JP2017095765A - Aluminum alloy sheet for can top - Google Patents

Aluminum alloy sheet for can top Download PDF

Info

Publication number
JP2017095765A
JP2017095765A JP2015229521A JP2015229521A JP2017095765A JP 2017095765 A JP2017095765 A JP 2017095765A JP 2015229521 A JP2015229521 A JP 2015229521A JP 2015229521 A JP2015229521 A JP 2015229521A JP 2017095765 A JP2017095765 A JP 2017095765A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
plate
mass
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015229521A
Other languages
Japanese (ja)
Inventor
友己 田中
Tomomi Tanaka
友己 田中
有賀 康博
Yasuhiro Ariga
康博 有賀
正浩 山口
Masahiro Yamaguchi
正浩 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015229521A priority Critical patent/JP2017095765A/en
Publication of JP2017095765A publication Critical patent/JP2017095765A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can top, simultaneously realizing high strength, flexure processability and can-opening properties.SOLUTION: A 5000-series aluminum alloy sheet of a specific composition suppresses a variation of intervals of neighboring shear deformed organizations, from among shear deformed organizations that can be observed as a belt-like organization extending in parallel with intervals in a rolling direction and in a substantially parallel direction as in figure 1, as a difference between a maximum value and a minimum value of an average interval between the shear deformed organizations in each observation visual field, so as to simultaneously realize high strength, flexure processability and can-opening properties.SELECTED DRAWING: Figure 1

Description

本発明は、缶蓋用アルミニウム合金板に関し、高強度、曲げ加工性、開缶性を兼備したイージーオープン缶蓋用アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for can lids, and relates to an aluminum alloy plate for easy open can lids having high strength, bending workability, and can openability.

現在、飲料、食品用途に汎用される包装容器の1つとして、底と側壁が一体構造の有底円筒状の胴部(缶胴、キャンボディ)と、この胴部の開口部に封止されて上面となる円板状の蓋部(缶蓋、キャンエンド)とからなる2ピースのオールアルミ缶が周知である。   At present, as one of the packaging containers widely used for beverages and foods, the bottom and side walls are sealed at the bottomed cylindrical body (can body, can body) and the opening of this body part. A two-piece all-aluminum can having a disk-shaped lid (can lid, can end) on the upper surface is well known.

このようなアルミ缶の材料として、各々に要求される強度、成形性などの違いから、缶胴にはAA乃至JIS3000系(Al−Mn系)のアルミニウム合金板、缶蓋にはAA乃至JIS5000系(Al−Mg系)のアルミニウム合金板などが使い分けられて、汎用されている。   As materials for such aluminum cans, due to differences in strength and formability required for each, the can body is made of AA to JIS3000 (Al-Mn) aluminum alloy plate, and the can lid is made of AA to JIS5000. (Al—Mg-based) aluminum alloy plates and the like are properly used.

このうち、缶蓋用5000系アルミニウム合金板に求められる重要な特性として、蓋加工に耐える成形性と、飲料充填後の缶の内圧に耐える耐圧強度、装着したタブによって正常かつ簡単に蓋が開けられるための開缶性などがあげられる。   Among these, the important characteristics required for a 5000 series aluminum alloy plate for can lids are: moldability that can withstand lid processing, pressure resistance that can withstand the internal pressure of a can after filling, and a tab that is normally and easily opened. Can be opened.

近年、缶の低コスト化の観点から、これら缶蓋、すなわち缶蓋用5000系アルミニウム合金板も、板厚を0.2mm程度に薄肉化することが求められている。このような薄肉化に対する課題としては、耐圧強度の低下、成形性の低下などが挙げられる。
このうち、耐圧強度の低下は、アルミニウム合金板の材料強度を高くすることで補うことができるが、このような高強度化に伴って、成形性が低下するという問題が生じる。このため、缶蓋用アルミニウム合金板を薄肉化するには、強度と成形性とを共に向上させることが必要である。
In recent years, from the viewpoint of cost reduction of cans, these can lids, that is, 5000 series aluminum alloy plates for can lids, are also required to have a thickness of about 0.2 mm. Examples of problems with such thinning include a decrease in pressure strength and a decrease in moldability.
Among these, the decrease in the pressure strength can be compensated by increasing the material strength of the aluminum alloy plate. However, with such an increase in strength, there arises a problem that the formability decreases. For this reason, in order to reduce the thickness of the aluminum alloy plate for can lids, it is necessary to improve both strength and formability.

このため、缶蓋用5000系アルミニウム合金板を薄肉化しても、材料強度を保ったまま成形性を向上させる技術として、従来から、合金元素の固溶量、金属間化合物、結晶粒径、サブグレインあるいは集合組織、析出物、せん断帯(剪断帯)などの組織制御などが種々行われてきた。   For this reason, as a technique for improving formability while maintaining material strength even if the thickness of the 5000 series aluminum alloy plate for can lids is reduced, conventionally, the solid solution amount of alloy elements, intermetallic compounds, crystal grain size, Various control of textures such as grains or textures, precipitates, shear bands (shear bands) has been performed.

例えば、特許文献1には、炭酸飲料用、ビール用等の缶蓋用として、Mg、Mn、Si、Cu、Fe、Tiからなる特定組成の5000系アルミニウム合金板の組織制御として、製品板の固溶Mn量や最大長さ3μm以上の金属間化合物数を制御するとともに、製品板の圧延方向と平行の断面を貫通するせん断帯(剪断帯)の面積率を1%以下に抑制することが提案されている。   For example, in Patent Document 1, as a structure of a 5000 series aluminum alloy plate having a specific composition made of Mg, Mn, Si, Cu, Fe, Ti, for can lids for carbonated drinks, beer, etc., While controlling the amount of solid solution Mn and the number of intermetallic compounds with a maximum length of 3 μm or more, the area ratio of the shear band (shear band) penetrating the cross-section parallel to the rolling direction of the product plate can be suppressed to 1% or less. Proposed.

特許文献1で言うせん断帯とは、板を圧延する際に、板幅方向に垂直な面を光学顕微鏡や、SEMやTEMで観察したとき、圧延方向に対して35°〜45°の角度を有して観察できる、板の一部の領域に変形が集中したもの(変形が局所化したもの)で、特許文献1では板厚を貫通したものをカウントしている。   The shear band referred to in Patent Document 1 refers to an angle of 35 ° to 45 ° with respect to the rolling direction when a surface perpendicular to the plate width direction is observed with an optical microscope, SEM, or TEM when rolling the plate. In the patent document 1, the number of deformations concentrated in a partial area of the plate that can be observed (those whose deformation has been localized) is counted.

特許文献1では、前記せん断帯について、冷間圧延で生じ、材料内部に幾何学的な配列を有して発達し、せん断帯内部の転位密度はマトリックス(均一変形領域)の転位密度よりも遥かに高く、変形方向によっては、せん断帯がすべり変形を阻害したり、材料内部に転位密度の粗密が生じ、強度異方性が顕著となるとしている。
このため、特許文献1では、このせん断帯の面積率を1%以下と規制して、最大せん断応力が働いてすべり変形が開始しても、せん断帯がすべり変形の妨害とはならないようにして、強度異方性を抑制している。そして、これによって、内圧によって蓋が膨れた場合でも局部的な応力集中が生じず、薄肉化した場合にでも変形の際の亀裂を発生し難くなるとしている。
In Patent Document 1, the shear band is generated by cold rolling and has a geometrical arrangement inside the material, and the dislocation density inside the shear band is much higher than the dislocation density of the matrix (uniform deformation region). Depending on the deformation direction, the shear band inhibits the slip deformation, or the density of dislocation density is generated inside the material, and the strength anisotropy becomes remarkable.
For this reason, in Patent Document 1, the area ratio of the shear band is regulated to 1% or less so that the shear band does not interfere with the slip deformation even if the maximum shear stress works and the slip deformation starts. The strength anisotropy is suppressed. As a result, local stress concentration does not occur even when the lid swells due to internal pressure, and even when the cover is thinned, cracks during deformation are unlikely to occur.

ちなみに、この特許文献1の前記せん断帯の観察法は、120℃で1週間熱処理し、せん断帯上にベータ相(AlMg)を優先析出させ、その析出したベータ相をエッチングすることによって、せん断帯を間接的に観察している。また、せん断帯の面積率測定は、製品板の圧延方向と平行の断面で400倍の倍率で光学顕微鏡観察することで、0.2mm中での面積率を求めている。 Incidentally, the method for observing the shear band of Patent Document 1 is to heat-treat at 120 ° C. for one week, preferentially precipitate a beta phase (Al 3 Mg 2 ) on the shear band, and etch the deposited beta phase. Indirect observation of shear bands. Moreover, the area ratio measurement of the shear band is calculating | requiring the area ratio in 0.2 mm < 2 > by observing with an optical microscope by the magnification of 400 times in the cross section parallel to the rolling direction of a product board.

特開2001−303164号公報JP 2001-303164 A

缶蓋用5000系アルミニウム合金板の成形性や耐圧性の要求は、前記した通り、薄肉化の中で、より高くなる一方である。   As described above, the requirements for formability and pressure resistance of the 5000 series aluminum alloy plate for can lids are becoming higher as the thickness is reduced.

