JP2017096091A - Overtopping wave attenuating structure, breakwater structure having the same, and overtopping wave attenuating method using the same - Google Patents

Overtopping wave attenuating structure, breakwater structure having the same, and overtopping wave attenuating method using the same Download PDF

Info

Publication number
JP2017096091A
JP2017096091A JP2016228056A JP2016228056A JP2017096091A JP 2017096091 A JP2017096091 A JP 2017096091A JP 2016228056 A JP2016228056 A JP 2016228056A JP 2016228056 A JP2016228056 A JP 2016228056A JP 2017096091 A JP2017096091 A JP 2017096091A
Authority
JP
Japan
Prior art keywords
overtopping
attenuation
breakwater
plates
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016228056A
Other languages
Japanese (ja)
Other versions
JP6297122B2 (en
Inventor
ソク−ムン,キム
Sug Moon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2017096091A publication Critical patent/JP2017096091A/en
Application granted granted Critical
Publication of JP6297122B2 publication Critical patent/JP6297122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Revetment (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an overtopping wave attenuating structure that can attenuate overtopping waves to the breakwater and minimize the damage caused therefrom, and relate to a breakwater structure including this.SOLUTION: An overtopping wave attenuating structure of the present invention comprises: multiple overtopping wave attenuating plates installed at the upper side of the breakwater adjacent to the open sea side, and being respectively isolated at predetermined intervals to secure a clearance of enabling the seawater of the overtopping waves to pass and forming multiple layers; and many supporting columns installed on the top surface of the breakwater, and supporting the overtopping wave attenuating plates so that the multiple overtopping wave attenuating plates may be installed by forming intervals. The overtopping wave attenuating structure further comprises an overtopping wave guide plate connected to one end of at least one or more among multiple overtopping wave attenuating plates so as to be directed downward, further having a gradient larger than the gradient of the overtopping wave attenuating plate, and thereby guiding the seawater passing through the space between the overtopping wave attenuating plates to the inside lower part of the breakwater.SELECTED DRAWING: Figure 1

Description

本発明は防波堤に対する越波を減衰させ、それによる被害を最小化できる越波減衰用構造物及びこれを含む防波堤構造物に関する。   The present invention relates to a structure for overtopping attenuation capable of attenuating overtopping on a breakwater and minimizing damage caused thereby, and a breakwater structure including the same.

一般に、港湾や海岸には防波堤がほぼ必須に設置される。   Generally, breakwaters are almost always installed at harbors and coasts.

草創期の防波堤は、ある程度高い波を防ぐことができる高さで設置され、防波堤が設置される区間を内海と外海になるように遮断した。しかし、このように海水を閉じ込める形態で防波堤を建設する場合、海水の流出入が円滑に行われず、内海側の海水が汚染され、各種汚物が積もるだけでなく、ひどい場合には悪臭が発生する。これにより、内海側の干潟や海底の生態系は完全に破壊されたと言っても過言ではない。   The breakwater at the beginning of the period was installed at a height that could prevent some high waves, and the section where the breakwater was installed was cut off so that it would be the inland sea and the open sea. However, when the breakwater is constructed in such a way that the seawater is confined in this way, the inflow and outflow of the seawater is not smoothly performed, the seawater on the inland sea side is polluted, various filths are piled up, and a bad smell is generated in severe cases . As a result, it is no exaggeration to say that the tidal flats on the inland sea and the ecosystem on the seabed were completely destroyed.

このような理由で、最近の防波堤は波浪エネルギによる内海側の被害を最小化し、かつ外海と内海とのあいだの海水の流出入が円滑に行われるようにする多様な施工法により設置されている。   For these reasons, recent breakwaters have been installed by various construction methods that minimize the damage of the inland sea due to wave energy and smooth outflow and inflow of seawater between the open sea and the inland sea. .

一方、海水が防波堤にぶつかると海水に大きい反発力が生じ、後に相次いで押し寄せる海水が合わさってさらに大きいエネルギで防波堤に打ち付けられる。このとき、防波堤の高さが高い場合は、このように反発力によって生じたエネルギが防波堤を破損させる原因になり得、防波堤の高さが低い場合は、反発力によって上に上がった波が防波堤の上を越えようになり、越波が発生する。ここで、越波は波が防波堤にぶつかった後、上に上がった波が防波堤の上を越える現象をいう。   On the other hand, when seawater collides with the breakwater, a large repulsive force is generated in the seawater, and the seawater that subsequently pushes one after another is combined and struck against the breakwater with even greater energy. At this time, if the height of the breakwater is high, the energy generated by the repulsive force can cause damage to the breakwater. If the height of the breakwater is low, the waves rising upward due to the repulsive force Overtopping, and overtopping occurs. Here, wave overtopping is a phenomenon in which a wave that hits a breakwater and then a wave that rises above the breakwater.

防波堤が波による内海側の被害を最小化し、かつ自体の破損を減らすためには越波をある程度許容する必要があるが、越波は防波堤にぶつかることにより発生した反発力によって、相当なエネルギを有するため越波による被害を減らすためには越波が有するエネルギを減衰させる必要がある。   It is necessary to allow overtopping to some extent in order for the breakwater to minimize damage on the inland sea side by waves and to reduce its own damage, but overtopping has considerable energy due to the repulsive force generated by hitting the breakwater. In order to reduce the damage caused by overtopping, it is necessary to attenuate the energy of overtopping.

韓国公開特許第10−2004−0006610号公報Korean Published Patent No. 10-2004-0006610

本発明は越波のエネルギを減衰させ、それによる被害を最小化できる越波減衰用構造物及びこれを含む防波堤構造物を提供することに目的がある。   An object of the present invention is to provide a structure for overtopping attenuation capable of attenuating overtopping energy and minimizing damage caused thereby, and a breakwater structure including the same.

本発明の他の目的は、越波減衰用構造物を利用して越波を減衰する方法を提供することにある。   Another object of the present invention is to provide a method for attenuating overtopping using a structure for overtopping attenuation.

前述した目的を解決するため、本発明は外海側に隣接した防波堤の上側に設置されるが、越波した海水が通過できる空間が確保されるようにそれぞれ所定の間隔で離隔されて複数の層を成す複数の越波減衰板と、前記防波堤の上面に設置され、前記複数の越波減衰板が間隔を成して設置されるように前記越波減衰板を支持する多数の支持柱を含む越波減衰用構造物を提供する。   In order to solve the above-described object, the present invention is installed on the upper side of the breakwater adjacent to the open sea side, but the plurality of layers are separated by a predetermined interval so as to secure a space through which the oversea water can pass. A structure for overtopping attenuation comprising a plurality of overtopping attenuation plates and a plurality of support columns that are installed on an upper surface of the breakwater and support the overtopping damping plates so that the plurality of overtopping attenuation plates are installed at intervals. Offer things.

本発明の一特徴によれば、前記複数の越波減衰板は水平方向に平行に設置され得る。   According to an aspect of the present invention, the plurality of overtopping attenuation plates may be installed in parallel in the horizontal direction.

本発明の他の特徴によれば、前記複数の越波減衰板は外海側の方向から内海側の方向に傾くように設置され得る。この場合、前記複数の越波減衰板はすべて平行に設置されるか、またはそれぞれ他の勾配を有するように設置され得る。   According to another feature of the present invention, the plurality of overtopping attenuation plates may be installed so as to be inclined from the direction of the open sea side to the direction of the inland sea side. In this case, all of the plurality of overtopping attenuation plates may be installed in parallel or may have other gradients.

