JP2017093072A - Dynamo-electric machine stator - Google Patents

Dynamo-electric machine stator Download PDF

Info

Publication number
JP2017093072A
JP2017093072A JP2015217761A JP2015217761A JP2017093072A JP 2017093072 A JP2017093072 A JP 2017093072A JP 2015217761 A JP2015217761 A JP 2015217761A JP 2015217761 A JP2015217761 A JP 2015217761A JP 2017093072 A JP2017093072 A JP 2017093072A
Authority
JP
Japan
Prior art keywords
heat transfer
phase
coil
terminal
phase coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015217761A
Other languages
Japanese (ja)
Other versions
JP6443303B2 (en
Inventor
圭祐 伊藤
Keisuke Ito
圭祐 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015217761A priority Critical patent/JP6443303B2/en
Publication of JP2017093072A publication Critical patent/JP2017093072A/en
Application granted granted Critical
Publication of JP6443303B2 publication Critical patent/JP6443303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To detect temperature anomaly of any phase coil by means of one temperature sensor, in a dynamo-electric machine stator where each phase coil is wound around the stator core by delta connection system.SOLUTION: A dynamo-electric machine stator 10 includes a stator core 12 having an annular stator yoke 20, and a plurality of teeth 22 projecting from the stator yoke 20 to the inner diameter side, coils 14 interconnected by delts connection system, a U heat transfer member 55 having one end connected with the U terminal 15, a V heat transfer member 56 having one end connected with the V terminal 16, a W heat transfer member 57 having one end connected with the W terminal 17, and a thermistor that is a temperature sensor in contact with the other ends, respectively, at a position where the other ends of the U heat transfer member 55, V heat transfer member 56 and W heat transfer member 57 are collected while being insulated electrically from each other.SELECTED DRAWING: Figure 1

Description

本発明は、各相コイルがデルタ結線方式でステータコアに巻回された回転電機ステータに関する。   The present invention relates to a rotating electrical machine stator in which each phase coil is wound around a stator core by a delta connection method.

三相型の回転電機のステータにおける巻線の結線方式としては、スター結線方式またはY結線方式と呼ばれるものと、三角結線方式またはデルタ結線方式と呼ばれるものが知られている。Y結線方式は、三相各相をその一端の中性点で接続するのに対し、デルタ結線方式では三相各端子の間に各相コイルが接続されて閉回路を形成する。   As a method for connecting windings in a stator of a three-phase rotating electric machine, a method called a star connection method or a Y connection method, and a method called a triangular connection method or a delta connection method are known. In the Y connection method, each phase of the three phases is connected at a neutral point at one end thereof, whereas in the delta connection method, each phase coil is connected between the three phase terminals to form a closed circuit.

特許文献1には、三相同期型の回転電機のステータ巻線におけるY結線方式において、U相の中性点側端子とV相の中性点側端子を接続する1つの部材と、W相の中性点側端子に接続するもう1つの部材との間に温度センサを配置する構成が開示されている。   In Patent Document 1, in the Y-connection method in the stator winding of a three-phase synchronous rotating electrical machine, one member for connecting the neutral point side terminal of the U phase and the neutral point side terminal of the V phase, The structure which arrange | positions a temperature sensor between the other member connected to the neutral point side terminal of is disclosed.

なお、本発明に関連する技術として、特許文献2には、2つのコイルを直列に接続したものを2つ並列に接続して構成される各相コイルをデルタ結線方式で三相コイルを形成するときの環状接続部材と各相コイルとの間の接続の仕方が述べられている。   As a technique related to the present invention, in Patent Document 2, each phase coil formed by connecting two coils connected in series is connected in parallel to form a three-phase coil by a delta connection method. The connection method between the annular connecting member and each phase coil is described.

特開2013−219913号公報JP 2013-219913 A 特開2014−096952号公報JP 2014-096952 A

回転電機が動作するときの各相コイルの温度を検知するために温度センサが用いられる。1つの温度センサで1つの相コイルの温度を検出すると、その相コイルの温度異常を検知できるが他の相コイルの温度異常を検知できない。Y結線方式の場合は、中性点で各相コイルが集められるので、中性点の温度を検出することで、いずれかの相コイルに温度異常が発生してもそれを検知できる。デルタ結線方式では、各相コイルがデルタ状に閉回路を形成するので、各相コイルが集まる点がない。そこで、デルタ結線方式において、いずれかの相コイルに温度異常が発生したことを1つの温度センサで検知可能とする回転電機ステータが望まれる。   A temperature sensor is used to detect the temperature of each phase coil when the rotating electrical machine operates. When the temperature of one phase coil is detected by one temperature sensor, the temperature abnormality of the phase coil can be detected, but the temperature abnormality of other phase coils cannot be detected. In the case of the Y connection method, each phase coil is collected at the neutral point, and therefore, by detecting the temperature of the neutral point, it is possible to detect even if a temperature abnormality occurs in any of the phase coils. In the delta connection method, each phase coil forms a closed circuit in a delta shape, so there is no point where each phase coil gathers. Therefore, in the delta connection method, a rotating electrical machine stator that can detect with one temperature sensor that a temperature abnormality has occurred in any of the phase coils is desired.

本発明の1つの形態に係る回転電機ステータは、円環状のステータヨーク、及びステータヨークから内径側に突き出す複数のティースを有するステータコアと、ティースの周囲に巻回された三相の各相コイルであって、U相コイルの一方端とW相コイルの他方端とが互いに接続されてU端子を形成し、V相コイルの一方端とU相コイルの他方端とが互いに接続されてV端子を形成し、W相コイルの一方端とV相コイルの他方端とが互いに接続されてW端子を形成するデルタ結線方式で互いに接続された各相コイルと、U端子に一方端が接続されたU伝熱部材と、V端子に一方端が接続されたV伝熱部材と、W端子に一方端が接続されたW伝熱部材と、U伝熱部材の他方端、V伝熱部材の他方端、及び、W伝熱部材の他方端が互いに電気的に絶縁された状態で集められた位置で、他方端のそれぞれに共に接触する温度センサと、を備えることを特徴とする。   A rotating electrical machine stator according to one embodiment of the present invention includes an annular stator yoke, a stator core having a plurality of teeth protruding from the stator yoke to the inner diameter side, and three-phase coils wound around the teeth. And one end of the U-phase coil and the other end of the W-phase coil are connected to each other to form a U terminal, and one end of the V-phase coil and the other end of the U-phase coil are connected to each other to connect the V terminal. And each phase coil connected to each other by a delta connection method in which one end of the W-phase coil and the other end of the V-phase coil are connected to each other to form a W terminal, and a U terminal having one end connected to the U terminal Heat transfer member, V heat transfer member with one end connected to V terminal, W heat transfer member with one end connected to W terminal, other end of U heat transfer member, other end of V heat transfer member And the other ends of the W heat transfer members are electrically disconnected from each other. At the position where gathered state, characterized in that it comprises a temperature sensor in contact with both the respective other end.

本発明の実施の形態に係る回転電機ステータによれば、デルタ結線方式の各相端子から引き出される3本の伝熱部材が電気的に絶縁された状態で集められ、その位置に温度センサが配置される。したがって、デルタ結線方式において、いずれかの相コイルに温度異常が発生したことを1つの温度センサで検知可能となる。   According to the rotating electrical machine stator according to the embodiment of the present invention, the three heat transfer members drawn from each phase terminal of the delta connection method are collected in an electrically insulated state, and a temperature sensor is arranged at the position. Is done. Therefore, in the delta connection method, it is possible to detect with one temperature sensor that a temperature abnormality has occurred in any of the phase coils.

本発明に係る実施の形態の回転電機ステータの平面図である。It is a top view of the rotary electric machine stator of embodiment which concerns on this invention. 本発明に係る実施の形態の回転電機ステータにおける等価回路図である。It is an equivalent circuit diagram in the rotary electric machine stator of embodiment which concerns on this invention. 図1における1つの単コイルであるW3についての斜視図である。It is a perspective view about W3 which is one single coil in FIG. 図1のA部の拡大図である。It is an enlarged view of the A section of FIG. 図1のA部の側面図である。It is a side view of the A section of FIG.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、車両に搭載される回転電機に用いられるステータを述べるが、これは説明のための例示であって、デルタ結線方式で接続された三相コイルを用いる回転電機ステータであれば、車両搭載以外の用途であってもよい。以下では、各相コイルの巻回方法として、集中巻を述べるが、分布巻でもよい。コイルの巻線として、平角線を述べるが、これは説明のための例示であって、円形断面の丸線、楕円断面の導線等を用いてもよい。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In the following, a stator used in a rotating electrical machine mounted on a vehicle will be described. However, this is an example for explanation, and if it is a rotating electrical machine stator using a three-phase coil connected by a delta connection method, it is mounted on the vehicle. Other uses may be used. In the following, concentrated winding is described as a winding method for each phase coil, but distributed winding may be used. A rectangular wire is described as the winding of the coil, but this is an illustrative example, and a round wire having a circular cross section, a conducting wire having an elliptic cross section, or the like may be used.

以下で述べるティースの数、巻数、渡り線の配置等は、説明のための例示であって、回転電機ステータの仕様に合わせ、適宜変更が可能である。以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。   The number of teeth, the number of turns, the arrangement of crossovers, and the like described below are examples for explanation, and can be appropriately changed according to the specifications of the rotating electrical machine stator. Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted.

図1は、車両に搭載される回転電機に用いられる回転電機ステータ10の構成を示す図である。以下では、回転電機ステータ10を特に断らない限り、ステータ10と呼ぶ。ステータ10が用いられる回転電機は、駆動回路の制御によって、車両が力行するときは電動機として機能し、車両が制動時にあるときは発電機として機能するモータ・ジェネレータで、三相同期型回転電機である。回転電機は、図1に示される固定子であるステータ10と、ステータ10の内径側に所定の隙間を隔てて配置される円環状の回転子であるロータとで構成される。図1ではロータの図示を省略した。   FIG. 1 is a diagram showing a configuration of a rotating electrical machine stator 10 used for a rotating electrical machine mounted on a vehicle. Below, unless otherwise indicated, the rotary electric machine stator 10 is called the stator 10. FIG. The rotating electrical machine in which the stator 10 is used is a three-phase synchronous rotating electrical machine that functions as an electric motor when the vehicle is powered by the control of the drive circuit and functions as a generator when the vehicle is braking. is there. The rotating electrical machine includes a stator 10 that is a stator illustrated in FIG. 1 and a rotor that is an annular rotor that is disposed on the inner diameter side of the stator 10 with a predetermined gap therebetween. In FIG. 1, the illustration of the rotor is omitted.

図1は、ステータ10の軸方向から見た平面図である。ステータ10は、ステータコア12と、ステータコア12に装着されるコイル14と、コイル14の温度を検出する温度センサ部50とを含んで構成される。   FIG. 1 is a plan view of the stator 10 as viewed from the axial direction. The stator 10 includes a stator core 12, a coil 14 attached to the stator core 12, and a temperature sensor unit 50 that detects the temperature of the coil 14.