このような薄肉化の中での厳しい成形性や耐圧性を総合的に評価する指標として、図4にて後述する押し曲げ法(ローラ曲げ法)による曲げ加工性の評価がある。
この押し曲げ法は、他の巻つけ法、Vブロック法などの曲げ試験方法よりも厳しく、この押し曲げ法により評価される曲げ加工性が向上すれば、缶蓋用5000系アルミニウム合金板の成形性が向上して薄肉化されても蓋加工に耐えて割れにくく、蓋加工による塗膜剥離などの塗膜欠陥が生じにくくなる。また、飲料充填後の内圧の変化による変形時にも亀裂が発生しにくくなり、缶に装着後の蓋としても耐圧性が増す。
As an index for comprehensively evaluating severe formability and pressure resistance during such thinning, there is evaluation of bending workability by a push bending method (roller bending method) described later with reference to FIG.
This push-bending method is stricter than other winding methods such as the winding method and the V-block method. If the bending workability evaluated by this push-bending method is improved, the 5000 series aluminum alloy plate for can lids is formed. Even if the thickness is improved and the thickness is reduced, it is resistant to cracking due to the lid processing, and coating film defects such as peeling of the coating film due to the lid processing are less likely to occur. In addition, cracks are less likely to occur during deformation due to changes in internal pressure after beverage filling, and pressure resistance increases as a lid after being attached to a can.

ただ、従来の缶蓋用5000系アルミニウム合金板には、リベット成形性などの個々の、あるいは個別の、特化した成形性の評価は良くても、前記押し曲げ法のような、成形性や耐圧性などの特性を総合的に評価する曲げ加工性が良いとは限らないという課題が未だある。
すなわち、このことは、従来の缶蓋用5000系アルミニウム合金板が、高い材料強度を有することを前提として、成形性や耐圧性などの特性を、必ずしも総合的に兼備できていないという現実を意味する。
However, the conventional 5000 series aluminum alloy plate for can lids has a good evaluation of individual or individual formability, such as rivet formability, as well as formability such as the push bending method. There is still a problem that bending workability for comprehensively evaluating characteristics such as pressure resistance is not always good.
That is, this means the reality that conventional 5000 series aluminum alloy plates for can lids do not necessarily have comprehensive properties such as formability and pressure resistance on the premise that they have high material strength. To do.

このような課題に対して、本発明は、高い材料強度を有するにも関わらず、前記押し曲げ法による曲げ加工性で代表される成形性や耐圧性に優れ、そして開缶性にも優れた(高強度、曲げ加工性、開缶性を兼備した)缶蓋用アルミニウム合金板を提供することを目的とする。   For such problems, the present invention is excellent in moldability and pressure resistance represented by the bending workability by the push bending method, and excellent in can openability, despite having high material strength. An object of the present invention is to provide an aluminum alloy plate for can lids (having high strength, bending workability, and can openability).

前記課題を解決するための本発明の、高強度、曲げ加工性、開缶性を兼備した缶蓋用アルミニウム合金板の要旨は、Mg:3.8〜5.5質量%、Fe:0.10〜0.50質量%、Si:0.05〜0.30質量%、Mn:0.01〜0.60質量%、Cu:0.01〜0.30質量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金板であって、この板の板厚中心における圧延面と平行な面を観察したとき、圧延方向と略平行方向に向けて互いに間隔をあけて並びながら、前記圧延方向と略直角方向に亘って延在する、帯状組織として観察されるせん断変形組織において、この板の板厚中心における圧延面と平行な面を5000倍のSEMで4視野観察し、各視野内で観察可能な互いに隣り合う前記せん断変形組織同士の全間隔を平均化して1視野当たりの平均間隔を各々算出した際の、前記4視野における各平均間隔のうちの最大値と最小値との差を300nm以下(但し、0nmを含まず)として、互いに隣り合う前記せん断変形組織同士の間隔のばらつきを抑制したことである。   The gist of the aluminum alloy plate for can lids having high strength, bending workability, and can openability of the present invention for solving the above problems is as follows: Mg: 3.8 to 5.5 mass%, Fe: 0.00. 10 to 0.50 mass%, Si: 0.05 to 0.30 mass%, Mn: 0.01 to 0.60 mass%, Cu: 0.01 to 0.30 mass%, the balance being Al And an aluminum alloy plate made of unavoidable impurities, and when observing a plane parallel to the rolling surface at the center of the thickness of the plate, the rolling is performed while being arranged at a distance from each other in a direction substantially parallel to the rolling direction. In a shear deformation structure observed as a strip structure extending in a direction substantially perpendicular to the direction, four planes of a plane parallel to the rolling surface at the center of the plate thickness of this plate are observed with a SEM of 5000 times. The shear deformation structures adjacent to each other can be observed with When the average interval per field of view was calculated by averaging all the intervals, the difference between the maximum value and the minimum value among the average intervals in the four fields of view was 300 nm or less (excluding 0 nm) In other words, the variation in the spacing between the adjacent shear deformation tissues is suppressed.

上記のように本発明で規定する板の組織と特性は、缶蓋用アルミニウム合金板として、冷延板に塗装および塗装焼付け処理を施した後のアルミニウム合金板、あるいは、この板を成形した缶蓋の組織と特性として規定している。また、前記冷延板に、塗装焼付け処理を模擬した、後述する特定条件での熱処理を施した後の板の組織と特性であっても良い。   As described above, the structure and characteristics of the plate defined in the present invention are as follows: an aluminum alloy plate for a can lid, an aluminum alloy plate after a cold-rolled plate is subjected to painting and baking treatment, or a can formed from this plate It is defined as the tissue and characteristics of the lid. Moreover, the structure and the characteristic of the board after performing the heat processing on the specific conditions mentioned later which simulated the coating baking process to the said cold-rolled board may be sufficient.

本発明は、缶蓋用アルミニウム合金板の組織として、この板の板厚中心における圧延面と平行な面において、圧延方向と略平行方向に向けて互いに間隔をあけて並んで、複数の結晶粒(粒界)をまたがっての前記圧延方向と略直角方向に亘って帯状に延在するせん断帯(剪断帯)組織と、ひとつの結晶粒内の局所的なせん断変形により生じた帯状に延在する組織とからなる、せん断変形組織(剪断変形組織)の間隔のばらつきを抑制して、曲げ加工性(成形性や耐圧性)を向上させる。   The present invention provides a structure of an aluminum alloy plate for a can lid, and a plurality of crystal grains arranged in a plane parallel to the rolling direction in a plane parallel to the rolling surface at the thickness center of the plate, spaced apart from each other. A shear band (shear band) structure extending in a band shape substantially perpendicular to the rolling direction across the grain boundary, and a band formed by local shear deformation in one crystal grain The bending processability (formability and pressure resistance) is improved by suppressing the variation in the interval between the shear deformation structures (shear deformation structures).

したがって、本発明は、従来のように、優れた成形性を得るために材料強度を低下させる必要が無く、板厚を0.2mm程度に薄肉化した場合でも耐圧強度に不足がなく、高強度、曲げ加工性、開缶性を兼備した缶蓋用アルミニウム合金板を提供できる。   Therefore, the present invention does not require the material strength to be reduced in order to obtain excellent moldability as in the prior art, and even when the plate thickness is reduced to about 0.2 mm, the pressure strength is not insufficient, and the high strength In addition, an aluminum alloy plate for can lids that has both bending workability and can openability can be provided.

本発明アルミニウム合金板の組織を模式的に示す平面図である。It is a top view which shows typically the structure | tissue of this invention aluminum alloy plate. 図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 図1の組織を示す面が、板厚中心において圧延面と平行に延在する面であることを示す斜視図である。FIG. 2 is a perspective view showing that the surface showing the structure of FIG. 1 is a surface extending in parallel with the rolling surface at the center of the plate thickness. 曲げ加工性の試験装置の概要を示す正面図である。It is a front view which shows the outline | summary of the testing apparatus of bending workability. 開缶試験に用いた缶蓋の平面図である。It is a top view of the can lid used for the can open test. 開缶試験に用いた缶蓋のスコア3の断面図である。It is sectional drawing of the score 3 of the can lid used for the can open test. 開缶時の荷重を測定する開缶荷重測定機の概要図である。It is a schematic diagram of the can opening load measuring machine which measures the load at the time of can opening.

本発明に係る缶蓋用アルミニウム合金板を実施するための形態について、以下に説明する。   The form for implementing the aluminum alloy plate for can lids which concerns on this invention is demonstrated below.

アルミニウム合金組成
缶蓋用アルミニウム合金板は、前記した通り、缶蓋に求められる特性として、蓋加工に耐える成形性、飲料充填後の内圧に耐える耐圧強度、正常かつ簡単に開けられるための開缶性を満たす必要がある。
Aluminum alloy composition As described above, the aluminum alloy plate for can lids has the characteristics required for can lids, such as formability to withstand lid processing, pressure resistance to withstand internal pressure after beverage filling, and can opening for normal and easy opening It is necessary to satisfy sex.

したがって、本発明に係る缶蓋用アルミニウム合金板の合金組成も、これらの要求特性を合金組成面から満たすために、Mg:3.8〜5.5質量%、Fe:0.10〜0.50質量%、Si:0.05〜0.30質量%、Mn:0.01〜0.60質量%、Cu:0.01〜0.30質量%を含有し、残部がAl及び不可避的不純物からなるものとする。
なお、各元素の含有量の%表示は全て質量%の意味である。以下に、含有する各元素の意義につき、順に説明する。
Therefore, the alloy composition of the aluminum alloy plate for can lids according to the present invention also satisfies these required characteristics from the aspect of the alloy composition, Mg: 3.8 to 5.5% by mass, Fe: 0.10 to 0.00. 50% by mass, Si: 0.05 to 0.30% by mass, Mn: 0.01 to 0.60% by mass, Cu: 0.01 to 0.30% by mass, the balance being Al and inevitable impurities It shall consist of
In addition,% display of content of each element means the mass% altogether. Hereinafter, the significance of each element contained will be described in order.