本発明のまた他の特徴によれば、前記複数の越波減衰板は下層から上層に行くほど越波減衰板の勾配が大きくなるように設置され得る。   According to still another aspect of the present invention, the plurality of overtopping attenuation plates may be installed such that the gradient of the overtopping attenuation plate increases from the lower layer to the upper layer.

本発明のまた他の特徴によれば、前記複数の支持柱は長さの調節が可能であり、この場合、前記越波減衰用構造物は波浪エネルギを測定するエネルギ測定装置と、前記エネルギ測定装置によって測定された値に基づいて前記複数の支持柱の長さを制御し、前記越波減衰板の角度を調節できる長さ制御装置をさらに含み得る。   According to still another aspect of the present invention, the length of the plurality of support columns can be adjusted. In this case, the overtopping attenuation structure includes an energy measuring device for measuring wave energy, and the energy measuring device. The length control device may further include a length control device that controls a length of the plurality of support columns based on a value measured by the method and adjusts an angle of the overtopping attenuation plate.

本発明のまた他の特徴によれば、前記越波減衰用構造物は、前記複数の越波減衰板のうち少なくとも一つの以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有することによって、前記越波減衰板のあいだの空間を通過する海水を防波堤の内側下方に誘導する越波誘導板をさらに含み得る。   According to still another aspect of the present invention, the overtopping attenuation structure is connected to at least one of the plurality of overtopping attenuation plates so as to be directed downward, and further than the gradient of the overtopping attenuation plate. By having a large gradient, it may further include an overtopping guide plate for guiding seawater passing through the space between the overtopping attenuation plates to the inside and below the breakwater.

本発明のまた他の特徴によれば、前記越波減衰用構造物は前記越波誘導板の終端に下方に向かうように垂直設置される補助誘導板をさらに含み得る。   According to another aspect of the present invention, the overtopping attenuation structure may further include an auxiliary guide plate that is vertically installed at a terminal end of the overtop guide plate.

また、前述した目的を解決するため、本発明は、海底に設置される基礎地盤と、前記基礎地盤の上に設置される防波堤壁と、前記防波堤壁の上面に設置される越波減衰用構造物を含む防波堤構造物を提供する。ここで、前記越波減衰用構造物は、前記複数の越波減衰板のうち少なくとも一つの以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有することによって、前記越波減衰板のあいだの空間を通過する海水を前記防波堤壁の内側下方に誘導する越波誘導板をさらに含み得る。   In order to solve the above-mentioned object, the present invention provides a foundation ground installed on the seabed, a breakwater wall installed on the foundation ground, and a structure for overtopping attenuation installed on an upper surface of the breakwater wall. Provide breakwater structures including Here, the overtopping attenuation structure is connected to at least one end of at least one of the overtopping attenuation plates so as to be directed downward, and has a larger gradient than the overtopping attenuation plate, There may be further included an overtopping guide plate that guides seawater passing through the space between the overtopping attenuation plates to the lower side inside the breakwater wall.

一方、前記防波堤壁は、前記基礎地盤上の外海に向かう側に複数の単位構造体を積層して形成される前方防波堤壁と、前記基礎地盤上の内海に向かう側に複数の前記単位構造体を積層して形成され、前記前方防波堤壁と所定の距離で離隔する後方防波堤壁を含み得、前記越波減衰用構造物は、前記複数の越波減衰板のうち少なくとも一つの以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有することによって、前記越波減衰板のあいだの空間を通過する海水を前記後方防波堤壁の内側下方に誘導するかまたは前記前方防波堤壁と後方防波堤壁とのあいだの空間に誘導する越波誘導板をさらに含み得る。   On the other hand, the breakwater wall includes a front breakwater wall formed by laminating a plurality of unit structures on the side facing the open sea on the foundation ground, and a plurality of the unit structures on the side facing the inland sea on the foundation ground. A wave breaker wall that is separated from the front breakwater wall by a predetermined distance, and the wave overtopping structure is disposed at a lower end of at least one of the wave overtopping plates. The seawater passing through the space between the overtopping attenuation plates is guided to the lower side inside the rear breakwater wall or connected to the frontal breakwater wall by having a slope that is connected in a direction that is greater than the slope of the overtopping attenuation plate. And a wave overtopping plate for guiding to a space between the wall and the rear breakwater wall.

また、前述した目的を解決するため、本発明は(a)波浪エネルギの範囲を複数の段階に分類し、それぞれの段階に対応して前記越波減衰板の角度をマッチングして保存する段階と、(b)波浪エネルギを測定する段階と、(c)測定される前記波浪エネルギの値が前記(a)段階のそれぞれの段階のうちどの段階に該当するかを判断する段階と、(d)前記複数の支持柱の長さを制御し、前記越波減衰板の角度を前記(c)段階で判断する段階に対応するように調節し、越波した海水が前記防波堤の内側下方に誘導されるようにする段階を含む越波減衰方法を提供する。   In order to solve the above-described object, the present invention (a) classifies the range of wave energy into a plurality of stages, and matches and stores the angle of the overtopping attenuation plate corresponding to each stage; (B) a step of measuring wave energy, (c) a step of determining which of the steps of the step (a) the value of the wave energy to be measured corresponds to, The lengths of the plurality of support columns are controlled, and the angle of the wave overtopping attenuation plate is adjusted to correspond to the step of determining in the step (c) so that the overwater seawater is guided to the lower inside of the breakwater. An overtopping attenuation method including the step of:

ここで、前記(d)段階において、前記(b)段階で測定される波浪エネルギの値が大きいほど前記複数の越波減衰板それぞれの勾配が小さくなるように前記支持柱の長さを制御し得る。   Here, in the step (d), the length of the support column can be controlled such that the greater the value of the wave energy measured in the step (b), the smaller the gradient of each of the plurality of overtopping attenuation plates. .

本発明によれば、防波堤の上側に越波減衰用構造物が設置されることによって、越波による内海側の被害を減らせることができ、特に越波減衰用構造物により越波のエネルギが減衰し、その方向も防波堤の内側下方に転換させることができるので、越波による被害を最小化することができる。   According to the present invention, by installing the overtopping attenuation structure on the upper side of the breakwater, it is possible to reduce the damage on the inland sea side due to overtopping, and in particular, the overtopping attenuation structure attenuates overtopping energy. Since the direction can be changed to the lower side inside the breakwater, damage caused by overtopping can be minimized.

また、本発明によれば、すでに設置された防波堤の場合、越波減衰用構造物だけを別途設置するだけで越波の被害を減らすことができるので、費用節減の効果も得られる。   Further, according to the present invention, in the case of a breakwater that has already been installed, damage to the overtopping can be reduced only by separately installing a structure for overtopping attenuation, so that an effect of cost saving can be obtained.

