JP2017088182A - Beverage cooling device - Google Patents

Beverage cooling device Download PDF

Info

Publication number
JP2017088182A
JP2017088182A JP2015215963A JP2015215963A JP2017088182A JP 2017088182 A JP2017088182 A JP 2017088182A JP 2015215963 A JP2015215963 A JP 2015215963A JP 2015215963 A JP2015215963 A JP 2015215963A JP 2017088182 A JP2017088182 A JP 2017088182A
Authority
JP
Japan
Prior art keywords
ice
thickness detection
detection electrode
ice thickness
ice layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015215963A
Other languages
Japanese (ja)
Inventor
慎吾 西村
Shingo Nishimura
慎吾 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2015215963A priority Critical patent/JP2017088182A/en
Publication of JP2017088182A publication Critical patent/JP2017088182A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Dispensing Beverages (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a fact that an uneven ice layer is formed in the surrounding of an evaporation tube without increasing cost required for the beverage cooling device.SOLUTION: A control device 40 of a beverage cooling device 10 intermittently operates a freezer 20 on the basis of detection of an ice thickness detection sensor 30, for controlling so as to form an ice layer I having a thickness in a prescribed range, on the surrounding of an evaporation tube 23. When the freezer 20 is operated in a state of detecting a potential difference lower than a prescribed lower limit value, between a first ice thickness detection electrode 32 and a ground electrode, when a potential difference equal to or lower than a prescribed set value is detected between a second ice thickness detection electrode 33 and the ground electrode, it is detected that, an uneven ice layer I is formed on the surrounding of the evaporation tube 23.SELECTED DRAWING: Figure 1

Description

本発明は、水槽内に設けた螺旋状の蒸発管の周囲に氷を形成させることにより飲料冷却管内の飲料を冷却する飲料冷却装置に関するものである。   The present invention relates to a beverage cooling device for cooling a beverage in a beverage cooling pipe by forming ice around a spiral evaporation pipe provided in a water tank.

特許文献1には、冷却水を貯えた水槽と、この水槽内に立設したコイル状の飲料冷却管と、この飲料冷却管の導出端側に接続された注出コックと、水槽内の冷却水を冷却する冷凍装置とを備えた飲料冷却装置が開示されている。この飲料冷却装置の冷凍装置は、冷媒を圧送する圧縮機と、圧縮機から圧送される冷媒を凝縮器ファンの駆動により冷却して凝縮液化させる凝縮器と、水槽内にて凝縮器から送出された液化冷媒を気化させることで冷却水を冷却する蒸発管とを順次接続したものである。冷凍装置の蒸発管は水槽の周壁内面に沿って螺旋状に巻回されており、蒸発管の下部は凝縮器に接続されており、蒸発管の上部は圧縮機に接続されている。また、水槽内には蒸発管の周囲の氷層が形成される位置に氷厚検出センサが設けられており、この氷厚検出センサの検出に基づいて圧縮機を断続的に作動させることによって、水槽内の蒸発管の周囲に所定の厚みの氷層を形成させるようにしている。   Patent Document 1 discloses a water tank that stores cooling water, a coiled beverage cooling pipe erected in the water tank, a pouring cock connected to the outlet end side of the beverage cooling pipe, and cooling in the water tank. A beverage cooling apparatus is disclosed that includes a refrigeration apparatus for cooling water. The refrigerating apparatus of this beverage cooling apparatus is a compressor that pumps refrigerant, a condenser that cools the refrigerant pumped from the compressor by driving a condenser fan, and condenses and liquefies it, and is sent from the condenser in the water tank. The vaporized liquefied refrigerant is sequentially connected to an evaporation pipe for cooling the cooling water. The evaporation pipe of the refrigeration apparatus is spirally wound along the inner peripheral wall of the water tank, the lower part of the evaporation pipe is connected to a condenser, and the upper part of the evaporation pipe is connected to a compressor. In addition, an ice thickness detection sensor is provided at a position where an ice layer around the evaporation pipe is formed in the water tank, and by intermittently operating the compressor based on the detection of the ice thickness detection sensor, An ice layer having a predetermined thickness is formed around the evaporation pipe in the water tank.

特開2013−119400号公報JP 2013-119400 A

上記の飲料冷却装置の冷凍装置においては、凝縮器は圧縮機から圧送される冷媒を熱交換器を通過させるときに凝縮器ファンによって冷却して液化凝縮させるものである。この飲料冷却装置を外気温が低い状態で使用したときには、氷厚検出センサの検出に基づいて圧縮機の作動を中断させたときに、凝縮器の熱交換器内の冷媒が低温の外気により液化して溜まって残る、所謂冷媒の寝込みが生じ、圧縮機の作動を再開させたときに循環する冷媒が不足するおそれがあった。この状態で圧縮機を作動させて冷媒を循環させると、液化冷媒は蒸発管の導入側でほとんど蒸発するために、水槽内の螺旋状の蒸発管の周囲に形成される氷層は、蒸発管の冷媒の導入側となる下部に厚く形成され、蒸発管の冷媒の導出側となる上部に薄く形成され、蒸発管の上下方向に不均一の厚さとなっていた。氷層が蒸発管の上下方向に不均一の厚さでしか形成されないと、水槽内は効率よく冷却されずに飲料を十分に冷却できなくなるおそれがあった。また、氷層が蒸発管の下部に過剰に厚く形成されると内側にあるコイル状の飲料冷却管を巻き込むようになり、飲料冷却管内の飲料が凍結して、注出コックから飲料が注出できない問題があった。上記の飲料冷却装置では、周囲の外気温を検出する温度センサを設け、温度センサの検出温度に基づいて凝縮器の凝縮器ファンの作動を制御しているが、温度センサを新たに設けたためにコストが高くなる問題があった。本発明は、飲料冷却装置のコストの増加を伴うことなく、蒸発管の周囲に不均一に氷層が形成されたことを検出できるようにし、凝縮器の熱交換器内の冷媒が低温の外気により液化して溜まって残る、いわゆる冷媒の寝込みを早期に解消することを目的とする。   In the refrigerating apparatus of the beverage cooling apparatus, the condenser cools and liquefies and condenses the refrigerant pumped from the compressor by the condenser fan when passing through the heat exchanger. When the beverage cooling device is used in a state where the outside air temperature is low, the refrigerant in the heat exchanger of the condenser is liquefied by the low temperature outside air when the operation of the compressor is interrupted based on the detection of the ice thickness detection sensor. As a result, the so-called refrigerant stagnation remains and the refrigerant circulating when the compressor is restarted may be insufficient. When the compressor is operated in this state and the refrigerant is circulated, the liquefied refrigerant almost evaporates on the introduction side of the evaporation pipe, so the ice layer formed around the spiral evaporation pipe in the water tank It is formed thick at the lower part on the refrigerant introduction side and thin at the upper part on the refrigerant discharge side of the evaporation pipe, and has a non-uniform thickness in the vertical direction of the evaporation pipe. If the ice layer is formed only in a non-uniform thickness in the vertical direction of the evaporation tube, the inside of the water tank may not be efficiently cooled, and the beverage may not be sufficiently cooled. In addition, if the ice layer is formed too thick in the lower part of the evaporation tube, the coiled beverage cooling tube inside will be rolled up, the beverage in the beverage cooling tube will freeze, and the beverage will be poured out from the dispensing cock There was a problem that could not be done. In the above beverage cooling device, a temperature sensor that detects the ambient outside air temperature is provided, and the operation of the condenser fan of the condenser is controlled based on the temperature detected by the temperature sensor, but the temperature sensor is newly provided. There was a problem of high costs. The present invention makes it possible to detect that an ice layer is unevenly formed around the evaporator tube without increasing the cost of the beverage chiller, and the refrigerant in the heat exchanger of the condenser The purpose is to eliminate so-called stagnation of the refrigerant at an early stage, which is liquefied and remains by liquefaction.

本発明は上記課題を解決するため、冷却水を貯えた水槽と、水槽内に設けられ、飲料を冷却する飲料冷却管と、水槽内にて上下を螺旋の進行方向として螺旋状に巻回された蒸発管を有し、圧縮機にて圧送された冷媒を凝縮器ファンの駆動によって冷却することで凝縮器にて液化凝縮させ、凝縮器にて液化凝縮した液化冷媒を蒸発管の下部から上部まで通過させ、通過した液化冷媒が蒸発することで蒸発管の周囲の冷却水を冷却して周囲に氷を形成させる冷凍装置と、蒸発管の周囲に所定の範囲の厚みの氷層が形成されたことを検出する氷厚検出センサと、氷厚検出センサの検出に基づいて冷凍装置の作動を制御する制御装置とを備えた飲料冷却装置であって、氷厚検出センサは蒸発管の周囲にて氷層が所定の範囲の厚みにて最も薄くなったときに露出する位置に配置した第1氷厚検出用電極と、第1氷厚検出用電極より蒸発管から離間した位置にて氷層が所定の範囲の厚みにて最も厚くなったときに氷に覆われる位置に配置した第2氷厚検出用電極と、少なくとも蒸発管を用いたアース電極とを備え、制御装置は第1氷厚検出用電極とアース電極との間で所定の下限値より低い電位差を検出すると冷凍装置を作動させて、第2氷厚検出用電極とアース電極との間で所定の上限値より高い電位差を検出すると冷凍装置の作動を停止させることで、蒸発管の周囲に所定の範囲の厚みの氷層を形成させるように制御したものであり、第1氷厚検出用電極とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置を作動させるときに、第2氷厚検出用電極とアース電極との間で所定の設定値以下の電位差を検出したときには、蒸発管の周囲に不均一の氷層が形成されたことを検出したことを特徴とする飲料冷却装置を提供するものである。   In order to solve the above-mentioned problems, the present invention provides a water tank that stores cooling water, a beverage cooling pipe that is provided in the water tank and cools the beverage, and is spirally wound up and down in the water tank with the upper and lower directions being spiral. The refrigerant that is pumped by the compressor is cooled by driving the condenser fan to liquefy and condense in the condenser, and the liquefied refrigerant that has been liquefied and condensed in the condenser is A refrigeration system that cools the cooling water around the evaporation pipe and forms ice around it by evaporating the liquefied refrigerant that has passed through, and an ice layer with a thickness in a predetermined range is formed around the evaporation pipe An ice thickness detection sensor for detecting the occurrence of the event and a control device for controlling the operation of the refrigeration apparatus based on the detection of the ice thickness detection sensor. And the ice layer is the thinnest in the thickness range The first ice thickness detection electrode disposed at a position exposed to the surface and the ice layer when the ice layer becomes thickest within a predetermined range at a position away from the evaporation tube from the first ice thickness detection electrode. A second ice thickness detection electrode disposed at a covered position and a ground electrode using at least an evaporation tube are provided, and the control device is lower than a predetermined lower limit between the first ice thickness detection electrode and the ground electrode. When the potential difference is detected, the refrigeration unit is activated, and when a potential difference higher than a predetermined upper limit value is detected between the second ice thickness detection electrode and the ground electrode, the refrigeration unit is deactivated, so that Controlling to form an ice layer with a thickness in a predetermined range, when detecting a potential difference lower than a predetermined lower limit between the first ice thickness detection electrode and the ground electrode and operating the refrigeration system Between the second ice thickness detection electrode and the ground electrode. When it detects a potential difference following the constant set value is to provide a beverage cooling device, characterized in that it is detected that the non-uniformity of the ice layer is formed around the evaporator tube.

上記のように構成した飲料冷却装置においては、蒸発管の周囲に形成された氷層が融解して第1氷厚検出用電極が冷却水に露出したときには、第1氷厚検出用電極とアース電極との間で所定の下限値より低い電位差を検出したことに基づいて冷凍装置を作動させて、蒸発管の周囲の冷却水を凍結させて氷層を成長させ、蒸発管の周囲に形成された氷層が第2氷圧検出用電極を覆うようになったときには、第2氷厚検出用電極とアース電極との間で所定の上限値より高い電位差を検出したことに基づいて冷凍装置の作動を停止させて、蒸発管の周囲に形成される氷層が所定の範囲の厚みとなるように制御されている。このように、蒸発管の周囲に形成される氷層を所定の範囲の厚みとなるように制御しているときに、外気温が低い状態では、冷凍装置の凝縮器に冷媒が液化して残り、循環する冷媒の量が減少するために、螺旋状の蒸発管の上部に氷層が形成されずに、水槽内の冷却効率が低下するおそれがあった。   In the beverage cooling apparatus configured as described above, when the ice layer formed around the evaporation tube melts and the first ice thickness detection electrode is exposed to the cooling water, the first ice thickness detection electrode and the earth are grounded. Based on the detection of a potential difference between the electrodes and lower than a predetermined lower limit value, the refrigeration system is operated to freeze the cooling water around the evaporation tube and grow an ice layer, which is formed around the evaporation tube. When the ice layer covers the second ice pressure detection electrode, the refrigeration apparatus is operated based on the fact that a potential difference higher than a predetermined upper limit is detected between the second ice thickness detection electrode and the ground electrode. The operation is stopped and the ice layer formed around the evaporation tube is controlled to have a predetermined thickness. As described above, when the ice layer formed around the evaporator tube is controlled to have a thickness within a predetermined range, the refrigerant is liquefied and remains in the condenser of the refrigeration apparatus when the outside air temperature is low. Since the amount of circulating refrigerant is reduced, an ice layer is not formed on the upper part of the spiral evaporator tube, and the cooling efficiency in the water tank may be lowered.

この飲料冷却装置では、第1氷厚検出用電極とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置を作動させるときに、アース電極として用いた蒸発管が上部まで氷層に覆われていないために、第2氷厚検出用電極とアース電極との間で所定の設定値以下の電位差を検出したときには、蒸発管の周囲に不均一の氷層が形成されたことを検出することができた。このように、この飲料冷却装置では、コストの増加を伴うことなく、蒸発管の周囲に不均一の氷層が形成されたことを検出することができた。   In this beverage cooling apparatus, when a potential difference lower than a predetermined lower limit value is detected between the first ice thickness detection electrode and the ground electrode and the refrigeration apparatus is operated, the evaporation tube used as the ground electrode reaches the top of the ice. When a potential difference of a predetermined value or less is detected between the second ice thickness detection electrode and the ground electrode because a layer is not covered, a non-uniform ice layer is formed around the evaporation tube. Could be detected. Thus, in this beverage cooling apparatus, it was possible to detect that a non-uniform ice layer was formed around the evaporator tube without increasing the cost.

上記のように構成した他の実施形態の飲料冷却装置においては、冷却水を貯えた水槽と、水槽内に設けられ、飲料を冷却する飲料冷却管と、水槽内にて上下を螺旋の進行方向として螺旋状に巻回された蒸発管を有し、圧縮機にて圧送された冷媒を凝縮器ファンの駆動によって冷却することで凝縮器にて液化凝縮させ、凝縮器にて液化凝縮した液化冷媒を蒸発管の下部から上部まで通過させ、通過した液化冷媒が蒸発することで蒸発管の周囲の冷却水を冷却して周囲に氷を形成させる冷凍装置と、蒸発管の周囲に所定の範囲の厚みの氷層が形成されたことを検出する氷厚検出センサと、氷厚検出センサの検出に基づいて冷凍装置の作動を制御する制御装置とを備えた飲料冷却装置であって、氷厚検出センサは蒸発管の周囲にて氷層が所定の範囲の厚みにて最も薄くなったときに露出する位置に配置した第1氷厚検出用電極と、第1氷厚検出用電極より蒸発管から離間した位置にて氷層が所定の範囲の厚みにて最も厚くなったときに氷に覆われる位置に配置した第2氷厚検出用電極と、所定の範囲の厚みの氷層の形成されない位置に配置した第3氷厚検出用電極と、少なくとも蒸発管を用いたアース電極とを備え、制御装置は第1氷厚検出用電極とアース電極との間で所定の下限値より低い電位差を検出すると冷凍装置を作動させて、第2氷厚検出用電極とアース電極との間で所定の上限値より高い電位差を検出すると冷凍装置の作動を停止させることで、蒸発管の周囲に所定の範囲の厚みの氷層を形成させるように制御したものであり、第3氷厚検出用電極とアース電極との間で設定値以下の電位差を検出したときには、蒸発管の周囲に不均一の氷層が形成されたことを検出したことを特徴とする飲料冷却装置を提供するものである。   In the beverage cooling device according to another embodiment configured as described above, a water tank that stores cooling water, a beverage cooling pipe that is provided in the water tank and cools the beverage, and a spiral traveling direction up and down in the water tank As a liquefied refrigerant that has an evaporation tube spirally wound as a refrigerant and is liquefied and condensed in a condenser by cooling the refrigerant pumped by a compressor by driving a condenser fan and liquefying and condensing in a condenser Is passed from the bottom to the top of the evaporator tube, and the liquefied refrigerant that has passed through evaporates to cool the cooling water around the evaporator tube and form ice around it, and a predetermined range around the evaporator tube An ice thickness detection sensor comprising: an ice thickness detection sensor for detecting the formation of an ice layer having a thickness; and a control device for controlling the operation of the refrigeration device based on detection by the ice thickness detection sensor. The sensor has a predetermined ice layer around the evaporation tube. A first ice thickness detection electrode disposed at a position exposed when the thickness becomes the smallest, and an ice layer having a thickness within a predetermined range at a position away from the evaporation tube from the first ice thickness detection electrode A second ice thickness detection electrode disposed at a position covered with ice when it becomes the thickest, a third ice thickness detection electrode disposed at a position where an ice layer having a predetermined thickness range is not formed, and at least an evaporation tube And a control device, when detecting a potential difference between the first ice thickness detection electrode and the ground electrode that is lower than a predetermined lower limit value, activates the refrigeration device, and the second ice thickness detection electrode When a potential difference higher than a predetermined upper limit value is detected between the ground electrode and the ground electrode, the operation of the refrigeration apparatus is stopped to control the formation of an ice layer with a predetermined thickness around the evaporator tube. Set between the third ice thickness detection electrode and the ground electrode Following upon detection of a potential difference, there is provided a beverage cooling device, characterized in that it is detected that the non-uniformity of the ice layer is formed around the evaporator tube.

この飲料冷却装置でも、アース電極として用いた蒸発管が上部まで氷層に覆われていないために、第3氷厚検出用電極とアース電極との間で所定の設定値以下の電位差を検出したときには、蒸発管の周囲に不均一の氷層が形成されたことを検出することができた。このように、この飲料冷却装置では、電極を1つ追加するだけで、蒸発管の周囲に不均一の氷層が形成されたことを検出することができた。また、第1氷厚検出用電極とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置を作動させるときに、第2氷厚検出用電極とアース電極との間で所定の設定値以下の電位差を検出したか否かの判定をする上記の実施形態と比して、第3氷厚検出用電極とアース電極との間で所定の設定値以下の電位差を検出したか否かの判定を常時または所望のタイミングで実行することができるので、蒸発管の周囲に不均一の氷層が形成されたことを常に検出することができた。   Even in this beverage cooling device, since the evaporation tube used as the ground electrode is not covered with the ice layer to the top, a potential difference equal to or less than a predetermined set value is detected between the third ice thickness detection electrode and the ground electrode. Sometimes it was possible to detect the formation of a non-uniform ice layer around the evaporator tube. Thus, in this beverage cooling apparatus, it was possible to detect that a non-uniform ice layer was formed around the evaporation tube by adding only one electrode. Further, when a potential difference lower than a predetermined lower limit value is detected between the first ice thickness detection electrode and the ground electrode and the refrigeration apparatus is operated, a predetermined value is set between the second ice thickness detection electrode and the ground electrode. Whether or not a potential difference equal to or less than a predetermined set value is detected between the third ice thickness detection electrode and the ground electrode, as compared with the above-described embodiment in which it is determined whether or not a potential difference equal to or less than the set value is detected. Since the determination of whether or not can be performed constantly or at a desired timing, it was possible to always detect that a non-uniform ice layer was formed around the evaporation tube.

上記のように構成した各飲料冷却装置においては、制御装置は、蒸発管の周囲に不均一の氷層が形成されたことを検出してないときには、冷媒が凝縮器に溜まって残らずに冷凍装置を循環しているので、凝縮器ファンを冷却能力を高い状態で駆動させて冷媒を十分に液化凝縮させるように制御し、蒸発管の周囲に不均一の氷層が形成されたことを検出したときには、冷媒が凝縮器に溜まって残る、所謂冷媒の寝込みが生じているために、凝縮器ファンを冷却能力を低い状態で駆動させるように制御し、凝縮器内に液化して残る冷媒を圧縮機から圧送される気化冷媒によって蒸発させて循環させることができる。これにより、飲料冷却装置のコストの増加を伴うことなく、凝縮器内の冷媒が低温の外気により液化して溜まって残る、所謂冷媒の寝込みを早期に解消することができるようになった。   In each beverage cooling device configured as described above, when the control device does not detect that a non-uniform ice layer is formed around the evaporator tube, the refrigerant is frozen without being accumulated in the condenser. Since the system circulates, the condenser fan is driven at a high cooling capacity to control the refrigerant to liquefy and condense, and it is detected that a non-uniform ice layer has formed around the evaporator tube. In this case, since the refrigerant remains in the condenser, so-called stagnation of the refrigerant occurs, the condenser fan is controlled to be driven with a low cooling capacity, and the refrigerant remaining in the condenser is liquefied. It can be circulated by being evaporated by the vaporized refrigerant pumped from the compressor. As a result, the so-called refrigerant stagnation, in which the refrigerant in the condenser is liquefied and accumulated by the low-temperature outside air, can be eliminated at an early stage without increasing the cost of the beverage cooling device.

本発明の第1実施形態の飲料冷却装置の概略断面図である。It is a schematic sectional drawing of the drink cooling device of a 1st embodiment of the present invention. 蒸発管の下部を中心に氷層が形成されたときの図1に相当する概略図である。It is the schematic corresponding to FIG. 1 when an ice layer is formed centering on the lower part of an evaporation pipe. 本発明の第2実施形態の飲料冷却装置の概略断面図である。It is a schematic sectional drawing of the drink cooling device of 2nd Embodiment of this invention.

以下に、本発明による飲料冷却装置の実施形態を図面を参照して説明する。
(第1実施形態)
図1に示したように、本発明の第1実施形態の飲料冷却装置10はハウジング11内に冷却水を貯える水槽12を備えており、この水槽12内にはステンレス製のコイル状の飲料冷却管13が冷却水に浸漬された状態で立設している。飲料冷却管13は導入端側に図示しないビア樽等の飲料供給源に接続され、導出端側にハウジング11の前面上部に固定された注出コック14が接続されている。飲料供給源の飲料は飲料冷却管13を通過する際に冷却水により冷却され、注出コック14からグラス等の容器に注出される。水槽12の上部には撹拌モータ15が設けられており、コイル状の飲料冷却管13の内周側に延出した撹拌モータ15の出力軸16の先端には冷却水を撹拌する撹拌羽根17が固定されている。撹拌モータ15により撹拌羽根17を回転させて冷却水を撹拌させると、飲料冷却管13を通過する飲料は周囲の冷却水と熱交換されて効率よく冷却される。
Embodiments of a beverage cooling device according to the present invention will be described below with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the beverage cooling apparatus 10 according to the first embodiment of the present invention includes a water tank 12 for storing cooling water in a housing 11, and a stainless steel coiled beverage cooling apparatus is provided in the water tank 12. The pipe 13 is erected in a state where it is immersed in cooling water. The beverage cooling pipe 13 is connected to a beverage supply source such as a via barrel (not shown) on the introduction end side, and a dispensing cock 14 fixed to the upper front portion of the housing 11 is connected to the lead-out end side. The beverage as a beverage supply source is cooled by the cooling water when passing through the beverage cooling pipe 13 and is poured out from the dispensing cock 14 into a container such as a glass. A stirring motor 15 is provided in the upper part of the water tank 12, and a stirring blade 17 for stirring the cooling water is provided at the tip of the output shaft 16 of the stirring motor 15 extending to the inner peripheral side of the coiled beverage cooling pipe 13. It is fixed. When the stirring blade 17 is rotated by the stirring motor 15 to stir the cooling water, the beverage passing through the beverage cooling pipe 13 is efficiently cooled by exchanging heat with the surrounding cooling water.

飲料冷却装置10はハウジング11内に水槽12内の冷却水を冷却するための冷凍装置20を備えている。冷凍装置20は冷媒を圧縮する圧縮機21と、圧縮機21から圧送された冷媒を冷却して凝縮液化させる凝縮器22と、凝縮器22により凝縮液化させた冷媒を低圧の液化冷媒に減圧するキャピラリーチューブ(図示省略)と、水槽12内にてキャピラリーチューブを介して凝縮器22に接続された蒸発管23とを備え、これら順次接続することによって冷凍回路を構成したものである。凝縮器22は、圧縮機21に接続された熱交換器22aと、熱交換器22aを冷却する凝縮器ファン22bとを備えている。凝縮器22は、圧縮機21から熱交換器22aに圧送された冷媒を凝縮器ファン22bによる送風によって冷却して凝縮液化させる空冷式のものである。蒸発管23は上下方向を螺旋の進行方向となるように螺旋状に巻回されており、水槽12の周壁内面に沿って配置されている。蒸発管23の下部はキャピラリーチューブを介して凝縮器22の熱交換器22aに接続され、蒸発管23の上部は圧縮機21に接続されている。凝縮器22からキャピラリーチューブを介して蒸発管23に送出される液化冷媒は、螺旋状の蒸発管23の下部から流入し、水槽12内にて蒸発管23の周囲の冷却水と熱交換しながら蒸発管23の螺線に沿って上昇し、蒸発管23の上部から圧縮機21に戻される。   The beverage cooling apparatus 10 includes a refrigeration apparatus 20 for cooling the cooling water in the water tank 12 in the housing 11. The refrigerating apparatus 20 compresses a refrigerant 21, a condenser 22 that cools and compresses the refrigerant pumped from the compressor 21, and decompresses the refrigerant condensed and liquefied by the condenser 22 into a low-pressure liquefied refrigerant. A refrigeration circuit is configured by including a capillary tube (not shown) and an evaporation tube 23 connected to the condenser 22 through the capillary tube in the water tank 12 and sequentially connecting them. The condenser 22 includes a heat exchanger 22a connected to the compressor 21 and a condenser fan 22b that cools the heat exchanger 22a. The condenser 22 is an air-cooled type in which the refrigerant pumped from the compressor 21 to the heat exchanger 22a is cooled by air blown by the condenser fan 22b to be condensed and liquefied. The evaporation pipe 23 is wound in a spiral shape so that the vertical direction is the spiral traveling direction, and is disposed along the inner surface of the peripheral wall of the water tank 12. The lower part of the evaporation pipe 23 is connected to the heat exchanger 22 a of the condenser 22 via a capillary tube, and the upper part of the evaporation pipe 23 is connected to the compressor 21. The liquefied refrigerant sent from the condenser 22 to the evaporation pipe 23 via the capillary tube flows from the lower part of the spiral evaporation pipe 23 and exchanges heat with the cooling water around the evaporation pipe 23 in the water tank 12. It rises along the spiral of the evaporation pipe 23 and returns to the compressor 21 from the upper part of the evaporation pipe 23.

水槽12内には蒸発管23の周囲にて所定の範囲の厚みの氷層Iが形成されたことを検出する氷厚検出センサ30が設けられている。この氷厚検出センサ30は螺旋状に巻回された蒸発管23の内側の上下方向の中間部に配置されたブラケット31と、ブラケットに固定した第1及び第2氷厚検出用電極32,33と、飲料冷却管13と蒸発管23を用いたアース電極を備えている。第1及び第2氷厚検出用電極32,33は蒸発管23の周囲から水槽12の中心側に延びている。第1氷厚検出用電極32は蒸発管23の周囲にて氷層Iが所定の範囲の厚みにて最も薄くなったときに先端部が冷却水に露出する長さとなっており(冷却水に露出する位置に配置され)、第2氷厚検出用電極33は蒸発管23の周囲にて氷層Iが所定の範囲の厚みにて最も厚くなったときに先端部が氷に覆われる長さとなっている(氷に覆われる位置に配置されている)。   An ice thickness detection sensor 30 is provided in the water tank 12 for detecting that an ice layer I having a predetermined thickness is formed around the evaporation pipe 23. The ice thickness detection sensor 30 includes a bracket 31 disposed at an intermediate portion in the vertical direction inside the evaporation tube 23 wound spirally, and first and second ice thickness detection electrodes 32 and 33 fixed to the bracket. And a ground electrode using the beverage cooling pipe 13 and the evaporation pipe 23. The first and second ice thickness detection electrodes 32 and 33 extend from the periphery of the evaporation pipe 23 toward the center of the water tank 12. The first ice thickness detection electrode 32 has such a length that the tip is exposed to the cooling water when the ice layer I becomes the thinnest in a predetermined range of thickness around the evaporation tube 23 (the cooling water The second ice thickness detection electrode 33 has a length that the tip of the ice layer I is covered with ice when the ice layer I reaches the maximum thickness within a predetermined range around the evaporation tube 23. (It is placed in a position covered with ice).

飲料冷却装置10は制御装置40を備えており、この制御装置40は圧縮機21、凝縮器ファン22b、氷厚検出センサ30に接続されている。制御装置40はマイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続されたCPU、RAM、ROM及びタイマ(いずれも図示省略)を備えている。制御装置40は氷厚検出センサ30の第1及び第2氷厚検出用電極32,33とアース電極との間の電位差を検出する検出回路(図示省略)を有し、氷厚検出センサ30の第1及び第2氷厚検出用電極32,33とアース電極との間の電位差(氷厚検出センサの検出)に基づいて圧縮機21及び凝縮器ファン22bの作動を制御することで、蒸発管23の周囲に所定の厚みの氷層Iを形成する氷厚制御プログラムを有している。   The beverage cooling device 10 includes a control device 40, and this control device 40 is connected to the compressor 21, the condenser fan 22 b, and the ice thickness detection sensor 30. The control device 40 includes a microcomputer (not shown), and the microcomputer includes a CPU, a RAM, a ROM, and a timer (all not shown) connected via a bus. The control device 40 includes a detection circuit (not shown) that detects a potential difference between the first and second ice thickness detection electrodes 32 and 33 of the ice thickness detection sensor 30 and the ground electrode. By controlling the operation of the compressor 21 and the condenser fan 22b based on the potential difference (detection by the ice thickness detection sensor) between the first and second ice thickness detection electrodes 32 and 33 and the ground electrode, the evaporator tube 23 has an ice thickness control program for forming an ice layer I having a predetermined thickness around 23.

次に、飲料冷却装置10の作動について説明する。飲料冷却装置10の電源をオンにすると、撹拌モータ15を作動させて冷却水を撹拌させるとともに、制御装置40によって上述した氷厚制御プログラムを実行する。飲料冷却装置10の起動時のように、蒸発管23が氷層Iに覆われてないときには、第1氷厚検出用電極32は氷に覆われることなく冷却水に露出しており(当然に第2氷厚検出用電極33も冷却水に露出している)、制御装置40は、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出したことに基づいて、冷凍装置20を作動させるように制御する。冷凍装置20を作動させたときには、圧縮機21と凝縮器22の凝縮器ファン22bとの駆動によって、圧縮機21により圧縮された冷媒ガスが凝縮器22の熱交換器22aを通過する際に凝縮器ファン22bによる送風により冷却されて液化し、この液化冷媒はキャピラリーチューブにより減圧されてから水槽12内の蒸発管23に導かれ、蒸発管23内を通過する液化冷媒が水槽12内の冷却水と熱交換されて気化してから再び圧縮機21に戻る。   Next, the operation of the beverage cooling apparatus 10 will be described. When the power supply of the beverage cooling device 10 is turned on, the stirring motor 15 is operated to stir the cooling water, and the above-described ice thickness control program is executed by the control device 40. When the evaporating tube 23 is not covered with the ice layer I as when the beverage cooling device 10 is activated, the first ice thickness detection electrode 32 is exposed to the cooling water without being covered with ice (naturally The second ice thickness detection electrode 33 is also exposed to the cooling water), and the control device 40 has detected a potential difference lower than a predetermined lower limit between the first ice thickness detection electrode 32 and the ground electrode. Based on this, the refrigeration apparatus 20 is controlled to operate. When the refrigeration apparatus 20 is operated, the refrigerant gas compressed by the compressor 21 is condensed when passing through the heat exchanger 22a of the condenser 22 by driving the compressor 21 and the condenser fan 22b of the condenser 22. The liquefied refrigerant is cooled and liquefied by blowing by the fan 22b. The liquefied refrigerant is reduced in pressure by the capillary tube and then guided to the evaporation pipe 23 in the water tank 12, and the liquefied refrigerant passing through the evaporation pipe 23 is cooled in the water tank 12. After being exchanged with heat and vaporized, it returns to the compressor 21 again.

水槽12内の冷却水は蒸発管23で気化する冷媒によって冷却されて徐々に温度が低下し、蒸発管23の周囲には冷却水が凍結して氷層Iが形成される。蒸発管23の周囲に形成された氷層Iが所定の範囲の厚みにて最も厚くなったときには、第2氷厚検出用電極33は氷に覆われるようになり(当然に第1氷厚検出用電極32も氷に覆われている)、制御装置40は、第2氷厚検出用電極33とアース電極との間で所定の上限値より高い電位差を検出したことに基づいて、冷凍装置20の作動を停止させるように制御する。   The cooling water in the water tank 12 is cooled by the refrigerant vaporized in the evaporation pipe 23 and gradually decreases in temperature, and the cooling water freezes around the evaporation pipe 23 to form an ice layer I. When the ice layer I formed around the evaporating tube 23 reaches the maximum thickness within a predetermined range, the second ice thickness detection electrode 33 is covered with ice (naturally, the first ice thickness detection). The control device 40 detects that a potential difference higher than a predetermined upper limit value is detected between the second ice thickness detection electrode 33 and the ground electrode. Control to stop the operation.

注出コック14から飲料を注出したときには、水槽12内の冷却水は飲料冷却管13を通過する飲料と熱交換によって温められ、蒸発管23の周囲に形成された氷層Iは徐々に薄くなっていく。蒸発管23の周囲に形成された氷層Iが所定の範囲の厚みにて最も薄くなったときには、第1氷厚検出用電極32は氷に覆われることなく冷却水に露出するようになり(当然に第2氷厚検出用電極33も冷却水に露出している)、制御装置40は、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出することに基づいて、冷凍装置20を再び作動させるように制御する。このように、制御装置40は氷厚検出センサ30の検出に基づいて、冷凍装置20を断続的に作動させるように制御することで、蒸発管23の周囲に所定の範囲の厚みの氷層Iを形成するように制御している。   When the beverage is poured out from the dispensing cock 14, the cooling water in the water tank 12 is warmed by heat exchange with the beverage passing through the beverage cooling pipe 13, and the ice layer I formed around the evaporation pipe 23 is gradually thinned. It will become. When the ice layer I formed around the evaporation tube 23 becomes the thinnest in a predetermined range of thickness, the first ice thickness detection electrode 32 is exposed to the cooling water without being covered with ice ( Naturally, the second ice thickness detection electrode 33 is also exposed to the cooling water), and the control device 40 detects a potential difference lower than a predetermined lower limit value between the first ice thickness detection electrode 32 and the ground electrode. Based on this, the refrigeration apparatus 20 is controlled to operate again. In this way, the control device 40 controls the refrigeration device 20 to operate intermittently based on the detection of the ice thickness detection sensor 30, so that the ice layer I having a predetermined thickness around the evaporation tube 23. Is controlled to form.

飲料冷却装置10を設置した場所の外気温が低いときに、冷凍装置20の作動を停止させたときには、凝縮器22の熱交換器22aに冷媒が低温の外気により液化して溜まって残る、所謂冷媒の寝込みが生じるおそれがあった。凝縮器22の熱交換器22aに冷媒が液化して溜まって残ると、冷凍装置20を循環する冷媒の量が不足し、凝縮器22から蒸発管23に送られる冷媒の殆どが蒸発管23の導入側となる下部で蒸発することになる。この場合には、螺旋状の蒸発管23の下部に氷層Iが厚く形成されるものの、螺旋状の蒸発管23の上部に氷層Iが形成されず、螺旋状の蒸発管23の上下に不均一の厚さの氷層Iが形成されることになっていた。   When the operation of the refrigeration apparatus 20 is stopped when the outside air temperature at the place where the beverage cooling apparatus 10 is installed is low, the refrigerant is liquefied and accumulated in the heat exchanger 22a of the condenser 22 by the low temperature outside air. There was a risk of stagnation of the refrigerant. If the refrigerant is liquefied and accumulated in the heat exchanger 22a of the condenser 22, the amount of the refrigerant circulating in the refrigeration apparatus 20 is insufficient, and most of the refrigerant sent from the condenser 22 to the evaporation pipe 23 is in the evaporation pipe 23. It will evaporate in the lower part on the introduction side. In this case, although the ice layer I is formed thick at the lower part of the spiral evaporator tube 23, the ice layer I is not formed at the upper part of the spiral evaporator tube 23, and above and below the spiral evaporator tube 23. An ice layer I of non-uniform thickness was to be formed.

この飲料冷却装置10では、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置20を作動させるときに、冷却水に露出している第2氷厚検出用電極33とアース電極との間で検出された電位差はアース電極として用いた蒸発管23の氷層Iに覆われた部分が多いほど高くなることを知得した。このため、制御装置40は、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置20を作動させるときに、第2氷厚検出用電極33とアース電極との間で所定の設定値以下の電位差が検出されたか否かの判定を行うようにして、蒸発管23の周囲に不均一な氷層Iが形成されたか否かを検出するようにしている。   In this beverage cooling apparatus 10, when a potential difference lower than a predetermined lower limit value is detected between the first ice thickness detection electrode 32 and the ground electrode and the refrigeration apparatus 20 is operated, the first exposed to the cooling water. It was found that the potential difference detected between the two ice thickness detection electrodes 33 and the ground electrode increases as the portion covered with the ice layer I of the evaporation tube 23 used as the ground electrode increases. For this reason, when the control device 40 detects the potential difference lower than the predetermined lower limit between the first ice thickness detection electrode 32 and the ground electrode and operates the refrigeration apparatus 20, the second ice thickness detection electrode It is determined whether or not a non-uniform ice layer I is formed around the evaporation tube 23 by determining whether or not a potential difference equal to or smaller than a predetermined set value is detected between the ground electrode 33 and the ground electrode. I am doing so.

制御装置40は、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置20を作動させるときに、第2氷厚検出用電極33とアース電極との間で所定の設定値より高い電位差を検出したときには、図1に示したように、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出してないことになる(蒸発管23の周囲に均一の氷層Iが形成されたことを検出したことになる)。制御装置40は、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出してないときには、凝縮器22にて冷媒の寝込みが生じてないので、凝縮器ファン22bを冷却能力を高い状態として、この実施形態では凝縮器ファン22bの出力を低下させることなく連続的に駆動させるように制御している。   When the control device 40 detects a potential difference lower than a predetermined lower limit value between the first ice thickness detection electrode 32 and the earth electrode and operates the refrigeration apparatus 20, the control device 40 and the earth ice thickness detection electrode 33 and the earth electrode are grounded. When a potential difference higher than a predetermined set value is detected with respect to the electrode, it is not detected that the uneven ice layer I is formed around the evaporation tube 23 as shown in FIG. (It is detected that a uniform ice layer I is formed around the evaporation tube 23). When the control device 40 does not detect that the non-uniform ice layer I has been formed around the evaporation pipe 23, the condenser 22 has not stagnation of the refrigerant. In this embodiment, control is performed so that the output of the condenser fan 22b is continuously reduced without lowering.

これに対して、制御装置40は、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置20を作動させるときに、第2氷厚検出用電極33とアース電極との間で所定の設定値以下の電位差を検出したときには、図2に示したように、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出することになる。制御装置40は、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出したときには、凝縮器22にて冷媒の寝込みが生じているので、凝縮器ファン22bを冷却能力を低い状態、この実施形態では、凝縮器ファン22bの出力(回転数)を低下させる、または(及び)、凝縮器ファン22bを間欠的に駆動させるように制御している。凝縮器ファン22bを冷却能力を低い状態で駆動させることで、凝縮器22の熱交換器22aに液化して残る冷媒は圧縮機21から圧送される気化冷媒によって蒸発して冷凍装置20を循環するようになる。冷凍装置20を循環する冷媒が不足しないようになるので、蒸発管23の上部から下部に均一に氷層Iを形成させるようにすることができる。このように、飲料冷却装置10のコストの増加を伴うことなく、蒸発管23の周囲に不均一に氷層Iが形成されたことを検出できるようになり、凝縮器22内の冷媒が低温の外気により液化して溜まって残る、所謂冷媒の寝込みを早期に解消することができるようになった。   On the other hand, when the control device 40 detects the potential difference lower than a predetermined lower limit between the first ice thickness detection electrode 32 and the ground electrode, the control device 40 detects the second ice thickness detection. When a potential difference equal to or less than a predetermined set value is detected between the working electrode 33 and the ground electrode, it is detected that a non-uniform ice layer I is formed around the evaporation tube 23 as shown in FIG. It will be. When the control device 40 detects that the non-uniform ice layer I is formed around the evaporation pipe 23, the cooling of the condenser fan 22b is reduced because the refrigerant has stagnated in the condenser 22. State, in this embodiment, control is performed such that the output (rotation speed) of the condenser fan 22b is reduced or (and) the condenser fan 22b is driven intermittently. By driving the condenser fan 22b with a low cooling capacity, the refrigerant remaining in the heat exchanger 22a of the condenser 22 is evaporated by the vaporized refrigerant pumped from the compressor 21 and circulates in the refrigeration apparatus 20. It becomes like this. Since the refrigerant circulating in the refrigeration apparatus 20 does not run short, the ice layer I can be uniformly formed from the upper part to the lower part of the evaporation pipe 23. In this way, it becomes possible to detect that the ice layer I is formed unevenly around the evaporation pipe 23 without increasing the cost of the beverage cooling device 10, and the refrigerant in the condenser 22 is low in temperature. The so-called refrigerant stagnation, which has been liquefied and retained by the outside air, can be eliminated at an early stage.

(第2実施形態)
次に、第2実施形態の飲料冷却装置10について説明する。第2実施形態の飲料冷却装置10は、第1実施形態の飲料冷却装置10の氷厚検出センサ30を変更したものである。図3に示したように、第2実施形態の飲料冷却装置10の氷厚検出センサ30は、第1実施形態の氷厚検出センサ30にさらに、所定の範囲の厚みの氷層Iの形成されない位置に配置した第3氷厚検出用電極34を備えたものである。第3氷厚検出用電極34は、蒸発管23の周囲にて第2氷厚検出用電極33よりも水槽12の中心側に延び、氷層Iが所定の範囲の厚みにて最も厚くなったときでも先端部が氷に覆われない長さとなっている。
(Second Embodiment)
Next, the drink cooling device 10 of 2nd Embodiment is demonstrated. The beverage cooling device 10 of the second embodiment is obtained by changing the ice thickness detection sensor 30 of the beverage cooling device 10 of the first embodiment. As shown in FIG. 3, the ice thickness detection sensor 30 of the beverage cooling device 10 of the second embodiment does not further form the ice layer I having a predetermined range of thickness in the ice thickness detection sensor 30 of the first embodiment. A third ice thickness detection electrode 34 is provided at the position. The third ice thickness detection electrode 34 extends to the center side of the water tank 12 around the evaporation tube 23 more than the second ice thickness detection electrode 33, and the ice layer I is thickest within a predetermined range. Sometimes the tip is not covered with ice.

この第2実施形態の飲料冷却装置10においても、上述したように、制御装置40は第1及び第2氷厚検出用電極32,33とアース電極との間の電位差に基づいて、冷凍装置20を断続的に作動させることによって、蒸発管23の周囲に所定の範囲の厚みの氷層Iが形成されるように制御している。   Also in the beverage cooling apparatus 10 of the second embodiment, as described above, the control apparatus 40 is based on the potential difference between the first and second ice thickness detection electrodes 32 and 33 and the ground electrode, and the refrigeration apparatus 20. Is controlled so that an ice layer I having a thickness within a predetermined range is formed around the evaporation pipe 23.

この飲料冷却装置10でも、冷却水に露出している第3氷厚検出用電極34とアース電極との間で検出された電位差はアース電極として用いた蒸発管23の氷層Iに覆われた部分が多いほど高くなることを知得している。このため、制御装置40は第3氷厚検出用電極34とアース電極との間で所定の設定値以下の電位差が検出されたか否かの判定を行うようにして、蒸発管23の周囲に不均一な氷層Iが形成されたか否かを検出するようにしている。上述した第1実施形態では、第2氷厚検出用電極33が確実に冷却水に露出しているときとして、第1氷厚検出用電極32とアース電極との間で所定の下限値より低い電位差を検出して冷凍装置20を作動させるときに、第2氷厚検出用電極33とアース電極との間で所定の設定値以下の電位差が検出されたか否かの判定を行うようにしている。これに対し、第2実施形態では、第3氷厚検出用電極34は蒸発管23の周囲に氷層Iが形成されない位置まで延出したために常に冷却水に露出しているため、制御装置40は第3氷厚検出用電極34とアース電極との間で設定値以下の電位差が検出されたか否かの判定を常時または所定時間ごとの定期的に蒸発管23の周囲の氷層Iの程度に関わらず行うことが可能となっている。   Also in this beverage cooling apparatus 10, the potential difference detected between the third ice thickness detection electrode 34 exposed to the cooling water and the ground electrode was covered with the ice layer I of the evaporation tube 23 used as the ground electrode. I know that the more parts, the higher. For this reason, the control device 40 determines whether or not a potential difference equal to or less than a predetermined set value is detected between the third ice thickness detection electrode 34 and the ground electrode, so Whether or not the uniform ice layer I is formed is detected. In the first embodiment described above, when the second ice thickness detection electrode 33 is reliably exposed to the cooling water, it is lower than a predetermined lower limit value between the first ice thickness detection electrode 32 and the ground electrode. When the potential difference is detected and the refrigeration apparatus 20 is operated, it is determined whether or not a potential difference equal to or less than a predetermined set value is detected between the second ice thickness detection electrode 33 and the ground electrode. . On the other hand, in the second embodiment, the third ice thickness detection electrode 34 is always exposed to the cooling water because it extends to a position where the ice layer I is not formed around the evaporation tube 23, and thus the control device 40. Determines whether or not a potential difference equal to or less than a set value has been detected between the third ice thickness detection electrode 34 and the ground electrode, or the degree of the ice layer I around the evaporator tube 23 at regular intervals or periodically. It can be done regardless.

制御装置40は、第3氷厚検出用電極34とアース電極との間で所定の設定値より高い電位差を検出したときには、図3に示したように、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出してないことになる(蒸発管23の周囲に均一の氷層Iが形成されたことを検出したことになる)。制御装置40は、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出してないときには、凝縮器22にて冷媒の寝込みが生じてないので、凝縮器ファン22bを冷却能力を高い状態として、この実施形態では凝縮器ファン22bの出力を低下させることなく連続的に駆動させるように制御している。   When the control device 40 detects a potential difference higher than a predetermined set value between the third ice thickness detection electrode 34 and the earth electrode, as shown in FIG. It is not detected that the layer I is formed (it is detected that the uniform ice layer I is formed around the evaporation tube 23). When the control device 40 does not detect that the non-uniform ice layer I has been formed around the evaporation pipe 23, the condenser 22 has not stagnation of the refrigerant. In this embodiment, control is performed so that the output of the condenser fan 22b is continuously reduced without lowering.

これに対して、制御装置40は、第3氷厚検出用電極34とアース電極との間で所定の設定値以下の電位差を検出したときには、図2に示したのと同様に、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出することになる。制御装置40は、蒸発管23の周囲に不均一の氷層Iが形成されたことを検出したときには、凝縮器22にて冷媒の寝込みが生じているので、凝縮器ファン22bを冷却能力を低い状態、この実施形態では、凝縮器ファン22bの出力(回転数)を低下させる、または(及び)、凝縮器ファン22bを間欠的に駆動させるように制御している。凝縮器ファン22bを冷却能力を低い状態で駆動させることで、凝縮器22の熱交換器22aに液化して残る冷媒は圧縮機21から圧送される気化冷媒によって蒸発して冷凍装置20を循環するようになる。冷凍装置20を循環する冷媒が不足しないようになるので、蒸発管23の上部から下部に均一に氷層Iを形成させるようにすることができる。このように、氷厚検出センサ30の電極を1つ追加するだけで、蒸発管23の周囲に不均一に氷層Iが形成されたことを検出できるようになり、凝縮器22内の冷媒が低温の外気により液化して溜まって残る、所謂冷媒の寝込みを早期に解消することができるようになった。   On the other hand, when the control device 40 detects a potential difference equal to or smaller than a predetermined set value between the third ice thickness detection electrode 34 and the ground electrode, the evaporator tube 23 is the same as shown in FIG. It is detected that a non-uniform ice layer I has been formed around. When the control device 40 detects that the non-uniform ice layer I is formed around the evaporation pipe 23, the cooling of the condenser fan 22b is reduced because the refrigerant has stagnated in the condenser 22. State, in this embodiment, control is performed such that the output (rotation speed) of the condenser fan 22b is reduced or (and) the condenser fan 22b is driven intermittently. By driving the condenser fan 22b with a low cooling capacity, the refrigerant remaining in the heat exchanger 22a of the condenser 22 is evaporated by the vaporized refrigerant pumped from the compressor 21 and circulates in the refrigeration apparatus 20. It becomes like this. Since the refrigerant circulating in the refrigeration apparatus 20 does not run short, the ice layer I can be uniformly formed from the upper part to the lower part of the evaporation pipe 23. In this way, it is possible to detect that the ice layer I has been formed unevenly around the evaporation tube 23 by adding only one electrode of the ice thickness detection sensor 30, and the refrigerant in the condenser 22 can be detected. The so-called refrigerant stagnation, which is liquefied and accumulated by the low-temperature outside air, can be eliminated at an early stage.

なお、上記の実施形態においては、氷厚検出センサ30のアース電極として飲料冷却管13と蒸発管23を用いたが、本発明はこれに限られるものでなく、少なくとも蒸発管23を用いたものであれば、他の部品をアース電極として用いたり、専用のアース電極をさらに用いたものであってもよい。   In the above embodiment, the beverage cooling pipe 13 and the evaporation pipe 23 are used as the ground electrode of the ice thickness detection sensor 30, but the present invention is not limited to this, and at least the evaporation pipe 23 is used. If so, another component may be used as the ground electrode, or a dedicated ground electrode may be further used.

10…飲料冷却装置、12…水槽、13…飲料冷却管、20…冷凍装置、21…圧縮機、22…凝縮器、22b…凝縮器ファン、23…蒸発管、30…氷厚検出センサ、32…第1氷厚検出用電極、33…第2氷厚検出用電極、34…第3氷厚検出用電極。   DESCRIPTION OF SYMBOLS 10 ... Beverage cooling device, 12 ... Water tank, 13 ... Beverage cooling pipe, 20 ... Refrigeration apparatus, 21 ... Compressor, 22 ... Condenser, 22b ... Condenser fan, 23 ... Evaporation pipe, 30 ... Ice thickness detection sensor, 32 ... 1st ice thickness detection electrode, 33 ... 2nd ice thickness detection electrode, 34 ... 3rd ice thickness detection electrode.

Claims (3)

冷却水を貯えた水槽と、
前記水槽内に設けられ、飲料を冷却する飲料冷却管と、
前記水槽内にて上下を螺旋の進行方向として螺旋状に巻回された蒸発管を有し、圧縮機にて圧送された冷媒を凝縮器ファンの駆動によって冷却することで凝縮器にて液化凝縮させ、前記凝縮器にて液化凝縮した液化冷媒を前記蒸発管の下部から上部まで通過させ、通過した液化冷媒が蒸発することで前記蒸発管の周囲の冷却水を冷却して周囲に氷を形成させる冷凍装置と、
前記蒸発管の周囲に所定の範囲の厚みの氷層が形成されたことを検出する氷厚検出センサと、
前記氷厚検出センサの検出に基づいて前記冷凍装置の作動を制御する制御装置とを備えた飲料冷却装置であって、
前記氷厚検出センサは前記蒸発管の周囲にて前記氷層が所定の範囲の厚みにて最も薄くなったときに露出する位置に配置した第1氷厚検出用電極と、前記第1氷厚検出用電極より前記蒸発管から離間した位置にて前記氷層が所定の範囲の厚みにて最も厚くなったときに氷に覆われる位置に配置した第2氷厚検出用電極と、少なくとも前記蒸発管を用いたアース電極とを備え、
前記制御装置は前記第1氷厚検出用電極と前記アース電極との間で所定の下限値より低い電位差を検出すると前記冷凍装置を作動させて、前記第2氷厚検出用電極と前記アース電極との間で所定の上限値より高い電位差を検出すると前記冷凍装置の作動を停止させることで、前記蒸発管の周囲に所定の範囲の厚みの氷層を形成させるように制御したものであり、
前記第1氷厚検出用電極と前記アース電極との間で所定の下限値より低い電位差を検出して前記冷凍装置を作動させるときに、前記第2氷厚検出用電極と前記アース電極との間で所定の設定値以下の電位差を検出したときには、前記蒸発管の周囲に不均一の氷層が形成されたことを検出したことを特徴とする飲料冷却装置。
A water tank for storing cooling water;
A beverage cooling pipe that is provided in the water tank and cools the beverage;
In the water tank, it has an evaporating tube wound in a spiral with the upper and lower sides in the direction of spiral, and the refrigerant pumped by the compressor is cooled by driving the condenser fan to liquefy and condense in the condenser The liquefied refrigerant liquefied and condensed in the condenser is passed from the lower part to the upper part of the evaporation pipe, and the passing liquefied refrigerant evaporates to cool the cooling water around the evaporator pipe to form ice around it. A refrigeration apparatus
An ice thickness detection sensor for detecting that an ice layer having a predetermined range of thickness is formed around the evaporation tube;
A beverage cooling device comprising a control device for controlling the operation of the refrigeration device based on detection by the ice thickness detection sensor,
The ice thickness detection sensor includes a first ice thickness detection electrode disposed at a position that is exposed when the ice layer is thinnest within a predetermined range around the evaporation tube, and the first ice thickness. A second ice thickness detection electrode disposed at a position that is covered with ice when the ice layer is thickest in a predetermined range of thickness at a position away from the evaporation tube from the detection electrode; and at least the evaporation With a ground electrode using a tube,
When the control device detects a potential difference lower than a predetermined lower limit between the first ice thickness detection electrode and the ground electrode, the control device operates the refrigeration device, and the second ice thickness detection electrode and the ground electrode When the potential difference higher than the predetermined upper limit value is detected, the operation of the refrigeration apparatus is stopped, and control is performed so as to form an ice layer having a predetermined range of thickness around the evaporation tube.
When detecting a potential difference lower than a predetermined lower limit between the first ice thickness detection electrode and the ground electrode and operating the refrigeration apparatus, the second ice thickness detection electrode and the ground electrode A beverage cooling device characterized by detecting that a non-uniform ice layer is formed around the evaporation tube when a potential difference equal to or less than a predetermined set value is detected.
冷却水を貯えた水槽と、
前記水槽内に設けられ、飲料を冷却する飲料冷却管と、
前記水槽内にて上下を螺旋の進行方向として螺旋状に巻回された蒸発管を有し、圧縮機にて圧送された冷媒を凝縮器ファンの駆動によって冷却することで凝縮器にて液化凝縮させ、前記凝縮器にて液化凝縮した液化冷媒を前記蒸発管の下部から上部まで通過させ、通過した液化冷媒が蒸発することで前記蒸発管の周囲の冷却水を冷却して周囲に氷を形成させる冷凍装置と、
前記蒸発管の周囲に所定の範囲の厚みの氷層が形成されたことを検出する氷厚検出センサと、
前記氷厚検出センサの検出に基づいて前記冷凍装置の作動を制御する制御装置とを備えた飲料冷却装置であって、
前記氷厚検出センサは前記蒸発管の周囲にて前記氷層が所定の範囲の厚みにて最も薄くなったときに露出する位置に配置した第1氷厚検出用電極と、前記第1氷厚検出用電極より前記蒸発管から離間した位置にて前記氷層が所定の範囲の厚みにて最も厚くなったときに氷に覆われる位置に配置した第2氷厚検出用電極と、前記所定の範囲の厚みの氷層の形成されない位置に配置した第3氷厚検出用電極と、少なくとも前記蒸発管を用いたアース電極とを備え、
前記制御装置は前記第1氷厚検出用電極と前記アース電極との間で所定の下限値より低い電位差を検出すると前記冷凍装置を作動させて、前記第2氷厚検出用電極と前記アース電極との間で所定の上限値より高い電位差を検出すると前記冷凍装置の作動を停止させることで、前記蒸発管の周囲に所定の範囲の厚みの氷層を形成させるように制御したものであり、
前記第3氷厚検出用電極と前記アース電極との間で前記設定値以下の電位差を検出したときには、前記蒸発管の周囲に不均一の氷層が形成されたことを検出したことを特徴とする飲料冷却装置。
A water tank for storing cooling water;
A beverage cooling pipe that is provided in the water tank and cools the beverage;
In the water tank, it has an evaporating tube wound in a spiral with the upper and lower sides in the direction of spiral, and the refrigerant pumped by the compressor is cooled by driving the condenser fan to liquefy and condense in the condenser The liquefied refrigerant liquefied and condensed in the condenser is passed from the lower part to the upper part of the evaporation pipe, and the passing liquefied refrigerant evaporates to cool the cooling water around the evaporator pipe to form ice around it. A refrigeration apparatus
An ice thickness detection sensor for detecting that an ice layer having a predetermined range of thickness is formed around the evaporation tube;
A beverage cooling device comprising a control device for controlling the operation of the refrigeration device based on detection by the ice thickness detection sensor,
The ice thickness detection sensor includes a first ice thickness detection electrode disposed at a position that is exposed when the ice layer is thinnest within a predetermined range around the evaporation tube, and the first ice thickness. A second ice thickness detection electrode disposed at a position where the ice layer is covered with ice when the ice layer is thickest in a predetermined range at a position away from the evaporation tube from the detection electrode; A third ice thickness detection electrode disposed at a position where an ice layer having a thickness in a range is not formed, and a ground electrode using at least the evaporation tube;
When the control device detects a potential difference lower than a predetermined lower limit between the first ice thickness detection electrode and the ground electrode, the control device operates the refrigeration device, and the second ice thickness detection electrode and the ground electrode When the potential difference higher than the predetermined upper limit value is detected, the operation of the refrigeration apparatus is stopped, and control is performed so as to form an ice layer having a predetermined range of thickness around the evaporation tube.
When a potential difference equal to or less than the set value is detected between the third ice thickness detection electrode and the ground electrode, it is detected that a non-uniform ice layer is formed around the evaporation tube. Beverage cooling device to do.
請求項1または2に記載の飲料冷却装置において、
前記制御装置は、前記蒸発管の周囲に不均一の氷層が形成されたことを検出してないときには、前記凝縮器ファンを冷却能力を高い状態で駆動させるように制御し、前記蒸発管の周囲に不均一の氷層が形成されたことを検出したときには、前記凝縮器ファンを冷却能力を低い状態で駆動させるように制御したことを特徴とする飲料冷却装置。
The beverage cooling device according to claim 1 or 2,
When the controller does not detect that a non-uniform ice layer has formed around the evaporator tube, the controller controls the condenser fan to drive in a high cooling capacity state. A beverage cooling device characterized in that, when it is detected that a non-uniform ice layer is formed in the surroundings, the condenser fan is controlled to be driven with a low cooling capacity.
JP2015215963A 2015-11-02 2015-11-02 Beverage cooling device Pending JP2017088182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215963A JP2017088182A (en) 2015-11-02 2015-11-02 Beverage cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215963A JP2017088182A (en) 2015-11-02 2015-11-02 Beverage cooling device

Publications (1)

Publication Number Publication Date
JP2017088182A true JP2017088182A (en) 2017-05-25

Family

ID=58768987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215963A Pending JP2017088182A (en) 2015-11-02 2015-11-02 Beverage cooling device

Country Status (1)

Country Link
JP (1) JP2017088182A (en)

Similar Documents

Publication Publication Date Title
KR101602741B1 (en) Constant temperature liquid circulating device and operation method thereof
JP2011127853A (en) Heat pump device
JP6328276B2 (en) Refrigeration air conditioner
JP4475660B2 (en) Refrigeration equipment
JP2012255631A (en) Freezing device
JP2011163729A (en) Cooling device
JP5921865B2 (en) Beverage cooler
JP6398389B2 (en) Refrigeration equipment
JP6388720B2 (en) Air conditioner
WO2012096078A1 (en) Cooling system and method for operating same
WO2017221300A1 (en) Air conditioner
JP5366764B2 (en) Cooling device and refrigeration cycle device
JP5966450B2 (en) Cooling system
JP6273471B2 (en) Temperature control device
JP2017088182A (en) Beverage cooling device
JP5377720B2 (en) Open showcase
JP6949208B2 (en) Air conditioner
JP5836844B2 (en) Refrigeration equipment
KR20180061763A (en) Refrigerator and method for controlling the same
JP5875797B2 (en) Beverage cooler
JP5842718B2 (en) Refrigeration cycle equipment
KR20160098806A (en) Driving apparatus of dehumidfier
JP6273439B2 (en) Temperature control device
JP2015121358A (en) Outdoor unit for air conditioner
EP4372295A1 (en) Air conditioner