Mg:3.8〜5.5質量%
Mgは、アルミニウム合金板の強度を向上させる効果がある。Mgの含有量が3.8質量%未満の場合、アルミニウム合金板の強度が不十分であり、缶蓋に成形したときの耐圧強度が不足する。一方、Mgの含有量が5.5質量%を超える場合、アルミニウム合金板の強度が過剰となって、曲げ加工性が低下する。従って、Mgの含有量は3.8〜5.5質量%とする。
Mg: 3.8 to 5.5% by mass
Mg has the effect of improving the strength of the aluminum alloy plate. When the content of Mg is less than 3.8% by mass, the strength of the aluminum alloy plate is insufficient, and the pressure strength when formed into a can lid is insufficient. On the other hand, when the Mg content exceeds 5.5% by mass, the strength of the aluminum alloy plate becomes excessive, and the bending workability is lowered. Therefore, the Mg content is set to 3.8 to 5.5% by mass.

Fe:0.10〜0.50質量%
Feは、アルミニウム合金板中にAl−Fe(−Mn)系、Al−Fe(−Mn)−Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Feの含有量が0.10質量%未満の場合、スコア部の引裂き性が向上せず、開缶時にスコア脱線(開缶時にスコア部以外に亀裂が伝播すること)や開缶力の増大によるタブ折れといった開缶不良が生じ易くなる。一方、Feの含有量が0.50質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物の数密度や体積率が大きくなり、曲げ加工性が低下する。従って、Feの含有量は0.10〜0.50質量%とする。
Fe: 0.10 to 0.50 mass%
Fe forms Al-Fe (-Mn) -based and Al-Fe (-Mn) -Si-based intermetallic compounds in the aluminum alloy plate, and improves the tearability of the score part when it is molded into a can lid. There is an effect of improving canability. If the Fe content is less than 0.10% by mass, the tearability of the score part does not improve, and score derailment occurs when the can is opened (the crack propagates to other than the score part when the can is opened) and the opening force increases. Opening defects such as tab breakage are likely to occur. On the other hand, when the Fe content exceeds 0.50% by mass, the number density and volume ratio of the intermetallic compound produced during casting or hot rolling in the aluminum alloy plate increase, and the bending workability decreases. Therefore, the Fe content is set to 0.10 to 0.50 mass%.

Si:0.05〜0.30質量%
Siは、アルミニウム合金板中にMg−Si系、Al−Fe(−Mn)−Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Siの含有量が0.05質量%未満の場合、Feと同様に開缶性が向上しない。また、アルミニウム合金板の原材料に使用するアルミニウム地金の必要純度が高くなるため、コストが増大する。一方、Siの含有量が0.30質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物が多くなり、曲げ加工性が低下する。従って、Siの含有量は0.05〜0.30質量%とする。
Si: 0.05-0.30 mass%
Si forms Mg-Si-based and Al-Fe (-Mn) -Si-based intermetallic compounds in an aluminum alloy plate, improves the tearability of the score part when molded into a can lid, and improves can openability There is an effect to make. When the Si content is less than 0.05% by mass, the can opening property is not improved as in the case of Fe. Moreover, since the required purity of the aluminum ingot used for the raw material of an aluminum alloy plate becomes high, cost increases. On the other hand, when the Si content exceeds 0.30% by mass, an intermetallic compound generated during casting or hot rolling in the aluminum alloy plate increases, and bending workability decreases. Therefore, the Si content is 0.05 to 0.30 mass%.

Mn:0.01〜0.60質量%
Mnは、アルミニウム合金板の強度を向上させる効果があるとともに、アルミニウム合金板中にAl−Fe−Mn系、Al−Fe−Mn−Si系金属間化合物を形成させ、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Mnの含有量が0.01質量%未満の場合、アルミニウム合金板の強度向上効果や缶蓋に成形したときの開缶性向上効果が得られない。一方、Mnの含有量が0.60質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物が多くなり、曲げ加工性が低下する。従って、Mnの含有量は0.01〜0.60質量%とする。
Mn: 0.01-0.60 mass%
Mn has the effect of improving the strength of the aluminum alloy sheet, and when Al-Fe-Mn and Al-Fe-Mn-Si intermetallic compounds are formed in the aluminum alloy sheet and formed into a can lid. There is an effect of improving the tearability of the score part and improving the can openability. When the content of Mn is less than 0.01% by mass, the effect of improving the strength of the aluminum alloy plate or the effect of improving the openability when formed into a can lid cannot be obtained. On the other hand, when the content of Mn exceeds 0.60% by mass, an intermetallic compound generated at the time of casting or hot rolling in the aluminum alloy plate increases, and bending workability decreases. Therefore, the Mn content is set to 0.01 to 0.60 mass%.

Cu:0.01〜0.30質量%
Cuは、アルミニウム合金板の強度を向上させる効果がある。また、固溶させることにより、加工硬化特性が向上する。Cuの含有量が0.01質量%末満の場合、母相への固溶量が少なく、強度が低下する。一方、Cuの含有量が0.30質量%を超える場合、アルミニウム合金板の強度が過剰となり、曲げ加工性が低下する。従って、Cuの含有量は0.01〜0.30質量%とする。
Cu: 0.01-0.30 mass%
Cu has the effect of improving the strength of the aluminum alloy plate. Moreover, work hardening characteristics improve by making it dissolve. When the Cu content is less than 0.01% by mass, the solid solution amount is small and the strength is lowered. On the other hand, when the Cu content exceeds 0.30% by mass, the strength of the aluminum alloy plate becomes excessive, and the bending workability decreases. Therefore, the Cu content is set to 0.01 to 0.30 mass%.

不可避的不純物
本発明に係るアルミニウム合金は、前記必須成分以外には、残部Alと不可避的不純物とからなる。不可避的不純物は、Crが0.3質量%以下、Znが0.3質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下、その他の元素が各々0.05質量%以下の範囲内で許容される。不可避的不純物の含有量がこの範囲内であれば、本発明に係るアルミニウム合金板の特性に影響しない。
Inevitable Impurities The aluminum alloy according to the present invention comprises the balance Al and inevitable impurities in addition to the essential components. Inevitable impurities are Cr 0.3 mass% or less, Zn 0.3 mass% or less, Ti 0.1 mass% or less, Zr 0.1 mass% or less, B 0.1 mass% or less, Other elements are allowed within a range of 0.05% by mass or less. If the content of inevitable impurities is within this range, the characteristics of the aluminum alloy plate according to the present invention are not affected.

せん断変形組織
本発明で規定するせん断変形組織について、実際のSEMによる組織写真は目視では複雑な模様となって分りにくいので、模式的に簡略化して図1に示す。
この図1は、図3に斜視図で示す、平面視での板の板厚中心において圧延面と平行な、斜線を付した面、すなわちSEM観察面における組織である。
せん断変形組織は、図1の、板の板厚中心における圧延面と平行な面におけるSEM観察面では、圧延方向と略平行方向に向けて互いに間隔をあけて並びながら、前記圧延方向と略直角方向に亘って延在する、帯状あるいは筋状の模様として観察される。
このせん断変形組織は、板を冷間圧延する際に、板の一部の領域に変形が集中して(変形が局所化して)形成される局所変形部であり、冷間圧延率が大きくなると数が増加し、間隔が狭くなる。
Shear Deformation Structure As for the shear deformation structure defined in the present invention, an actual SEM structure photograph is a complicated pattern that is difficult to understand by visual observation, and is schematically shown in FIG.
FIG. 1 shows a structure on a hatched surface parallel to the rolling surface at the thickness center of the plate in plan view, that is, a SEM observation surface, shown in a perspective view in FIG.
In the SEM observation surface in the plane parallel to the rolling surface at the thickness center of the plate in FIG. 1, the shear deformation structure is arranged substantially at right angles to the rolling direction while being arranged at intervals from each other in the direction substantially parallel to the rolling direction. Observed as a strip or streak pattern extending across the direction.
This shear deformation structure is a locally deformed portion formed by concentrating deformation in a partial region of the plate when the plate is cold-rolled (deformation is localized), and when the cold rolling rate increases The number increases and the spacing decreases.

本発明で規定するせん断変形組織は、せん断変形により生じた組織を意味し、複数の結晶粒にわたるものと、一つの結晶粒内で生じているものを、あわせて意味する。
すなわち、段落0018で記載した通り、本発明で規定するせん断変形組織は、板の板厚中心における圧延面と平行な面において、圧延方向と略平行方向に向けて互いに間隔をあけて並んで、複数の結晶粒(粒界)をまたがっての前記圧延方向と略直角方向に亘って帯状に延在するせん断帯(剪断帯)組織と、ひとつの結晶粒内の局所的なせん断変形により生じた帯状に延在する組織とからなる。
The shear deformation structure defined in the present invention means a structure generated by shear deformation, and includes both a structure extending over a plurality of crystal grains and a structure generated within one crystal grain.
That is, as described in paragraph 0018, the shear deformation structure defined in the present invention is arranged in a plane parallel to the rolling surface at the center of the plate thickness of the plate, spaced apart from each other in a direction substantially parallel to the rolling direction, It was generated by a shear band (shear band) structure extending in a band shape over a direction substantially perpendicular to the rolling direction across a plurality of crystal grains (grain boundaries) and local shear deformation within one crystal grain. It consists of a tissue extending in a band shape.