本発明の一実施形態による防波堤構造物の斜視図である。It is a perspective view of a breakwater structure by one embodiment of the present invention. 図1に示す防波堤構造物の側断面図である。It is a sectional side view of the breakwater structure shown in FIG. 図1に示す防波堤構造物に適用される単位構造体の一例を示す斜視図である。It is a perspective view which shows an example of the unit structure applied to the breakwater structure shown in FIG. 本発明による越波減衰用構造物の様々な例を示す図である。It is a figure which shows the various examples of the structure for wave overtopping attenuation by this invention. 本発明による越波減衰用構造物の様々な例を示す図である。It is a figure which shows the various examples of the structure for wave overtopping attenuation by this invention. 本発明による越波減衰用構造物の様々な例を示す図である。It is a figure which shows the various examples of the structure for wave overtopping attenuation by this invention. 本発明による越波減衰用構造物の様々な例を示す図である。It is a figure which shows the various examples of the structure for wave overtopping attenuation by this invention. 本発明の他の実施形態による防波堤構造物の側断面図である。It is a sectional side view of the breakwater structure by other embodiment of this invention. 本発明の実施形態による越波減衰用構造物の支持柱の長さを調節する例を示す図である。It is a figure which shows the example which adjusts the length of the support pillar of the structure for wave overtopping attenuation by embodiment of this invention. 本発明の実施形態による越波減衰方法を示すフローチャートである。It is a flowchart which shows the overtopping attenuation method by embodiment of this invention.

以下では本発明の実施形態について添付する図面を参照して詳細に説明する。ただし、以下で説明する実施形態は本発明が属する技術分野で通常の知識を有する者が発明を容易に実施できるほどに詳細に説明するためのものであり、これによって本発明の保護範囲が限定されることを意味するものではない。また本発明の様々な実施形態の説明するにあたり、同じ技術的特徴を有する構成要素に対しては同じ図面符号を使用する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiment described below is for explaining in detail so that a person having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the invention, thereby limiting the protection scope of the present invention. It does not mean to be done. In describing various embodiments of the present invention, the same reference numerals are used for components having the same technical characteristics.

図1は本発明の一実施形態による防波堤構造物の斜視図であり、図2は図1に示す防波堤構造物の側断面図であり、図3は図1に示す防波堤構造物に適用される単位構造体の一例を示す斜視図であり、図4ないし図7は本発明による越波減衰用構造物の様々な例を示す図である。   1 is a perspective view of a breakwater structure according to an embodiment of the present invention, FIG. 2 is a side sectional view of the breakwater structure shown in FIG. 1, and FIG. 3 is applied to the breakwater structure shown in FIG. FIG. 4 to FIG. 7 are views showing various examples of overtopping attenuation structures according to the present invention.

図1及び図2を参照すると、本発明の一実施形態による防波堤構造物100は、基礎地盤110、防波堤壁、越波減衰用構造物170を含む。ここで、防波堤壁は単位構造体120を積層して形成され得、前方防波堤壁140及び後方防波堤壁150を含む構造であるか、または基礎防波堤壁130をさらに含む構造からなる。また、防波堤構造物は覆い層160をさらに含み得る。   1 and 2, a breakwater structure 100 according to an embodiment of the present invention includes a foundation ground 110, a breakwater wall, and an overtopping attenuation structure 170. Here, the breakwater wall may be formed by stacking the unit structures 120, and may have a structure including the front breakwater wall 140 and the rear breakwater wall 150, or a structure further including the basic breakwater wall 130. In addition, the breakwater structure may further include a cover layer 160.

基礎地盤110は海底に設置されるが、海底面の基礎工事により基礎地盤110を施工する。基礎地盤110は海底面に所定の深さの溝を掘った後に設置するか、または基礎地盤110の底面に所定の長さの下方固定芯112を設置し、該当固定芯112を海底に挿入して基礎地盤110を海底に固定させた後、基礎地盤110の上面を平らにし得る。基礎地盤110の形状及び設置方法は特に限定されず、一般に使用される多様な形状や方法を適用し得る。また、基礎地盤110はで造られるが、これに限定されず、多様な材質を活用し得る。   Although the foundation ground 110 is installed on the seabed, the foundation ground 110 is constructed by foundation construction on the bottom of the sea. The foundation ground 110 is installed after digging a groove of a predetermined depth on the sea bottom, or a lower fixed core 112 having a predetermined length is installed on the bottom of the foundation ground 110, and the corresponding fixed core 112 is inserted into the sea floor. Then, after fixing the foundation ground 110 to the seabed, the upper surface of the foundation ground 110 can be flattened. The shape and installation method of the foundation ground 110 are not particularly limited, and various commonly used shapes and methods can be applied. Further, the foundation ground 110 is made of, but is not limited thereto, and various materials can be used.

防波堤壁は一般に防波堤構造物において使用されるすべてのものを適用し得る。この他に、図1ないし図3に示すような単位構造体120を積層して防波堤壁を形成し得る。   As the breakwater wall, all those generally used in breakwater structures can be applied. In addition, the breakwater wall can be formed by stacking unit structures 120 as shown in FIGS. 1 to 3.

図3を参照すると、単位構造体120はブロック上板121とブロック下板122と、ブロック下板122の上でブロック上板121を支持する少なくとも一つ以上の柱123を含み、ブロック上板121及びブロック下板122のそれぞれには少なくとも一つの貫通孔124が形成される。このとき、ブロック上板121及びブロック下板122は互いに同じサイズで形成され得る。ここで、ブロック上板121及びブロック下板122はそれぞれが一辺の長さが他の一辺の長さのn倍(ここで、nは2以上の整数)である長方形からなる。この場合、ブロック上板121及びブロック下板122が同じサイズで形成されるとは、それぞれの横及び縦の長さが同じであることを意味し、それぞれの厚さは互いに違うように形成され得る。また、ブロック上板121及びブロック下板122はそれぞれが正方形の形状からなり、この場合、各辺の1/2地点に設定された深さ及び長さの連結溝125が辺から直角方向に形成され得る。   Referring to FIG. 3, the unit structure 120 includes a block upper plate 121, a block lower plate 122, and at least one pillar 123 that supports the block upper plate 121 on the block lower plate 122. Each of the block lower plates 122 is formed with at least one through hole 124. At this time, the block upper plate 121 and the block lower plate 122 may be formed in the same size. Here, each of the block upper plate 121 and the block lower plate 122 is formed of a rectangle whose length of one side is n times the length of the other side (where n is an integer of 2 or more). In this case, that the block upper plate 121 and the block lower plate 122 are formed in the same size means that the horizontal and vertical lengths thereof are the same, and the respective thicknesses are formed different from each other. obtain. The block upper plate 121 and the block lower plate 122 each have a square shape, and in this case, a connecting groove 125 having a depth and a length set at a half point of each side is formed in a direction perpendicular to the side. Can be done.

一方、単位構造体120は少なくとも一つの中間板126をさらに含み得る。このとき、中間板126はブロック上板121及びブロック下板122と同じサイズ及び形状からなり、ブロック上板121とブロック下板122とのあいだに平行に設置され、柱123により支持される。   Meanwhile, the unit structure 120 may further include at least one intermediate plate 126. At this time, the intermediate plate 126 has the same size and shape as the block upper plate 121 and the block lower plate 122, is installed in parallel between the block upper plate 121 and the block lower plate 122, and is supported by the pillar 123.

ブロック上板121、ブロック下板122及び中間板126はそれぞれの角の頂点及び長さが二倍である辺の1/2地点のうち少なくとも一点を中心にして設定された直径の円柱形態に削られる。すなわち、ブロック上板121、ブロック下板122及び中間板126の一辺が他の一辺の二倍である場合、それぞれの角の頂点及び長さが二倍である辺の1/2地点に円柱形態の溝が形成される。   The block upper plate 121, the block lower plate 122, and the intermediate plate 126 are cut into a cylindrical shape having a diameter set around at least one of the vertices of the corners and ½ points of the side whose length is double. It is done. That is, when one side of the block upper plate 121, the block lower plate 122, and the intermediate plate 126 is twice the other side, a cylindrical shape is formed at a half point of the side where the vertex and length of each corner are twice. Are formed.

