WO2021246180A1 - Jumper wire unit, stator, and rotary machine - Google Patents
Jumper wire unit, stator, and rotary machine Download PDFInfo
- Publication number
- WO2021246180A1 WO2021246180A1 PCT/JP2021/019075 JP2021019075W WO2021246180A1 WO 2021246180 A1 WO2021246180 A1 WO 2021246180A1 JP 2021019075 W JP2021019075 W JP 2021019075W WO 2021246180 A1 WO2021246180 A1 WO 2021246180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crossover
- phase
- flat portion
- detecting element
- temperature detecting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/25—Devices for sensing temperature, or actuated thereby
Definitions
- the present invention relates to a crossover unit, a stator, and a rotary machine.
- a crossover wire wound around a stator core is connected to one end in the length direction, and power is input to the other end in the length direction.
- Those provided with a temperature detecting element fixed to a crossover are known.
- the crossover unit described in Patent Document 1 includes a coil as a winding wire, a neutral wire as a crossover wire, and a temperature detecting element.
- the neutral wire consists of a flat wire, a coil is connected to one end in the length direction thereof, and power is input to the other end in the length direction.
- the temperature detection element is sealed in the resin molded by the mold member and fixed to the neutral wire via the resin.
- the present invention has been made in view of the above background, and an object thereof is a crossover unit, a stator, and a rotation that can improve productivity and accurately detect the temperature of the crossover. To provide an opportunity.
- One aspect of the present invention is a crossover wire to which a winding wound around a stator core is connected to one end portion in the length direction and power is input to the other end portion in the length direction, and a crossover wire.
- a crossover unit including a fixed temperature detecting element, wherein the crossover is made of a round wire and has a flat flat portion in a part of a region in the length direction, and the temperature detecting element is the same. It is characterized in that it is fixed in a manner of directly contacting a flat portion.
- FIG. 1 is a perspective view showing the motor 1 with the motor cover removed.
- FIG. 2 is a perspective view showing the motor 1 with the motor cover and the flange (3 in FIG. 1) removed.
- the motor 1 includes a housing 2, a flange 3, a shaft 9, a rotor (rotor) 10, a stator (stator) 20, an electrical cover 80, and the like.
- the shaft-shaped shaft 9 penetrates the shaft hole provided in the center of the rotor core of the cylindrical rotor 10 in the direction of the rotation axis A, and is located on the rotation axis A of the rotor 10.
- the shaft 9 is rotationally driven around the rotation axis A together with the rotor 10.
- the extending direction of the rotation axis A and the direction parallel to the extending direction A are simply referred to as an axial direction.
- the end on the drive output side protrudes from the end face of the rotor 10.
- the one on the drive output side is referred to as the front side
- the opposite side is referred to as the rear side.
- the circumferential direction centered on the rotation axis A is simply referred to as a circumferential direction.
- the radial direction centered on the rotation axis A is simply referred to as the radial direction.
- a flange 3 protruding in the radial direction from the outer peripheral surface of the housing 2 is fixed to the front end of the housing 2.
- a motor cover (not shown) is bolted to the front side of the flange 3.
- the motor cover is provided with a shaft hole, and is exposed to the outside by penetrating the end portion of the shaft 9 on the drive output side.
- Each of the axially end ends of the cylindrical housing 2 is provided with an opening. Of these openings, the opening on the front side is closed by the motor cover described above. Further, the opening on the rear side is closed by the electrical cover 80.
- the housing 2 made of a cast product functions as a motor housing for accommodating the rotor 10 and the stator 20, and holds the cylindrical stator 20 on the inner peripheral surface.
- the cylindrical rotor 10 is housed in the hollow of the stator 20 held in the housing 2.
- the rotor 10 is a magnet-embedded type (IPM: Interior permanent Magnet) rotor, but may be a surface magnet type (SPM: Surface Permanent Magnet) rotor. Further, the rotor 10 may be a rotor without a permanent magnet.
- FIG. 3 is a perspective view showing the motor 1 with the motor cover and the electrical cover (80 in FIG. 1) removed from the rear side.
- An electrical component is arranged on the rear side of the housing 2, and the electrical component is covered with an electrical cover (80 in FIG. 2).
- a rotation detector (resolver) 30 for detecting the rotation speed of the rotor 10, a crossover unit 35, and the like are arranged in the electrical component unit.
- FIG. 4 is a perspective view showing the stator 20 from the rear side.
- FIG. 5 is a perspective view showing the stator 20 from the front side.
- the stator 20 includes a cylindrical stator core 21, a plurality of coils 22 as windings wound around the stator core 21, and a crossover unit 35.
- a plurality of teeth (tooth portions) 21a protruding inward from the outside in the radial direction and extending in the axial direction are arranged in such a manner that they are arranged at predetermined intervals in the circumferential direction.
- FIG. 6 is a perspective view showing the crossover unit 35.
- the crossover unit 35 includes a U-phase crossover 36U, a V-phase crossover 36V, a W-phase crossover 36W, a U-phase terminal 40U, and a V-phase terminal 40V, W in a three-phase AC power supply. It is equipped with a phase terminal 40W and the like.
- Four crossover lines 36U, four crossover lines 36V, and four crossover lines 36W are arranged.
- the four crossover lines 36U two are formed into a shape in which one end side in the length direction extends in the circumferential direction and the other side extends from the front side to the rear side. With respect to such a shape, the other two crossover lines 36U are formed in a point-symmetrical shape centered on the rotation axis (A in FIG. 1).
- the crossover 36V and the crossover 36W are also formed in the same manner as the crossover 36U.
- the U phase is an example of the first phase in the present invention
- the V phase is an example of the second phase in the present invention
- the W phase is an example of the third phase in the present invention.
- the relationship between the phase and the first phase, the second phase, and the third phase is not limited to the above-mentioned example.
- Each of the crossover 36U, the crossover 36V, and the crossover 36W consists of an enamel wire as a round wire (a wire having a circular cross section).
- Each of the crossover wire 36U, the crossover wire 36V, and the crossover wire 36W made of enamel wire as a round wire is easily formed because they are more easily deformed than the crossover wire made of a flat wire (a wire having a rectangular cross section). To. Therefore, according to the motor 1 according to the embodiment, the crossover 36U, the crossover 36V, and the crossover 36W can be easily formed to improve the productivity of the crossover unit 35.
- a U-phase coil (22) is connected to one end in the length direction of each of the four crossover lines 36U. Further, a terminal 40U is fixed to the other end of each of the four crossover lines 36U by caulking. A U-phase power supply output from an external power supply is input to the terminal 40U. A coil (22) for the V phase is connected to one end in the length direction of each of the four crossovers 36V. Further, a terminal 40V is fixed to the other end of each of the four crossover lines 36V by caulking. A V-phase power supply output from an external power supply is input to the terminal 40V. A coil (22) for the W phase is connected to one end in the length direction of each of the four crossovers 36W. Further, a terminal 40W is fixed to the other end of each of the four crossover lines 36W by caulking. A W-phase power supply output from an external power supply is input to the terminal 40W.
- the crossover unit 35 includes a mold resin 39, a first temperature detecting element (thermistor) described later, and a second temperature detecting element (thermistor) described later.
- a part of the two regions is covered and sealed with the mold resin 39 as a sealing body.
- the region covered by the mold resin 39 in each crossover is referred to as a sealing region.
- FIG. 7 is a perspective view showing a sealing region of the crossover line 36U, the crossover line 36V, and the crossover line 36W.
- one of the four crossover lines 36U comprises a flat flat portion 36U1 in the sealing region.
- one of the four crossover lines 36V has a flat flat portion 36V1 in the sealing region.
- one of the four crossover lines 36W has a flat flat portion 36W1 in the sealing region.
- Each of the flat portion 36U1, the flat portion 36V1, and the flat portion 36W1 is formed by press working.
- FIG. 8 is a perspective view showing the sealing region of the crossover 36U, the crossover 36V, and the crossover 36W together with the first temperature detecting element 37 and the second temperature detecting element 38.