これらせん断変形組織は、缶蓋用アルミニウム合金板の曲げ加工性に大きく影響し、特に、せん断変形組織同士の間隔のばらつきが、缶蓋用アルミニウム合金板の曲げ加工性に大きく影響する。
ここで、せん断変形組織の間隔も、勿論、缶蓋用アルミニウム合金板の曲げ加工性には大きく影響する。
しかし、缶蓋用アルミニウム合金板の、合金組成も含めた通常の製造条件、通常の圧延条件の範囲であれば、一定の範囲に収まる。そして、この一定の範囲に収まった中では、曲げ加工性への影響は小さく、本発明では特に制御対象としたり、規定したりはしない。
These shear deformation structures greatly influence the bending workability of the aluminum alloy plate for can lids. In particular, the variation in the spacing between the shear deformation structures greatly affects the bending workability of the aluminum alloy plate for can lids.
Here, the interval between the shear deformation structures also has a great influence on the bending workability of the aluminum alloy plate for can lid.
However, the aluminum alloy plate for can lids falls within a certain range as long as it is within the range of normal production conditions including the alloy composition and normal rolling conditions. And, when it falls within this certain range, the influence on bending workability is small, and in the present invention, it is not particularly controlled or specified.

せん断変形組織同士の間隔のばらつき
これに対して、せん断変形組織同士の間隔のばらつきの方は、缶蓋用アルミニウム合金板の通常の成分と製造条件あるいは通常の圧延条件の範囲で大きく変動し、しかも、曲げ変形時の割れやしわの原因となり、缶蓋用アルミニウム合金板の曲げ加工性に大きく影響する。
したがって、本発明では、曲げ加工性向上の効果的な制御手段として、互いに隣り合う前記せん断変形組織同士の、圧延方向と略平行方向における間隔のばらつきを選択する。
すなわち、前記した合金組成とした上で、曲げ加工性を向上させるために、この缶蓋用アルミニウム合金板の組織として、前記せん断変形組織同士の間隔のばらつきを抑制する。
On the other hand, the variation in the spacing between the shear deformation structures varies greatly in the range of the normal components and production conditions or normal rolling conditions of the aluminum alloy plate for can lids, Moreover, it causes cracks and wrinkles during bending deformation, and greatly affects the bending workability of the aluminum alloy plate for can lids.
Therefore, in the present invention, as an effective control means for improving the bending workability, the variation in the interval between the shear deformation structures adjacent to each other in the direction substantially parallel to the rolling direction is selected.
That is, in order to improve the bending workability with the above-described alloy composition, as the structure of the aluminum alloy plate for can lids, the variation in the interval between the shear deformation structures is suppressed.

板のせん断変形組織の間隔のばらつきが大きいと、間隔が狭い箇所に変形が集中し、曲げ変形時に割れやしわが発生する。そこで、本発明は、せん断変形組織の間隔のばらつきを小さくすることにより、曲げ加工性を向上させる。
具体的には、平面視でこの板の板厚中心における圧延面と平行な面を、5000倍のSEMで4視野(4箇所)観察した際の、各視野内(1視野内)で観察可能な、前記互いに隣り合うせん断変形組織同士の全間隔を平均化して1視野当たりの平均間隔とする。
その上で、互いに隣り合う前記せん断変形組織同士の、板の圧延方向と略平行方向における間隔のばらつきを、前記4視野における前記各平均間隔のうちの最大値と最小値との差として、300nm以下(但し、0nmを含まず)に抑制する。
When the variation in the interval of the shear deformation structure of the plate is large, the deformation concentrates in a portion where the interval is narrow, and cracks and wrinkles occur during bending deformation. Therefore, the present invention improves the bending workability by reducing the variation in the interval between the shear deformation structures.
Specifically, in plane view, a plane parallel to the rolling surface at the thickness center of this plate can be observed in each field of view (within 1 field) when observing 4 fields (4 locations) with a 5000 times SEM. The total interval between the shear deformation structures adjacent to each other is averaged to obtain an average interval per field of view.
In addition, the variation in the spacing between the shear deformation structures adjacent to each other in the direction substantially parallel to the rolling direction of the plate is defined as the difference between the maximum value and the minimum value of the average intervals in the four fields of view as 300 nm. Suppressed below (however, not including 0 nm).

この互いに隣り合うせん断変形組織同士の、板の圧延方向と略平行方向における間隔のばらつきは、製造限界から実際問題として0nmとはならないが、小さいほど、曲げ加工性の向上効果が高く、好ましくは200nm以下、より好ましくは100nm以下とする。
前記平均間隔のうちの最大値と最小値との差が300nmを超えた場合、板のせん断変形組織の間隔のばらつきが大き過ぎ、間隔が狭い箇所に変形が集中し、曲げ変形時に割れやしわが発生する。このため、曲げ加工性が著しく低下する。
The variation in the spacing between the adjacent shear deformation structures in the direction substantially parallel to the rolling direction of the plate does not actually become 0 nm from the manufacturing limit, but the smaller the smaller, the higher the bending workability improvement effect. 200 nm or less, more preferably 100 nm or less.
When the difference between the maximum value and the minimum value of the average interval exceeds 300 nm, the variation in the interval of the shear deformation structure of the plate is too large, and the deformation concentrates in the narrow interval, and cracking occurs during bending deformation. My self is generated. For this reason, bending workability falls remarkably.

せん断変形組織同士の間隔の測定
前記せん断変形組織同士の間隔を、図1と同じ模式図である図2に部分的に拡大して示す。
この図2のように、前記せん断変形組織同士の間隔は、四角印で示す、色や明るさが異なる、隣り合う境界同士(コントラスト同士)の間隔として測定できる。
本発明では、図3に示す、平面視での板の板厚中心において、圧延面(圧延表面)と平行な、斜線を付した面を組織観察面(測定面)として、5000倍のSEMで観察した際に、このSEMの視野内で観察可能な、互いに隣り合うせん断組織帯同士の間隔を全て測定して平均化し、1視野当たりのせん断変形組織同士の平均間隔とする。
そして、前記SEMで4視野として、任意の間隔を設けた板の板幅方向中心部4箇所を観察した際の、これら4つの各視野における各平均間隔(1視野当たりの平均間隔)のうちで、最大値となる平均間隔と、最小値となる平均間隔との差を、せん断変形組織の間隔のばらつきとする。
Measurement of Spacing Between Shear Deformed Tissues The spacing between the shear deformable tissues is partially enlarged and shown in FIG. 2, which is the same schematic diagram as FIG.
As shown in FIG. 2, the interval between the shear-deformed tissues can be measured as an interval between adjacent boundaries (contrasts) having different colors and brightness indicated by square marks.
In the present invention, at the center of the thickness of the plate in plan view shown in FIG. 3, a hatched surface parallel to the rolling surface (rolling surface) is used as a structure observation surface (measurement surface) with a 5000 times SEM. When observed, all the intervals between adjacent shearing tissue bands that can be observed within the field of view of this SEM are measured and averaged to obtain the average interval between shearing deformed tissues per field of view.
And among the four average fields (average distance per field) when observing the four central portions in the plate width direction of the plate having arbitrary distances as the four fields by the SEM, The difference between the average interval that is the maximum value and the average interval that is the minimum value is the variation in the interval between the shear deformation structures.

これによって、本発明は、従来は兼備させることが困難であった、曲げ加工性と高強度化とを両立させることができる。すなわち、缶蓋用アルミニウム合金板の特性として、冷間圧延後に焼付塗装処理された後の缶蓋用アルミニウム合金板の0.2%耐力と、この板の曲げ加工性とを、共に高いレベルとすることができる。
より具体的には、後述する実施例の通り、0.2%耐力が300MPa以上であっても、高い曲げ加工性を有し、高強度、高成形性とすることができる。
As a result, the present invention can achieve both bending workability and high strength, which has been difficult to achieve in the past. That is, as a characteristic of the aluminum alloy plate for can lids, the 0.2% proof stress of the aluminum alloy plate for can lids after being baked and coated after cold rolling and the bending workability of this plate are both high. can do.
More specifically, as in the examples described later, even when the 0.2% proof stress is 300 MPa or more, it has high bending workability and can have high strength and high formability.

曲げ加工試験
缶蓋用アルミニウム合金板の曲げ加工性の評価指標として、また、薄肉化の中での厳しい成形性や耐圧性を総合的に評価する評価指標として、図4にて後述する押し曲げ法(ローラ曲げ法)がある。この押し曲げ法は、板状試験片を、間隔をあけた二つの支持用回転ロール上に載置して、板の中央部に上方より押し金具で荷重を加えて下方に曲げ、鋭角のV字状に曲げ加工する。
Bending test As an evaluation index for bending workability of aluminum alloy plates for can lids, and as an evaluation index for comprehensive evaluation of severe formability and pressure resistance during thinning, push bending described later in FIG. Method (roller bending method). In this push-bending method, a plate-shaped test piece is placed on two supporting rotating rolls spaced apart, and a load is applied from above to the center of the plate with a pressing metal, and the plate is bent downward. Bend into a letter shape.