前述した通り、防波堤壁は前方防波堤壁140及び後方防波堤壁150を含む構造であるか、または基礎防波堤壁130をさらに含む構造からなる。   As described above, the breakwater wall has a structure including a front breakwater wall 140 and a rear breakwater wall 150 or a structure further including a basic breakwater wall 130.

ここで、基礎防波堤壁130は基礎地盤110の上面に複数の単位構造体120を積層して形成される。この場合、基礎防波堤壁130はレンガを積み上げて建築物を建築するように、複数の単位構造体120を長方向に半分ずつ重なるように配列するか、または長方向の半分に少なくとも一つの他の単位構造体120の短方向が重なるように配列して一つの層を形成し、このような層を複数の層に積み上げて基礎防波堤壁130を形成し得る。   Here, the foundation breakwater wall 130 is formed by laminating a plurality of unit structures 120 on the upper surface of the foundation ground 110. In this case, the basic breakwater wall 130 is arranged such that a plurality of unit structures 120 are overlapped in half in the longitudinal direction so that bricks are stacked to build a building, or at least one other in the longitudinal half. The unit structures 120 may be arranged so as to overlap in the short direction to form a single layer, and such layers may be stacked into a plurality of layers to form the basic breakwater wall 130.

前方防波堤壁140は基礎地盤110上の外海に向かう側に複数の単位構造体120を積層して形成される。この場合、前方防波堤壁140は基礎防波堤壁130を基礎地盤110の上面に構築した後、基礎防波堤壁130の上面の外海に向かう側に形成することもできる。このとき、前方防波堤壁140は基礎防波堤壁130の幅の1/2より小さい幅で基礎防波堤壁130の上面の外海側に形成され得る。   The front breakwater wall 140 is formed by laminating a plurality of unit structures 120 on the side of the foundation ground 110 facing the open sea. In this case, the front breakwater wall 140 may be formed on the side of the upper surface of the basic breakwater wall 130 toward the open sea after the basic breakwater wall 130 is constructed on the upper surface of the foundation ground 110. At this time, the front breakwater wall 140 may be formed on the outer sea side of the upper surface of the basic breakwater wall 130 with a width smaller than ½ of the width of the basic breakwater wall 130.

後方防波堤壁150は基礎地盤110上の内海に向かう側に複数の単位構造体120を積層して形成される。この場合、後方防波堤壁150は前方防波堤壁140から設定された距離以上離隔して形成され得る。すなわち、後方防波堤壁150は前方防波堤壁140とのあいだに設定された幅以上の空間が形成されるように積層される。また、後方防波堤壁150は前方防波堤壁140の場合と同様に基礎防波堤壁130を基礎地盤110の上面に構築した後、基礎防波堤壁130の上面の内海に向かう側に前方防波堤壁140から設定された距離以上離隔して形成されることもできる。このとき、後方防波堤壁150は基礎防波堤壁130の幅の1/2より小さい幅で基礎防波堤壁130の上面の内海側に形成され得る。参考までに、図1及び図2では後方防波堤壁150が前方防波堤壁140と同じ高さで形成された場合を示しているが、後方防波堤壁150は前方防波堤壁140より低いかまたは高く形成され得る。   The rear breakwater wall 150 is formed by stacking a plurality of unit structures 120 on the side of the foundation ground 110 facing the inland sea. In this case, the rear breakwater wall 150 may be formed apart from the front breakwater wall 140 by a set distance or more. That is, the rear breakwater wall 150 is laminated so as to form a space having a width equal to or larger than the set width between the rear breakwater wall 140. The rear breakwater wall 150 is set from the front breakwater wall 140 on the side facing the inland sea on the upper surface of the basic breakwater wall 130 after the foundation breakwater wall 130 is constructed on the upper surface of the foundation ground 110 in the same manner as the front breakwater wall 140. It can also be formed at a distance more than a certain distance. At this time, the rear breakwater wall 150 may be formed on the inner sea side of the upper surface of the foundation breakwater wall 130 with a width smaller than ½ of the width of the foundation breakwater wall 130. For reference, FIGS. 1 and 2 show a case where the rear breakwater wall 150 is formed at the same height as the front breakwater wall 140, but the rear breakwater wall 150 is formed lower or higher than the front breakwater wall 140. obtain.

覆い層160は、前方防波堤壁140及び後方防波堤壁150のそれぞれの上面に置かれて前方防波堤壁140及び後方防波堤壁150の上面を覆う。覆い層160は防波堤構造物の内部から海水が上がってくることを防止すると共に人道及び車道として使用され得る。このような覆い層160はコンクリート材質からなるが、これに限定されず、多様な材質を適用し得る。例えば、覆い層160は所定厚さの透明アクリル板で形成され得、これにより、防波堤内部の海水の流通過程を目で確認できるように実現され得る。   The covering layer 160 is placed on the upper surfaces of the front breakwater wall 140 and the rear breakwater wall 150 to cover the upper surfaces of the front breakwater wall 140 and the rear breakwater wall 150. The covering layer 160 prevents seawater from rising from the inside of the breakwater structure and can be used as a human road and a roadway. Such a cover layer 160 is made of a concrete material, but is not limited thereto, and various materials can be applied. For example, the cover layer 160 may be formed of a transparent acrylic plate having a predetermined thickness, and thus can be realized so that the distribution process of seawater inside the breakwater can be visually confirmed.

越波減衰用構造物170は防波堤の外海側に隣接した部分の上面に設置される。例えば、図1及び図2に示す通り、越波減衰用構造物170は外海側に隣接した前方防波堤壁140の上面に設置される。   The overtopping attenuation structure 170 is installed on the upper surface of the portion adjacent to the outer sea side of the breakwater. For example, as shown in FIGS. 1 and 2, the overtopping attenuation structure 170 is installed on the upper surface of the front breakwater wall 140 adjacent to the open sea side.

越波減衰用構造物170は複数の越波減衰板172と、多数の支持柱174を含み、越波誘導板176をさらに含み得る。   The overtopping attenuation structure 170 includes a plurality of overtopping attenuation plates 172 and a plurality of support columns 174, and may further include an overtopping guide plate 176.

複数の越波減衰板172は越波した海水が通過できる空間が確保されるようにそれぞれ所定の間隔で離隔されて複数の層を成し、多数の支持柱174は防波堤壁の上面に設置され、複数の越波減衰板172が所定の高さの差を成して設置されるように複数の越波減衰板172を支持する。   The plurality of wave overtopping attenuation plates 172 are separated from each other by a predetermined interval so as to secure a space through which overwater seawater can pass, and a plurality of support columns 174 are installed on the top surface of the breakwater wall. A plurality of overtopping attenuation plates 172 are supported such that the overtopping attenuation plates 172 are installed with a predetermined height difference.

この場合、複数の越波減衰板172は図7に示すように水平方向に平行に設置され得る。これとは異なり、複数の越波減衰板172は、図1、図4ないし図6に示すように外海側の方向から内海側の方向に傾くように設置され得、この場合、複数の越波減衰板172は平行に設置されるか、またはそれぞれ異なるの勾配を有するように設置され得る。さらに、複数の越波減衰板172は下層から上層に行くほど各越波減衰板の勾配が大きくなるように設置されることもできる。   In this case, the plurality of overtopping attenuation plates 172 can be installed in parallel in the horizontal direction as shown in FIG. In contrast, the plurality of overtopping attenuation plates 172 may be installed so as to incline from the direction of the open sea to the direction of the inland as shown in FIGS. 1 and 4 to 6. 172 may be installed in parallel or may have different slopes. Further, the plurality of overtopping attenuation plates 172 can be installed such that the gradient of each overtopping attenuation plate increases from the lower layer to the upper layer.