図1に、ステータコア12の周方向、径方向、軸方向をそれぞれ示した。周方向は、ステータコア12の円周方向に沿った方向であり、径方向はステータコア12の外径側から内径側の方向であり、軸方向は、ステータコア12の中心軸に沿った方向である。軸方向において、後述する動力線のU端子15、V端子16,W端子17が引き出される方向がリード側で、その逆方向が反リード側である。図1は、軸方向についてリード側から見た図である。   FIG. 1 shows the circumferential direction, radial direction, and axial direction of the stator core 12. The circumferential direction is a direction along the circumferential direction of the stator core 12, the radial direction is a direction from the outer diameter side to the inner diameter side of the stator core 12, and the axial direction is a direction along the central axis of the stator core 12. In the axial direction, a direction in which a U terminal 15, a V terminal 16, and a W terminal 17 of a power line, which will be described later, are drawn out is a lead side, and the opposite direction is an anti-lead side. FIG. 1 is a view seen from the lead side in the axial direction.

ステータコア12は、円環状の磁性体部品で、円環状のステータヨーク20とステータヨーク20から内径側に突き出す複数のティース22とを含む。隣接するティース22の間の空間は、スロット24である。   The stator core 12 is an annular magnetic part, and includes an annular stator yoke 20 and a plurality of teeth 22 protruding from the stator yoke 20 toward the inner diameter side. A space between adjacent teeth 22 is a slot 24.

かかるステータコア12は、ステータヨーク20とティース22とを含み、スロット24が形成されるように所定の形状に成形された円環状の磁性体薄板の複数枚を積層したものが用いられる。磁性体薄板の両面には電気的な絶縁処理が施される。磁性体薄板の材質としては、電磁鋼板が用いられる。磁性体薄板の積層体に代えて、磁性粉末を所定の形状に一体化成形したものを用いてもよい。   The stator core 12 includes a stator yoke 20 and teeth 22 and is formed by laminating a plurality of annular magnetic thin plates formed in a predetermined shape so that slots 24 are formed. Both surfaces of the magnetic thin plate are electrically insulated. As a material of the magnetic thin plate, an electromagnetic steel plate is used. Instead of the laminated body of magnetic thin plates, a magnetic powder integrally formed into a predetermined shape may be used.

コイル14は、複数の単コイル13を予め定められた方法で接続して形成される三相コイルである。単コイル13は、1つのティース22に1つの相巻線が所定の巻数で巻回された集中巻コイルである。単コイル13としては、所定の巻型を用いて絶縁皮膜付き導線を所定の巻数で予め巻回されたカセットコイルが用いられる。場合によっては、ティース22に直接的に絶縁皮膜付き導線を巻回してもよい。隣接するティース22の間の1つのスロット24には異なる相の単コイル13が配置される。   The coil 14 is a three-phase coil formed by connecting a plurality of single coils 13 by a predetermined method. The single coil 13 is a concentrated winding coil in which one phase winding is wound around one tooth 22 with a predetermined number of turns. As the single coil 13, a cassette coil is used in which a conductive wire with an insulating film is wound in advance with a predetermined number of turns using a predetermined winding type. In some cases, a conductive wire with an insulating film may be wound directly around the teeth 22. Single coils 13 of different phases are arranged in one slot 24 between adjacent teeth 22.

単コイル13の絶縁皮膜付き導線の素線としては、銅線、銅錫合金線、銀メッキされた銅錫合金線等が用いられる。素線としては、断面形状が略矩形の平角線が用いられる。絶縁皮膜としては、電気的な絶縁性を有する樹脂の皮膜を用いる。例えば、ポリアミドイミドのエナメル皮膜が用いられる。これに代えて、ポリエステルイミド、ポリイミド、ポリエステル、ホルマール等を用いてもよい。   A copper wire, a copper-tin alloy wire, a silver-plated copper-tin alloy wire, or the like is used as the wire of the single coil 13 with an insulating film. As the strand, a rectangular wire having a substantially rectangular cross section is used. As the insulating film, a resin film having electrical insulation is used. For example, a polyamide-imide enamel film is used. Instead of this, polyesterimide, polyimide, polyester, formal or the like may be used.

単コイル13とステータコア12との間に、電気的な絶縁のためにインシュレータが設けられる。インシュレータは接着等の固定手段によってステータコア12に固定される。かかるインシュレータには、電気的な絶縁性を有するシートを所定の形状に成形したものが用いられる。電気的な絶縁性を有するシートとしては、紙の他、プラスチックフィルムが用いられる。コイル14の絶縁皮膜の電気的な絶縁性能が十分であるときはインシュレータを省略できる。以下では、インシュレータを設けるものとするが、図示を省略する。   An insulator is provided between the single coil 13 and the stator core 12 for electrical insulation. The insulator is fixed to the stator core 12 by fixing means such as adhesion. As such an insulator, an electrically insulating sheet formed into a predetermined shape is used. In addition to paper, a plastic film is used as the sheet having electrical insulation. The insulator can be omitted when the electrical insulation performance of the insulating film of the coil 14 is sufficient. In the following, an insulator is provided, but the illustration is omitted.

単コイル13は、ステータコア12の各ティース22にそれぞれ1つずつ装着される。図1の例では、ステータコア12は、U相用のティース22を4つ、V相用のティース22を4つ、W相用のティース22を4つ有し、この12個のティース22のそれぞれに1つずつ単コイル13が装着される。   One single coil 13 is attached to each tooth 22 of the stator core 12. In the example of FIG. 1, the stator core 12 has four U-phase teeth 22, four V-phase teeth 22, and four W-phase teeth 22, and each of the twelve teeth 22. One single coil 13 is attached to each.

図1には、U相用の4つのティース22に装着される4つの単コイル13をU1,U2,U3,U4として示す。同様に、V相用の4つのティース22に装着される4つの単コイル13をV1,V2,V3,V4とし、W相用の4つのティース22に装着される4つの単コイル13をW1,W2,W3,W4として示す。   In FIG. 1, four single coils 13 attached to four teeth 22 for U phase are shown as U1, U2, U3, U4. Similarly, the four single coils 13 attached to the four teeth 22 for V-phase are designated as V1, V2, V3, V4, and the four single coils 13 attached to the four teeth 22 for W-phase are designated as W1, Shown as W2, W3, W4.

図2は、U1〜U4、V1〜V4、W1〜W4の12個の単コイル13の接続関係と、温度センサ部50の配置関係とを示す等価回路図である。U1〜U4の4つの単コイル13は、U相用の渡り線30によって互いに直列に接続される。同様に、V1〜V4の4つの単コイル13は、V相用の渡り線32によって互いに直列に接続され、W1〜W4の4つの単コイル13は、W相用の渡り線34によって互いに直列に接続される。   FIG. 2 is an equivalent circuit diagram showing the connection relationship of the twelve single coils 13 of U1 to U4, V1 to V4, and W1 to W4, and the arrangement relationship of the temperature sensor unit 50. The four single coils 13 of U1 to U4 are connected to each other in series by a U-phase connecting wire 30. Similarly, the four single coils 13 of V1 to V4 are connected to each other in series by a V-phase connecting wire 32, and the four single coils 13 of W1 to W4 are connected to each other in series by a W-phase connecting wire 34. Connected.

図3に、例としてW3の単コイル13と、W相用の渡り線34との関係を示す。単コイル13は、ティース22のステータヨーク20側の根元側の巻始め端60から、内径側の先端側の巻終り端62に向かって、単層巻の4巻半の巻数で巻回される。巻数は例示であって、ステータ10の仕様に応じて適宜変更される。単層巻に代えて多層巻を用いてもよい。   FIG. 3 shows a relationship between the single coil 13 of W3 and the crossover wire 34 for W phase as an example. The single coil 13 is wound with a number of turns of four and a half turns of a single layer from the winding start end 60 on the side of the stator yoke 20 of the teeth 22 toward the winding end 62 on the tip side on the inner diameter side. . The number of turns is merely an example, and is appropriately changed according to the specifications of the stator 10. A multilayer winding may be used instead of the single layer winding.

ステータコア12の軸方向の端面から突き出す巻回の部分はコイルエンド70,72である。コイルエンド70は、リード側に突き出し、コイルエンド72は、反リード側に突き出す。巻始め端60は、4巻半の巻回の外形よりもさらに、導線の幅の約2倍の長さでリード側に突き出す。巻終り端62は、4巻半の巻回の外形よりもさらに導線の幅よりやや長くリード側に突出し、巻回の外形に沿って周方向に沿って延び、W相用の渡り線34となる。このように、W相用の渡り線34は、W相用の単コイル13の巻終り端62から延びた部分で形成される。渡り線34の延びた先端部は、導線の幅とほぼ同じ長さでリード側に突き出す突出部64を有する。   Coiled ends 70 and 72 protrude from the axial end surface of the stator core 12. The coil end 70 projects to the lead side, and the coil end 72 projects to the non-lead side. The winding start end 60 protrudes to the lead side with a length approximately twice as long as the width of the conducting wire, more than the outer shape of the winding of four and a half turns. The winding end 62 protrudes to the lead side slightly longer than the width of the conductive wire, and extends along the circumferential direction along the outer shape of the winding. Become. In this manner, the W-phase connecting wire 34 is formed by a portion extending from the winding end 62 of the W-phase single coil 13. The leading end portion of the crossover wire 34 has a protruding portion 64 that protrudes to the lead side with a length substantially the same as the width of the conducting wire.

W3の単コイル13の巻終り端62からの渡り線34は、W4の単コイル13の巻始め端60に向かって延び、その先端部の突出部64は、W4の単コイル13の巻始め端60に突合わされて相互に接続される。同様に、W3の単コイル13の巻始め端60に向かって、W2の単コイル13の巻終り端62からの渡り線34が延び、その先端部の突出部64は、W3の単コイル13の巻始め端60と突き合わされて接続される。   The connecting wire 34 from the winding end 62 of the single coil 13 of W3 extends toward the winding start end 60 of the single coil 13 of W4, and the protrusion 64 at the tip thereof is the winding start end of the single coil 13 of W4. 60 are connected to each other. Similarly, the connecting wire 34 extends from the winding end 62 of the single coil 13 of W2 toward the winding start end 60 of the single coil 13 of W3. The winding start end 60 is abutted and connected.

このようにして、W1〜W4の4つの単コイル13は、W相用の渡り線34によって順次、互いに直列に接続されて、1つのW相コイル44となる。同様にして、U1〜U4の4つの単コイル13は、U相用の渡り線30によって順次、互いに直列に接続されて1つのU相コイル40となる。V1〜V4の4つの単コイル13は、V相用の渡り線32によって順次、互いに直列に接続されて1つのV相コイル42となる。   In this way, the four single coils 13 of W1 to W4 are sequentially connected to each other in series by the W-phase connecting wire 34 to form one W-phase coil 44. Similarly, the four single coils 13 of U1 to U4 are sequentially connected in series by the U-phase connecting wire 30 to form one U-phase coil 40. The four single coils 13 of V1 to V4 are sequentially connected to each other in series by a V-phase connecting wire 32 to form one V-phase coil 42.

U相コイル40、V相コイル42、W相コイル44の間の相間の接続は、デルタ結線方式である。図3の例を用いてW相コイル44について述べると、W4の単コイル13の巻終り端62から延びる渡り線は、W相用の単コイル13でなく、U相用の単コイル13であるU1の巻始め端60に接続される。W4の単コイル13の巻終り端62とU相用の単コイル13であるU1の巻始め端60とを結ぶ渡り線は、異なる相の単コイル13の間を接続するので、同じ相の単コイル13の間を接続する渡り線30,32,34と区別して、これをUW相用の渡り線35と呼ぶ。UW相用の渡り線35は、U相コイル40の一方端側の単コイル13であるU1の一方端と、W相コイル44の他方端側の単コイル13であるW4の他方端とを接続する。   Connection between the phases among the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 is a delta connection method. When the W-phase coil 44 is described using the example of FIG. 3, the connecting wire extending from the winding end 62 of the W4 single coil 13 is not the W-phase single coil 13 but the U-phase single coil 13. It is connected to the winding start end 60 of U1. Since the connecting wire connecting the winding end 62 of the single coil 13 of W4 and the winding starting end 60 of U1, which is the U-phase single coil 13, connects between the single coils 13 of different phases, This is distinguished from the connecting wires 30, 32, and 34 that connect the coils 13, and this is called a connecting wire 35 for the UW phase. The UW-phase connecting wire 35 connects one end of U1 which is the single coil 13 on one end side of the U-phase coil 40 and the other end of W4 which is the single coil 13 on the other end side of the W-phase coil 44. To do.

同様に、V相コイル42の一方端側の単コイル13であるV1の一方端と、U相コイル40の他方端側の単コイル13であるU4の他方端とは、VU相用の渡り線36で互いに接続される。また、W相コイル44の一方端側の単コイル13であるW1の一方端と、V相コイル42の他方端側の単コイル13であるV4の他方端とは、WV相用の渡り線37で互いに接続される   Similarly, one end of V1 which is the single coil 13 on one end side of the V-phase coil 42 and the other end of U4 which is the single coil 13 on the other end side of the U-phase coil 40 are crossover wires for VU phase. 36 are connected to each other. Further, one end of W1 which is the single coil 13 on one end side of the W-phase coil 44 and the other end of V4 which is the single coil 13 on the other end side of the V-phase coil 42 are connected to the connecting wire 37 for WV phase. Connected to each other

12個の単コイル13の巻始め端60と、これに接続される渡り線30,32,34,35,36,37の先端部の突出部64との間は、溶接等の接続手段を用いて接続され固定される。溶接等の固定箇所は、適当な絶縁材で覆われる。   Connection means such as welding is used between the winding start ends 60 of the twelve single coils 13 and the protruding portions 64 at the tip ends of the connecting wires 30, 32, 34, 35, 36, and 37 connected thereto. Connected and fixed. Fixing parts such as welding are covered with an appropriate insulating material.

このように、デルタ結線方式によって、U相コイル40、V相コイル42、W相コイル44は、UW相用の渡り線35、VU相用の渡り線36、WV相用の渡り線37を用いて、互いに接続され、図2に示す三角形の閉回路を形成する。デルタ結線方式では、U相コイル40、V相コイル42、W相コイル44が集まる点がない。   In this way, the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 use the UW-phase connecting wire 35, the VU-phase connecting wire 36, and the WV-phase connecting wire 37 by the delta connection method. Are connected to each other to form a triangular closed circuit shown in FIG. In the delta connection method, there is no point where the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 gather.

単コイル13であるU1の巻始め端60とUW相用の渡り線35との接続点には、動力線のU端子15が接続される。同様に、単コイル13であるV1の巻始め端60とVU相用の渡り線36との接続点には、動力線のV端子16が接続される。単コイル13であるW1の巻始め端60とWV相用の渡り線37との接続点には、動力線のW端子17が接続される。各接続点と、U端子15、V端子16、W端子17との間は、溶接等の接続手段を用いて接続され固定される。この溶接工程は、単コイル13の巻始め端60と渡り線35,36,37との間の溶接工程に含めて行ってもよい。   The U terminal 15 of the power line is connected to a connection point between the winding start end 60 of the U1 that is the single coil 13 and the connecting wire 35 for the UW phase. Similarly, the V terminal 16 of the power line is connected to the connection point between the winding start end 60 of the V1 that is the single coil 13 and the connecting wire 36 for the VU phase. The W terminal 17 of the power line is connected to a connection point between the winding start end 60 of W1 which is the single coil 13 and the connecting wire 37 for the WV phase. Each connection point and the U terminal 15, V terminal 16, and W terminal 17 are connected and fixed using connection means such as welding. This welding process may be included in the welding process between the winding start end 60 of the single coil 13 and the crossover wires 35, 36, and 37.

図2に示すように、デルタ結線方式における三角形の閉回路の各頂点は、動力線のU端子15、V端子16、W端子17であり、U相コイル40は、U端子15とV端子16の間に接続されるので、UVコイルと呼ぶことができる。同様に、V相コイル42は、V端子16とW端子17の間に接続されるので、VWコイルと呼ぶことができ、W相コイル44は、W端子17とU端子15の間に接続されるので、WUコイルと呼ぶことができる。   As shown in FIG. 2, the vertices of the triangular closed circuit in the delta connection system are the U terminal 15, the V terminal 16, and the W terminal 17 of the power line, and the U-phase coil 40 includes the U terminal 15 and the V terminal 16. Can be called a UV coil. Similarly, since the V-phase coil 42 is connected between the V terminal 16 and the W terminal 17, it can be called a VW coil, and the W-phase coil 44 is connected between the W terminal 17 and the U terminal 15. Therefore, it can be called a WU coil.

上記では、渡り線30,32,34,35,36,37を単コイル13の巻回の外形の上側に配置するものとした。これに代えて、単コイル13よりも内径側、あるいは外径側に複数本の環状の接続部材を配置し、これに単コイル13の巻始め端60と巻終り端62を予め定めた接続方法で接続してデルタ結線を形成してもよい。   In the above description, the crossover wires 30, 32, 34, 35, 36, and 37 are arranged above the outer shape of the single coil 13. Instead of this, a plurality of annular connection members are arranged on the inner diameter side or the outer diameter side of the single coil 13, and the winding start end 60 and the winding end end 62 of the single coil 13 are predetermined connection methods. May be connected to form a delta connection.

次に、ステータ10に設けられる温度センサ部50について、図2を参照しながら、図1の拡大図である図3を用いて説明する。   Next, the temperature sensor unit 50 provided in the stator 10 will be described with reference to FIG. 2 and FIG. 3 which is an enlarged view of FIG.

温度センサ部50は、温度検出センサであるサーミスタ52を1つ内蔵したパッケージ部品である。サーミスタ52の両端子からは、検出した温度データを伝送するための2本のリード線54が外部に引き出される。温度センサ部50からは、3本の伝熱部材55,56,57が引き出される。伝熱部材55は、U相コイル40の温度を伝熱するためのU伝熱部材で、伝熱部材56は、V相コイル42の温度を伝熱するためのV伝熱部材で、伝熱部材57は、W相コイル44の温度を伝熱するためのW伝熱部材である。   The temperature sensor unit 50 is a package component including one thermistor 52 that is a temperature detection sensor. Two lead wires 54 for transmitting detected temperature data are drawn out from both terminals of the thermistor 52. Three heat transfer members 55, 56, 57 are drawn from the temperature sensor unit 50. The heat transfer member 55 is a U heat transfer member for transferring the temperature of the U-phase coil 40, and the heat transfer member 56 is a V heat transfer member for transferring the temperature of the V-phase coil 42. Member 57 is a W heat transfer member for transferring the temperature of W phase coil 44.

引き出された伝熱部材55の一方端は、U端子15とUW相用の渡り線35との接続点に接続されて、接続部65を形成する。同様に、伝熱部材56の一方端は、V端子16とVU相用の渡り線36との接続点に接続され、接続部66を形成し、伝熱部材57の一方端は、W端子17とWV相用の渡り線37との接続点に接続され、接続部67を形成する。   One end of the drawn heat transfer member 55 is connected to a connection point between the U terminal 15 and the connecting wire 35 for the UW phase to form a connection portion 65. Similarly, one end of the heat transfer member 56 is connected to a connection point between the V terminal 16 and the connecting wire 36 for the VU phase to form a connection portion 66, and one end of the heat transfer member 57 is connected to the W terminal 17. Are connected to a connection point between the crossover wire 37 for the WV phase and form a connection portion 67.

接続部65,66,67の形成には、溶接等の接続手段が用いられる。溶接等によって接続及び固定された箇所は、適当な絶縁材で覆われる。接続部65,66,67の形成は、単コイル13の巻始め端60と渡り線35,36,37との間の溶接工程、および、これらとU端子15、V端子16、W端子17との間の溶接工程が行われた後に、これらの溶接工程とは別に行われる。場合によっては、これらの溶接工程に、接続部65,66,67の形成のための溶接工程を含めて行ってもよい。   Connection means such as welding is used to form the connection portions 65, 66, and 67. The portions connected and fixed by welding or the like are covered with an appropriate insulating material. The connection portions 65, 66, and 67 are formed by welding processes between the winding start end 60 of the single coil 13 and the crossover wires 35, 36, and 37, and the U terminal 15, the V terminal 16, and the W terminal 17. After these welding processes are performed, these welding processes are performed separately. In some cases, these welding processes may include a welding process for forming the connecting portions 65, 66, and 67.

3本の伝熱部材55,56,57の他方端は、温度センサ部50のパッケージ内に引き込まれ、サーミスタ52の配置位置において互いに電気的に絶縁された状態で集められる。集められた3本の伝熱部材55,56,57の他方端は、サーミスタ52に直接的に接触する。これによって、U相コイル40、V相コイル42、W相コイル44のそれぞれの温度が、3本の伝熱部材55,56,57を経由して、温度センサ部50のサーミスタ52によって検出され、リード線54を介して外部に出力される。U相コイル40、V相コイル42、W相コイル44のいずれかに温度異常が生じても、リード線54から伝送されるデータに基づいて、これを検出できる。   The other ends of the three heat transfer members 55, 56, and 57 are drawn into the package of the temperature sensor unit 50 and collected in a state where they are electrically insulated from each other at the position where the thermistor 52 is disposed. The other ends of the collected three heat transfer members 55, 56, 57 are in direct contact with the thermistor 52. Thereby, the respective temperatures of the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 are detected by the thermistor 52 of the temperature sensor unit 50 via the three heat transfer members 55, 56, and 57, It is output to the outside via the lead wire 54. Even if a temperature abnormality occurs in any of the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44, this can be detected based on data transmitted from the lead wire 54.

かかる伝熱部材55と伝熱部材56と伝熱部材57は、熱伝導性のよい材料を所定の形状に成形し、電気的に絶縁性を有する材料で表面を覆った部材が用いられる。熱伝導性のよい材料としては、金属が用いられる。絶縁材としては、適当な樹脂のコーティング材を用いる。例えば、単コイル13の絶縁皮膜付き導線と同様な素線と絶縁皮膜を用いてよい。   As the heat transfer member 55, the heat transfer member 56, and the heat transfer member 57, a member in which a material having good heat conductivity is formed into a predetermined shape and the surface is covered with an electrically insulating material is used. A metal is used as a material having good thermal conductivity. As the insulating material, an appropriate resin coating material is used. For example, an element wire and an insulating film similar to the conductive wire with the insulating film of the single coil 13 may be used.

温度センサ部50のパッケージとしては、サーミスタ52と、伝熱部材55と伝熱部材56と伝熱部材57のそれぞれの他方端を含んで、所定の形状に成形した樹脂パッケージを用いる。サーミスタ52のリード線54は、パッケージの外側に引き出される。樹脂パッケージに代えて、セラミックパッケージを用いてもよい。   As the package of the temperature sensor unit 50, a resin package that is molded into a predetermined shape including the thermistor 52, the heat transfer member 55, the heat transfer member 56, and the other end of the heat transfer member 57 is used. The lead wire 54 of the thermistor 52 is drawn out of the package. A ceramic package may be used instead of the resin package.

図4に示すように、3本の伝熱部材55,56,57は、平面図上の長さが同じでない。U相コイル40、V相コイル42、W相コイル44の温度を同等の精度でサーミスタ52が検出するためには、3本の伝熱部材55,56,57の伝熱に関する距離を同じにすることがよい。伝熱に関する距離を同じにするには、同じ熱伝導率の材料を用い、伝熱断面積を同じの場合には、3本の伝熱部材55,56,57の長さ寸法を同じにする。   As shown in FIG. 4, the three heat transfer members 55, 56, and 57 are not the same in length on the plan view. In order for the thermistor 52 to detect the temperatures of the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 with equal accuracy, the distances related to heat transfer of the three heat transfer members 55, 56, and 57 are made the same. It is good. In order to make the distances related to heat transfer the same, materials having the same thermal conductivity are used, and when the heat transfer cross-sectional areas are the same, the lengths of the three heat transfer members 55, 56, and 57 are made the same. .

図5は、軸方向について適切な屈曲形状を設けて長さ寸法をほぼ同じにした3本の伝熱部材75,76,77の例を示す図である。図5は、図4に対応して、ステータ10の外径側から見た側面図である。3本の伝熱部材75,76,77は、同じ熱伝導率の材料を用い、伝熱断面積を同じとして、軸方向について設けた屈曲形状によって、それぞれの接続部65,66,67からサーミスタ52までの長さ寸法がほぼ同じである。なお、3本の伝熱部材75,76,77は、図4の伝熱部材55,56,57と平面図上の形状が同じとなる。これにより、サーミスタ52は、U相コイル40、V相コイル42、W相コイル44の温度を同等の精度で検出できる。   FIG. 5 is a diagram showing an example of three heat transfer members 75, 76, and 77 that have appropriate bending shapes in the axial direction and have substantially the same length. FIG. 5 is a side view of the stator 10 viewed from the outer diameter side, corresponding to FIG. The three heat transfer members 75, 76, 77 are made of the same thermal conductivity, have the same heat transfer cross-sectional area, and have a thermistor connected to each of the connecting portions 65, 66, 67 by a bent shape provided in the axial direction. The length dimension up to 52 is almost the same. The three heat transfer members 75, 76, 77 have the same shape on the plan view as the heat transfer members 55, 56, 57 of FIG. Thereby, the thermistor 52 can detect the temperatures of the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 with the same accuracy.

3本の伝熱部材55,56,57において、同じ熱伝導率の材料を用い、伝熱断面積を同じとして、伝熱に関する距離を同じにする他の方法は、図4の平面図上で、3本の伝熱部材55,56,57について、周方向及び径方向に適切な屈曲形状を設けることである。あるいは、温度センサ部50を、ステータヨーク20の上に配置し、3本の伝熱部材55,56,57について、軸方向に沿って適切な屈曲形状を設けてもよい。あるいは、同じ熱伝導率の材料を用いながら、伝熱断面積を異ならせて、伝熱に関する距離を同じとしてよい。さらに、熱伝導率の異なる材料を用いることで、伝熱断面積を同じとし、接続部65,66,67からサーミスタ52までの長さ寸法も同じとしてよい。これらによっても、サーミスタ52は、U相コイル40、V相コイル42、W相コイル44の温度を同等の精度で検出できる。   In the three heat transfer members 55, 56, and 57, the same heat conductivity material is used, the heat transfer cross-sectional area is the same, and another method of making the distance related to heat transfer the same is shown on the plan view of FIG. The three heat transfer members 55, 56, and 57 are provided with appropriate bent shapes in the circumferential direction and the radial direction. Alternatively, the temperature sensor unit 50 may be disposed on the stator yoke 20, and the three heat transfer members 55, 56, and 57 may be provided with appropriate bent shapes along the axial direction. Alternatively, while using materials having the same thermal conductivity, the heat transfer cross-sectional areas may be different, and the distances related to heat transfer may be the same. Further, by using materials having different thermal conductivities, the heat transfer cross-sectional areas may be the same, and the lengths from the connecting portions 65, 66, 67 to the thermistor 52 may be the same. Also by these, the thermistor 52 can detect the temperatures of the U-phase coil 40, the V-phase coil 42, and the W-phase coil 44 with the same accuracy.

10 (回転電機)ステータ、12 ステータコア、13 単コイル、14 コイル、15 U端子、16 V端子、17 W端子、20 ステータヨーク、22 ティース、24 スロット、30,32,34,35,36,37 渡り線、40 U相コイル、42 V相コイル、44 W相コイル、50 温度センサ部、52 サーミスタ、54 リード線、55,56,57 伝熱部材、60 巻始め端、62 巻終り端、64 突出部、65,66,67 接続部、70,72 コイルエンド、75,76,77 伝熱部材。   10 (rotary electrical machine) stator, 12 stator core, 13 single coil, 14 coil, 15 U terminal, 16 V terminal, 17 W terminal, 20 stator yoke, 22 teeth, 24 slots, 30, 32, 34, 35, 36, 37 Crossover, 40 U-phase coil, 42 V-phase coil, 44 W-phase coil, 50 Temperature sensor, 52 Thermistor, 54 Lead wire, 55, 56, 57 Heat transfer member, 60 winding start end, 62 winding end end, 64 Projection, 65, 66, 67 connection, 70, 72 coil end, 75, 76, 77 Heat transfer member.

Claims (1)

円環状のステータヨーク、及び該ステータヨークから内径側に突き出す複数のティースを有するステータコアと、
前記ティースの周囲に巻回された三相の各相コイルであって、U相コイルの一方端とW相コイルの他方端とが互いに接続されてU端子を形成し、V相コイルの一方端とU相コイルの他方端とが互いに接続されてV端子を形成し、W相コイルの一方端とV相コイルの他方端とが互いに接続されてW端子を形成するデルタ結線方式で互いに接続された各相コイルと、
前記U端子に一方端が接続されたU伝熱部材と、
前記V端子に一方端が接続されたV伝熱部材と、
前記W端子に一方端が接続されたW伝熱部材と、
前記U伝熱部材の他方端、前記V伝熱部材の他方端、及び、前記W伝熱部材の他方端が互いに電気的に絶縁された状態で集められた位置で、前記他方端のそれぞれに共に接触する温度センサと、
を備えることを特徴とする回転電機ステータ。
An annular stator yoke, and a stator core having a plurality of teeth protruding from the stator yoke to the inner diameter side;
A three-phase coil wound around the teeth, wherein one end of the U-phase coil and the other end of the W-phase coil are connected to each other to form a U terminal, and one end of the V-phase coil And the other end of the U-phase coil are connected to each other to form a V terminal, and one end of the W-phase coil and the other end of the V-phase coil are connected to each other to form a W terminal. Each phase coil,
A U heat transfer member having one end connected to the U terminal;
A V heat transfer member having one end connected to the V terminal;
A W heat transfer member having one end connected to the W terminal;
The other end of the U heat transfer member, the other end of the V heat transfer member, and the other end of the W heat transfer member are gathered in a state where they are electrically insulated from each other. A temperature sensor in contact with each other;
A rotating electrical machine stator comprising:
JP2015217761A 2015-11-05 2015-11-05 Rotating electrical machine stator Active JP6443303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217761A JP6443303B2 (en) 2015-11-05 2015-11-05 Rotating electrical machine stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217761A JP6443303B2 (en) 2015-11-05 2015-11-05 Rotating electrical machine stator

Publications (2)

Publication Number Publication Date
JP2017093072A true JP2017093072A (en) 2017-05-25
JP6443303B2 JP6443303B2 (en) 2018-12-26

Family

ID=58768729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217761A Active JP6443303B2 (en) 2015-11-05 2015-11-05 Rotating electrical machine stator

Country Status (1)

Country Link
JP (1) JP6443303B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102761A1 (en) * 2017-11-24 2019-05-31 Kyb株式会社 Tubular linear motor
JP2019097377A (en) * 2017-11-24 2019-06-20 Kyb株式会社 Cylindrical liner motor
WO2020137911A1 (en) * 2018-12-26 2020-07-02 株式会社マキタ Electric work machine
WO2021246180A1 (en) * 2020-06-03 2021-12-09 株式会社明電舎 Jumper wire unit, stator, and rotary machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234964A (en) * 1998-02-09 1999-08-27 Asmo Co Ltd Temperature detection structure for motor
JP2007236165A (en) * 2006-03-03 2007-09-13 Asmo Co Ltd Brushless motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234964A (en) * 1998-02-09 1999-08-27 Asmo Co Ltd Temperature detection structure for motor
JP2007236165A (en) * 2006-03-03 2007-09-13 Asmo Co Ltd Brushless motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102761A1 (en) * 2017-11-24 2019-05-31 Kyb株式会社 Tubular linear motor
JP2019097377A (en) * 2017-11-24 2019-06-20 Kyb株式会社 Cylindrical liner motor
US11456654B2 (en) 2017-11-24 2022-09-27 Kyb Corporation Tubular linear motor
JP7240569B2 (en) 2017-11-24 2023-03-16 Kyb株式会社 Cylindrical linear motor
WO2020137911A1 (en) * 2018-12-26 2020-07-02 株式会社マキタ Electric work machine
CN113226657A (en) * 2018-12-26 2021-08-06 株式会社牧田 Electric working machine
JPWO2020137911A1 (en) * 2018-12-26 2021-11-04 株式会社マキタ Electric work machine
JP7422089B2 (en) 2018-12-26 2024-01-25 株式会社マキタ electric work equipment
CN113226657B (en) * 2018-12-26 2024-04-23 株式会社牧田 Electric working machine
WO2021246180A1 (en) * 2020-06-03 2021-12-09 株式会社明電舎 Jumper wire unit, stator, and rotary machine
JP2021191173A (en) * 2020-06-03 2021-12-13 株式会社明電舎 Crossover unit, stator, and rotary machine

Also Published As

Publication number Publication date
JP6443303B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US8674577B2 (en) Stator for electric rotating machine
JP6290731B2 (en) Rotating electrical machine stator
JP6070665B2 (en) Rotating electrical machine stator
US8390159B2 (en) Stator for electric rotating machine
US9893583B2 (en) Stator for rotating electric machine
JP5789570B2 (en) Stator
JP5989496B2 (en) Bus ring for stator of rotating electrical machine
JP6443303B2 (en) Rotating electrical machine stator
JP2009011152A (en) Stator of rotating electric machine
JP6281499B2 (en) Stator for rotating electrical machine
JP2015061465A (en) Rotary electric machine stator
US8659201B2 (en) Stator for electric rotating machine
CN111245164B (en) Rotating electric machine and method for manufacturing same
JP2021180584A (en) Stator and method for manufacturing the same
US10454348B2 (en) Stator for rotating electrical machine
JP5259778B2 (en) Busbar and stator
JP6103558B1 (en) Rotating electric machine
JP6238554B2 (en) Rotating electric machine stator and rotating electric machine
JP2006191733A (en) Winding connecting structure of rotating electric machine
JP2019030156A (en) Stator of rotary electric machine
JP6080964B2 (en) Rotating electric machine stator
JP2018050384A (en) Rotary electric machine stator
CN110741537B (en) Rotating electrical machine
JP6394542B2 (en) Rotating electrical machine stator
US20110309725A1 (en) Wiring component of rotating electrical machine for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151