この押し曲げ法は、曲げ加工試験の中でも厳しい試験方法であり、この押し曲げ法により評価される曲げ加工性が向上すれば、缶蓋用5000系アルミニウム合金板の成形性が向上して薄肉化されても蓋加工に耐えて割れにくく、蓋加工による塗膜剥離などの塗膜欠陥が生じにくくなる。
また、飲料充填後の内圧の変化による変形時にも亀裂が発生しにくくなり、缶に装着後の蓋としても耐圧性が増す。
すなわち、この押し曲げ法によれば、従来の缶蓋用5000系アルミニウム合金板が、高い材料強度を有することを前提として、成形性や耐圧性などの特性を総合的に兼備できているか否かを評価することができる。
言い換えると、リベット成形性などの個々の、あるいは個別の、特化した成形性の評価は良くても、この押し曲げ法による曲げ加工性が優れていないと、缶蓋用5000系アルミニウム合金板として、成形性や耐圧性などの特性を兼備できているとは限らないということを意味する。
This push-bending method is a severe test method among bending work tests. If the bending workability evaluated by this push-bending process is improved, the formability of a 5000 series aluminum alloy plate for can lids is improved and the wall thickness is reduced. Even if it is done, it resists lid processing and is difficult to break, and coating film defects such as coating film peeling due to lid processing are less likely to occur.
In addition, cracks are less likely to occur during deformation due to changes in internal pressure after beverage filling, and pressure resistance increases as a lid after being attached to a can.
That is, according to this push-bending method, whether the conventional 5000 series aluminum alloy plate for can lids has comprehensive properties such as formability and pressure resistance on the premise of having high material strength. Can be evaluated.
In other words, even if individual or individual evaluation of specialized formability such as rivet formability is good, if the bending workability by this push bending method is not excellent, as a 5000 series aluminum alloy plate for can lids, This means that it does not always have characteristics such as moldability and pressure resistance.

以上説明した、本発明で規定する板の組織そして特性は、前記した通り、缶蓋用アルミニウム合金板として、冷延板(冷延後の板)に塗装および塗装焼付け処理を施した後のアルミニウム合金板(プレコート板)の組織と特性か、この板を成形した缶蓋の組織と特性である。また、このような塗装や塗装焼付け処理を施さずとも、あるいは缶蓋に成形せずとも、冷延板に、塗装焼付け処理を模擬した、後述する特定条件での熱処理を施した後の、板の組織と特性であっても良い。これらの組織と特性とは、前記塗装焼付け処理と前記熱処理との条件が同じであれば、同じか、あるいは僅差により同じと見なすことができる組織と特性となる。   As described above, the structure and characteristics of the plate defined in the present invention described above are as follows. The aluminum after the cold-rolled plate (the plate after cold-rolling) is coated and baked as an aluminum alloy plate for a can lid It is the structure and characteristics of an alloy plate (pre-coated plate) or the structure and characteristics of a can lid formed with this plate. In addition, the plate after the heat treatment under the specific conditions described later was performed on the cold-rolled plate, which was not subjected to such painting or paint baking treatment, or formed into a can lid, simulating the paint baking treatment. The organization and characteristics of These structures and characteristics are the same or the structures and characteristics that can be considered to be the same or slightly the same if the conditions of the paint baking process and the heat treatment are the same.

製造方法
次に、本発明における缶蓋用アルミニウム合金板の製造方法を説明する。
本発明のアルミニウム合金板の製造工程自体は、常法のように、前記組成のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、鋳塊を熱処理により均質化する均質化熱処理工程と、均質化した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を冷間圧延する1次冷間圧延工程と、1次冷間圧延板を中間焼鈍する中間焼鈍工程と、中間焼鈍した板を冷間圧延する2次冷間圧延工程によって製造される。以下、工程順に説明する。
Manufacturing method Next, the manufacturing method of the aluminum alloy plate for can lids in this invention is demonstrated.
The production process of the aluminum alloy sheet of the present invention itself includes, as usual, a casting process in which an aluminum alloy having the above composition is melted and cast to form an ingot, and a homogenization heat treatment process in which the ingot is homogenized by heat treatment. A hot rolling process in which a homogenized ingot is hot-rolled to form a hot-rolled sheet, a primary cold-rolling process in which the hot-rolled sheet is cold-rolled, and an intermediate annealing of the primary cold-rolled sheet The intermediate annealing process is performed, and the secondary cold rolling process is performed to cold-roll the intermediate annealed plate. Hereinafter, it demonstrates in order of a process.

まず、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により、前記組成のアルミニウム合金を鋳造する。ちなみに、連続(CC)鋳造は、金属間化合物のサイズが小さく、体積率も小さくなるので、開缶性が悪くなる(開缶荷重が高くなる)可能性があり、DC鋳造法を用いる方が好ましい。   First, an aluminum alloy is melted, and an aluminum alloy having the above composition is cast by a known semi-continuous casting method such as a DC casting method. Incidentally, in continuous (CC) casting, the size of the intermetallic compound is small and the volume ratio is also small, so there is a possibility that the openability of the can deteriorates (the open load increases), and it is better to use the DC casting method. preferable.

均質化熱処理
次に、鋳塊表層の不均一な組織となる領域を面削にて除去した後、均質化熱処理を施す。これによって、内部応力を除去し、鋳造時に偏析した溶質元素を均質化し、鋳造時に晶出した金属間化合物を拡散固溶させて、組織が均質化される。このために、均質化熱処理は、450℃以上の温度で1時間以上保持することが好ましい。
Homogenization heat treatment Next, after removing a region that becomes a non-uniform structure of the ingot surface layer by chamfering, a homogenization heat treatment is performed. As a result, internal stress is removed, solute elements segregated during casting are homogenized, and intermetallic compounds crystallized during casting are diffused and solidified to homogenize the structure. Therefore, the homogenization heat treatment is preferably maintained at a temperature of 450 ° C. or higher for 1 hour or longer.

均質化熱処理温度が450℃未満か保持時間が1時間未満の場合、前記均質化効果が低下して、機械的な特性や開缶性が低下する可能性がある。保持時間の上限は20時間であり、これを超えても、均質化効果に大差なく、生産性が低下する可能性がある。   When the homogenization heat treatment temperature is less than 450 ° C. or the holding time is less than 1 hour, the homogenization effect may be reduced, and the mechanical properties and can openability may be reduced. The upper limit of the holding time is 20 hours, and even if it exceeds this, there is no great difference in the homogenizing effect, and the productivity may decrease.

熱間圧延
この均質化熱処理後、鋳塊を冷却することなく続けて、あるいは所定の開始温度まで冷却して、まず熱間粗圧延し、さらに熱間仕上圧延により、所定の板厚のアルミニウム合金熱間圧延板とする。このとき、300℃以上で仕上げ熱間圧延を終了することが好ましい。
Hot rolling After this homogenization heat treatment, the ingot is continuously cooled or cooled to a predetermined starting temperature, first hot rough rolled, and then hot finish rolled to obtain an aluminum alloy having a predetermined thickness. A hot rolled sheet is used. At this time, it is preferable to finish the finish hot rolling at 300 ° C. or higher.

1次冷間圧延、中間焼鈍、2次冷間圧延
次いで、この熱間圧延板を、1次冷間圧延(1次冷延)、中間焼鈍、2次冷間圧延(2次冷延)して冷間圧延板(冷延板)とする。この冷延は、1次冷延、2次冷延ともに、必要な圧延回数の冷延を行う。
Primary cold rolling, intermediate annealing, secondary cold rolling Next, this hot rolled sheet is subjected to primary cold rolling (primary cold rolling), intermediate annealing, secondary cold rolling (secondary cold rolling). Cold-rolled sheet (cold rolled sheet). In this cold rolling, both the primary cold rolling and the secondary cold rolling are performed as many times as necessary.

ここで、圧延回数とは、板が圧延される回数である。   Here, the number of rolling is the number of times the plate is rolled.

1次冷間圧延
前記1次冷延の総圧延率(総圧下率)は、好ましくは60%以上、90%以下、より好ましくは、70%以上、85%以下とする。
総圧延率が60%未満の場合、圧延による蓄積歪みが不足し、次工程の中間焼鈍にて再結晶粒径が大きくなり、曲げ加工性が悪くなってしまう可能性がある。
一方、総圧延率が90%を超えると、圧延の回数が増加し、生産性が悪くなってしまう。
Primary cold rolling The total rolling reduction (total rolling reduction) of the primary cold rolling is preferably 60% or more and 90% or less, more preferably 70% or more and 85% or less.
When the total rolling rate is less than 60%, the accumulated strain due to rolling is insufficient, the recrystallized grain size becomes large in the intermediate annealing in the next process, and the bending workability may be deteriorated.
On the other hand, if the total rolling rate exceeds 90%, the number of rolling increases and productivity deteriorates.

また、1次冷延では、最終パスの巻取り温度を、好ましくは120℃以上、より好ましくは150℃以上とする。巻取り温度が低いと、残存する転位密度のばらつきが大きくなり、曲げ加工性が悪くなってしまう。   In the primary cold rolling, the winding temperature of the final pass is preferably 120 ° C. or higher, more preferably 150 ° C. or higher. When the coiling temperature is low, the variation in the dislocation density that remains is increased, and the bending workability is deteriorated.