例えば、図4に示すように、複数の越波減衰板172は互いに異なる高さで同じ角度に傾くように設置され得る。この場合、多数の支持柱174は前方防波堤壁140の上面に対して複数の越波減衰板172がそれぞれ互いに異なる高さを成し、かつ互いに平行に越波減衰板172を支持する。このとき、越波減衰板172のあいだの間隔を互いに同一にするか、または互いに異なるようにし得る。   For example, as shown in FIG. 4, the plurality of overtopping attenuation plates 172 may be installed at different heights and inclined at the same angle. In this case, the plurality of support columns 174 support the wave overtopping attenuation plates 172 in parallel with each other with the plural wavetop attenuation plates 172 having different heights from the upper surface of the front breakwater wall 140. At this time, the interval between the overtopping attenuation plates 172 may be the same or different from each other.

これとは異なり、図5及び図6に示すように、複数の越波減衰板172は互いに異なる高さでそれぞれ互いに異なる角度に傾くように設置され得る。この場合、多数の支持柱174は前方防波堤壁140の上面に対して複数の越波減衰板172がそれぞれ互いに異なる高さを成し、かつ互いに異なる角度に傾くように越波減衰板172を支持する。このとき、複数の越波減衰板172は下層から上層に行くほど各越波減衰板の勾配が大きくなるように設置され得、これにより最も高い位置に配置される越波減衰板172の傾いた角度が大きくなる。越波減衰板172は金属、コンクリート、合成樹脂など多様な材質からなる。   In contrast, as shown in FIGS. 5 and 6, the plurality of overtopping attenuation plates 172 may be installed at different heights and inclined at different angles. In this case, the multiple support columns 174 support the overtopping attenuation plates 172 such that the plurality of overtopping attenuation plates 172 have different heights from each other with respect to the upper surface of the front breakwater wall 140 and are inclined at different angles. At this time, the plurality of overtopping attenuation plates 172 can be installed such that the gradient of each overtopping attenuation plate increases from the lower layer to the upper layer, thereby increasing the tilt angle of the overtopping attenuation plate 172 disposed at the highest position. Become. The overtopping attenuation plate 172 is made of various materials such as metal, concrete, and synthetic resin.

また、図7に示すように複数の越波減衰板172は水平に互いに平行に設置され得る。この場合、多数の支持柱174は複数の越波減衰板172が前方防波堤壁140の上面に対して互いに異なる高さで水平に互いに平行に越波減衰板172を支持する。   Further, as shown in FIG. 7, the plurality of overtopping attenuation plates 172 can be installed horizontally in parallel with each other. In this case, the plurality of support pillars 174 support the wave overtopping plates 172 in parallel with each other at different heights with respect to the upper surface of the front breakwater wall 140.

越波誘導板176は複数の越波減衰板172のうち少なくとも一つの以上の一端に下方に向い連結されるように設置される。この場合、越波誘導板176は越波減衰板172の勾配よりさらに大きい勾配を有することによって、越波減衰板172のあいだの空間を通過する海水を防波堤の内側下方に誘導する。   The overtopping guide plate 176 is installed so as to be connected downward to at least one of the overtopping attenuation plates 172. In this case, the overtopping guide plate 176 has a larger slope than the overtopping attenuation plate 172, thereby guiding the seawater passing through the space between the overtopping attenuation plate 172 to the lower inside of the breakwater.

すなわち、図8に示すように複数の越波減衰板172の一端に越波誘導板176が連結され、越波誘導板176は越波減衰板172の勾配よりさらに大きい勾配を有する。これにより、越波した海水が越波減衰板172のあいだの空間を通過しながらエネルギが1次減衰し、その後通過した海水は越波誘導板176にぶつかりながら、エネルギが2次減衰するが、越波誘導板176が下方に傾いているので進入方向の逆方向に弾かれず防波堤の内側下方に誘導される。参考までに、図8に示すように防波堤壁が前方防波堤壁140と後方防波堤壁150で構成された場合は、越波した海水が前方防波堤壁140と後方防波堤壁150とのあいだの空間に誘導され得る。このような過程で越波のエネルギが顕著に減衰する。   That is, as shown in FIG. 8, the overtopping guide plate 176 is connected to one end of a plurality of overtopping attenuation plates 172, and the overtopping guide plate 176 has a larger gradient than the overtopping attenuation plate 172. As a result, the overpowered seawater passes through the space between the overtopping attenuation plates 172 and the energy is first-order attenuated, and the seawater that has passed thereafter collides with the overtopping guide plates 176 and the energy is secondarily attenuated. Since 176 is inclined downward, it is not repelled in the reverse direction of the approach direction and is guided to the lower inside of the breakwater. For reference, when the breakwater wall is composed of the front breakwater wall 140 and the rear breakwater wall 150 as shown in FIG. 8, the overwhelmed seawater is guided to the space between the front breakwater wall 140 and the rear breakwater wall 150. obtain. In such a process, overtopping energy is significantly attenuated.

図8では越波減衰板172が水平に平行に形成された場合に越波誘導板176が連結された場合のみを示しているが、図4ないし図6に示すような傾いた形態の越波減衰板172に越波誘導板176を適用することは当然可能であり、重複する説明を避けるために追加の説明は省略する。   Although FIG. 8 shows only the case where the overtopping guide plate 176 is connected when the overtopping attenuation plate 172 is formed horizontally and in parallel, the overtopping attenuation plate 172 is inclined as shown in FIGS. It is naturally possible to apply the overtopping guide plate 176, and additional description is omitted to avoid redundant description.

参考までに、図面に示していないが、越波誘導板176の終端に下方に向かうように垂直設置される補助誘導板が連結され得る。これにより、越波誘導板176により誘導される海水は補助誘導板にもう一度ぶつかるようになり、直下方に落下する。   For reference, although not shown in the drawings, an auxiliary guide plate that is vertically installed at the terminal end of the overtopping guide plate 176 may be connected. As a result, the seawater guided by the overtopping guide plate 176 once again hits the auxiliary guide plate and falls directly below.

一方、図9に示すように、多数の支持柱174の長さ調節が可能であり、これは多数の支持柱174の長さ調節により越波減衰板172の間隔や勾配を調節するためである。この場合、最下段の支持柱の長さを調節できるように実現することができる。また、多数の支持柱174のうち外海側に設置された支持柱は内海側に設置された支持柱に比べて調節される長さの範囲が大きく実現することができる。この場合、それぞれの支持柱174の長さを調節するとき、設置された位置によって外海側に行くほどその長さが比例して大きくなるように調節することもできる。この場合、それぞれの支持柱174はそれぞれの越波減衰板172と回転可能に連結され得るが、その理由は最下段の支持柱の長さを調節する場合、それによりそれぞれの越波減衰板172と支持柱174が成す角度が容易に変更されるようにするためである。   On the other hand, as shown in FIG. 9, the lengths of a large number of support columns 174 can be adjusted. This is because the intervals and gradients of the overtopping attenuation plates 172 are adjusted by adjusting the lengths of the large number of support columns 174. In this case, the length of the lowermost support column can be adjusted. Further, the support column installed on the outer sea side among the many support columns 174 can realize a larger range of the length to be adjusted than the support column installed on the inland sea side. In this case, when adjusting the length of each support pillar 174, it can also be adjusted so that the length may become proportionally large as it goes to the open sea side by the installed position. In this case, each support column 174 may be rotatably connected to each overtopping attenuation plate 172, because when adjusting the length of the lowermost support column, thereby supporting each overtopping attenuation plate 172. This is because the angle formed by the pillars 174 can be easily changed.