- the shapes of the first temperature detecting element 37 and the second temperature detecting element 38 are flat as shown in the figure.
- the first temperature detecting element 37 is sandwiched between the flat portion 36U1 of the crossover line 36U and the flat portion 36V1 of the crossover line 36V, and is arranged so as to be in direct contact with the flat portion 36U1 and the flat portion 36V1.
- the second temperature detecting element 38 is sandwiched between the flat portion 36V1 of the crossover line 36V and the flat portion 36W1 of the crossover line 36W, and is arranged so as to be in direct contact with the flat portion 36V1 and the flat portion 36W1. ..
- the crossover unit 35 unlike the crossover unit described in Patent Document 1, between the first temperature detecting element 37 and the flat portion 36U1 and between the first temperature detecting element 37 and the flat portion 36V1. No resin intervenes. Therefore, the heat of the flat portion 36U1 and the flat portion 36V1 is satisfactorily transferred to the first temperature detecting element 37 without causing heat loss due to the resin. Therefore, according to the motor 1 according to the embodiment, the temperatures of the crossover 36U and the crossover 36V can be accurately detected by the first temperature detecting element 37.
- the crossover unit 35 unlike the crossover unit described in Patent Document 1, between the second temperature detecting element 38 and the flat portion 36V1 and between the second temperature detecting element 38 and the flat portion 36W1. No resin intervenes. Therefore, the heat of the flat portion 36V1 and the flat portion 36W1 is satisfactorily transferred to the second temperature detecting element 38 without causing heat loss due to the resin. Therefore, according to the motor 1 according to the embodiment, the temperatures of the crossover 36V and the crossover 36W can be accurately detected by the second temperature detecting element 38.
- the first temperature detecting element 37 Since the first temperature detecting element 37 has a flat shape, the contact area with the flat portion 36U1 and the flat portion 36V1 is increased and the heat conduction amount per unit time is increased as compared with the case where the first temperature detecting element 37 has a cylindrical shape. .. As a result, the first temperature detecting element 37 can quickly and accurately detect the temperature change of the crossover line 36U and the crossover line 36V. The second temperature detecting element 38 can also detect the temperature change of the crossover 36V and the crossover 36W quickly and accurately for the same reason as the first temperature detecting element 37.
- FIG. 9 is a cross-sectional perspective view showing a cross section of the mold resin 39 together with each crossover and each temperature detecting element.
- the mold resin 39 is molded in the following manner. That is, the first temperature detection element 37 is sandwiched between the flat portion 36U1 and the flat portion 36V1, the second temperature detection element 38 is sandwiched between the flat portion 36V1 and the flat portion 36W1, and each flat portion (36U1) is sandwiched. , 36V1, 36W1) and each temperature detecting element (37, 38) are sealed.
- the mold resin 39 has the first temperature detection element 37 in good contact with the flat portion 36U1 and the flat portion 36V1 and the second temperature detection element 38 in good contact with the flat portion 36V1 and the flat portion 36W1. Maintain the state of letting. According to the motor 1, by maintaining the above-mentioned state, the temperature of each crossover (36U, 36V, 36W) can be stably detected over a long period of time.
- the present invention can also be applied to a generator (dynamo) as a rotating machine.
- the present invention is not limited to the above-described embodiment, and a configuration different from the embodiment may be adopted within the range to which the configuration of the present invention can be applied.
- the present invention exerts a peculiar action and effect for each aspect described below.
- a winding wire for example, coil 22
- a stator core for example, a stator core 21
- a power supply is input to the other end in the length direction.
- a crossover unit including a crossover wire (for example, a crossover wire 36U, 36V, 36W) and a temperature detecting element (for example, a first temperature detecting element 37, a second temperature detecting element 38) fixed to the crossover wire.
- the crossover unit 35 wherein the crossover is made of a round wire (for example, an enamel wire) and is flat in a part of the length direction (for example, the flat portions 36U1, 36V1). 36W1) is provided, and the temperature detecting element is fixed so as to be in direct contact with the flat portion.
- the first aspect it is possible to easily form a crossover wire made of a round wire, which is easily deformable, as compared with a crossover wire made of a flat wire, so that the productivity of the crossover unit can be improved. can. Further, according to the first aspect, since the resin is not interposed between the crossover wire in contact with each other and the temperature detecting element, heat loss due to the resin can be avoided and the temperature of the crossover wire can be detected with high accuracy. ..
- the second aspect is a crossover unit having the configuration of the first aspect and characterized in that the shape of the temperature detecting element is a flat shape.
- the flat temperature detecting element has a larger contact area with the flat portion of the crossover than the cylindrical temperature detecting element, and the heat conduction amount per unit time is increased. Therefore, the temperature change of the crossover can be detected quickly and accurately.
- a third aspect is a crossover unit comprising the configuration of the second aspect and a sealing body (for example, a mold resin 39) molded in a manner of sealing the temperature detecting element and the flat portion. ..
- the sealed body can maintain the state in which the temperature detecting element and the flat portion of the crossover are in close contact with each other.
- the fourth aspect comprises the configuration of the third aspect.
- the temperature detecting element includes at least a first temperature detecting element and a second temperature detecting element, and the first phase power source of the three-phase power source is input as the crossover.
- a crossover for example, a crossover 36U
- a crossover for the second phase to which the second phase power supply is input for example, the crossover 36V
- a crossover for the third phase to which the third phase power supply is input for example.
- a crossover 36W is provided, and the sealing body includes the flat portion of the crossover for the first phase (for example, the flat portion 36U1) and the flat portion of the crossover for the second phase (for example, the flat portion 36V1).
- the flat first temperature detection element is sandwiched between the two, and between the flat portion of the crossover for the second phase and the flat portion of the crossover for the third phase (for example, the flat portion 36W1).
- the flat portion of the second temperature detection element is sandwiched between the two, and the flat portion of the crossover for the first phase, the first temperature detection element, the flat portion of the crossover for the second phase, and the second temperature.
- It is a crossover unit characterized by being molded in a manner of sealing the flat portion of the crossover wire for the detection element and the third phase.
- the encapsulant has the first temperature detecting element in good contact with the flat portion for the first phase and the flat portion for the second phase, and the second temperature detecting element is flat for the second phase. Maintain a state of good adhesion to the portion and the flat portion for the third phase. According to the fourth aspect, by maintaining the above-mentioned state, the temperature of each crossover can be detected accurately and stably over a long period of time.
- a fifth aspect is a stator (for example, a stator 20) including a stator core, a winding wound around the stator core, and a crossover unit including a crossover wire and a temperature detecting element, wherein the crossover unit is a first. It is a stator characterized by being a crossover unit according to any one of the first aspect to the fourth aspect.
- the productivity of the stator can be increased by increasing the productivity of the crossover unit.
- a sixth aspect is a rotor (for example, rotor 10) that rotates around a rotation axis (for example, rotation axis A), a shaft that penetrates the center of the rotor (for example, shaft 9), and a circumferential direction around the rotation axis.
- a rotary machine for example, a motor 1 including a stator that surrounds the rotor along the line, wherein the stator is the stator of the fifth aspect.
- the productivity of the motor 1 can be increased by increasing the productivity of the stator.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
[Problem] To provide a jumper wire unit 35 which can improve productivity and accurately detect the temperatures of jumper wires (36U, 36V, 36W). [Solution] This jumper wire unit 35 comprises: a jumper wire, to which a coil is connected to one end thereof in the length direction, and a power supply is input to the other end; and temperature detection elements (37, 38) fixed to the jumper wire, wherein the jumper wire is made of a round wire and includes flat portions (36U1, 36V1, 36W1) in part of a region in the length direction, and the temperature detection elements are fixed in a form directly connecting to the flat portions.
Description
本発明は、渡り線ユニット、ステータ、及び回転機に関する。
The present invention relates to a crossover unit, a stator, and a rotary machine.