中間焼鈍
この1次冷間圧延された冷間圧延板を、中間焼鈍して再結晶させるとともに、合金元素の固溶量を増加させることが好ましい。
この中間焼鈍は連続焼鈍工程(設備)で行い、板の最高到達温度400℃以上、550℃以下で、最高到達温度での保持時間が60s以下のできるだけ短い時間で行うことが好ましく、最高到達温度までの加熱速度及び前記最高到達温度からの冷却速度を、いずれも100℃/min以上とすることが好ましい。
加熱速度が100℃/min未満の場合や、最高到達温度が550℃を超える場合、保持時間が60sを超える場合、そして冷却速度が100℃/min未満の場合、それぞれ焼鈍工程終了後の再結晶粒が大きくなりやすい。このため、曲げ加工性が低下する可能性がある。また、中間焼鈍の最高到達温度が400℃未満の場合、焼鈍工程終了後のアルミニウム合金板に加工組織が残留するとともに、合金元素の固溶量が減る可能性がある。
Intermediate annealing It is preferable to increase the solid solution amount of the alloy element while performing the intermediate annealing and recrystallizing the cold-rolled sheet that has been subjected to the primary cold rolling.
This intermediate annealing is performed in a continuous annealing process (equipment), and is preferably performed in the shortest possible time of the maximum attainable temperature of 400 ° C to 550 ° C and the holding time at the maximum attainable temperature of 60s or less. It is preferable that both the heating rate up to and the cooling rate from the maximum temperature reached 100 ° C./min or more.
When the heating rate is less than 100 ° C./min, when the highest temperature exceeds 550 ° C., when the holding time exceeds 60 s, and when the cooling rate is less than 100 ° C./min, recrystallization after the annealing step is completed, respectively. Grain tends to be large. For this reason, bending workability may fall. Moreover, when the highest temperature of intermediate annealing is less than 400 degreeC, while a process structure | tissue will remain in the aluminum alloy plate after completion | finish of an annealing process, the solid solution amount of an alloy element may reduce.

2次冷間圧延
続いて、前記中間焼鈍した冷延板を、再度、圧延回数が2回以上で2次冷延する。
この際に、全ての圧延において、1圧延当たりの圧延率(圧下率)を好ましくは30%以上、より好ましくは40%以上、さらに好ましくは45%以上とする。
1圧延当たりの圧延率が小さいと、ひずみ浸透深さが浅くなり、板厚中心部の歪が小さくなる。このため、結晶粒によって導入される歪量が異なり、せん断変形組織の平均間隔のばらつきが大きくなる可能性がある。
Secondary cold rolling Subsequently, the cold-rolled sheet subjected to the intermediate annealing is subjected to secondary cold rolling again at a rolling frequency of 2 times or more.
At this time, in all rolling, the rolling rate (rolling rate) per rolling is preferably 30% or more, more preferably 40% or more, and further preferably 45% or more.
When the rolling rate per rolling is small, the strain penetration depth becomes shallow, and the strain at the center of the plate thickness becomes small. For this reason, the strain amount to be introduced differs depending on the crystal grains, and there is a possibility that the variation in the average interval of the shear deformation structure becomes large.

以上の工程で製造した缶蓋用アルミニウム合金板は、クロメート系やジルコン系などの表面処理を施し、エポキシ系樹脂や塩ビゾル系、ポリエルテル系などの有機塗料を塗布し、PMT(Peak Metal Temperature:メタル到達温度)が200〜280℃で塗装焼付け処理して、プレコート板とされた後、缶蓋へと成形される。本発明で、強度、曲げ加工性、開缶性の評価のための、塗装焼付け処理を模擬した、前記熱処理は、この塗装焼付け処理条件範囲より、再現性を持たせるために260℃×20秒のワンポイントとして選択している。   The aluminum alloy plate for can lids manufactured by the above process is subjected to a surface treatment such as a chromate type or a zircon type, and an organic paint such as an epoxy resin, a vinyl chloride sol type, or a polyertel type is applied, and PMT (Peak Metal Temperature: After the metal baking temperature is 200 to 280 ° C. and a pre-coating plate is formed, it is formed into a can lid. In the present invention, the heat treatment simulating a paint baking process for evaluation of strength, bending workability, and can openability is 260 ° C. × 20 seconds in order to provide reproducibility from this paint baking process condition range. Is selected as one point.

(缶蓋の作製方法)
素材アルミニウム合金板(冷延板)から缶蓋を作製する公知の方法の一例を以下に説明する。
(Production method of can lid)
An example of a known method for producing a can lid from a material aluminum alloy plate (cold rolled plate) will be described below.

前記したように、予め塗装および焼付塗装処理された素材アルミニウム合金板(プレコート板)を円板形状に打ち抜いた(ブランキング加工した)ブランク材を、プレス機で絞り加工し、外周部のカール加工を施した後、カール部にシール用のコンパウンドを塗布してシェルを作る。
この後、コンバージョン成形として、以下の成形を行う。プレス機で、シェルの中央にタブを取り付けるための凸部を形成するリベット成形を行う。このリベット成形は、缶蓋中央部を張り出させるバブル成形工程と、この張出部(バブル)を1〜3工程で縮径しつつ急峻な突起とするボタン成形工程とで構成される。
As described above, a blank material obtained by punching (blanking) a blank aluminum alloy plate (pre-coated plate), which has been pre-painted and baked, is drawn with a press to curl the outer periphery. After that, a sealing compound is applied to the curled portion to make a shell.
Thereafter, the following molding is performed as conversion molding. Using a press machine, rivet forming is performed to form a protrusion for attaching a tab to the center of the shell. This rivet molding is composed of a bubble molding process for projecting the central portion of the can lid and a button molding process for reducing the diameter of the projecting section (bubble) in 1 to 3 steps and making a sharp projection.

次に、断面がV字形の刃先をした金型を押し付けて、飲み口部の溝である、図5、6のスコア3の成形、パネルの剛性を高めるための凹凸や文字の成形を行う。
更に、シェルの中央に加工した凸部に、別途成形したタブをかしめて一体化する(これをステイク工程という)。この一体化した缶蓋の平面図を図5に示す。
そして、別途成形され、開口部から内容物(飲料、食品)が充填された缶胴の開口部に、この缶蓋を巻き締めて封止される。
Next, a die having a V-shaped cutting edge is pressed to form a score 3 in FIGS. 5 and 6 that is a groove of the drinking mouth, and to form irregularities and characters for increasing the rigidity of the panel.
Further, a tab formed separately is caulked and integrated with the convex portion processed at the center of the shell (this is called a stake process). A plan view of this integrated can lid is shown in FIG.
Then, the can lid is wound and sealed from the opening to the opening of the can body filled with the contents (beverage, food) from the opening.

以上、本発明を実施するための形態について述べたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

供試材アルミニウム合金板
表1に示す、No.1〜27の組成の各アルミニウム合金を半連続鋳造法(DC)にて鋳造し、各例とも共通して、鋳塊表層を面削してスラブを作製した。このスラブに、各例とも共通して、500℃×4時間の均質化熱処理を施した後、この500℃の温度で熱間粗圧延を開始し、続く熱間仕上げ圧延の終了温度を330℃として、所定の板厚の熱間圧延板とした。
Sample aluminum alloy plate No. 1 shown in Table 1. Each aluminum alloy having a composition of 1 to 27 was cast by a semi-continuous casting method (DC), and in common with each example, the ingot surface layer was chamfered to produce a slab. The slab was subjected to a homogenization heat treatment of 500 ° C. × 4 hours in common with each example, and then hot rough rolling was started at the temperature of 500 ° C., and the end temperature of the subsequent hot finish rolling was set to 330 ° C. As a hot rolled plate having a predetermined thickness.

この熱間圧延板に対し、各例とも、表1に示すように、1次冷間圧延の圧延率および最終パスの巻取り温度を種々変えて、1次冷間圧延し、板厚0.85mmの1次冷間圧延板とした。
この1次冷間圧延後に、各例とも共通して、板の最高到達温度400℃で、保持時間が30s未満の条件で、連続焼鈍設備にて中間焼鈍を行った。この中間焼鈍の際の、前記最高到達温度までの加熱速度及び前記最高到達温度からの冷却速度は、各例とも共通して、100℃/min以上とした。
この中間焼鈍後、2次冷間圧延を、圧延回数2回から4回にて、各例とも表1に示すように、各圧延の圧延率を種々変えて順次行い、各例とも共通して、板厚0.215mmの缶蓋用アルミニウム合金板を作製した。
In each example, as shown in Table 1, the hot-rolled sheet was subjected to primary cold-rolling by variously changing the rolling rate of the primary cold rolling and the winding temperature of the final pass, and the sheet thickness was set to 0. An 85 mm primary cold rolled sheet was used.
After this primary cold rolling, in each example, intermediate annealing was performed in a continuous annealing facility under the conditions that the maximum temperature of the plate was 400 ° C. and the holding time was less than 30 s. The heating rate up to the highest temperature and the cooling rate from the highest temperature during the intermediate annealing were set to 100 ° C./min or more in common with each example.
After this intermediate annealing, secondary cold rolling is performed by changing the rolling rate of each rolling in various ways as shown in Table 1 for each example in 2 to 4 rolling cycles. An aluminum alloy plate for can lid having a plate thickness of 0.215 mm was produced.

このように製造した、表1のNo.1〜27のアルミニウム合金板を、塗装焼付け処理を模擬し、共通して、塗装はせずに、オイルバスによる260℃×20秒の熱処理のみを施したものを、以下の組織や特性の測定、評価のための供試材とした。   No. 1 of Table 1 produced in this way. 1 to 27 aluminum alloy sheets were simulated by painting and baking treatment, and the same structure and properties were measured after applying only heat treatment at 260 ° C for 20 seconds in an oil bath without painting. This was used as a test material for evaluation.

せん断変形組織同士の平均間隔のばらつき
この供試材のせん断変形組織同士の平均間隔のばらつきを、前記した要領にて測定した。すなわち、前記供試材から測定用の試料を任意の4箇所から採取して、日本電子製のクロスセクションポリッシャを用いて断面加工を行い、図3の斜線を付した面(板の板厚中心における圧延面と平行な面)をSEM観察面として表面に出して、図1における前記互いに隣り合うせん断変形組織同士の平均間隔を、図2および前記した要領にて、5000倍のSEMで4視野、観察、測定した。
この際、1視野当たりの面積(測定面積)は、4視野とも同じ450μmとした。
そして、これら4視野における各々の平均間隔のうちの最大値と最小値との差(nm)を求め、300nm以下(0nmを含まず)を合格とした。
これらの結果を表1に示す。
Variation in Average Interval Between Shear Deformed Structures Variation in average interval between shear deformed structures of this test material was measured as described above. That is, samples for measurement were collected from arbitrary four locations from the above-mentioned test materials, and cross-section processing was performed using a cross section polisher made by JEOL, and the hatched surface of FIG. The surface parallel to the rolled surface in FIG. 1 is exposed to the surface as an SEM observation surface, and the average distance between the shear deformation structures adjacent to each other in FIG. Observed and measured.
At this time, the area per one visual field (measurement area) was set to 450 μm 2 for the four visual fields.
And the difference (nm) of the maximum value and the minimum value of each average space | interval in these 4 visual fields was calculated | required, and 300 nm or less (excluding 0 nm) was set as the pass.
These results are shown in Table 1.

0.2%耐力
前記供試材を、引張方向が圧延方向と平行になるようにJIS−5号引張試験片を作製した。この試験片を用い、JIS−Z2241に準じて引張試験を行い、0.2%耐力を求めた。0.2%耐力の適正範囲は300MPa以上であり、この範囲であれば、薄肉化された缶蓋であっても耐圧強度を満足する。
0.2% Yield Strength A JIS-5 tensile test piece was prepared from the specimen so that the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was performed according to JIS-Z2241, and a 0.2% yield strength was obtained. An appropriate range of 0.2% proof stress is 300 MPa or more, and within this range, even a thin can lid satisfies the compressive strength.

曲げ加工性
曲げ加工性は、前記供試材を、長さ80mm、幅25mmの板状試験片に加工し、図4に示す押し曲げ法(ローラ曲げ法)により、前記板状試験片を、0.95mmの間隔をあけた二つの支持用回転ロール上に載置して、板の中央部に上方より先端部のRが0.2mmの押し金具で荷重を加えて下方に曲げ、先端の角度が15°(図4では10°から20°の範囲で表示)の鋭角のV字状に曲げ加工した。
そして、先端部の表面を観察して、しわも割れも無いか、しわはあるが割れ(クラック)の入っていないものを、曲げ加工性が良好で、缶蓋用として使用できるとして〇と評価した。
また、しわがある上に幅が150μm以下のクラックも入っているものを、条件によっては缶蓋用として使用可として△と評価した。
更に、幅が150μm以上の大きなクラックが入っているものを、曲げ加工性が劣り、缶蓋用としては使用不可として×と評価した。
Bending workability The bending workability is obtained by processing the sample material into a plate-like test piece having a length of 80 mm and a width of 25 mm, and then pressing the plate-like test piece by a press bending method (roller bending method) shown in FIG. Placed on two supporting rotating rolls spaced 0.95 mm apart, bent from the top to the center of the plate by applying a load with a pusher with a tip of R of 0.2 mm from the top. It was bent into an acute V shape with an angle of 15 ° (shown in the range of 10 ° to 20 ° in FIG. 4).
And by observing the surface of the tip part, it is evaluated as ◯ that there is no wrinkle or crack, or wrinkle but not cracked has good bending workability and can be used for can lids did.
In addition, those having wrinkles and cracks with a width of 150 μm or less were evaluated as Δ for being usable for can lids depending on conditions.
Furthermore, those having large cracks with a width of 150 μm or more were evaluated as x because the bending workability was inferior and they could not be used for can lids.

開缶荷重
前記供試材を、204径フルフォーム・エンド金型にてシェル成型、コンバージョン成形、タブのステイクを行った後に、開缶試験を行った。
図5は開缶試験に用いた缶蓋の平面図である。
図6は開缶試験に用いた缶蓋のスコア3の断面図である。
図7は開缶時の荷重を測定する開缶荷重測定機の概要図である。このうち、図7(a)は開缶荷重測定機5の斜視図である。図7(b)は開缶荷重測定機5の測定時の缶蓋1付近の断面模式図である。図7(c)は開缶荷重測定機5に缶蓋1を設置するときの缶蓋1の向きを示す正面模式図である。
Can Opening Load The test material was subjected to shell molding, conversion molding, and tab stake using a 204-diameter full-form end mold, and then a can opening test was performed.
FIG. 5 is a plan view of the can lid used in the can open test.
FIG. 6 is a cross-sectional view of the score 3 of the can lid used in the can open test.
FIG. 7 is a schematic view of a can opening load measuring machine for measuring the load at the time of opening the can. Among these, FIG. 7A is a perspective view of the can opening load measuring device 5. FIG. 7B is a schematic cross-sectional view of the vicinity of the can lid 1 at the time of measurement by the open load measuring device 5. FIG. 7C is a schematic front view showing the direction of the can lid 1 when the can lid 1 is installed in the can opening load measuring device 5.

具体的には、缶蓋1をスコア3に対してタブ4が上方となるように、開缶荷重測定機5に缶蓋1を設置する(図7(c))。缶蓋1のタブ4に掛止具6を引っ掛けて、掛止部7とする(図7(b))。掛止具6を水平方向へ引っ張って3Nの引張荷重を負荷し、その状態で掛止具6を静止させた後、缶蓋1をX方向に回転させた。ロードセルにて荷重を測定し、最も高い荷重を開缶荷重とした。開缶荷重の適正範囲は22N以下とした。   Specifically, the can lid 1 is placed on the can opening load measuring device 5 so that the tab 4 is located above the score 3 with respect to the score 3 (FIG. 7C). A latch 6 is hooked on the tab 4 of the can lid 1 to form a latch 7 (FIG. 7B). The latch 6 was pulled in the horizontal direction to apply a 3N tensile load, and the latch 6 was stationary in that state, and then the can lid 1 was rotated in the X direction. The load was measured with a load cell, and the highest load was taken as the can open load. The appropriate range of the can opening load was 22 N or less.

表1に示すように、本発明の規定範囲内のNo.1〜14の実施例は、成分組成が発明範囲内であり、全て好ましい製造条件で製造されている。
このため、前記せん断変形組織同士の平均間隔のばらつきを、前記平均間隔のうちの最大値と最小値との差として300nm以下(0nmを含まず)に抑制できている。
この結果、No.1〜14の実施例は、表1に示すように、0.2%耐力及び開缶荷重が適正で、曲げ加工性が優れる。すなわち、成形性を保ったまま高強度化させており、成形性と高強度化とを両立させることができている。従って、実施例のアルミニウム合金板は、板厚が0.215mmと薄いが、イージーオープン缶蓋用として好適に使用し得る。
As shown in Table 1, No. 1 within the specified range of the present invention. In Examples 1 to 14, the component composition is within the range of the invention, and all of them are manufactured under preferable manufacturing conditions.
For this reason, the dispersion | variation in the average space | interval of the said shear deformation structures can be suppressed to 300 nm or less (0 nm is not included) as a difference of the maximum value and the minimum value among the said average space | intervals.
As a result, no. In Examples 1 to 14, as shown in Table 1, 0.2% proof stress and can open load are appropriate, and bending workability is excellent. That is, the strength is increased while maintaining the moldability, and both the moldability and the strength can be achieved. Therefore, although the aluminum alloy plate of an Example is as thin as 0.215 mm, it can be used conveniently for an easy open can lid.

なお、前記実施例の中でも、前記せん断変形組織同士の平均間隔のばらつきが小さいほど、曲げ加工性に優れており、前記平均間隔のうちの最大値と最小値との差が100nm以下の実施例(1、5、7〜9.13、14)は、100nmを超える実施例(2〜4、6、10〜12)よりも、曲げ加工性に優れることが分かる。この傾向は、後述する比較例でも同じである。   Among the examples, the smaller the variation in the average interval between the shear deformation structures, the better the bending workability, and the difference between the maximum value and the minimum value of the average interval is 100 nm or less. It can be seen that (1, 5, 7 to 9.13, 14) is superior in bending workability to Examples (2-4, 6, 10-12) exceeding 100 nm. This tendency is the same in the comparative examples described later.

一方、表1のNo.15〜27の比較例は、成分組成か、前記せん断変形組織同士の平均間隔のばらつき、のいずれかが本発明の規定範囲内でなく、下記のとおり、0.2%耐力、曲げ加工性、開缶荷重のいずれかが適正値を満たさない。   On the other hand, no. In Comparative Examples 15 to 27, either the component composition or the variation in the average interval between the shear deformation structures is not within the specified range of the present invention, and as described below, 0.2% proof stress, bending workability, One of the opening loads does not meet the appropriate value.