本発明の実施形態による防波堤構造物100はエネルギ測定装置180及び長さ制御装置190をさらに含み得る。   The breakwater structure 100 according to the embodiment of the present invention may further include an energy measurement device 180 and a length control device 190.

エネルギ測定装置180は波浪エネルギを測定する。このとき、エネルギ測定装置180は防波堤にぶつかる波の力の強度を測定し得る。この場合、エネルギ測定装置180は設定された時間のあいだ波浪エネルギを測定し、測定された値の中で最も大きい値を選択するか、または設定された時間のあいだに測定された波浪エネルギの平均値を算出し得る。   The energy measuring device 180 measures wave energy. At this time, the energy measuring device 180 can measure the strength of the wave force hitting the breakwater. In this case, the energy measuring device 180 measures the wave energy for a set time and selects the largest value among the measured values, or the average of the wave energy measured for the set time. A value can be calculated.

長さ制御装置190はエネルギ測定装置180により測定された値に基づいて、支持柱の長さ、例えば最下段の支持柱174の長さを制御する。このとき、長さ制御装置190は波浪エネルギの範囲を複数の段階に分類し、それぞれの段階に対応して越波減衰板172の角度をマッチングして保存し得る。この場合、長さ制御装置190はエネルギ測定装置180により測定される波浪エネルギの値がどの段階に該当するかを判断し、判断する段階に対応して最下段の支持柱174の長さを制御し得る。このとき、長さ制御装置190はエネルギ測定装置180により測定される波浪エネルギの値が大きいほど越波減衰板172の角度が小さくなるように制御し、越波減衰用構造物170が波浪エネルギから受ける力を減らし得る。   The length control device 190 controls the length of the support column, for example, the length of the lowermost support column 174 based on the value measured by the energy measuring device 180. At this time, the length control device 190 can classify the range of the wave energy into a plurality of stages, and match and store the angle of the overtopping attenuation plate 172 corresponding to each stage. In this case, the length control device 190 determines which step the wave energy value measured by the energy measuring device 180 corresponds to, and controls the length of the lowermost support column 174 corresponding to the determination step. Can do. At this time, the length control device 190 performs control so that the angle of the overtopping attenuation plate 172 becomes smaller as the value of the wave energy measured by the energy measuring device 180 becomes larger, and the force that the overtopping attenuation structure 170 receives from the wave energy. Can be reduced.

前述したような越波減衰用構造物170、エネルギ測定装置180及び長さ制御装置190は防波堤構造物100と別途に独立的な構造物及び装置として実現することができる。   The overtopping attenuation structure 170, the energy measuring device 180, and the length control device 190 as described above can be realized as a structure and device independent of the breakwater structure 100.

以上ような本発明の実施形態による防波堤構造物は、前方防波堤壁140の上段に越波減衰用構造物170を設置することによって、越波した海水のエネルギを弱化させ、越波した海水を前方防波堤壁140の後方の空間に誘導して流れるようにすることによって、越波による内海側の被害を最小化する。また、防波堤構造物にぶつかる波浪エネルギに応じて越波減衰板172の角度を調節することによって、波浪エネルギのサイズに応じて防波堤を越える越波の量が最小化するようにできる。   In the breakwater structure according to the embodiment of the present invention as described above, the overtopping attenuation structure 170 is installed on the upper stage of the front breakwater wall 140 to weaken the energy of the overtopped seawater, and the overtopped seawater is reduced to the front breakwater wall 140. The damage on the inland sea side due to overtopping is minimized by directing it to the space behind. Further, by adjusting the angle of the wave overtopping attenuation plate 172 according to the wave energy hitting the breakwater structure, the amount of wave overtopping over the wall can be minimized according to the size of the wave energy.

図10は本発明の実施形態による越波減衰方法を示すフローチャートである。   FIG. 10 is a flowchart showing the overtopping attenuation method according to the embodiment of the present invention.

図10を参照すると、先に、波浪エネルギの範囲を複数の段階に分類し、分類されたそれぞれの段階に対応して越波減衰板172の角度をマッチングして保存する(S110)。このとき、図5及び図6に示すようにそれぞれの越波減衰板172の傾いた角度が互いに異なる場合、長さ制御装置190はそれぞれの波浪エネルギの段階に対応して最も高い位置の越波減衰板172の角度をマッチングして保存し得る。   Referring to FIG. 10, first, the range of wave energy is classified into a plurality of stages, and the angle of the overtopping attenuation plate 172 is matched and stored corresponding to each classified stage (S110). At this time, as shown in FIGS. 5 and 6, when the angles of inclination of the overtopping attenuation plates 172 are different from each other, the length control device 190 has the highest overtopping attenuation plate corresponding to each wave energy stage. 172 angles can be matched and stored.

その後、エネルギ測定装置180は波浪エネルギを測定する(S120)。このとき、エネルギ測定装置180は設定された時間間隔のあいだ防波堤にぶつかる波力強度を測定し、測定された値の平均を算出するか、測定された値の中の最も強い強度値を選択し得る。   Thereafter, the energy measuring device 180 measures the wave energy (S120). At this time, the energy measuring device 180 measures the wave strength that hits the breakwater for a set time interval, and calculates the average of the measured values or selects the strongest strength value among the measured values. obtain.

その後、長さ制御装置190がエネルギ測定装置180により測定された波浪エネルギの値が分類されたそれぞれの段階のどの段階に該当するかを判断する(S130)。   After that, the length controller 190 determines which of the stages in which the value of the wave energy measured by the energy measuring device 180 falls (S130).

その後、長さ制御装置190はエネルギ測定装置180により測定された波浪エネルギの値が該当する段階に対応する角度で支持柱174の長さを制御し、越波減衰板172の角度を調節する(S140)。このとき、長さ制御装置190はエネルギ測定装置180により測定される波浪エネルギの値が大きいほど越波減衰板172の角度が小さくなるように制御することが好ましい。   Thereafter, the length controller 190 controls the length of the support column 174 at an angle corresponding to the stage corresponding to the value of the wave energy measured by the energy measuring device 180, and adjusts the angle of the overtopping attenuation plate 172 (S140). ). At this time, it is preferable that the length control device 190 performs control so that the angle of the overtopping attenuation plate 172 decreases as the value of the wave energy measured by the energy measuring device 180 increases.

