iをそれぞれ時間積分した電荷量Q,Qによっても同様に貫通落雷の検知が可能である。実際には、雷電流は多くのノイズを含むと想定されるので、高周波電流計26A−1,26A−2で測定される電流I,Iよりも時間積分された電荷量Q,Qを用いることによって正常落雷と貫通落雷をより正確に判定することができる。
なお、高周波電流計26A−1,26A−2で測定された電流I,Iの時間変化を数式(1)〜(6)に当て嵌めて解析することによって着雷位置lstrを求めることもできる。
図9は、ダウンコンダクタ20A−1の一部に断線が発生していた場合にレセプタ18Aに断線落雷した例について示している。この場合、断線箇所にアーク放電が生じ、アーク間電圧降下Varcが生じると想定される。すなわち、断線落雷の場合には、アーク間電圧降下Varcによって電流I,I及び電荷量Q,Qに差が生ずる。したがって、電流I,I又は電荷量Q,Qの差から正常落雷か断線落雷かを判定することができる。
このように、2本のダウンコンダクタ20A−1,20A−2を流れる電流I,Iに基づいて正常落雷と異常落雷の判定や落雷位置の判定が可能である。正常落雷と判定された場合には風力発電装置10の運転を継続し、異常落雷と判定された場合には管理者等に通報したり、風力発電装置10の運転を停止させたりするようにしてもよい。なお、ダウンコンダクタ20B−1,20B−2及びダウンコンダクタ20C−1,20C−2についても同様である。
なお、本実施の形態では、ダウンコンダクタ20A−1,20A−2の半径rが同一である場合について説明したが、異なる半径を有していてもよい。この場合、数式(3)〜(6)について異なる半径を有する導体線における自己インダクタンス及び相互インダクタンスの式を適用すればよい。
<変形例1>
貫通落雷が2本のダウンコンダクタに同時に着雷する場合、上記落雷判定処理では正常落雷か異常落雷かを判定することができない。すなわち、2本のダウンコンダクタにおいてレセプタ18からほぼ同時に貫通落雷が着雷した場合、接続点46付近に設けられた高周波電流計26によって測定される電流I,Iに差が生じないために正常落雷か異常落雷かを判定することが困難となる。
そこで、本変形例では、図10に示すように、2本のダウンコンダクタ20A−1,20A−2間に生ずる応力を検出する応力センサ50を設ける。なお、図10には、レセプタ18A付近の断面図及びレセプタ18Aから離れた部分における断面図も併せて示した。また、図10ではダウンコンダクタ20A−1,20A−2を例に示したが、ダウンコンダクタ20B−1,20B−2及びダウンコンダクタ20C−1,20C−2であっても同様である。
応力センサ50は、レセプタ18Aの付近における2本のダウンコンダクタ20A−1,20A−2の間の応力を検出できるものであればよい。応力センサ50からの出力は、送受信機44を介して電気信号として制御部16に入力される。応力センサ50は、例えば、光ファイバ応力センサとしてダウンコンダクタ20A−1,20A−2の間に設置
することが好適である。光ファイバ応力センサは絶縁体であるので、レセプタ18Aやダウンコンダクタ20A−1,20A−2の付近に配置しても誘雷の可能性を低減することができる。
応力センサ50によって2本のダウンコンダクタ20A−1,20A−2に生じる応力が引力として検出されれば、2本のダウンコンダクタ20A−1,20A−2に流れる電流は同方向であるので、高周波電流計26A−1,26A−2に流れる電流I,Iに差が無い場合であってもレセプタ18Aに着雷したと判定することができる。一方、2本のダウンコンダクタ20A−1,20A−2に生じる応力が斥力として検出されれば、2本のダウンコンダクタ20A−1,20A−2に流れる電流は逆方向であるので、高周波電流計26A−1,26A−2に流れる電流I,Iに差が無い場合であっても2本のダウンコンダクタ20A−1,20A−2に同時に着雷したと判定することができる。また、2本のダウンコンダクタ20A−1,20A−2の一方に着雷し、瞬時に他方と溶着を起こした場合も、同時に着雷した場合と同様に判定することができる。
また、応力を所定の値以上に確保する点からも、2本のダウンコンダクタ20A−1,20A−2の間隔Dは、ダウンコンダクタ20A−1,20A−2の直径よりも小さくすることが好ましく、絶縁が確保できる範囲で半径rよりも小さくすることがより好ましい。
<変形例2>
本変形例では、図11に示すように、2本のダウンコンダクタ20A−1,20A−2の上部(レセプタ18A付近)に電流センサ52を設ける。電流センサ52は、ダウンコンダクタ20A−1,20A−2に流れる電流I,Iの向きが同方向であるか逆方向であるかを判定できるものであればよい。
電流センサ52は、例えば、光ファイバ電流センサとすることが好適である。光ファイバ電流センサは、ダウンコンダクタ20A−1,20A−2に流れる電流によって生ずる磁界の強さに応じて電流を測位する。光ファイバ電流センサは、絶縁体であるため、レセプタ18Aの付近に配置しても誘雷の可能性が小さい。また、光ファイバ電流センサは、従来の高周波電流計に比べて雷サージノイズに強く、ダイナミックレンジが広く、測定精度が高いという特徴を有する。
電流センサ52として光ファイバ電流センサを用いる場合、図12の断面図に示すように、2本のダウンコンダクタ20A−1,20A−2の周囲をクロスさせるように周回させることが好適である。このとき、片方のダウンコンダクタ20A−1と他方のダウンコンダクタ20A−2に対する周回数を異ならせる。例えば、片方のダウンコンダクタ20A−1には光ファイバ電流センサを1回周回させ、他方のダウンコンダクタ20A−2には光ファイバ電流センサを2回周回させる。
このような構成によれば、2本のダウンコンダクタ20A−1,20A−2を流れる電流I,Iの向きが異なる場合、電流I,Iによって生ずる磁界の方向も異なるため、クロスして異なる周回数で巻かれた電流センサ52では重畳される成分が生じ、電流センサ52では重畳された大きな信号が検出される。これに対して、2本のダウンコンダクタ20A−1,20A−2を流れる電流I,Iの向きが同じ場合、電流I,Iによって生ずる磁界の方向も同じになるため、クロスして異なる周回数で巻かれた電流センサ52では打ち消し合う成分が生じ、電流センサ52では相殺された小さな信号が検出される。
したがって、電流センサ52によって測定される信号により電流I,Iの向きを特定し、高周波電流計26A−1,26A−2による計測結果と併せることによって、多様な貫通落雷を検知し、落雷位置を求めることができる。
例えば、2本のダウンコンダクタ20A−1,20A−2に同時に貫通落雷が生じた場合(ただし、着雷位置はレセプタ18A付近であり、電流センサ52の設置位置より下方であるとする)、電流センサ52では電流が検出されないが、下部の高周波電流計26A−1,26A−2では同程度の電流I,Iが検出される。このように、電流センサ52の信号によってレセプタ18Aに着雷していないことが明確に検出できるので、2本のダウンコンダクタ20A−1,20A−2に同時に貫通落雷が生じたことを検知することができる。
<変形例3>
本変形例では、図13に示すように、高周波電流計26A−1,26A−2に代えて、ダウンコンダクタ20A−1,20A−2の下部においても光ファイバ電流センサ54を適用する。光ファイバ電流センサ54の構成は、上記変形例2における電流センサ52と同様とすればよい。例えば、光ファイバ電流センサ54を2本のダウンコンダクタ20A−1,20A−2の周囲をクロスさせるように周回させることが好適である。このとき、片方のダウンコンダクタ20A−1と他方のダウンコンダクタ20A−2に対する周回数を異ならせる。例えば、片方のダウンコンダクタ20A−1には光ファイバ電流センサ54を1回周回させ、他方のダウンコンダクタ20A−2には光ファイバ電流センサ54を2回周回させる。
本変形例の構成では、レセプタ18Aに着雷する正常落雷の場合、図14(a)に示すように、光ファイバ電流センサ52及び光ファイバ電流センサ54の双方において同程度の信号が検出される。2本のダウンコンダクタ20A−1,20A−2の一方に貫通落雷した場合、図14(b)に示すように、レセプタ18A付近、すなわちレセプタ18Aと落雷位置との間である上方に設置された光ファイバ電流センサ52での信号は落雷位置よりも下方に配置された光ファイバ電流センサ54よりも大きくなる。また、2本のダウンコンダクタ20A−1,20A−2の両方に略同時に貫通落雷した場合、図14(c)に示すように、光ファイバ電流センサ52では信号が検出されず、光ファイバ電流センサ54では正常落雷と同程度の信号が検出される。
このように、高周波電流計26A−1,26A−2に代えて、ダウンコンダクタ20A−1,20A−2の下部においても光ファイバ電流センサ54を適用することによっても落雷の状態を正確に区別して判定することができる。
<健全性評価システム>
上記変形例3の構成において、図15に示すように、パルス電圧源60を設けることによって風力発電装置10の落雷判定システムの健全性を評価することができる。なお、以下の説明では、2本のダウンコンダクタ20A−1,20A−2に対する健全性評価について説明するが、ダウンコンダクタ20B−1,20B−2及びダウンコンダクタ20C−1,20C−2のそれぞれにおいても同様に適用できる。
パルス電圧源60は、高周波電流計26A−2のハブ側からパルス電圧を印加できるように設けられる。具体的には、ダウンコンダクタのハブ側端から上方に1〜5m程度の位置にパルス電圧の印加点を設ければよい。パルス電圧は、これに限定されるものではないが、パルス幅10μsec〜1msec程度で電圧1kV〜10kVとすることが好適である。
パルス電圧源60は、図16に示すように、ギャップ62を介してダウンコンダクタ20A−2にパルス電圧を印加できるように接続される。このように、ギャップ62を介してパルス電圧を印加することによって、ダウンコンダクタ20A−1,20A−2に落雷が生じたときのパルス電圧源60への影響を避けることができる。ギャップ62は、例えば、1mm〜10mm程度とすることが好適である。
ダウンコンダクタ20A−1,20A−2の健全性を評価する場合、パルス電圧源60からダウンコンダクタ20A−2へパルス電圧を印加する。ダウンコンダクタ20A−1,20A−2が健全である(断線していない)場合、図17(a)に示すように、上下の光ファイバ電流センサ52及び光ファイバ電流センサ54の双方において同程度の信号が検出される。2本のダウンコンダクタ20A−1,20A−2の一方が断線している場合、図17(b)に示すように、上下の光ファイバ電流センサ52及び光ファイバ電流センサ54のいずれにおいても信号は検出されない。また、2本のダウンコンダクタ20A−1,20A−2の一方が断線し、さらに互いに融着している場合、図17(c)に示すように、光ファイバ電流センサ52では信号が検出されず、光ファイバ電流センサ54では正常落雷と同程度の信号が検出される。
以上のように、パルス電圧源60を設けることによって、風力発電装置10の落雷判定システムの健全性を、落雷判定システムの異常落雷判定手段を利用して評価することができる。
なお、パルス電圧源60からのパルス電源の印加を遠隔操作できるように構成することも好適である。これにより、風力発電装置10を洋上等に建設した場合にも、その場所に赴くことなく遠隔から風力発電装置10の落雷判定システムの健全性を評価することが可能となる。
また、上記実施の形態及び変形例において、応力センサ50、電流センサ52,54は、2本のダウンコンダクタ20A−1,20A−2の間に配線することが好適である。これにより、応力センサ50や電流センサ52,54がダウンコンダクタ20A−1,20A−2により電気的にシールドされ、応力センサ50や電流センサ52,54に雷が直撃する可能性を低減することができる。
本発明は、現地での点検作業負担が大きい洋上風力発電装置のみならず陸上の風力発電装置、また一般の外部雷保護を必要とする風車に適用可能である。
10 風力発電装置、12 風車、16 制御部、18(18A-18C) レセプタ、20(20A-20F) 避雷導線(ダウンコンダクタ)、26(26A-26C) 高周波電流計、28 絶縁体、36(36A-36C) ブレード、44 送受信機、46 接続点、50 応力センサ(光ファイバ応力センサ)、52 電流センサ(光ファイバ電流センサ)、54 光ファイバ電流センサ、60 パルス電圧源、62 ギャップ。

Claims (13)

  1. 風車ブレードの先端部に設けた導電性のレセプタと、
    前記レセプタに接続され、落雷により一時的に発生する落雷電流を接地部に導く2本のダウンコンダクタと、
    前記2本のダウンコンダクタを互いに絶縁すると共に一体的にモールドする絶縁体を含む絶縁手段とを備えたことを特徴とするダブルダウンコンダクタシステム。
  2. 請求項1に記載のダブルダウンコンダクタシステムを用いた落雷判定システムであって、
    前記レセプタ以外の部分への異常落雷を検出する異常落雷判定手段を備えたことを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  3. 請求項2に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記異常落雷判定手段は、
    前記風車ブレードの根元部に設けられ、前記落雷が有ったときの前記2本のダウンコンダクタのそれぞれの電流を計測する高周波電流計と、
    前記高周波電流計で計測された前記2本のダウンコンダクタの前記電流に基づいて異常落雷を判定する判定手段を設けたことを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  4. 請求項3に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記2本のダブルダウンコンダクタは、略同一の断面積を有し、
    前記判定手段は、前記高周波電流計で計測される前記2本のダウンコンダクタのそれぞれの前記電流が異なる場合に、前記風車ブレードへの異常落雷と判定することを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  5. 請求項3に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記判定手段は、前記2本のダウンコンダクタの前記電流に基づいて前記風車ブレードに対する前記異常落雷の落雷位置を算出することを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  6. 請求項3から5のいずれか1項に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記判定手段は、前記高周波電流計で計測された前記2本のダウンコンダクタのそれぞれの前記電流が等しい場合に、前記レセプタへの正常落雷と判定することを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  7. 請求項3から6のいずれか1項に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記異常落雷判定手段は、前記レセプタの近傍の前記2本のダウンコンダクタ間に応力センサを備え、
    前記判定手段は、前記高周波電流計で計測された前記電流と前記応力センサで検出された前記2本のダウンコンダクタ間の応力に基づいて前記異常落雷を検出することを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  8. 請求項3から6のいずれか1項に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記レセプタの近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられた電流センサを備え、
    前記判定手段は、前記高周波電流計で計測された前記電流と前記電流センサで検出された電流センサ電流に基づいて前記異常落雷を検出することを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  9. 請求項2に記載のダブルダウンコンダクタシステム用の落雷判定システムであって、
    前記異常落雷判定手段は、前記レセプタの近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられたレセプタ側電流センサと、
    前記風車ブレードのハブ近傍の前記2本のダウンコンダクタに異なる巻き数、異なる極方向で巻き付けられたハブ側電流センサと、
    前記レセプタ側電流センサで検出された電流と前記ハブ側電流センサで計測された電流とに基づいて前記異常落雷を検出する判定手段を設けたことを特徴とするダブルダウンコンダクタシステム用の落雷判定システム。
  10. 請求項1に記載のダブルダウンコンダクタシステムに用いられる健全性評価システムであって、
    前記風車ブレードの根元部に設けられ、前記落雷が有ったときの前記2本のダウンコンダクタのそれぞれ電流を計測する電流測定手段と、
    前記2本のダウンコンダクタのうちの1本の前記根元部に高電圧を印加する高電圧印加手段を備えたことを特徴とするダブルダウンコンダクタシステム用の健全性評価システム。
  11. 請求項10に記載のダブルダウンコンダクタシステム用の健全性評価システムであって、
    前記高電圧印加手段による1本のダウンコンダクタへの前記高電圧の印加時に前記電流測定手段により計測された他のダウンコンダクタの前記電流に基づいて、前記2本のダウンコンダクタと前記レセプタの接続部の健全性を評価することを特徴とするダブルダウンコンダクタシステム用の健全性評価システム。
  12. 請求項10又は11に記載のダブルダウンコンダクタシステム用の健全性評価システムであって、
    前記高電圧の印加を遠隔場所から行うことを特徴とするダブルダウンコンダクタシステム用の健全性評価システム。
  13. 請求項1から9のいずれか1項に記載のダブルダウンコンダクタシステム用の落雷判定システム、又は請求項10から12のいずれか1項に記載のダブルダウンコンダクタシステム用の健全性評価システムを備えたことを特徴とする風力発電装置。
JP2015230070A 2015-11-25 2015-11-25 ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、及び風力発電装置 Active JP6778366B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015230070A JP6778366B2 (ja) 2015-11-25 2015-11-25 ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、及び風力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230070A JP6778366B2 (ja) 2015-11-25 2015-11-25 ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、及び風力発電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020055736A Division JP6851053B2 (ja) 2020-03-26 2020-03-26 ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステム用の健全性評価システム、及び風力発電装置

Publications (2)

Publication Number Publication Date
JP2017096193A true JP2017096193A (ja) 2017-06-01
JP6778366B2 JP6778366B2 (ja) 2020-11-04

Family

ID=58803475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230070A Active JP6778366B2 (ja) 2015-11-25 2015-11-25 ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、及び風力発電装置

Country Status (1)

Country Link
JP (1) JP6778366B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150324A (ja) * 2016-02-22 2017-08-31 エコ・パワー株式会社 風力発電機用ブレードおよび風力発電機用ブレードの検査方法
JP2019027413A (ja) * 2017-08-03 2019-02-21 東京電力ホールディングス株式会社 風力発電設備の検査装置及び風力発電設備の検査方法
JP2019039411A (ja) * 2017-08-28 2019-03-14 株式会社ホトニクス ダウンコンダクタの健全性検出システムを有する風車
EP3693601A1 (en) * 2019-02-07 2020-08-12 LM Wind Power A/S Lightning protection system of a wind turbine blade
JP2021152349A (ja) * 2020-03-24 2021-09-30 電源開発株式会社 風力発電機
WO2022107786A1 (ja) * 2020-11-19 2022-05-27 三菱重工業株式会社 風車翼の耐雷システム及び風力発電設備並びに風車翼の監視方法
CN114660506A (zh) * 2022-05-25 2022-06-24 武汉三相新能源科技有限公司 一种避雷线监测方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077970A1 (ja) * 2009-12-24 2011-06-30 三菱重工業株式会社 風車翼及びそれを備えた風力発電装置
US20120321468A1 (en) * 2010-03-08 2012-12-20 Lm Glasfiber A/S Wind turbine blade with lightning protection system
DE102013217129A1 (de) * 2013-08-28 2015-03-05 Robert Bosch Gmbh Verfahren zum Überwachen einer Blitzableitereinrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077970A1 (ja) * 2009-12-24 2011-06-30 三菱重工業株式会社 風車翼及びそれを備えた風力発電装置
US20120321468A1 (en) * 2010-03-08 2012-12-20 Lm Glasfiber A/S Wind turbine blade with lightning protection system
DE102013217129A1 (de) * 2013-08-28 2015-03-05 Robert Bosch Gmbh Verfahren zum Überwachen einer Blitzableitereinrichtung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150324A (ja) * 2016-02-22 2017-08-31 エコ・パワー株式会社 風力発電機用ブレードおよび風力発電機用ブレードの検査方法
JP2019027413A (ja) * 2017-08-03 2019-02-21 東京電力ホールディングス株式会社 風力発電設備の検査装置及び風力発電設備の検査方法
JP7021470B2 (ja) 2017-08-03 2022-02-17 東京電力ホールディングス株式会社 風力発電設備の検査装置及び風力発電設備の検査方法
JP2019039411A (ja) * 2017-08-28 2019-03-14 株式会社ホトニクス ダウンコンダクタの健全性検出システムを有する風車
EP3693601A1 (en) * 2019-02-07 2020-08-12 LM Wind Power A/S Lightning protection system of a wind turbine blade
JP2021152349A (ja) * 2020-03-24 2021-09-30 電源開発株式会社 風力発電機
WO2022107786A1 (ja) * 2020-11-19 2022-05-27 三菱重工業株式会社 風車翼の耐雷システム及び風力発電設備並びに風車翼の監視方法
JP7481233B2 (ja) 2020-11-19 2024-05-10 三菱重工業株式会社 風車翼の耐雷システム及び風力発電設備並びに風車翼の監視方法
CN114660506A (zh) * 2022-05-25 2022-06-24 武汉三相新能源科技有限公司 一种避雷线监测方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
JP6778366B2 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6778366B2 (ja) ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、及び風力発電装置
EP2533056B1 (en) System for detecting lightning strikes on wind turbine rotor blades
JP5535886B2 (ja) 落雷検出装置、これを備えた風車回転翼および風力発電装置
US9835141B2 (en) Wind turbine blade and a lightning measurement system therein
US20140093373A1 (en) System and method for detecting lightning strikes on a wind turbine
US9823288B2 (en) Method for monitoring multiple electrical energy lines in a cable strand
JP7154239B2 (ja) 風力タービンブレードへの落雷の位置を検出するための雷検出および測定システムならびに方法
CN112219029B (zh) 用于风力涡轮机的传感器装置
EP3961031B1 (en) Monitoring system for a wind turbine blade, wind turbine arrangement and method for monitoring of a wind turbine blade
JP6628395B2 (ja) 外部雷保護システム、風車ブレード、及び風力発電装置
CN106124950A (zh) 高压输电电缆在线检测装置
KR102309387B1 (ko) 풍속센서를 이용한 가공 배전선로의 댐퍼 감시장치
JP6851053B2 (ja) ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステム用の健全性評価システム、及び風力発電装置
JP6709551B2 (ja) 異常落雷判定システム、及び、風力発電施設への異常落雷判定システムの取り付け方法
JP2019120219A (ja) 風車ブレードの落雷判定システム及び方法
EP3117098B1 (en) Lightning measuring system for a wind turbine
JP2016041912A (ja) 発電設備の落雷管理システム
CN115506970A (zh) 一种风力发电机叶片中导电线的测量系统及测量方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6778366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150