No.15は、Mg含有量が下限未満で不足しており、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たし、曲げ加工性も良いものの、0.2%耐力が低すぎる。
No.16は、Mg含有量が上限を超えて過剰なため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たしているものの、強度が高すぎて曲げ加工性が悪く(曲げ加工試験で大きなクラックが生じ)、開缶試験を行わなかった。
No.17は、Fe含有量が下限未満で不足するため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たし、曲げ加工性も良いものの、開缶荷重が大きすぎる。
No.18は、Fe含有量が上限を超えて過剰なため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たしているものの、曲げ加工試験で大きな割れ(クラック)が生じ、開缶試験を行わなかった。
No. No. 15, the Mg content is insufficient below the lower limit, is manufactured under preferable manufacturing conditions, satisfies the variation in the average distance between the shear deformation structures, and has good bending workability, but the 0.2% yield strength is too low. .
No. No. 16 is produced under preferable production conditions because the Mg content is excessive beyond the upper limit and satisfies the variation in the average interval between the shear deformation structures, but the strength is too high and bending workability is poor (bending A large crack occurred in the processing test), and the can open test was not performed.
No. No. 17 is produced under preferable production conditions because the Fe content is insufficient below the lower limit, satisfies the variation in the average distance between the shear deformation structures, and has good bending workability, but the can opening load is too large.
No. No. 18, since the Fe content exceeds the upper limit and is produced under preferable production conditions and satisfies the variation in the average interval between the shear deformation structures, a large crack (crack) occurs in the bending test, The can open test was not performed.

No.19は、Si含有量が下限未満で不足するため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たし、曲げ加工性も良いものの、開缶荷重が大きすぎる。
No.20は、Si含有量が上限を超えて過剰なため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たしているものの、曲げ加工試験で大きな割れ(クラック)が生じ、開缶試験を行わなかった。
No.21は、Mn含有量が下限未満で不足するため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たし、曲げ加工性も良いものの、0.2%耐力が低すぎる。
No.22は、Mn含有量が上限を超えて過剰なため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たしているものの、曲げ加工試験で大きな割れ(クラック)が生じ、開缶試験を行わなかった。
No. No. 19 is manufactured under preferable manufacturing conditions because the Si content is insufficient below the lower limit, satisfies the variation in the average distance between the shear deformation structures, and has good bending workability, but the opening load is too large.
No. No. 20, since the Si content exceeds the upper limit and is produced under preferable production conditions and satisfies the variation in the average interval between the shear deformation structures, a large crack (crack) occurs in the bending test, The can open test was not performed.
No. No. 21 has a Mn content of less than the lower limit, and is produced under preferable production conditions, satisfies the variation in the average distance between the shear deformation structures, and has good bending workability, but the 0.2% yield strength is too low.
No. No. 22, since the Mn content is excessive beyond the upper limit, it is manufactured under preferable manufacturing conditions and satisfies the variation in the average interval between the shear deformation structures, but a large crack (crack) occurs in the bending test, The can open test was not performed.

No.23は、Cu含有量が下限未満で不足するため、0.2%耐力が低すぎる。
No.24は、Cu含有量が上限を超えて過剰なため、好ましい製造条件で製造され、前記せん断変形組織同士の平均間隔のばらつきを満たしているものの、曲げ加工試験で大きな割れ(クラック)が生じ、開缶試験を行わなかった。
No. No. 23 has a Cu content of less than the lower limit, so that the 0.2% yield strength is too low.
No. 24, because the Cu content is excessive beyond the upper limit, it is manufactured under preferable manufacturing conditions and satisfies the variation in the average interval between the shear deformation structures, but a large crack (crack) occurs in the bending test, The can open test was not performed.

No.25は、合金組成は本発明範囲内であるものの、1次冷延の圧延率が高すぎて、前記せん断変形組織同士の平均間隔のばらつきが300nmを超えており、曲げ加工性が悪い。
No.26は、合金組成は本発明範囲内であるものの、1次冷延の最終パスの巻取り温度が低すぎて、前記せん断変形組織同士の平均間隔のばらつきが300nmを超えており、曲げ加工性が悪い。
No.27は、合金組成は本発明範囲内であるものの、2次冷延における2、3パス目の圧延率が各々低すぎて、前記せん断変形組織同士の平均間隔のばらつきが300nmを超えており、曲げ加工性が悪い。
No. No. 25, although the alloy composition is within the scope of the present invention, the rolling ratio of the primary cold rolling is too high, the variation in the average interval between the shear deformation structures exceeds 300 nm, and the bending workability is poor.
No. No. 26, although the alloy composition is within the scope of the present invention, the winding temperature of the final pass of the primary cold rolling is too low, the variation in the average spacing between the shear deformation structures exceeds 300 nm, and the bending workability Is bad.
No. 27, although the alloy composition is within the scope of the present invention, the rolling ratios of the second and third passes in the secondary cold rolling are each too low, and the variation in the average interval between the shear deformation structures exceeds 300 nm, Bending workability is poor.

以上の結果から、高強度、曲げ加工性、開缶性を兼備するための、本発明の各要件や好ましい製造条件の意義が裏付けられる。   The above results support the significance of each requirement and preferred production conditions of the present invention for combining high strength, bending workability, and can openability.

以上、本発明は、従来のように、成形性を得るために材料強度を低下させる必要が無く、高強度、曲げ加工性、開缶性を兼備した缶蓋用アルミニウム合金板を提供することができる。
このため、薄肉化、高強度化され、より厳しい条件での高い成形性と、開缶性も要求される缶蓋に用いられるアルミニウム合金板に最適である。
As described above, the present invention provides a can lid aluminum alloy plate that has high strength, bending workability, and can openability without the need to reduce material strength to obtain formability as in the prior art. it can.
For this reason, it is optimal for an aluminum alloy plate used for a can lid that is thinned and strengthened, and that requires high formability under more severe conditions and can openability.

1 缶蓋
2 リベット部
3 スコア
4 タブ
5 開缶荷重測定機
6 掛止具
7 掛止部
1 Can Lid 2 Rivet 3 Score 4 Tab 5 Opening Load Measuring Machine 6 Hook 7 Hook

Claims (1)

Mg:3.8〜5.5質量%、Fe:0.10〜0.50質量%、Si:0.05〜0.30質量%、Mn:0.01〜0.60質量%、Cu:0.01〜0.30質量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金板であって、この板の板厚中心における圧延面と平行な面を観察したとき、圧延方向と略平行方向に向けて互いに間隔をあけて並びながら、前記圧延方向と略直角方向に亘って延在する、帯状組織として観察されるせん断変形組織において、この板の板厚中心における圧延面と平行な面を5000倍のSEMで4視野観察し、各視野内で観察可能な互いに隣り合う前記せん断変形組織同士の全間隔を平均化して1視野当たりの平均間隔を各々算出した際の、前記4視野における各平均間隔のうちの最大値と最小値との差を300nm以下(但し、0nmを含まず)として、互いに隣り合う前記せん断変形組織同士の間隔のばらつきを抑制したことを特徴とする、缶蓋用アルミニウム合金板。
Mg: 3.8 to 5.5% by mass, Fe: 0.10 to 0.50% by mass, Si: 0.05 to 0.30% by mass, Mn: 0.01 to 0.60% by mass, Cu: It is an aluminum alloy plate containing 0.01 to 0.30% by mass with the balance being Al and inevitable impurities, and when a plane parallel to the rolling surface at the center of the plate thickness is observed, In a shear deformation structure observed as a band-like structure extending in a direction substantially perpendicular to the rolling direction while being arranged at a distance from each other in a substantially parallel direction, parallel to the rolling surface at the thickness center of the plate. When the average surface per field of view is calculated by observing four planes with a SEM of 5000 times, averaging the total intervals between the shear deformation structures adjacent to each other that can be observed in each field of view, Maximum of each average interval in the field of view 300nm or less difference between the minimum value (not inclusive of 0 nm) as, wherein the suppressed variation of the shear deformation tissue interval between the adjacent, aluminum alloy sheet for can lid.
JP2015229521A 2015-11-25 2015-11-25 Aluminum alloy sheet for can top Pending JP2017095765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229521A JP2017095765A (en) 2015-11-25 2015-11-25 Aluminum alloy sheet for can top

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229521A JP2017095765A (en) 2015-11-25 2015-11-25 Aluminum alloy sheet for can top

Publications (1)

Publication Number Publication Date
JP2017095765A true JP2017095765A (en) 2017-06-01

Family

ID=58803288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229521A Pending JP2017095765A (en) 2015-11-25 2015-11-25 Aluminum alloy sheet for can top

Country Status (1)

Country Link
JP (1) JP2017095765A (en)

Similar Documents

Publication Publication Date Title
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP4829988B2 (en) Aluminum alloy plate for packaging container lid
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
WO2015125791A1 (en) Aluminum alloy plate for can lids
JP2016141886A (en) Aluminum alloy sheet for can top
KR20170110123A (en) Aluminum alloy plate for negative pressure can cap
JP2016041852A (en) Aluminum alloy sheet for can barrel
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP2017095765A (en) Aluminum alloy sheet for can top
JP2007224380A (en) High-strength aluminum alloy sheet for cap of wide-mouthed bottle can
JP6289152B2 (en) Aluminum alloy plate for can lid
TWI607095B (en) Aluminum plate for can lid
JP2017206765A (en) Aluminum alloy sheet for can top
JP2016079502A (en) Aluminum alloy sheet for can-top
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP2017222918A (en) Aluminum alloy sheet for can top
WO2016152790A1 (en) Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans
JP4392263B2 (en) Aluminum alloy plate for packaging container end and manufacturing method thereof
JP6033192B2 (en) Aluminum alloy plate for negative pressure can lid
JP2017166052A (en) Aluminum alloy sheet for packaging container tab
JP4291642B2 (en) Method for manufacturing aluminum alloy plate for packaging container lid
JP5699192B2 (en) Aluminum alloy plate for negative pressure can lid
JP2022114208A (en) Aluminum alloy coated sheet for can lid