100 防波堤構造物
110 基礎地盤
120 単位構造体
130 基礎防波堤壁
140 前方防波堤壁
150 後方防波堤壁
160 覆い層
170 越波減衰用構造物
172 越波減衰板
174 支持柱
180 エネルギ測定装置
190 長さ制御装置
DESCRIPTION OF SYMBOLS 100 Breakwater structure 110 Foundation ground 120 Unit structure 130 Basic breakwater wall 140 Front breakwater wall 150 Back breakwater wall 160 Cover layer 170 Structure for overtopping attenuation 172 Overtopping attenuation plate 174 Support column 180 Energy measuring device 190 Length control device

Claims (16)

外海側に隣接した防波堤の上側に設置され、越波した海水が通過できる空間が確保されるようにそれぞれ所定の間隔で離隔されて複数の層を成す複数の越波減衰板と、
前記防波堤の上面に設置され、前記複数の越波減衰板が間隔を成して設置されるように前記越波減衰板を支持する多数の支持柱を含む越波減衰用構造物。
A plurality of wave overtopping plates installed on the upper side of the breakwater adjacent to the open sea side, each of which is separated by a predetermined interval so as to ensure a space through which overwater seawater can pass,
An overtopping attenuation structure including a plurality of support columns installed on an upper surface of the breakwater and supporting the overtopping attenuation plates so that the plurality of overtopping attenuation plates are installed at intervals.
前記複数の越波減衰板は水平方向に平行に設置されることを特徴とする請求項1に記載の越波減衰用構造物。   2. The overtopping attenuation structure according to claim 1, wherein the plurality of overtopping attenuation plates are installed in parallel in the horizontal direction. 前記複数の越波減衰板は、外海側の方向から内海側の方向に傾くように設置されることを特徴とする請求項1に記載の越波減衰用構造物。   2. The overtopping attenuation structure according to claim 1, wherein the plurality of overtopping attenuation plates are installed so as to incline from an open sea side direction to an inland sea side direction. 前記複数の越波減衰板は、平行に設置されることを特徴とする請求項3に記載の越波減衰用構造物。   The overtopping attenuation structure according to claim 3, wherein the plurality of overtopping attenuation plates are installed in parallel. 前記複数の越波減衰板は、それぞれ他の勾配を有するように設置されることを特徴とする請求項3に記載の越波減衰用構造物。   4. The overtopping attenuation structure according to claim 3, wherein each of the plurality of overtopping attenuation plates is installed to have another gradient. 5. 前記複数の越波減衰板は、下層から上層に行くほど越波減衰板の勾配が大きくなるように設置されることを特徴とする請求項5に記載の越波減衰用構造物。   6. The overtopping attenuation structure according to claim 5, wherein the plurality of overtopping attenuation plates are installed such that the gradient of the overtopping attenuation plate increases from the lower layer to the upper layer. 前記複数の支持柱は長さ調節が可能であることを特徴とする請求項3に記載の越波減衰用構造物。   4. The overtopping attenuation structure according to claim 3, wherein the length of the plurality of support columns is adjustable. 波浪エネルギを測定するエネルギ測定装置と、前記エネルギ測定装置によって測定された値に基づいて前記複数の支持柱の長さを制御し、前記越波減衰板の角度を調節できる長さ制御装置をさらに含むことを特徴とする請求項7に記載の越波減衰用構造物。   An energy measuring device for measuring wave energy; and a length control device for controlling the length of the plurality of support columns based on a value measured by the energy measuring device and adjusting an angle of the wave overtopping attenuation plate. The structure for overtopping attenuation according to claim 7. 前記複数の越波減衰板のうち少なくとも一つ以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有することによって、前記越波減衰板のあいだの空間を通過する海水を防波堤の内側下方に誘導する越波誘導板をさらに含むことを特徴とする請求項1ないし請求項8のうちいずれか一項に記載の越波減衰用構造物。   Seawater passing through the space between the overtopping attenuation plates is connected to one end of at least one of the overtopping attenuation plates so as to be directed downward, and has a gradient larger than the gradient of the overtopping attenuation plates. 9. The overtopping attenuation structure according to any one of claims 1 to 8, further comprising an overtopping guide plate that guides the bottom of the breakwater to the inside and below the breakwater. 前記越波誘導板の終端に下方に向かうように垂直設置される補助誘導板をさらに含むことを特徴とする請求項9に記載の越波減衰用構造物。   The overtop attenuation structure according to claim 9, further comprising an auxiliary guide plate that is vertically installed at a terminal end of the overtop guide plate. 海底に設置される基礎地盤と、
前記基礎地盤の上に設置される防波堤壁と、
前記防波堤壁の上面に設置される請求項1ないし請求項8のうちいずれか一項の越波減衰用構造物を含む防波堤構造物。
The foundation ground installed on the sea floor;
A breakwater wall installed on the foundation ground;
A breakwater structure including the overtopping attenuation structure according to any one of claims 1 to 8, which is installed on an upper surface of the breakwater wall.
前記越波減衰用構造物は、前記複数の越波減衰板のうち少なくとも一つの以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有することによって、前記越波減衰板のあいだの空間を通過する海水を前記防波堤壁の内側下方に誘導する越波誘導板をさらに含むことを特徴とする請求項11に記載の防波堤構造物。   The overtopping attenuation structure is connected to at least one end of at least one of the overtopping attenuation plates so as to be directed downward, and has a larger gradient than the overtopping attenuation plate, thereby the overtopping attenuation plate. The breakwater structure according to claim 11, further comprising an overtopping guide plate for guiding seawater passing through the space between the breakwater wall and the inside of the breakwater wall. 前記防波堤壁は、前記基礎地盤上の外海に向かう側に複数の単位構造体を積層して形成される前方防波堤壁と、前記基礎地盤上の内海に向かう側に複数の前記単位構造体を積層して形成され、前記前方防波堤壁と所定の距離で離隔する後方防波堤壁を含むことを特徴とする請求項11に記載の防波堤構造物。   The breakwater wall includes a front breakwater wall formed by laminating a plurality of unit structures on the side facing the open sea on the foundation ground, and a plurality of unit structures laminated on the side facing the inland sea on the foundation ground. The breakwater structure according to claim 11, further comprising a rear breakwater wall formed at a predetermined distance from the front breakwater wall. 前記越波減衰用構造物は、前記複数の越波減衰板のうち少なくとも一つの以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有することによって、前記越波減衰板のあいだの空間を通過する海水を前記後方防波堤壁の内側下方に誘導するか、または前記前方防波堤壁と後方防波堤壁とのあいだの空間に誘導する越波誘導板をさらに含むことを特徴とする請求項13に記載の防波堤構造物。   The overtopping attenuation structure is connected to at least one end of at least one of the overtopping attenuation plates so as to be directed downward, and has a larger gradient than the overtopping attenuation plate, thereby the overtopping attenuation plate. And further including an overtop guide plate for guiding the seawater passing through the space between the front breakwater wall and the front breakwater wall to the space between the front breakwater wall and the rear breakwater wall. Item 14. A breakwater structure according to item 13. 外海側に隣接した防波堤の上側に設置され、越波した海水が通過できる空間が確保されるようにそれぞれ所定の間隔で離隔されて複数の層を成す複数の越波減衰板と、前記複数の越波減衰板が間隔を成して設置されるように前記越波減衰板を支持する多数の支持柱と、波浪エネルギを測定するエネルギ測定装置と、前記複数の支持柱の長さを制御し、前記越波減衰板の角度を調節できる長さ制御装置と、前記複数の越波減衰板のうち少なくとも一つの以上の一端に下方に向かうように連結され、前記越波減衰板の勾配よりさらに大きい勾配を有する越波誘導板を含む越波減衰用構造物を利用した越波減衰方法において、
(a)波浪エネルギの範囲を複数の段階に分類し、それぞれの段階に対応して前記越波減衰板の角度をマッチングして保存する段階と、
(b)波浪エネルギを測定する段階と、
(c)測定される前記波浪エネルギの値が前記(a)段階のそれぞれの段階のうちどの段階に該当するかを判断する段階と、
(d)前記複数の支持柱の長さを制御して前記越波減衰板の角度を前記(c)段階で判断する段階に対応するように調節し、越波した海水が前記防波堤の内側下方に誘導されるようにする段階を含む越波減衰方法。
A plurality of wave overtopping attenuation plates, which are installed on the upper side of the breakwater adjacent to the open sea side and are separated by a predetermined interval so as to secure a space through which overwater seawater can pass, and the plurality of wave overtopping attenuations A number of support columns that support the overtopping attenuation plate so that the plates are installed at an interval, an energy measuring device that measures wave energy, and a length of the plurality of support columns is controlled to control the overtopping attenuation. A length control device capable of adjusting the angle of the plate, and an overtopping induction plate connected downward to at least one of the plurality of overtopping attenuation plates and having a gradient greater than the gradient of the overtopping attenuation plate In the overtopping attenuation method using the overtopping attenuation structure including
(A) classifying the range of wave energy into a plurality of stages, and matching and storing the angle of the overtopping attenuation plate corresponding to each stage;
(B) measuring wave energy;
(C) determining which of the stages of the step (a) the value of the wave energy to be measured corresponds to;
(D) The length of the plurality of support columns is controlled to adjust the angle of the wave overtopping attenuation plate so as to correspond to the step of determining in the step (c), and the overwater seawater is guided downward inside the breakwater. A method of overtopping attenuation, including a step to allow
前記(d)段階において、前記(b)段階で測定される波浪エネルギの値が大きいほど前記複数の越波減衰板それぞれの勾配が小さくなるように前記支持柱の長さを制御することを特徴とする請求項15に記載の越波減衰方法。   In the step (d), the length of the support column is controlled so that the gradient of each of the plurality of overtopping attenuation plates decreases as the value of the wave energy measured in the step (b) increases. The wave overtopping attenuation method according to claim 15.
JP2016228056A 2015-11-27 2016-11-24 Overtopping attenuation structure, breakwater structure having the same, and overtopping attenuation method using the same Expired - Fee Related JP6297122B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150166956A KR101649833B1 (en) 2015-11-27 2015-11-27 Breakwater Structure, Energy Attenuation Apparatus for Wave Overtopping and Method thereof
KR10-2015-0166956 2015-11-27