従来、ステータに搭載される渡り線ユニットとして、長さ方向の一端部に対し、ステータコアに巻き付けられた巻線が接続され、且つ長さ方向の他端部に電源が入力される渡り線と、渡り線に固定される温度検出素子とを備えるものが知られている。
Conventionally, as a crossover unit mounted on a stator, a crossover wire wound around a stator core is connected to one end in the length direction, and power is input to the other end in the length direction. Those provided with a temperature detecting element fixed to a crossover are known.
例えば、特許文献1に記載の渡り線ユニットは、巻線たるコイルと、渡り線たる中性線と、温度検出素子とを備える。中性線は平角線からなり、その長さ方向の一端部にコイルが接続され、且つ長さ方向の他端部に電源が入力される。温度検出素子は、型部材によって成型された樹脂内に封止され、樹脂を介して中性線に固定される。
For example, the crossover unit described in Patent Document 1 includes a coil as a winding wire, a neutral wire as a crossover wire, and a temperature detecting element. The neutral wire consists of a flat wire, a coil is connected to one end in the length direction thereof, and power is input to the other end in the length direction. The temperature detection element is sealed in the resin molded by the mold member and fixed to the neutral wire via the resin.
特許文献1に記載の渡り線ユニットにおいては、変形し難い平角線からなる中性線(渡り線)を所定の形状に成形することに手間を要して、生産性を低下させてしまうという課題がある。また、中性線と温度検出素子との間に介在する樹脂において熱損失が発生することから、中性線の温度の検出精度を低下させてしまうという課題もある。
In the crossover unit described in Patent Document 1, it takes time and effort to form a neutral wire (crossover wire) composed of a flat wire that is difficult to be deformed into a predetermined shape, and there is a problem that productivity is lowered. There is. Further, since heat loss occurs in the resin interposed between the neutral wire and the temperature detecting element, there is also a problem that the temperature detection accuracy of the neutral wire is lowered.
本発明は、以上の背景に鑑みてなされたものであり、その目的とするところは、生産性を向上させ、且つ渡り線の温度を精度良く検出することができる渡り線ユニット、ステータ、及び回転機を提供することである。
The present invention has been made in view of the above background, and an object thereof is a crossover unit, a stator, and a rotation that can improve productivity and accurately detect the temperature of the crossover. To provide an opportunity.
本発明の一態様は、長さ方向の一端部に対し、ステータコアに巻き付けられた巻線が接続され、且つ前記長さ方向の他端部に電源が入力される渡り線と、前記渡り線に固定される温度検出素子とを備える渡り線ユニットであって、前記渡り線が、丸線からなり、且つ前記長さ方向の一部領域に平坦な平坦部を備え、前記温度検出素子が、前記平坦部に直接接触する態様で固定されることを特徴とするものである。
One aspect of the present invention is a crossover wire to which a winding wound around a stator core is connected to one end portion in the length direction and power is input to the other end portion in the length direction, and a crossover wire. A crossover unit including a fixed temperature detecting element, wherein the crossover is made of a round wire and has a flat flat portion in a part of a region in the length direction, and the temperature detecting element is the same. It is characterized in that it is fixed in a manner of directly contacting a flat portion.
本発明によれば、渡り線ユニットの生産性を向上させ、且つ渡り線の温度を精度良く検出することができるという優れた効果がある。
According to the present invention, there is an excellent effect that the productivity of the crossover unit can be improved and the temperature of the crossover can be detected with high accuracy.
以下、各図を用いて、本発明を適用した回転機としてのモータの一実施形態について説明する。
図1は、モータカバーを取り外した状態のモータ1を示す斜視図である。図2は、モータカバー、及びフランジ(図1の3)を取り外した状態のモータ1を示す斜視図である。モータ1は、ハウジング2、フランジ3、シャフト9、ロータ(回転子)10、ステータ(固定子)20、電装カバー80等を備える。 Hereinafter, an embodiment of a motor as a rotary machine to which the present invention is applied will be described with reference to each figure.
FIG. 1 is a perspective view showing themotor 1 with the motor cover removed. FIG. 2 is a perspective view showing the motor 1 with the motor cover and the flange (3 in FIG. 1) removed. The motor 1 includes a housing 2, a flange 3, a shaft 9, a rotor (rotor) 10, a stator (stator) 20, an electrical cover 80, and the like.
図1は、モータカバーを取り外した状態のモータ1を示す斜視図である。図2は、モータカバー、及びフランジ(図1の3)を取り外した状態のモータ1を示す斜視図である。モータ1は、ハウジング2、フランジ3、シャフト9、ロータ(回転子)10、ステータ(固定子)20、電装カバー80等を備える。 Hereinafter, an embodiment of a motor as a rotary machine to which the present invention is applied will be described with reference to each figure.
FIG. 1 is a perspective view showing the
軸状のシャフト9は、円筒状のロータ10のロータコアの中心に設けられたシャフト穴を回転軸線Aの方向に貫通し、ロータ10の回転軸線A上に位置する。シャフト9は、ロータ10とともに回転軸線Aを中心にして回転駆動する。以下、回転軸線Aの延在方向、及びこれに平行な方向を、単に軸方向という。
The shaft-shaped shaft 9 penetrates the shaft hole provided in the center of the rotor core of the cylindrical rotor 10 in the direction of the rotation axis A, and is located on the rotation axis A of the rotor 10. The shaft 9 is rotationally driven around the rotation axis A together with the rotor 10. Hereinafter, the extending direction of the rotation axis A and the direction parallel to the extending direction A are simply referred to as an axial direction.
シャフト9の軸方向における両端部のうち、駆動出力側の端部(モータギヤなどが固定される端部)は、ロータ10の端面から突出する。以下、軸方向における両側のうち、駆動出力側となる方をフロント側、反対側をリア側という。また、回転軸線Aを中心にした周方向を単に周方向という。また、回転軸線Aを中心にした径方向を単に径方向という。
Of both ends of the shaft 9 in the axial direction, the end on the drive output side (the end to which the motor gear or the like is fixed) protrudes from the end face of the rotor 10. Hereinafter, of both sides in the axial direction, the one on the drive output side is referred to as the front side, and the opposite side is referred to as the rear side. Further, the circumferential direction centered on the rotation axis A is simply referred to as a circumferential direction. Further, the radial direction centered on the rotation axis A is simply referred to as the radial direction.
ハウジング2におけるフロント側の端には、ハウジング2の外周面よりも径方向に突出するフランジ3が固定される。フランジ3のフロント側には、不図示のモータカバーがボルト止めされる。モータカバーは、シャフト穴を備え、シャフト9の駆動出力側の端部を貫通させて外部に露出させる。円筒状のハウジング2における軸方向の両端のそれぞれは、開口を備える。これら開口のうち、フロント側の開口は、前述のモータカバーによって塞がれる。また、リア側の開口は、電装カバー80によって塞がれる。
A flange 3 protruding in the radial direction from the outer peripheral surface of the housing 2 is fixed to the front end of the housing 2. A motor cover (not shown) is bolted to the front side of the flange 3. The motor cover is provided with a shaft hole, and is exposed to the outside by penetrating the end portion of the shaft 9 on the drive output side. Each of the axially end ends of the cylindrical housing 2 is provided with an opening. Of these openings, the opening on the front side is closed by the motor cover described above. Further, the opening on the rear side is closed by the electrical cover 80.
鋳造品からなるハウジング2は、ロータ10及びステータ20を収容するモータハウジングとして機能し、内周面で円筒状のステータ20を保持する。円筒状のロータ10は、ハウジング2に保持されているステータ20の中空内に収容される。ロータ10は、磁石埋込型(IPM:Interior permanent Magnet)のロータであるが、表面磁石型(SPM:Surface Permanent Magnet)のロータであってもよい。また、ロータ10は、永久磁石を備えないロータであってもよい。
The housing 2 made of a cast product functions as a motor housing for accommodating the rotor 10 and the stator 20, and holds the cylindrical stator 20 on the inner peripheral surface. The cylindrical rotor 10 is housed in the hollow of the stator 20 held in the housing 2. The rotor 10 is a magnet-embedded type (IPM: Interior permanent Magnet) rotor, but may be a surface magnet type (SPM: Surface Permanent Magnet) rotor. Further, the rotor 10 may be a rotor without a permanent magnet.
図3は、モータカバー、及び電装カバー(図1の80)を取り外した状態のモータ1をリア側から示す斜視図である。ハウジング2よりもリア側には、電装部が配置され、この電装部は、電装カバー(図2の80)によって覆われる。電装部には、ロータ10の回転速度を検出する回転検出器(レゾルバ)30、渡り線ユニット35等が配置される。
FIG. 3 is a perspective view showing the motor 1 with the motor cover and the electrical cover (80 in FIG. 1) removed from the rear side. An electrical component is arranged on the rear side of the housing 2, and the electrical component is covered with an electrical cover (80 in FIG. 2). A rotation detector (resolver) 30 for detecting the rotation speed of the rotor 10, a crossover unit 35, and the like are arranged in the electrical component unit.
図4は、ステータ20をリア側から示す斜視図である。図5は、ステータ20をフロント側から示す斜視図である。ステータ20は、円筒状のステータコア21と、ステータコア21に巻き付けられた巻線としての複数のコイル22と、渡り線ユニット35とを備える。ステータコア21の内周面には、径方向の外側から内側に向けて突出し、且つ軸方向に延びる複数のティース(歯部)21aが、周方向に所定の間隔で並ぶ態様で配置される。
FIG. 4 is a perspective view showing the stator 20 from the rear side. FIG. 5 is a perspective view showing the stator 20 from the front side. The stator 20 includes a cylindrical stator core 21, a plurality of coils 22 as windings wound around the stator core 21, and a crossover unit 35. On the inner peripheral surface of the stator core 21, a plurality of teeth (tooth portions) 21a protruding inward from the outside in the radial direction and extending in the axial direction are arranged in such a manner that they are arranged at predetermined intervals in the circumferential direction.
図6は、渡り線ユニット35を示す斜視図である。渡り線ユニット35は、三相交流電源におけるU相用の渡り線36U、V相用の渡り線36V、W相用の渡り線36W、U相用の端子40U、V相用の端子40V、W相用の端子40Wなどを備える。渡り線36U、渡り線36V、渡り線36Wのそれぞれは、4本ずつ配置される。4本の渡り線36Uのうち、2本は、長さ方向の一端側を周方向に延在させ、且つ他方側をフロント側からリア側に向けて延在させる形状に成形される。かかる形状に対し、回転軸線(図1のA)を中心とした点対称の形状で、他の2本の渡り線36Uが成形される。渡り線36V及び渡り線36Wも、渡り線36Uと同様に成形される。
FIG. 6 is a perspective view showing the crossover unit 35. The crossover unit 35 includes a U-phase crossover 36U, a V-phase crossover 36V, a W-phase crossover 36W, a U-phase terminal 40U, and a V-phase terminal 40V, W in a three-phase AC power supply. It is equipped with a phase terminal 40W and the like. Four crossover lines 36U, four crossover lines 36V, and four crossover lines 36W are arranged. Of the four crossover lines 36U, two are formed into a shape in which one end side in the length direction extends in the circumferential direction and the other side extends from the front side to the rear side. With respect to such a shape, the other two crossover lines 36U are formed in a point-symmetrical shape centered on the rotation axis (A in FIG. 1). The crossover 36V and the crossover 36W are also formed in the same manner as the crossover 36U.
U相は本発明における第1相の一例であり、V相は本発明における第2相の一例であり、W相は本発明における第3相の一例であるが、U相、V相、W相と、第1相、第2相、第3相との関係は、前述の一例に限られない。
The U phase is an example of the first phase in the present invention, the V phase is an example of the second phase in the present invention, and the W phase is an example of the third phase in the present invention. The relationship between the phase and the first phase, the second phase, and the third phase is not limited to the above-mentioned example.
渡り線36U、渡り線36V、渡り線36Wのそれぞれは、丸線(断面が円状の電線)としてのエナメル線からなる。丸線としてのエナメル線からなる渡り線36U、渡り線36V、渡り線36Wのそれぞれは、平角線(断面が矩形状の電線)からなる渡り線に比べて変形し易いことから、容易に成形される。よって、実施形態に係るモータ1によれば、渡り線36U、渡り線36V、及び渡り線36Wを容易に成形して、渡り線ユニット35の生産性を向上させることができる。
Each of the crossover 36U, the crossover 36V, and the crossover 36W consists of an enamel wire as a round wire (a wire having a circular cross section). Each of the crossover wire 36U, the crossover wire 36V, and the crossover wire 36W made of enamel wire as a round wire is easily formed because they are more easily deformed than the crossover wire made of a flat wire (a wire having a rectangular cross section). To. Therefore, according to the motor 1 according to the embodiment, the crossover 36U, the crossover 36V, and the crossover 36W can be easily formed to improve the productivity of the crossover unit 35.
4本の渡り線36Uのそれぞれにおける長さ方向の一端部には、U相用のコイル(22)が接続される。また、4本の渡り線36Uのそれぞれにおける他端部には、端子40Uがカシメによって固定される。端子40Uには、外部電源から出力されるU相電源が入力される。4本の渡り線36Vのそれぞれにおける長さ方向の一端部には、V相用のコイル(22)が接続される。また、4本の渡り線36Vのそれぞれにおける他端部には、端子40Vがカシメによって固定される。端子40Vには、外部電源から出力されるV相電源が入力される。4本の渡り線36Wのそれぞれにおける長さ方向の一端部には、W相用のコイル(22)が接続される。また、4本の渡り線36Wのそれぞれにおける他端部には、端子40Wがカシメによって固定される。端子40Wには、外部電源から出力されるW相電源が入力される。
A U-phase coil (22) is connected to one end in the length direction of each of the four crossover lines 36U. Further, a terminal 40U is fixed to the other end of each of the four crossover lines 36U by caulking. A U-phase power supply output from an external power supply is input to the terminal 40U. A coil (22) for the V phase is connected to one end in the length direction of each of the four crossovers 36V. Further, a terminal 40V is fixed to the other end of each of the four crossover lines 36V by caulking. A V-phase power supply output from an external power supply is input to the terminal 40V. A coil (22) for the W phase is connected to one end in the length direction of each of the four crossovers 36W. Further, a terminal 40W is fixed to the other end of each of the four crossover lines 36W by caulking. A W-phase power supply output from an external power supply is input to the terminal 40W.
渡り線ユニット35は、モールド樹脂39、後述の第1温度検出素子(サーミスタ)、及び後述の第2温度検出素子(サーミスタ)を備える。
The crossover unit 35 includes a mold resin 39, a first temperature detecting element (thermistor) described later, and a second temperature detecting element (thermistor) described later.
4本の渡り線36Uのうちの2本における長さ方向の一部領域、4本の渡り線36Vのうちの2本における長さ方向の一部領域、及び4本の渡り線36Wのうちの2本における一部領域は、封止体としてのモールド樹脂39によって覆われて封止される。以下、各渡り線におけるモールド樹脂39によって覆われる領域を、封止領域という。
Partial area in the length direction in two of the four crossover lines 36U, partial area in the length direction in two of the four crossover lines 36V, and part of the four crossover lines 36W. A part of the two regions is covered and sealed with the mold resin 39 as a sealing body. Hereinafter, the region covered by the mold resin 39 in each crossover is referred to as a sealing region.
図7は、渡り線36U、渡り線36V、及び渡り線36Wの封止領域を示す斜視図である。図示のように、4本の渡り線36Uのうちの1本は、平坦な平坦部36U1を封止領域に備える。また、4本の渡り線36Vのうちの1本は、平坦な平坦部36V1を封止領域に備える。また、4本の渡り線36Wのうちの1本は、平坦な平坦部36W1を封止領域に備える。平坦部36U1、平坦部36V1、平坦部36W1のそれぞれは、プレス加工によって成形されたものである。
FIG. 7 is a perspective view showing a sealing region of the crossover line 36U, the crossover line 36V, and the crossover line 36W. As shown, one of the four crossover lines 36U comprises a flat flat portion 36U1 in the sealing region. Further, one of the four crossover lines 36V has a flat flat portion 36V1 in the sealing region. Further, one of the four crossover lines 36W has a flat flat portion 36W1 in the sealing region. Each of the flat portion 36U1, the flat portion 36V1, and the flat portion 36W1 is formed by press working.
図8は、渡り線36U、渡り線36V、及び渡り線36Wの封止領域を、第1温度検出素子37、及び第2温度検出素子38とともに示す斜視図である。第1温度検出素子37、第2温度検出素子38の形状は、図示のように扁平形状である。第1温度検出素子37は、渡り線36Uの平坦部36U1と、渡り線36Vの平坦部36V1との間に挟み込まれて、平坦部36U1及び平坦部36V1に直接接触する態様で配置される。また、第2温度検出素子38は、渡り線36Vの平坦部36V1と、渡り線36Wの平坦部36W1との間に挟み込まれて、平坦部36V1及び平坦部36W1に直接接触する態様で配置される。
FIG. 8 is a perspective view showing the sealing region of the crossover 36U, the crossover 36V, and the crossover 36W together with the first temperature detecting element 37 and the second temperature detecting element 38. The shapes of the first temperature detecting element 37 and the second temperature detecting element 38 are flat as shown in the figure. The first temperature detecting element 37 is sandwiched between the flat portion 36U1 of the crossover line 36U and the flat portion 36V1 of the crossover line 36V, and is arranged so as to be in direct contact with the flat portion 36U1 and the flat portion 36V1. Further, the second temperature detecting element 38 is sandwiched between the flat portion 36V1 of the crossover line 36V and the flat portion 36W1 of the crossover line 36W, and is arranged so as to be in direct contact with the flat portion 36V1 and the flat portion 36W1. ..
渡り線ユニット35においては、特許文献1に記載の渡り線ユニットとは異なり、第1温度検出素子37と平坦部36U1との間、及び第1温度検出素子37と平坦部36V1との間に、樹脂を介在させない。このため、平坦部36U1及び平坦部36V1の熱は、樹脂による熱損失を生ずることなく、第1温度検出素子37に良好に伝わる。よって、実施形態に係るモータ1によれば、渡り線36U及び渡り線36Vの温度を第1温度検出素子37によって精度良く検出することができる。
In the crossover unit 35, unlike the crossover unit described in Patent Document 1, between the first temperature detecting element 37 and the flat portion 36U1 and between the first temperature detecting element 37 and the flat portion 36V1. No resin intervenes. Therefore, the heat of the flat portion 36U1 and the flat portion 36V1 is satisfactorily transferred to the first temperature detecting element 37 without causing heat loss due to the resin. Therefore, according to the motor 1 according to the embodiment, the temperatures of the crossover 36U and the crossover 36V can be accurately detected by the first temperature detecting element 37.
また、渡り線ユニット35においては、特許文献1に記載の渡り線ユニットとは異なり、第2温度検出素子38と平坦部36V1との間、及び第2温度検出素子38と平坦部36W1との間に、樹脂を介在させない。このため、平坦部36V1及び平坦部36W1の熱は、樹脂による熱損失を生ずることなく、第2温度検出素子38に良好に伝わる。よって、実施形態に係るモータ1によれば、渡り線36V及び渡り線36Wの温度を第2温度検出素子38によって精度良く検出することができる。
Further, in the crossover unit 35, unlike the crossover unit described in Patent Document 1, between the second temperature detecting element 38 and the flat portion 36V1 and between the second temperature detecting element 38 and the flat portion 36W1. No resin intervenes. Therefore, the heat of the flat portion 36V1 and the flat portion 36W1 is satisfactorily transferred to the second temperature detecting element 38 without causing heat loss due to the resin. Therefore, according to the motor 1 according to the embodiment, the temperatures of the crossover 36V and the crossover 36W can be accurately detected by the second temperature detecting element 38.
第1温度検出素子37は、扁平形状であることで、円柱形状である場合に比べて、平坦部36U1及び平坦部36V1との接触面積を大きくして、単位時間あたりの熱伝導量を多くする。これにより、第1温度検出素子37は、渡り線36U及び渡り線36Vの温度変化を迅速且つ精度良く検出することができる。第2温度検出素子38も、第1温度検出素子37と同様の理由により、渡り線36V及び渡り線36Wの温度変化を迅速且つ精度良く検出することができる。
Since the first temperature detecting element 37 has a flat shape, the contact area with the flat portion 36U1 and the flat portion 36V1 is increased and the heat conduction amount per unit time is increased as compared with the case where the first temperature detecting element 37 has a cylindrical shape. .. As a result, the first temperature detecting element 37 can quickly and accurately detect the temperature change of the crossover line 36U and the crossover line 36V. The second temperature detecting element 38 can also detect the temperature change of the crossover 36V and the crossover 36W quickly and accurately for the same reason as the first temperature detecting element 37.
図9は、モールド樹脂39の横断面を各渡り線及び各温度検出素子とともに示す断面斜視図である。モールド樹脂39は、次のような態様で成型される。即ち、平坦部36U1と平坦部36V1との間に第1温度検出素子37を挟み込ませ、平坦部36V1と平坦部36W1との間に第2温度検出素子38を挟み込ませ、且つ各平坦部(36U1、36V1、36W1)及び各温度検出素子(37、38)を封止する態様である。このような態様により、モールド樹脂39は、第1温度検出素子37を平坦部36U1及び平坦部36V1に良好に密着させ、且つ第2温度検出素子38を平坦部36V1及び平坦部36W1に良好に密着させた状態を維持する。モータ1によれば、前述の状態を維持することで、各渡り線(36U、36V、36W)の温度を長期間に渡って安定して検出することができる。
FIG. 9 is a cross-sectional perspective view showing a cross section of the mold resin 39 together with each crossover and each temperature detecting element. The mold resin 39 is molded in the following manner. That is, the first temperature detection element 37 is sandwiched between the flat portion 36U1 and the flat portion 36V1, the second temperature detection element 38 is sandwiched between the flat portion 36V1 and the flat portion 36W1, and each flat portion (36U1) is sandwiched. , 36V1, 36W1) and each temperature detecting element (37, 38) are sealed. According to such an embodiment, the mold resin 39 has the first temperature detection element 37 in good contact with the flat portion 36U1 and the flat portion 36V1 and the second temperature detection element 38 in good contact with the flat portion 36V1 and the flat portion 36W1. Maintain the state of letting. According to the motor 1, by maintaining the above-mentioned state, the temperature of each crossover (36U, 36V, 36W) can be stably detected over a long period of time.
モールド樹脂39を成型する方法としては、射出成型が挙げられる。射出成型の型としては、平坦部36U1に対して径方向の外側から突き当たる位置決めピンと、平坦部36W1に対して径方向の内側から突き当たる位置決めピンとを備えるものを用いることが望ましい。かかる型を用いることで、型を容易に位置決めするとができる。加えて、平坦部36U1と平坦部36V1との間に第1温度検出素子37を確実に挟み込ませ、且つ平坦部36V1と平坦部36W1との間に第2温度検出素子38を確実に挟み込ませた状態で、各平坦部及び各温度検知素子を樹脂封止することができる。
Injection molding can be mentioned as a method for molding the mold resin 39. As the injection molding mold, it is desirable to use a mold provided with a positioning pin that abuts from the outside in the radial direction with respect to the flat portion 36U1 and a positioning pin that abuts from the inside in the radial direction with respect to the flat portion 36W1. By using such a mold, the mold can be easily positioned. In addition, the first temperature detecting element 37 is surely sandwiched between the flat portion 36U1 and the flat portion 36V1, and the second temperature detecting element 38 is surely sandwiched between the flat portion 36V1 and the flat portion 36W1. In this state, each flat portion and each temperature detecting element can be resin-sealed.
回転機としてのモータ1に本発明を適用した例について説明したが、回転機としての発電機(ダイナモ)にも本発明の適用が可能である。
Although the example in which the present invention is applied to the motor 1 as a rotating machine has been described, the present invention can also be applied to a generator (dynamo) as a rotating machine.
本発明は上述の実施形態に限られず、本発明の構成を適用し得る範囲内で、実施形態とは異なる構成を採用することもできる。本発明は、以下に説明する態様毎に特有の作用効果を奏する。
The present invention is not limited to the above-described embodiment, and a configuration different from the embodiment may be adopted within the range to which the configuration of the present invention can be applied. The present invention exerts a peculiar action and effect for each aspect described below.
〔第1態様〕
第1態様は、長さ方向の一端部に対し、ステータコア(例えば、ステータコア21)に巻き付けられた巻線(例えば、コイル22)が接続され、且つ前記長さ方向の他端部に電源が入力される渡り線(例えば、渡り線36U、36V、36W)と、前記渡り線に固定される温度検出素子(例えば、第1温度検出素子37、第2温度検出素子38)とを備える渡り線ユニット(例えば、渡り線ユニット35)であって、前記渡り線が、丸線(例えば、エナメル線)からなり、且つ前記長さ方向の一部領域に平坦な平坦部(例えば平坦部36U1、36V1、36W1)を備え、前記温度検出素子が、前記平坦部に直接接触する態様で固定されることを特徴とするものである。 [First aspect]
In the first aspect, a winding wire (for example, coil 22) wound around a stator core (for example, a stator core 21) is connected to one end in the length direction, and a power supply is input to the other end in the length direction. A crossover unit including a crossover wire (for example, a crossover wire 36U, 36V, 36W) and a temperature detecting element (for example, a first temperature detecting element 37, a second temperature detecting element 38) fixed to the crossover wire. (For example, the crossover unit 35), wherein the crossover is made of a round wire (for example, an enamel wire) and is flat in a part of the length direction (for example, the flat portions 36U1, 36V1). 36W1) is provided, and the temperature detecting element is fixed so as to be in direct contact with the flat portion.
第1態様は、長さ方向の一端部に対し、ステータコア(例えば、ステータコア21)に巻き付けられた巻線(例えば、コイル22)が接続され、且つ前記長さ方向の他端部に電源が入力される渡り線(例えば、渡り線36U、36V、36W)と、前記渡り線に固定される温度検出素子(例えば、第1温度検出素子37、第2温度検出素子38)とを備える渡り線ユニット(例えば、渡り線ユニット35)であって、前記渡り線が、丸線(例えば、エナメル線)からなり、且つ前記長さ方向の一部領域に平坦な平坦部(例えば平坦部36U1、36V1、36W1)を備え、前記温度検出素子が、前記平坦部に直接接触する態様で固定されることを特徴とするものである。 [First aspect]
In the first aspect, a winding wire (for example, coil 22) wound around a stator core (for example, a stator core 21) is connected to one end in the length direction, and a power supply is input to the other end in the length direction. A crossover unit including a crossover wire (for example, a crossover wire 36U, 36V, 36W) and a temperature detecting element (for example, a first temperature detecting element 37, a second temperature detecting element 38) fixed to the crossover wire. (For example, the crossover unit 35), wherein the crossover is made of a round wire (for example, an enamel wire) and is flat in a part of the length direction (for example, the flat portions 36U1, 36V1). 36W1) is provided, and the temperature detecting element is fixed so as to be in direct contact with the flat portion.
第1態様によれば、丸線からなる変形容易な渡り線を、平角線からなる渡り線に比べて、容易に成形することが可能であるので、渡り線ユニットの生産性を向上させることができる。また、第1態様によれば、互いに接触する渡り線と温度検出素子との間に樹脂を介在させないことから、樹脂による熱損失を回避して、渡り線の温度を精度良く検出することができる。
According to the first aspect, it is possible to easily form a crossover wire made of a round wire, which is easily deformable, as compared with a crossover wire made of a flat wire, so that the productivity of the crossover unit can be improved. can. Further, according to the first aspect, since the resin is not interposed between the crossover wire in contact with each other and the temperature detecting element, heat loss due to the resin can be avoided and the temperature of the crossover wire can be detected with high accuracy. ..
〔第2態様〕
第2態様は、第1態様の構成を備え、前記温度検出素子の形状が、扁平形状であることを特徴とする渡り線ユニットである。 [Second aspect]
The second aspect is a crossover unit having the configuration of the first aspect and characterized in that the shape of the temperature detecting element is a flat shape.
第2態様は、第1態様の構成を備え、前記温度検出素子の形状が、扁平形状であることを特徴とする渡り線ユニットである。 [Second aspect]
The second aspect is a crossover unit having the configuration of the first aspect and characterized in that the shape of the temperature detecting element is a flat shape.
第2態様によれば、扁平形状の温度検出素子が、円柱形状の温度検出素子に比べて、渡り線の平坦部との接触面積を大きくして、単位時間あたりの熱伝導量を多くすることで、渡り線の温度変化を迅速且つ精度良く検出することができる。
According to the second aspect, the flat temperature detecting element has a larger contact area with the flat portion of the crossover than the cylindrical temperature detecting element, and the heat conduction amount per unit time is increased. Therefore, the temperature change of the crossover can be detected quickly and accurately.
〔第3態様〕
第3態様は、第2態様の構成と、前記温度検出素子及び前記平坦部を封止する態様で成型された封止体(例えばモールド樹脂39)を備えることを特徴とする渡り線ユニットである。 [Third aspect]
A third aspect is a crossover unit comprising the configuration of the second aspect and a sealing body (for example, a mold resin 39) molded in a manner of sealing the temperature detecting element and the flat portion. ..
第3態様は、第2態様の構成と、前記温度検出素子及び前記平坦部を封止する態様で成型された封止体(例えばモールド樹脂39)を備えることを特徴とする渡り線ユニットである。 [Third aspect]
A third aspect is a crossover unit comprising the configuration of the second aspect and a sealing body (for example, a mold resin 39) molded in a manner of sealing the temperature detecting element and the flat portion. ..
第3態様によれば、封止体により、温度検出素子と渡り線の平坦部とを密着させた状態を維持することができる。
According to the third aspect, the sealed body can maintain the state in which the temperature detecting element and the flat portion of the crossover are in close contact with each other.
〔第4態様〕
第4態様は、第3態様の構成を備える。また、第4態様は、前記温度検出素子として、少なくとも第1温度検出素子及び第2温度検出素子を備え、前記渡り線として、三相電源の第1相電源が入力される第1相用の渡り線(例えば渡り線36U)と、第2相電源が入力される第2相用の渡り線(例えば渡り線36V)と、第3相電源が入力される第3相用の渡り線(例えば渡り線36W)とを備え、前記封止体が、第1相用の渡り線の前記平坦部(例えば平坦部36U1)と、第2相用の渡り線の前記平坦部(例えば平坦部36V1)との間に扁平状の前記第1温度検出素子を挟み込ませ、第2相用の渡り線の前記平坦部と、第3相用の渡り線の前記平坦部(例えば平坦部36W1)との間に扁平状の前記第2温度検出素子を挟み込ませ、且つ第1相用の渡り線の前記平坦部、前記第1温度検出素子、第2相用の渡り線の前記平坦部、前記第2温度検出素子、及び第3相用の渡り線の前記平坦部を封止する態様で成型されることを特徴とする渡り線ユニットである。 [Fourth aspect]
The fourth aspect comprises the configuration of the third aspect. Further, in the fourth aspect, the temperature detecting element includes at least a first temperature detecting element and a second temperature detecting element, and the first phase power source of the three-phase power source is input as the crossover. A crossover (for example, a crossover 36U), a crossover for the second phase to which the second phase power supply is input (for example, the crossover 36V), and a crossover for the third phase to which the third phase power supply is input (for example). A crossover 36W) is provided, and the sealing body includes the flat portion of the crossover for the first phase (for example, the flat portion 36U1) and the flat portion of the crossover for the second phase (for example, the flat portion 36V1). The flat first temperature detection element is sandwiched between the two, and between the flat portion of the crossover for the second phase and the flat portion of the crossover for the third phase (for example, the flat portion 36W1). The flat portion of the second temperature detection element is sandwiched between the two, and the flat portion of the crossover for the first phase, the first temperature detection element, the flat portion of the crossover for the second phase, and the second temperature. It is a crossover unit characterized by being molded in a manner of sealing the flat portion of the crossover wire for the detection element and the third phase.
第4態様は、第3態様の構成を備える。また、第4態様は、前記温度検出素子として、少なくとも第1温度検出素子及び第2温度検出素子を備え、前記渡り線として、三相電源の第1相電源が入力される第1相用の渡り線(例えば渡り線36U)と、第2相電源が入力される第2相用の渡り線(例えば渡り線36V)と、第3相電源が入力される第3相用の渡り線(例えば渡り線36W)とを備え、前記封止体が、第1相用の渡り線の前記平坦部(例えば平坦部36U1)と、第2相用の渡り線の前記平坦部(例えば平坦部36V1)との間に扁平状の前記第1温度検出素子を挟み込ませ、第2相用の渡り線の前記平坦部と、第3相用の渡り線の前記平坦部(例えば平坦部36W1)との間に扁平状の前記第2温度検出素子を挟み込ませ、且つ第1相用の渡り線の前記平坦部、前記第1温度検出素子、第2相用の渡り線の前記平坦部、前記第2温度検出素子、及び第3相用の渡り線の前記平坦部を封止する態様で成型されることを特徴とする渡り線ユニットである。 [Fourth aspect]
The fourth aspect comprises the configuration of the third aspect. Further, in the fourth aspect, the temperature detecting element includes at least a first temperature detecting element and a second temperature detecting element, and the first phase power source of the three-phase power source is input as the crossover. A crossover (for example, a crossover 36U), a crossover for the second phase to which the second phase power supply is input (for example, the crossover 36V), and a crossover for the third phase to which the third phase power supply is input (for example). A crossover 36W) is provided, and the sealing body includes the flat portion of the crossover for the first phase (for example, the flat portion 36U1) and the flat portion of the crossover for the second phase (for example, the flat portion 36V1). The flat first temperature detection element is sandwiched between the two, and between the flat portion of the crossover for the second phase and the flat portion of the crossover for the third phase (for example, the flat portion 36W1). The flat portion of the second temperature detection element is sandwiched between the two, and the flat portion of the crossover for the first phase, the first temperature detection element, the flat portion of the crossover for the second phase, and the second temperature. It is a crossover unit characterized by being molded in a manner of sealing the flat portion of the crossover wire for the detection element and the third phase.
第4態様において、封止体は、第1温度検出素子を第1相用の平坦部及び第2相用の平坦部に良好に密着させ、且つ第2温度検出素子を第2相用の平坦部及び第3相用の平坦部に良好に密着させた状態を維持する。第4態様によれば、前述の状態を維持することで、各渡り線の温度を精度良く、且つ長期間に渡って安定して検出することができる。
In the fourth aspect, the encapsulant has the first temperature detecting element in good contact with the flat portion for the first phase and the flat portion for the second phase, and the second temperature detecting element is flat for the second phase. Maintain a state of good adhesion to the portion and the flat portion for the third phase. According to the fourth aspect, by maintaining the above-mentioned state, the temperature of each crossover can be detected accurately and stably over a long period of time.
〔第5態様〕
第5態様は、ステータコアと、前記ステータコアに巻き付けられた巻線と、渡り線及び温度検出素子を具備する渡り線ユニットとを備えるステータ(例えばステータ20)であって、前記渡り線ユニットが、第1態様~第4態様の何れかの渡り線ユニットであることを特徴とするステータである。 [Fifth aspect]
A fifth aspect is a stator (for example, a stator 20) including a stator core, a winding wound around the stator core, and a crossover unit including a crossover wire and a temperature detecting element, wherein the crossover unit is a first. It is a stator characterized by being a crossover unit according to any one of the first aspect to the fourth aspect.
第5態様は、ステータコアと、前記ステータコアに巻き付けられた巻線と、渡り線及び温度検出素子を具備する渡り線ユニットとを備えるステータ(例えばステータ20)であって、前記渡り線ユニットが、第1態様~第4態様の何れかの渡り線ユニットであることを特徴とするステータである。 [Fifth aspect]
A fifth aspect is a stator (for example, a stator 20) including a stator core, a winding wound around the stator core, and a crossover unit including a crossover wire and a temperature detecting element, wherein the crossover unit is a first. It is a stator characterized by being a crossover unit according to any one of the first aspect to the fourth aspect.
第5態様によれば、渡り線ユニットの生産性を高めることで、ステータの生産性を高めることができる。
According to the fifth aspect, the productivity of the stator can be increased by increasing the productivity of the crossover unit.
〔第6態様〕
第6態様は、回転軸線(例えば回転軸線A)を中心にして回転するロータ(例えばロータ10)と、前記ロータの中心を貫通するシャフト(例えばシャフト9)と、回転軸線を中心にした周方向に沿って前記ロータを囲むステータとを備える回転機(例えばモータ1)であって、前記ステータが、第5態様のステータであることを特徴とする回転機である。 [Sixth aspect]
A sixth aspect is a rotor (for example, rotor 10) that rotates around a rotation axis (for example, rotation axis A), a shaft that penetrates the center of the rotor (for example, shaft 9), and a circumferential direction around the rotation axis. A rotary machine (for example, a motor 1) including a stator that surrounds the rotor along the line, wherein the stator is the stator of the fifth aspect.
第6態様は、回転軸線(例えば回転軸線A)を中心にして回転するロータ(例えばロータ10)と、前記ロータの中心を貫通するシャフト(例えばシャフト9)と、回転軸線を中心にした周方向に沿って前記ロータを囲むステータとを備える回転機(例えばモータ1)であって、前記ステータが、第5態様のステータであることを特徴とする回転機である。 [Sixth aspect]
A sixth aspect is a rotor (for example, rotor 10) that rotates around a rotation axis (for example, rotation axis A), a shaft that penetrates the center of the rotor (for example, shaft 9), and a circumferential direction around the rotation axis. A rotary machine (for example, a motor 1) including a stator that surrounds the rotor along the line, wherein the stator is the stator of the fifth aspect.
第6態様によれば、ステータの生産性を高めることで、モータ1の生産性を高めることができる
According to the sixth aspect, the productivity of the motor 1 can be increased by increasing the productivity of the stator.
本発明は、2020年6月3日に出願された日本特許出願である特願2020-096689号に基づく優先権を主張し、当該日本特許出願に記載された全ての記載内容を援用する。
The present invention claims priority based on Japanese Patent Application No. 2020-096689, which is a Japanese patent application filed on June 3, 2020, and incorporates all the contents described in the Japanese patent application.
1:モータ(回転機)、 9:シャフト、 10:ロータ、 21a:ステータコア、 20:ステータ、 22:コイル(巻線)、 35:渡り線ユニット、 36U:渡り線(第1相用の渡り線)、 36V:渡り線(第2相用の渡り線)、 36W:渡り線(第3相用の渡り線)、 36U1:平坦部、 36V1:平坦部、 36W1:平坦部、 37:第1温度検出素子、 38:第2温度検出素子、 39:モールド樹脂(封止体)、 A:回転軸線
1: Motor (rotator), 9: Shaft, 10: Rotor, 21a: Stator core, 20: Stator, 22: Coil (winding), 35: Crossover unit, 36U: Crossover wire (crossover wire for phase 1) ), 36V: Crossover (crossover for the second phase), 36W: Crossover (crossover for the third phase), 36U1: Flat part, 36V1: Flat part, 36W1: Flat part, 37: First temperature Detection element, 38: Second temperature detection element, 39: Molded resin (sealed body), A: Rotating axis
1: Motor (rotator), 9: Shaft, 10: Rotor, 21a: Stator core, 20: Stator, 22: Coil (winding), 35: Crossover unit, 36U: Crossover wire (crossover wire for phase 1) ), 36V: Crossover (crossover for the second phase), 36W: Crossover (crossover for the third phase), 36U1: Flat part, 36V1: Flat part, 36W1: Flat part, 37: First temperature Detection element, 38: Second temperature detection element, 39: Molded resin (sealed body), A: Rotating axis
Claims (6)
- 長さ方向の一端部に対し、ステータコアに巻き付けられた巻線が接続され、且つ前記長さ方向の他端部に電源が入力される渡り線と、
前記渡り線に固定される温度検出素子とを備える渡り線ユニットであって、
前記渡り線が、丸線からなり、且つ前記長さ方向の一部領域に平坦な平坦部を備え、
前記温度検出素子が、前記平坦部に直接接触する態様で固定される
ことを特徴とする渡り線ユニット。 A crossover wire to which a winding wound around a stator core is connected to one end in the length direction and power is input to the other end in the length direction.
A crossover unit including a temperature detecting element fixed to the crossover.
The crossover is composed of a round wire and has a flat flat portion in a part of the length direction.
A crossover unit characterized in that the temperature detecting element is fixed in a manner of directly contacting the flat portion. - 前記温度検出素子の形状が、扁平形状である
ことを特徴とする請求項1に記載の渡り線ユニット。 The crossover unit according to claim 1, wherein the temperature detecting element has a flat shape. - 前記温度検出素子及び前記平坦部を封止する態様で成型された封止体を備える
ことを特徴とする請求項2に記載の渡り線ユニット。 The crossover unit according to claim 2, further comprising a temperature detecting element and a sealing body molded in a manner of sealing the flat portion. - 前記温度検出素子として、少なくとも第1温度検出素子及び第2温度検出素子を備え、
前記渡り線として、三相電源の第1相電源が入力される第1相用の渡り線と、第2相電源が入力される第2相用の渡り線と、第3相電源が入力される第3相用の渡り線とを備え、
前記封止体が、第1相用の渡り線の前記平坦部と、第2相用の渡り線の前記平坦部との間に扁平状の前記第1温度検出素子を挟み込ませ、第2相用の渡り線の前記平坦部と、第3相用の渡り線の前記平坦部との間に扁平状の前記第2温度検出素子を挟み込ませ、且つ第1相用の渡り線の前記平坦部、前記第1温度検出素子、第2相用の渡り線の前記平坦部、前記第2温度検出素子、及び第3相用の渡り線の前記平坦部を封止する態様で成型される
ことを特徴とする請求項3に記載の渡り線ユニット。 As the temperature detecting element, at least a first temperature detecting element and a second temperature detecting element are provided.
As the crossover, a crossover for the first phase to which the first phase power supply of the three-phase power supply is input, a crossover wire for the second phase to which the second phase power supply is input, and a third phase power supply are input. Equipped with a crossover for the third phase
The sealing body sandwiches the flat first temperature detecting element between the flat portion of the crossover for the first phase and the flat portion of the crossover for the second phase, and the second phase. The flat portion of the crossover for the first phase is sandwiched between the flat portion of the crossover for the third phase and the flat portion of the crossover for the third phase. , The flat portion of the first temperature detecting element, the crossover wire for the second phase, the second temperature detecting element, and the flat portion of the crossover wire for the third phase are sealed. The crossover unit according to claim 3, which is characterized. - ステータコアと、前記ステータコアに巻き付けられた巻線と、渡り線及び温度検出素子を具備する渡り線ユニットとを備えるステータであって、
前記渡り線ユニットが、請求項1乃至4の何れか1項に記載の渡り線ユニットである
ことを特徴とするステータ。 A stator including a stator core, a winding wound around the stator core, and a crossover unit including a crossover wire and a temperature detection element.
The stator, wherein the crossover unit is the crossover unit according to any one of claims 1 to 4. - 回転軸線を中心にして回転するロータと、前記ロータの中心を貫通するシャフトと、回転軸線を中心にした周方向に沿って前記ロータを囲むステータとを備える回転機であって、
前記ステータが、請求項5のステータである
ことを特徴とする回転機。
A rotary machine including a rotor that rotates around a rotation axis, a shaft that penetrates the center of the rotor, and a stator that surrounds the rotor along a circumferential direction centered on the rotation axis.
A rotary machine, wherein the stator is the stator according to claim 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020096689A JP6943317B1 (en) | 2020-06-03 | 2020-06-03 | Crossover unit, stator, and rotating machine |
JP2020-096689 | 2020-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021246180A1 true WO2021246180A1 (en) | 2021-12-09 |
Family
ID=77847105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/019075 WO2021246180A1 (en) | 2020-06-03 | 2021-05-19 | Jumper wire unit, stator, and rotary machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6943317B1 (en) |
WO (1) | WO2021246180A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022128993A (en) * | 2021-02-24 | 2022-09-05 | 日本電産株式会社 | Rotary electric machine and driving device |
EP4412058A1 (en) | 2021-09-27 | 2024-08-07 | Denso Corporation | Rotary electric machine |
JP7329653B1 (en) | 2022-04-11 | 2023-08-18 | 三菱電機株式会社 | Stator and rotary electric machine using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030288A (en) * | 2009-07-22 | 2011-02-10 | Toyota Motor Corp | Rotating electric machine |
JP2017093072A (en) * | 2015-11-05 | 2017-05-25 | トヨタ自動車株式会社 | Dynamo-electric machine stator |
JP2018121389A (en) * | 2017-01-23 | 2018-08-02 | トヨタ自動車株式会社 | Stator of rotary electric machine |
WO2018199149A1 (en) * | 2017-04-28 | 2018-11-01 | 株式会社デンソー | Dynamo-electric machine |
-
2020
- 2020-06-03 JP JP2020096689A patent/JP6943317B1/en active Active
-
2021
- 2021-05-19 WO PCT/JP2021/019075 patent/WO2021246180A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030288A (en) * | 2009-07-22 | 2011-02-10 | Toyota Motor Corp | Rotating electric machine |
JP2017093072A (en) * | 2015-11-05 | 2017-05-25 | トヨタ自動車株式会社 | Dynamo-electric machine stator |
JP2018121389A (en) * | 2017-01-23 | 2018-08-02 | トヨタ自動車株式会社 | Stator of rotary electric machine |
WO2018199149A1 (en) * | 2017-04-28 | 2018-11-01 | 株式会社デンソー | Dynamo-electric machine |
Also Published As
Publication number | Publication date |
---|---|
JP6943317B1 (en) | 2021-09-29 |
JP2021191173A (en) | 2021-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021246180A1 (en) | Jumper wire unit, stator, and rotary machine | |
US10186916B2 (en) | Rotary machine and electric vehicle | |
KR101178985B1 (en) | Motor having twin-rotor and apparatus having the same | |
US8519579B2 (en) | Electric motor | |
US10298084B2 (en) | Rotating electric machine for vehicle | |
CN110050405A (en) | The stator of motor, motor and wiring and contact device for motor | |
WO2015107411A1 (en) | Rotary electric machine stator | |
CN109428407B (en) | Stator core | |
JP5396842B2 (en) | Rotating electric machine and method of manufacturing rotating electric machine | |
JP6261143B2 (en) | Conductor unit for rotating electrical machine and rotating electrical machine | |
JP2013122234A (en) | Electric oil pump device and method of manufacturing the same | |
WO2020183801A1 (en) | Rotating machine and insulator | |
JP6676622B2 (en) | Brushless motor, electric pump, and brushless motor manufacturing method | |
WO2016059944A1 (en) | Stator | |
WO2015083478A1 (en) | Rotary electric machine | |
JP2013247698A (en) | Electric motor | |
JP6041670B2 (en) | Rotating machine | |
CN114026768B (en) | Insulating frame and motor | |
JP2017103986A (en) | Electric motor | |
CN109716626B (en) | Motor | |
JPH0139079Y2 (en) | ||
WO2022244083A1 (en) | Rotating electrical machine and method for manufacturing rotating electrical machine | |
JP6134639B2 (en) | Rotating electrical machine unit | |
JP2013249817A (en) | Electric oil pump device | |
JP6827600B1 (en) | Rotor of rotary electric machine and rotary electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21817919 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21817919 Country of ref document: EP Kind code of ref document: A1 |