Publications (2)

Publication Number Publication Date
JP2017096091A true JP2017096091A (en) 2017-06-01
JP6297122B2 JP6297122B2 (en) 2018-03-20

Family

ID=56875188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228056A Expired - Fee Related JP6297122B2 (en) 2015-11-27 2016-11-24 Overtopping attenuation structure, breakwater structure having the same, and overtopping attenuation method using the same

Country Status (3)

Country Link
JP (1) JP6297122B2 (en)
KR (1) KR101649833B1 (en)
TW (1) TWI667394B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115324097A (en) * 2022-07-25 2022-11-11 中国港湾工程有限责任公司 Island type breakwater navigation light pile foundation and maintenance channel combined structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112627216A (en) * 2019-09-24 2021-04-09 山东港通工程管理咨询有限公司 Flat-plate permeable breakwater structure supported by box-type foundation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915736U (en) * 1972-05-09 1974-02-09
JPS51138944U (en) * 1975-05-01 1976-11-09
JPS52114533U (en) * 1976-02-27 1977-08-31
JPS6421112A (en) * 1987-07-15 1989-01-24 Sumitomo Metal Ind Permeable shell breakwater
JPH01136529U (en) * 1988-02-23 1989-09-19
JPH06257119A (en) * 1993-03-05 1994-09-13 Kajima Corp Water-breaking device
WO2007142453A1 (en) * 2006-06-05 2007-12-13 Hyuck-Min Kweon Seashore structure for prevention of coastal corrosion and construction method
JP2015113656A (en) * 2013-12-13 2015-06-22 涌太郎 浅井 Breakwater block, structure of breakwater block and construction method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509611B1 (en) 2002-07-13 2005-08-22 원 회 양 Breakwater capconcrete structure for overflow waves interception
TWI290597B (en) * 2005-05-13 2007-12-01 Biau-Chin Li Structure of trussing type embankment and wall body
KR101073750B1 (en) * 2010-07-02 2011-10-13 김석문 Unit of breakwater and breakwater structure and installing method thereof
JP2012197553A (en) * 2011-03-18 2012-10-18 Taisei Corp Breakwater unit and floating type breakwater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915736U (en) * 1972-05-09 1974-02-09
JPS51138944U (en) * 1975-05-01 1976-11-09
JPS52114533U (en) * 1976-02-27 1977-08-31
JPS6421112A (en) * 1987-07-15 1989-01-24 Sumitomo Metal Ind Permeable shell breakwater
JPH01136529U (en) * 1988-02-23 1989-09-19
JPH06257119A (en) * 1993-03-05 1994-09-13 Kajima Corp Water-breaking device
WO2007142453A1 (en) * 2006-06-05 2007-12-13 Hyuck-Min Kweon Seashore structure for prevention of coastal corrosion and construction method
JP2015113656A (en) * 2013-12-13 2015-06-22 涌太郎 浅井 Breakwater block, structure of breakwater block and construction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115324097A (en) * 2022-07-25 2022-11-11 中国港湾工程有限责任公司 Island type breakwater navigation light pile foundation and maintenance channel combined structure

Also Published As

Publication number Publication date
JP6297122B2 (en) 2018-03-20
TWI667394B (en) 2019-08-01
TW201730409A (en) 2017-09-01
KR101649833B1 (en) 2016-08-19

Similar Documents

Publication Publication Date Title
JP6297122B2 (en) Overtopping attenuation structure, breakwater structure having the same, and overtopping attenuation method using the same
CN1985055B (en) Sound absorption block and method of constructing the same
CN105683461B (en) For managing and controlling the method and apparatus of the breaker in wave pool
JP5856248B2 (en) Breakwater structure
AU2018406438B2 (en) Wave capturing and attenuating structure
JP2007262890A (en) Structure for controlling permeable sea area and construction method thereof
KR101378203B1 (en) Breakwater structure and construction method thereof
JP6007388B2 (en) Fluid force reducing structure and method of constructing fluid force reducing structure
US9447554B1 (en) Method of dissipating water wave energy
JP6534823B2 (en) Tsunami barrier
JP5267440B2 (en) Legged transmission type wave-absorbing structure
JP6286193B2 (en) Revetment structure
JP6881916B2 (en) How to install the structure
JP6894607B2 (en) Wave-dissipating block
KR102413071B1 (en) Wave dissipation block structure and construction method thereof
KR20170092098A (en) Breakwater Structure, Energy Attenuation Apparatus for Wave Overtopping and Breakwater Structure Constructing Method
KR102070837B1 (en) Floating structure
KR101134800B1 (en) Breakwater structure capable of controlling amount of flowing water, control apparatus and method therefor
KR101925221B1 (en) Transparent flood wall with function for preventing collision of birds and construction method thereof
KR101855856B1 (en) Breaking Wave Block and Construction Method of Breaking Wave Block
JP4826404B2 (en) Rectifier
JP6508945B2 (en) Damping structure and supporting structure of building
KR101157503B1 (en) High-weighted single-layer armouring block and the manufacturing method
KR101460949B1 (en) Gabion Unit and the Construction Method thereof
JP4519591B2 (en) Wave-dissipating block

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6297122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees