JP5875797B2 - Beverage cooler - Google Patents

Beverage cooler Download PDF

Info

Publication number
JP5875797B2
JP5875797B2 JP2011177099A JP2011177099A JP5875797B2 JP 5875797 B2 JP5875797 B2 JP 5875797B2 JP 2011177099 A JP2011177099 A JP 2011177099A JP 2011177099 A JP2011177099 A JP 2011177099A JP 5875797 B2 JP5875797 B2 JP 5875797B2
Authority
JP
Japan
Prior art keywords
electrode
ice
ice layer
around
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011177099A
Other languages
Japanese (ja)
Other versions
JP2013040707A (en
Inventor
石原 道治
道治 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2011177099A priority Critical patent/JP5875797B2/en
Publication of JP2013040707A publication Critical patent/JP2013040707A/en
Application granted granted Critical
Publication of JP5875797B2 publication Critical patent/JP5875797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、水槽内に立設させたコイル状の蒸発管の周囲に氷を形成させることにより飲料を冷却する飲料冷却装置に関するものである。   The present invention relates to a beverage cooling apparatus for cooling a beverage by forming ice around a coiled evaporating tube standing in a water tank.

特許文献1には、冷却用水の貯留された冷水タンク内に冷凍装置と接続された冷却器が装備され、この冷却器の内側に設けられた一対の電極を備えた貯氷センサによる氷の有無の検知に基づいて冷凍装置の駆動を制御して冷却器の周りに所定厚さの氷層を形成しつつ冷却用水を冷却し、冷却用水中に浸漬された注出管に飲料を流通させることにより冷飲料を冷却して供給するようにした冷飲料供給装置が開示されている。この冷飲料供給装置は、冷却器の周りの氷が注出管内を通過する飲料を凍結させることなく飲料を冷却することができるよう、冷却器の周りの氷層の厚さが制御されている。この飲料冷却装置においては、所定厚さの氷層が形成されて貯氷センサの一対の電極が氷に覆われて、この一対の電極間の抵抗値が上基準値に上がると冷凍装置の圧縮機が停止され、この氷層が溶けて貯氷センサの一対の電極が冷却用水に露出して、この一対の電極間の抵抗値が下基準値に下がると冷凍装置の圧縮機を駆動させるように制御されている。   Patent Document 1 is equipped with a cooler connected to a refrigeration apparatus in a cold water tank in which cooling water is stored, and whether or not ice is present by an ice storage sensor having a pair of electrodes provided inside the cooler. By controlling the drive of the refrigeration system based on the detection to cool the cooling water while forming an ice layer of a predetermined thickness around the cooler, and allowing the beverage to circulate through the extraction pipe immersed in the cooling water A cold beverage supply device that cools and supplies a cold beverage is disclosed. In this cold beverage supply device, the thickness of the ice layer around the cooler is controlled so that the ice around the cooler can cool the beverage without freezing the beverage passing through the dispensing pipe. . In this beverage cooling apparatus, when an ice layer having a predetermined thickness is formed and the pair of electrodes of the ice storage sensor are covered with ice, and the resistance value between the pair of electrodes rises to the upper reference value, the compressor of the refrigeration apparatus When the ice layer melts and the pair of electrodes of the ice storage sensor is exposed to the cooling water, and the resistance value between the pair of electrodes falls to the lower reference value, the compressor of the refrigeration apparatus is controlled to be driven. Has been.

このような冷飲料供給装置においては、冷却用水として用いられる水道水の水質が地域等により異なり、貯氷センサの一対の電極間の抵抗値は水道水中に含まれる導電物質の含有量によって異なっていた。そのために、この冷飲料供給装置においては、圧縮機の駆動と停止を制御する基準値として、通常の水道水用の第1基準値と、導電物質の含有量が多い水用の第2基準値との2パターンが記憶部に格納されている。この冷飲料供給装置の冷却用水に通常の水を用いたときには、操作部の切替スイッチの操作または水質検知手段による冷却用水の水質の検知に基づいて、第1基準値を比較回路に取り込んで、貯氷センサの一対の電極間の抵抗値が第1基準値の上基準値に上がると冷凍装置の圧縮機を停止させ、第1基準値の下基準値に下がると冷凍装置の圧縮機を駆動させるように制御されている。   In such a cold beverage supply device, the quality of tap water used as cooling water varies depending on the region, etc., and the resistance value between the pair of electrodes of the ice storage sensor varies depending on the content of the conductive substance contained in the tap water. . Therefore, in this cold beverage supply device, as a reference value for controlling the driving and stopping of the compressor, a first reference value for normal tap water and a second reference value for water with a high content of conductive material Are stored in the storage unit. When normal water is used as the cooling water of this cold beverage supply device, the first reference value is taken into the comparison circuit based on the operation of the changeover switch of the operation unit or the detection of the quality of the cooling water by the water quality detection means, When the resistance value between the pair of electrodes of the ice storage sensor rises to the upper reference value of the first reference value, the compressor of the refrigeration apparatus is stopped, and when the resistance value falls to the lower reference value of the first reference value, the compressor of the refrigeration apparatus is driven. So that it is controlled.

特開2003−176970号公報JP 2003-176970 A

上記のような冷飲料供給装置においては、貯氷センサの一対の電極間の抵抗値が上基準値に上がると冷凍装置の圧縮機を停止させ、下基準値に下がると冷凍装置の圧縮機を駆動させるように制御されている。このとき、貯氷センサの一対の電極間の抵抗値を比較するための基準値は冷却用水として用いられる水道水の水質に応じて2パターン用意されているが、これらの基準値は水道水の水質によっては必ずしも適切な値でないときがある。あらゆる水道水の水質に対応させようとすると、多数のパターンの基準値を記憶部に格納しておく必要があってコストが高くなる問題があった。本発明はこのような問題を解決することを目的とする。   In the cold beverage supply apparatus as described above, when the resistance value between the pair of electrodes of the ice storage sensor rises to the upper reference value, the compressor of the refrigeration apparatus is stopped, and when the resistance value falls to the lower reference value, the compressor of the refrigeration apparatus is driven. It is controlled to let you. At this time, two patterns of reference values for comparing resistance values between the pair of electrodes of the ice storage sensor are prepared according to the quality of tap water used as cooling water. Some values are not always appropriate. When trying to cope with the water quality of all kinds of tap water, it is necessary to store the reference values of a large number of patterns in the storage unit, and there is a problem that costs increase. The present invention aims to solve such problems.

本発明は上記課題を解決するため、冷却水を貯留した水槽の内部に立設したコイル状の飲料冷却管の周囲に冷凍装置を構成するコイル状の蒸発管を離間して立設させ、冷凍装置を作動させたときに蒸発管の周囲に所定の厚みの氷層を形成するようにして飲料冷却管を通過する飲料を冷却するようにした飲料冷却装置において、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も薄く形成されたときに冷却水に露出する第1電極と、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も厚く形成されたときに氷に覆われる第2電極と、水槽内にて蒸発管から離れた位置の氷の形成されない位置に設けられたアース電極と、第1電極が蒸発管の周囲に形成される氷層に覆われずに冷却水に露出して第1電極とアース電極との間の電位差がオン設定値以下になると冷凍装置を作動させ、第2電極が蒸発管の周囲に形成される氷層に覆われて第2電極とアース電極との間の電位差がオフ設定値以上になると冷凍装置の作動を停止させることで蒸発管の周囲に所定の厚みの氷を形成させるように制御する制御装置を備え、制御装置は蒸発管の周囲に形成される氷に覆われる前の第1または第2電極とアース電極との電位差とオフ設定値との間の中間値をオン設定値としたことを特徴とする飲料冷却装置を提供するものである。 In order to solve the above-mentioned problems, the present invention allows a coiled evaporating pipe constituting a refrigeration apparatus to be set up around a coiled beverage cooling pipe standing upright inside a water tank in which cooling water is stored. A beverage cooling apparatus for cooling a beverage passing through a beverage cooling pipe by forming an ice layer having a predetermined thickness around the evaporation pipe when the apparatus is operated. A first electrode that is provided in a range where an ice layer with a predetermined thickness is formed and is exposed to cooling water when the ice layer is formed to be thinnest, and an ice layer with a predetermined thickness around an evaporation pipe in the water tank A second electrode which is covered with ice when the ice layer is formed to be the thickest, and a ground which is provided at a position away from the evaporation pipe in the water tank and where no ice is formed. The electrode and the first electrode are covered with an ice layer formed around the evaporation tube If the potential difference between the first electrode and the ground electrode falls below the ON set value without being exposed to cooling water, the refrigeration unit is activated, and the second electrode is covered with an ice layer formed around the evaporation tube. Provided with a control device that controls to form ice of a predetermined thickness around the evaporation tube by stopping the operation of the refrigeration device when the potential difference between the second electrode and the ground electrode exceeds an off set value The apparatus is characterized in that the intermediate value between the potential difference between the first or second electrode and the ground electrode before being covered with ice formed around the evaporation tube and the OFF set value is set as the ON set value. A cooling device is provided.

上記のように構成した飲料冷却装置においては、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も薄く形成されたときに冷却水に露出する第1電極と、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も厚く形成されたときに氷に覆われる第2電極と、水槽内にて蒸発管から離れた位置の氷の形成されない位置に設けられたアース電極と、第1電極が蒸発管の周囲に形成される氷層に覆われずに冷却水に露出して第1電極とアース電極との間の電位差がオン設定値以下になると冷凍装置を作動させ、第2電極が蒸発管の周囲に形成される氷層に覆われて第2電極とアース電極との間の電位差がオフ設定値以上になると冷凍装置の作動を停止させることで蒸発管の周囲に所定の厚みの氷を形成させるように制御する制御装置を備え、制御装置は蒸発管の周囲に形成される氷に覆われる前の第1または第2電極とアース電極との電位差とオフ設定値との間の中間値をオン設定値としたので、冷却水の電気伝導度に応じて複数のオン設定値を予めメモリ等の記憶部に設定しておくことなく、冷却水の幅広い電気伝導度に対応したオン設定値を用いて冷凍装置の作動を制御することができる。   In the beverage cooling apparatus configured as described above, it is provided in a range where an ice layer having a predetermined thickness is formed around the evaporation pipe in the water tank, and is exposed to the cooling water when the ice layer is formed to be the thinnest. A first electrode that is provided in a range where an ice layer having a predetermined thickness is formed around the evaporation pipe in the water tank, and is covered with ice when the ice layer is formed to be thickest; The first electrode is exposed to the cooling water without being covered with the ice layer formed around the evaporation tube and the ground electrode provided in the position where the ice is not formed in the position away from the evaporation tube in the first. When the potential difference between the electrode and the ground electrode becomes equal to or less than the on-set value, the refrigeration apparatus is activated, and the second electrode is covered with an ice layer formed around the evaporation tube, and between the second electrode and the ground electrode. When the potential difference exceeds the set off value, the operation of the refrigeration system is stopped to Is provided with a control device that controls to form ice having a predetermined thickness, and the control device sets the potential difference between the first or second electrode and the ground electrode before being covered with the ice formed around the evaporator tube and the OFF setting. Since the intermediate value between the values is set as the ON set value, a wide range of cooling water electrical conductivity can be obtained without previously setting multiple ON set values in the storage unit such as a memory according to the electrical conductivity of the cooling water. The operation of the refrigeration apparatus can be controlled using the ON set value corresponding to the degree.

本発明は上記課題を解決するための他の実施形態においては、冷却水を貯留した水槽の内部に立設したコイル状の飲料冷却管の周囲に冷凍装置を構成するコイル状の蒸発管を離間して立設させ、冷凍装置を作動させたときに蒸発管の周囲に所定の厚みの氷層を形成するようにして飲料冷却管を通過する飲料を冷却するようにした飲料冷却装置において、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も薄く形成されたときに冷却水に露出する第1電極と、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も厚く形成されたときに氷に覆われる第2電極と、水槽内の蒸発管から離れて氷層の形成されない位置に設けられた第3電極とアース電極と、第1電極が蒸発管の周囲に形成される氷層に覆われずに冷却水に露出して第1電極とアース電極との間の電位差がオン設定値以下になると冷凍装置を作動させ、第2電極が蒸発管の周囲に形成される氷層に覆われて第2電極とアース電極との間の電位差がオフ設定値以上になると冷凍装置の作動を停止させることで蒸発管の周囲に所定の厚みの氷を形成させるように制御する制御装置を備え、制御装置は第3電極とアース電極との間の電位差とオフ設定値との間の中間値をオン設定値としたことを特徴とする飲料冷却装置を提供するものである。 In another embodiment of the present invention for solving the above-described problems, a coiled evaporation pipe constituting a refrigeration apparatus is spaced around a coiled beverage cooling pipe standing inside a water tank in which cooling water is stored. In the beverage cooling device, the water tank is configured to cool the beverage passing through the beverage cooling pipe so as to form an ice layer having a predetermined thickness around the evaporation pipe when the refrigeration apparatus is operated. A first electrode which is provided in a range where an ice layer having a predetermined thickness around the inner evaporation tube is formed and is exposed to the cooling water when the ice layer is formed to be the thinnest, and the periphery of the evaporation tube in the water tank A second electrode which is provided in a range where an ice layer having a predetermined thickness is formed and is covered with ice when the ice layer is formed thickest, and a position where an ice layer is not formed apart from the evaporation pipe in the water tank The third electrode and ground electrode provided on the first electrode are the evaporation tubes When the potential difference between the first electrode and the ground electrode falls below the ON set value by being exposed to the cooling water without being covered by the ice layer formed in the surroundings, the refrigeration apparatus is operated, and the second electrode is around the evaporation tube. When the potential difference between the second electrode and the ground electrode becomes equal to or greater than the off-set value, covered with an ice layer formed on the surface, ice of a predetermined thickness is formed around the evaporation tube by stopping the operation of the refrigeration apparatus. The beverage cooling device is characterized in that an intermediate value between the potential difference between the third electrode and the ground electrode and the off set value is set as the on set value. Is.

上記のように構成した飲料冷却装置においては、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も薄く形成されたときに冷却水に露出する第1電極と、水槽内の蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も厚く形成されたときに氷に覆われる第2電極と、水槽内の蒸発管から離れて氷層の形成されない位置に設けられた第3電極とアース電極と、第1電極が蒸発管の周囲に形成される氷層に覆われずに冷却水に露出して第1電極とアース電極との間の電位差がオン設定値以下になると冷凍装置を作動させ、第2電極が蒸発管の周囲に形成される氷層に覆われて第2電極とアース電極との間の電位差がオフ設定値以上になると冷凍装置の作動を停止させることで蒸発管の周囲に所定の厚みの氷を形成させるように制御する制御装置を備え、制御装置は第3電極とアース電極との間の電位差とオフ設定値との間の中間値をオン設定値としたので、上記のように冷却水の電気伝導度に応じて複数のオン設定値を予めメモリ等の記憶部に設定しておくことなく、冷却水の幅広い電気伝導度に対応したオン設定値を用いて冷凍装置の作動を制御することができる。さらに、蒸発管の周囲に氷層が第1及び第2電極を覆った後に冷却水の電気伝導度が変化したときであっても、氷層の形成されない位置に設けられた第3電極とアース電極との間の電位差を用いることによって、冷却水の電気伝導度の変化に対応したオン設定値を用いて冷凍装置の作動を制御することができる。   In the beverage cooling apparatus configured as described above, it is provided in a range where an ice layer having a predetermined thickness is formed around the evaporation pipe in the water tank, and is exposed to the cooling water when the ice layer is formed to be the thinnest. A first electrode that is provided in a range where an ice layer having a predetermined thickness is formed around the evaporation pipe in the water tank, and is covered with ice when the ice layer is formed to be thickest; A third electrode and a ground electrode provided at a position where an ice layer is not formed apart from the inner evaporation tube, and the first electrode is exposed to cooling water without being covered by the ice layer formed around the evaporation tube. When the potential difference between the first electrode and the ground electrode becomes equal to or less than the on-set value, the refrigeration apparatus is activated, and the second electrode is covered with an ice layer formed around the evaporation tube, and the second electrode and the ground electrode are When the potential difference between the two becomes more than the off-set value, the operation of the refrigeration system is stopped to A control device is provided for controlling the formation of ice having a predetermined thickness in the surroundings, and the control device sets the intermediate value between the potential difference between the third electrode and the ground electrode and the off set value as the on set value. As described above, without setting a plurality of ON setting values in advance in a storage unit such as a memory according to the electrical conductivity of the cooling water, the ON setting values corresponding to a wide electrical conductivity of the cooling water are used. The operation of the refrigeration apparatus can be controlled. Furthermore, even when the electrical conductivity of the cooling water changes after the ice layer covers the first and second electrodes around the evaporation tube, the third electrode provided at a position where the ice layer is not formed and the ground By using the potential difference between the electrodes, the operation of the refrigeration apparatus can be controlled using the ON set value corresponding to the change in the electrical conductivity of the cooling water.

本発明による飲料冷却装置の概略図である。1 is a schematic view of a beverage cooling device according to the present invention. 制御装置のブロック図である。It is a block diagram of a control apparatus. 検出回路を示す図である。It is a figure which shows a detection circuit. 冷却水の電気伝導度が高いときの各電極間の電位差を示す図である。It is a figure which shows the electrical potential difference between each electrode when the electrical conductivity of a cooling water is high. 冷却水の電気伝導度が低いときの各電極間の電位差を示す図である。It is a figure which shows the electrical potential difference between each electrode when the electrical conductivity of a cooling water is low. 本発明による他の実施形態の飲料冷却装置の概略図である。It is the schematic of the drink cooling device of other embodiment by this invention. 他の実施形態の制御装置のブロック図であるIt is a block diagram of the control apparatus of other embodiment.

以下に、本発明による飲料冷却装置の一実施形態を図面を参照して説明する。本発明による飲料冷却装置10は冷却水を貯える水槽11を備えており、この水槽11内にはコイル状の飲料冷却管12が冷却水に浸漬された状態で立設している。飲料冷却管12は導入端側に図示しないビア樽等の飲料供給源に接続され、導出端側に図示しない注出コックが接続されており、飲料供給源の飲料は飲料冷却管12を通過する際に冷却水により冷却されてから注出コックからグラスなどの容器に注出される。また、水槽11の内周壁には飲料冷却管12を囲むようにして冷凍装置13の蒸発管14がコイル状に巻回されている。冷凍装置13を作動させると、圧縮機により圧縮された冷媒ガスが凝縮器により冷却されて液化され、この液化冷媒はキャピラリーチューブを通して水槽11内の蒸発管14に導かれて水槽11内の冷却水と熱交換されて気化してから再び圧縮機に還流する。この冷凍装置13の作動により、水槽11内の冷却水は蒸発管14で気化する冷媒によって冷却されて蒸発管14の周囲で凍結して所定の厚みの氷層となる。   Below, one Embodiment of the drink cooling device by this invention is described with reference to drawings. The beverage cooling apparatus 10 according to the present invention includes a water tank 11 for storing cooling water, and a coiled beverage cooling pipe 12 is erected in the water tank 11 in a state of being immersed in the cooling water. The beverage cooling pipe 12 is connected to a beverage supply source such as a beer barrel (not shown) on the introduction end side, and a pouring cock (not shown) is connected to the lead-out end side, and the beverage at the beverage supply source passes through the beverage cooling pipe 12. At this time, after being cooled by cooling water, it is poured out into a container such as a glass from the pouring cock. An evaporation pipe 14 of the refrigeration apparatus 13 is wound around the inner peripheral wall of the water tank 11 in a coil shape so as to surround the beverage cooling pipe 12. When the refrigeration apparatus 13 is operated, the refrigerant gas compressed by the compressor is cooled and liquefied by the condenser, and this liquefied refrigerant is led to the evaporation pipe 14 in the water tank 11 through the capillary tube and is cooled in the water tank 11. After being exchanged with heat and vaporized, it returns to the compressor again. By the operation of the refrigeration apparatus 13, the cooling water in the water tank 11 is cooled by the refrigerant vaporized in the evaporation pipe 14 and is frozen around the evaporation pipe 14 to form an ice layer having a predetermined thickness.

水槽11の上部にはモータ15が設けられており、コイル状の飲料冷却管12の内周側に延出したモータ15の出力軸の先端には冷却水を撹拌する撹拌羽根16が固定されている。モータ15により撹拌羽根16を回転させることで、水槽11内の冷却水は撹拌され、飲料冷却管12を通過する飲料を効率よく熱交換させて冷却するとともに、蒸発管14の周囲に均一に氷層を形成させるようにしている。   A motor 15 is provided in the upper part of the water tank 11, and a stirring blade 16 for stirring the cooling water is fixed to the tip of the output shaft of the motor 15 extending to the inner peripheral side of the coiled beverage cooling pipe 12. Yes. By rotating the stirring blade 16 by the motor 15, the cooling water in the water tank 11 is stirred, and the beverage passing through the beverage cooling pipe 12 is cooled by efficiently exchanging heat, and the ice around the evaporation pipe 14 is evenly iced. A layer is formed.

水槽11内には、蒸発管14の周囲の所定の厚みの氷層が形成される範囲に後述する第1検出回路31を構成する第1電極21と第2検出回路32を構成する第2電極22とが設けられている。第1電極21と第2電極22は蒸発管14の内周側に配置されてコイル状の蒸発管14の中心側に突出している。第1電極21は蒸発管14の周囲に形成される氷層が最も薄く形成されたときに先端部が冷却水に露出する長さとなっている。第2電極22は蒸発管14の周囲に形成される氷層が最も厚く形成されたときに先端部が氷層に覆われる長さとなっている。また、水槽11内には、蒸発管14から離れた位置の氷の形成されない位置に後述する第1及び第2検出回路31、32を構成するアース電極23が設けられている。なお、金属製の飲料冷却管12をアース電極23として用いて部品点数を減らしてもよい。   In the water tank 11, the 1st electrode 21 which comprises the 1st detection circuit 31 mentioned later and the 2nd electrode which comprises the 2nd detection circuit 32 in the range in which the ice layer of predetermined thickness around the evaporation pipe 14 is formed. 22 are provided. The first electrode 21 and the second electrode 22 are disposed on the inner peripheral side of the evaporation tube 14 and protrude toward the center of the coiled evaporation tube 14. The first electrode 21 has such a length that the tip is exposed to the cooling water when the ice layer formed around the evaporation tube 14 is formed to be the thinnest. The second electrode 22 has such a length that the tip is covered with the ice layer when the ice layer formed around the evaporation tube 14 is formed to be the thickest. Further, in the water tank 11, a ground electrode 23 constituting first and second detection circuits 31 and 32 described later is provided at a position where ice is not formed at a position away from the evaporation pipe 14. The metal beverage cooling pipe 12 may be used as the ground electrode 23 to reduce the number of parts.

第1電極21とアース電極23との間の抵抗は水槽11内の冷却水の電気伝導度に反比例しており、第1電極21とアース電極23との間の抵抗は水槽11内の冷却水の電気伝導度が低くなるに従って高くなる。同様に、第2電極22とアース電極23との間の抵抗は水槽11内の冷却水の電気伝導度に反比例しており、第2電極22とアース電極23との間の抵抗は水槽11内の冷却水の電気伝導度が低くなるに従って高くなる。また、第1電極21が冷却水に露出しているときに比べて第1電極21が蒸発管14の周囲の氷層に覆われると、第1電極21とアース電極23との間の抵抗は大きくなる。同様に、第2電極22が冷却水に露出しているときに比べて第2電極22が蒸発管14の周囲の氷層に覆われると、第2電極22とアース電極23との間の抵抗は大きくなる。   The resistance between the first electrode 21 and the ground electrode 23 is inversely proportional to the electrical conductivity of the cooling water in the water tank 11, and the resistance between the first electrode 21 and the ground electrode 23 is the cooling water in the water tank 11. Increases as the electrical conductivity decreases. Similarly, the resistance between the second electrode 22 and the ground electrode 23 is inversely proportional to the electrical conductivity of the cooling water in the water tank 11, and the resistance between the second electrode 22 and the ground electrode 23 is in the water tank 11. It increases as the electrical conductivity of the cooling water decreases. Further, when the first electrode 21 is covered with an ice layer around the evaporation tube 14 as compared with the case where the first electrode 21 is exposed to the cooling water, the resistance between the first electrode 21 and the ground electrode 23 is growing. Similarly, when the second electrode 22 is covered with an ice layer around the evaporation tube 14 as compared to when the second electrode 22 is exposed to the cooling water, the resistance between the second electrode 22 and the ground electrode 23 is increased. Will grow.

飲料冷却装置10は制御装置30を備えており、図2に示すように、この制御装置30には冷凍装置13、第1及び第2検出回路31、32に接続されている。制御装置30はマイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続されたCPU、RAM、ROM及びタイマ(いずれも図示省略)を備えている。   The beverage cooling device 10 includes a control device 30, and is connected to the refrigeration device 13 and the first and second detection circuits 31 and 32 as shown in FIG. 2. The control device 30 includes a microcomputer (not shown), and the microcomputer includes a CPU, a RAM, a ROM, and a timer (all not shown) connected via a bus.

第1検出回路31は第1電極21とアース電極23との間の電位差を検出するものである。図3に示すように、第1検出回路31は、入力端子31aと第1電極21との間に接続された固定抵抗31bと、第1電極21とアース電極23との間に接続されてこの電位差を検出する第1電圧計31cとを設けたものである(図中の2点鎖線は第1電極21とアース電極23とを冷却水に浸漬する水槽11を示す)。入力端子31aに所定の電圧(例えば5Vの電圧)を印可すると、第1電圧計31cにより検出される電位差は所定の範囲内(例えば0V〜1V)で第1電極21とアース電極23との間の抵抗が高くなるに従って高くなる。このように、第1検出回路31は、第1電圧計31cにより検出される電位差によって第1電極21とアース電極23との間の抵抗を検出する。   The first detection circuit 31 detects a potential difference between the first electrode 21 and the ground electrode 23. As shown in FIG. 3, the first detection circuit 31 is connected between the fixed resistor 31 b connected between the input terminal 31 a and the first electrode 21, and between the first electrode 21 and the ground electrode 23. A first voltmeter 31c for detecting a potential difference is provided (a two-dot chain line in the figure indicates a water tank 11 in which the first electrode 21 and the ground electrode 23 are immersed in cooling water). When a predetermined voltage (for example, a voltage of 5V) is applied to the input terminal 31a, the potential difference detected by the first voltmeter 31c is within a predetermined range (for example, 0V to 1V) between the first electrode 21 and the ground electrode 23. The resistance increases as the resistance increases. As described above, the first detection circuit 31 detects the resistance between the first electrode 21 and the ground electrode 23 based on the potential difference detected by the first voltmeter 31c.

第2検出回路32は第2電極22とアース電極23との間の電位差を検出するものである。図3に示すように、第2検出回路32は、入力端子32aと第2電極22との間に接続された固定抵抗32bと、第2電極22とアース電極23との間に接続されてこの電位差を検出する第2電圧計32cとを設けたものである(図中の2点鎖線は第2電極22とアース電極23とを冷却水に浸漬する水槽11を示す)。入力端子32aに所定の電圧(例えば5Vの電圧)を印可すると、第2電圧計32cにより検出される電位差は所定の範囲内(例えば0V〜1V)で第2電極22とアース電極23との間の抵抗が高くなるに従って高くなる。このように、第2検出回路32は、第2電圧計32cにより検出される電位差によって第2電極22とアース電極23との間の抵抗を検出する。   The second detection circuit 32 detects a potential difference between the second electrode 22 and the ground electrode 23. As shown in FIG. 3, the second detection circuit 32 is connected between the fixed resistor 32b connected between the input terminal 32a and the second electrode 22, and between the second electrode 22 and the ground electrode 23. A second voltmeter 32c for detecting a potential difference is provided (a two-dot chain line in the figure indicates a water tank 11 in which the second electrode 22 and the ground electrode 23 are immersed in cooling water). When a predetermined voltage (for example, a voltage of 5V) is applied to the input terminal 32a, the potential difference detected by the second voltmeter 32c is within a predetermined range (for example, 0V to 1V) between the second electrode 22 and the ground electrode 23. The resistance increases as the resistance increases. As described above, the second detection circuit 32 detects the resistance between the second electrode 22 and the ground electrode 23 based on the potential difference detected by the second voltmeter 32c.

制御装置30は第1及び第2検出回路31、32による検出に基づいて水槽11内の蒸発管14の周囲に形成される氷層の厚さを制御する氷厚制御手段を有している。この氷厚制御手段は蒸発管14の周囲に形成される氷層によって飲料冷却管12を通過する飲料を凍結させることなく冷却するためのものである。この氷厚制御手段は、第1電極21が蒸発管14の周囲の氷層に覆われずに冷却水に露出して、第1検出回路31の第1電圧計31cにより検出される第1電極21とアース電極23との間の電位差がオン設定値以下になると冷凍装置13(の圧縮機)を作動させ、第2電極22が蒸発管14の周囲に形成される氷層に覆われて、第2検出回路32の第2電圧計32cにより検出される第2電極22とアース電極23との間の電位差がオフ設定値以上になると冷凍装置13(の圧縮機)の作動を停止させるように制御するものである。この氷厚制御手段において、オン設定値が適切でないと、第1電極21とアース電極23との間の電位差がオン設定値以下とならずに、冷凍装置13を作動させることができなくなり、その結果、蒸発管14の周囲の氷層の厚さが所定の厚さより薄くなる。また、この氷厚制御手段において、オフ設定値が適切でないと、第2電極22とアース電極23との間の電位差がオフ設定値以上とならずに、冷凍装置13の作動を停止させることができなくなり、その結果、蒸発管14の周囲の氷層の厚さが所定の厚さより厚くなる。   The control device 30 has ice thickness control means for controlling the thickness of the ice layer formed around the evaporation pipe 14 in the water tank 11 based on detection by the first and second detection circuits 31 and 32. This ice thickness control means is for cooling the beverage passing through the beverage cooling tube 12 by the ice layer formed around the evaporation tube 14 without freezing. In this ice thickness control means, the first electrode 21 is detected by the first voltmeter 31c of the first detection circuit 31 when the first electrode 21 is exposed to the cooling water without being covered with the ice layer around the evaporation tube 14. When the potential difference between the first electrode 21 and the ground electrode 23 is equal to or lower than the on-set value, the refrigeration apparatus 13 (the compressor thereof) is operated, and the second electrode 22 is covered with an ice layer formed around the evaporation tube 14, When the potential difference between the second electrode 22 and the ground electrode 23 detected by the second voltmeter 32c of the second detection circuit 32 becomes equal to or greater than the OFF set value, the operation of the refrigeration apparatus 13 (the compressor thereof) is stopped. It is something to control. In this ice thickness control means, if the ON setting value is not appropriate, the potential difference between the first electrode 21 and the ground electrode 23 does not become the ON setting value or less, and the refrigeration apparatus 13 cannot be operated. As a result, the thickness of the ice layer around the evaporator tube 14 becomes thinner than a predetermined thickness. Further, in this ice thickness control means, if the off set value is not appropriate, the potential difference between the second electrode 22 and the ground electrode 23 does not exceed the off set value, and the operation of the refrigeration apparatus 13 can be stopped. As a result, the thickness of the ice layer around the evaporation tube 14 becomes thicker than a predetermined thickness.

次に、この氷厚制御手段における冷凍装置13の作動をするためのオン設定値及び作動停止をするためのオフ設定値について説明する。第2電極22が蒸発管14の周囲の氷層に覆われたときに第2電圧計32cにより検出される第2電極22とアース電極23との間の電位差は、冷却水の電気伝導度に関わらず、急激に上限値(例えば1V)に近づくように高くなる。よって、冷凍装置13の作動を停止させるオフ設定値はこの上限値に近い値として例えば0.9Vに設定されている。   Next, an on set value for operating the refrigeration apparatus 13 and an off set value for stopping the operation in the ice thickness control means will be described. The potential difference between the second electrode 22 and the ground electrode 23 detected by the second voltmeter 32c when the second electrode 22 is covered with an ice layer around the evaporation tube 14 is related to the electrical conductivity of the cooling water. Regardless, it becomes higher so as to approach the upper limit (for example, 1 V) abruptly. Therefore, the off set value for stopping the operation of the refrigeration apparatus 13 is set to, for example, 0.9 V as a value close to the upper limit value.

これに対し、第1電極21が蒸発管14の周囲の氷層に覆われることなく冷却水に露出しているときの第1電極21とアース電極23との間の電位差は水槽11内の冷却水の電気伝導度によって異なってくる。例えば、水槽11内の冷却水が電気伝導度が高いとき(例えば180μS/cm)には、図4の電源をオンにしたタイミング(図中の0時間)にあるように、第1電圧計31cによって検出される電位差は0.1Vと低い値を示す。これに対し、水槽11内の冷却水の電気伝導度が低いとき(例えば5μS/cm)には、図5の電源をオンにしたタイミング(図中の0時間)にあるように、第1電圧計31cによって検出される電位差は0.7Vと高い値を示す。このように、第1電極21とアース電極23との間の電位差は冷却水の電気伝導度によって大きく異なり、冷凍装置13を作動させるオン設定値を一定とすることができないために、以下のようにオン設定値を算出する。   On the other hand, the potential difference between the first electrode 21 and the ground electrode 23 when the first electrode 21 is exposed to the cooling water without being covered by the ice layer around the evaporation tube 14 is the cooling in the water tank 11. It depends on the electrical conductivity of water. For example, when the cooling water in the water tank 11 has high electrical conductivity (for example, 180 μS / cm), the first voltmeter 31c is at the timing of turning on the power supply in FIG. 4 (0 hours in the figure). Shows a low value of 0.1V. On the other hand, when the electrical conductivity of the cooling water in the water tank 11 is low (for example, 5 μS / cm), the first voltage is at the timing when the power supply of FIG. 5 is turned on (0 hours in the figure). The potential difference detected by the total 31c is as high as 0.7V. As described above, the potential difference between the first electrode 21 and the ground electrode 23 varies greatly depending on the electric conductivity of the cooling water, and the ON set value for operating the refrigeration apparatus 13 cannot be made constant. Calculate the ON setting value.

制御装置30は、第1電極21が蒸発管14の周囲に形成される氷層に覆われていないときとして、飲料冷却装置10の電源がオンされたときに第1電圧計31cにより検出される第1電極21とアース電極23との間の電位差を用い、この検出された電位差とオフ設定値として規定された0.9Vとの中間値としてこれらの平均値をオン設定値としてメモリに記憶させ、このオン設定値を用いて冷凍装置13の作動を制御する。なお、このオン設定値を求めるときには、第1電圧計31cにより検出される第1電極21とアース電極23との間の電位差に代えて、第2電圧計32cにより検出された第2電極22とアース電極23との間の電位差を用いてもよい。   The control device 30 is detected by the first voltmeter 31c when the beverage cooling device 10 is turned on, assuming that the first electrode 21 is not covered with an ice layer formed around the evaporation tube 14. The potential difference between the first electrode 21 and the ground electrode 23 is used, and an average value of the detected potential difference and 0.9 V defined as the off set value are stored in the memory as the on set value. The operation of the refrigeration apparatus 13 is controlled using the ON set value. When determining the ON set value, instead of the potential difference between the first electrode 21 and the ground electrode 23 detected by the first voltmeter 31c, the second electrode 22 detected by the second voltmeter 32c and A potential difference with respect to the ground electrode 23 may be used.

上述した飲料冷却装置10の冷凍装置13の作動について、先ず冷却水の電気伝導度が高いとき(180μS/cm)について説明する。飲料冷却装置10の電源をオンする前は、水槽11内の冷却水は蒸発管14の周囲で氷層が形成されていない。飲料冷却装置10の電源をオンすると、制御装置30は、第1電圧計31cにより検出された第1電極21とアース電極23との間の電位差である0.1Vと予め設定されたオフ設定値である0.9Vとの平均値である0.5Vをオン設定値としてメモリに記憶する。次に、制御装置30は冷凍装置13を作動させると、水槽11内の冷却水は蒸発管14で気化する冷媒によって冷却されて蒸発管14の周囲で凍結する。蒸発管14の周囲の氷は第1電極21を覆う範囲に形成されてからさらに第2電極22を覆う範囲に形成される。第2電極22の全体が氷に覆われて、第2検出回路32の第2電圧計32cにより検出される第2電極22とアース電極23との間の電位差がオフ設定値である0.9V以上に上がると、制御装置30は冷凍装置13の作動を停止させる。これにより、蒸発管14の周囲の氷層が所定の厚みの範囲を超えないように冷凍装置13の作動が制御される。   The operation of the refrigeration apparatus 13 of the beverage cooling apparatus 10 described above will be described first when the electrical conductivity of the cooling water is high (180 μS / cm). Before the beverage cooling device 10 is turned on, the cooling water in the water tank 11 has no ice layer formed around the evaporation pipe 14. When the beverage cooling device 10 is turned on, the control device 30 sets a preset off-set value of 0.1 V, which is a potential difference between the first electrode 21 and the ground electrode 23 detected by the first voltmeter 31c. Is stored in the memory as an ON set value. Next, when the control device 30 operates the refrigeration device 13, the cooling water in the water tank 11 is cooled by the refrigerant vaporized in the evaporation pipe 14 and is frozen around the evaporation pipe 14. Ice around the evaporation tube 14 is formed in a range covering the first electrode 21 and then in a range covering the second electrode 22. The entire second electrode 22 is covered with ice, and the potential difference between the second electrode 22 and the earth electrode 23 detected by the second voltmeter 32c of the second detection circuit 32 is 0.9 V, which is an off set value. If it goes up above, the control apparatus 30 will stop the action | operation of the freezing apparatus 13. FIG. Thus, the operation of the refrigeration apparatus 13 is controlled so that the ice layer around the evaporation tube 14 does not exceed the predetermined thickness range.

冷凍装置13の作動が停止すると、蒸発管14の周囲に形成された氷層の厚みが徐々に薄くなる。第1電極21の先端部が蒸発管14の周囲の氷層に覆われずに冷却水に露出し、第1検出回路31の第1電圧計31cにより検出される第1電極21とアース電極23との間の電位差がオン設定値である0.5V以下に下がると、制御装置30は冷凍装置13を作動させる。これにより、蒸発管14の周囲の氷層が所定の厚みの範囲より薄くならないように冷凍装置13の作動が制御される。   When the operation of the refrigeration apparatus 13 stops, the thickness of the ice layer formed around the evaporation pipe 14 gradually decreases. The tip of the first electrode 21 is exposed to the cooling water without being covered with the ice layer around the evaporation tube 14, and the first electrode 21 and the ground electrode 23 detected by the first voltmeter 31 c of the first detection circuit 31. The control device 30 operates the refrigeration apparatus 13 when the potential difference between the voltage and the voltage drops to 0.5 V or less, which is the ON setting value. As a result, the operation of the refrigeration apparatus 13 is controlled so that the ice layer around the evaporation tube 14 does not become thinner than a predetermined thickness range.

次に、水槽11内の冷却水の電気伝導度が低いとき(5μS/cm)について説明する。飲料冷却装置10の電源をオンする前は、水槽11内の冷却水は蒸発管14の周囲に氷層が形成されていない。飲料冷却装置10の電源をオンすると、制御装置30は、第1電圧計31cにより検出された第1電極21とアース電極23との間の電位差である0.7Vと予め設定されたオフ設定値である0.9Vとの平均値である0.8Vをオン設定値としてメモリに記憶する。次に、制御装置30は冷凍装置13を作動させると、水槽11内の冷却水は蒸発管14で気化する冷媒によって冷却されて蒸発管14の周囲で凍結する。蒸発管14の周囲の氷は第1電極21を覆う範囲に形成されてからさらに第2電極22を覆う範囲に形成される。第2電極22の全体が氷に覆われて、第2検出回路32の第2電圧計32cにより検出される第2電極22とアース電極23との間の電位差がオフ設定値である0.9V以上に上がると、制御装置30は冷凍装置13の作動を停止させる。これにより、蒸発管14の周囲の氷層が所定の厚みの範囲を超えないように冷凍装置13の作動が制御される。   Next, the case where the electrical conductivity of the cooling water in the water tank 11 is low (5 μS / cm) will be described. Before the beverage cooling device 10 is turned on, the cooling water in the water tank 11 has no ice layer formed around the evaporation pipe 14. When the beverage cooling device 10 is turned on, the control device 30 sets a preset off setting value of 0.7 V, which is a potential difference between the first electrode 21 and the earth electrode 23 detected by the first voltmeter 31c. Is stored in the memory as an ON setting value. Next, when the control device 30 operates the refrigeration device 13, the cooling water in the water tank 11 is cooled by the refrigerant vaporized in the evaporation pipe 14 and is frozen around the evaporation pipe 14. Ice around the evaporation tube 14 is formed in a range covering the first electrode 21 and then in a range covering the second electrode 22. The entire second electrode 22 is covered with ice, and the potential difference between the second electrode 22 and the earth electrode 23 detected by the second voltmeter 32c of the second detection circuit 32 is 0.9 V, which is an off set value. If it goes up above, the control apparatus 30 will stop the action | operation of the freezing apparatus 13. FIG. Thus, the operation of the refrigeration apparatus 13 is controlled so that the ice layer around the evaporation tube 14 does not exceed the predetermined thickness range.

冷凍装置13の作動が停止すると、蒸発管14の周囲に形成された氷層の厚みが徐々に薄くなる。第1電極21の先端部が蒸発管14の周囲の氷層に覆われずに冷却水に露出し、第1検出回路31の第1電圧計31cにより検出される第1電極21とアース電極23との間の電位差がオン設定値である0.8V以下に下がると、制御装置30は冷凍装置13を作動させる。これにより、蒸発管14の周囲の氷層が所定の厚みの範囲より薄くならないように冷凍装置13の作動が制御される。   When the operation of the refrigeration apparatus 13 stops, the thickness of the ice layer formed around the evaporation pipe 14 gradually decreases. The tip of the first electrode 21 is exposed to the cooling water without being covered with the ice layer around the evaporation tube 14, and the first electrode 21 and the ground electrode 23 detected by the first voltmeter 31 c of the first detection circuit 31. The control device 30 operates the refrigeration apparatus 13 when the potential difference between the voltage and the voltage drops to 0.8 V or less, which is the ON setting value. As a result, the operation of the refrigeration apparatus 13 is controlled so that the ice layer around the evaporation tube 14 does not become thinner than a predetermined thickness range.

上記のように構成した飲料冷却装置10においては、第1電極21が蒸発管14の周囲に形成される氷層に覆われずに冷却水に露出して、第1電圧計31cにより検出される第1電極21とアース電極23との間の電位差がオン設定値以下になると冷凍装置13を作動させ、第2電極22が蒸発管14の周囲に形成される氷層に覆われて、第2電極22とアース電極23との間の電位差がオフ設定値以上になると冷凍装置13の作動を停止させることで蒸発管14の周囲に所定の厚みの氷を形成させるように制御されている。この飲料冷却装置10において、蒸発管14の周囲に形成される氷に覆われる前に第1電圧計31c(または第2電圧計32c)により検出される第1電極21(または第2電極22)とアース電極23との電位差とオフ設定値との間の中間値としてこれらの平均値をオン設定値とした。これにより、第1電極21が氷に覆われることなく冷却水に露出したときの第1電極21とアース電極23との間の電位差は水槽11内の冷却水の水質(電気伝導度)によって変わるが、氷に覆われる前の第1電極21(または第2電極22)とアース電極23との電位差を用いることで広範囲な冷却水の水質(電気伝導度)に対応してオン設定値を求めることができる。これにより、冷却水の水質(電気伝導度)に応じて複数のオン設定値を予めメモリ等の記憶部に設定しておくことなく、冷却水の幅広い電気伝導度に対応したオン設定値を用いて冷凍装置13の作動を制御することができる。   In the beverage cooling apparatus 10 configured as described above, the first electrode 21 is exposed to the cooling water without being covered with the ice layer formed around the evaporator tube 14, and is detected by the first voltmeter 31c. When the potential difference between the first electrode 21 and the ground electrode 23 becomes equal to or less than the ON set value, the refrigeration apparatus 13 is activated, and the second electrode 22 is covered with an ice layer formed around the evaporation tube 14, and the second When the potential difference between the electrode 22 and the ground electrode 23 becomes equal to or greater than the off-set value, the operation of the refrigeration apparatus 13 is stopped so that ice having a predetermined thickness is formed around the evaporation tube 14. In this beverage cooling apparatus 10, the first electrode 21 (or the second electrode 22) detected by the first voltmeter 31c (or the second voltmeter 32c) before being covered with ice formed around the evaporation tube 14 As an intermediate value between the potential difference between the ground electrode 23 and the ground electrode 23 and the OFF set value, an average value of these values was set as the ON set value. Thereby, the potential difference between the first electrode 21 and the ground electrode 23 when the first electrode 21 is exposed to the cooling water without being covered with ice varies depending on the water quality (electric conductivity) of the cooling water in the water tank 11. However, by using the potential difference between the first electrode 21 (or the second electrode 22) and the ground electrode 23 before being covered with ice, an ON set value is obtained corresponding to a wide range of cooling water quality (electrical conductivity). be able to. Thereby, the ON setting value corresponding to the wide electric conductivity of the cooling water is used without setting a plurality of ON setting values in the storage unit such as a memory in advance according to the water quality (electrical conductivity) of the cooling water. Thus, the operation of the refrigeration apparatus 13 can be controlled.

なお、この実施形態においては、水槽11内に冷却水の水温を検出する温度センサをさらに設け、この温度センサによる検出温度が例えば所定温度として5℃以上を所定時間連続して検出したときに第1電圧計31c(または第2電圧計32c)により検出される第1電極21(または第2電極22)とアース電極23との電位差とオフ設定値との間の中間値をオン設定値としてもよい。このようにしたときには、蒸発管14の周囲に所定の厚さの氷層が形成された後に停電等により一時的に電源が切断された後でも、水槽11内の冷却水が例えば5℃以上であれば、蒸発管14の周囲の氷層が第1電圧計31c(または第2電圧計32c)が冷却水に露出する程度に融解するようになり、冷却水の露出した状態の第1電極21(または第2電極22)とアース電極23との電位差を第1電圧計31c(または第2電圧計32c)により検出して、この検出値とオフ設定値との中間値からオン設定値を求めることができる。   In this embodiment, a temperature sensor for detecting the temperature of the cooling water is further provided in the water tank 11, and the temperature detected by this temperature sensor is, for example, a predetermined temperature when 5 ° C. or more is detected continuously for a predetermined time. An intermediate value between the potential difference between the first electrode 21 (or the second electrode 22) detected by the 1 voltmeter 31c (or the second voltmeter 32c) and the ground electrode 23 and the off set value may be used as the on set value. Good. In this case, even after the ice layer having a predetermined thickness is formed around the evaporation tube 14 and the power is temporarily cut off due to a power failure or the like, the cooling water in the water tank 11 is, for example, 5 ° C. or more. If there is, the ice layer around the evaporator tube 14 melts to such an extent that the first voltmeter 31c (or the second voltmeter 32c) is exposed to the cooling water, and the first electrode 21 in a state where the cooling water is exposed. A potential difference between (or the second electrode 22) and the ground electrode 23 is detected by the first voltmeter 31c (or the second voltmeter 32c), and an on set value is obtained from an intermediate value between the detected value and the off set value. be able to.

本実施形態においては、蒸発管14の周囲に形成される氷に覆われる前に第1電圧計31c(または第2電圧計32c)により検出される第1電極21(または第2電極22)とアース電極23との電位差とオフ設定値との間の中間値としてこれらの平均値をオン設定としたが、本発明はこれに限られるものでなく、第1電極21(または第2電極22)とアース電極23との電位差とオフ設定値との間の値であればこれらの平均値に近い範囲で変更することも可能である。   In the present embodiment, the first electrode 21 (or the second electrode 22) detected by the first voltmeter 31c (or the second voltmeter 32c) before being covered with ice formed around the evaporation tube 14; These average values are set to ON as an intermediate value between the potential difference with the ground electrode 23 and the OFF setting value. However, the present invention is not limited to this, and the first electrode 21 (or the second electrode 22) is not limited thereto. As long as it is a value between the potential difference between the ground electrode 23 and the off-set value, it can be changed within a range close to the average value thereof.

上述した実施形態においては、蒸発管14の周囲に形成される氷に覆われる前の第1電極21(または第2電極)とアース電極23との電位差とオフ設定値との間の中間値をオン設定値としたものであるが、図6に示す他の実施形態の飲料冷却装置10Aに示すように、上述した飲料冷却装置10の構成に加えて、水槽11内の蒸発管14から離れて氷層の形成されない位置でアース電極23と離間した位置に第3電極24をさらに設けるとともに、図7に示すように、制御装置30Aに第3電極24とアース電極23との間の抵抗を検出する第3検出回路33とを接続した。   In the above-described embodiment, the intermediate value between the potential difference between the first electrode 21 (or the second electrode) and the ground electrode 23 before being covered with ice formed around the evaporation tube 14 and the off-set value is set. Although it is set as the ON set value, as shown in the beverage cooling device 10A of another embodiment shown in FIG. 6, in addition to the configuration of the beverage cooling device 10 described above, it is separated from the evaporation pipe 14 in the water tank 11. A third electrode 24 is further provided at a position away from the ground electrode 23 at a position where no ice layer is formed, and the resistance between the third electrode 24 and the ground electrode 23 is detected by the control device 30A as shown in FIG. The third detection circuit 33 is connected.

第3検出回路33は第3電極24とアース電極23との間の電位差を検出するものである。図3に示すように、第3検出回路33は、入力端子33aと第3電極24との間に接続された固定抵抗33bと、第1電極21とアース電極23との間に接続されてこの電位差を検出する第3電圧計33cとを設けたものである(図中の2点鎖線は第3電極24とアース電極23とを冷却水に浸漬する水槽11を示す)。入力端子33aに所定の電圧(例えば5Vの電圧)を印可すると、第3電圧計33cにより検出される電位差は第3電極24とアース電極23との間の抵抗に比例して高くなる。このように、第3検出回路33は、第3電圧計33cにより検出される電位差によって第3電極24とアース電極23との間の抵抗を検出する。   The third detection circuit 33 detects a potential difference between the third electrode 24 and the ground electrode 23. As shown in FIG. 3, the third detection circuit 33 is connected between the fixed resistor 33b connected between the input terminal 33a and the third electrode 24, and between the first electrode 21 and the ground electrode 23. A third voltmeter 33c for detecting a potential difference is provided (the two-dot chain line in the figure indicates the water tank 11 in which the third electrode 24 and the ground electrode 23 are immersed in cooling water). When a predetermined voltage (for example, a voltage of 5V) is applied to the input terminal 33a, the potential difference detected by the third voltmeter 33c increases in proportion to the resistance between the third electrode 24 and the ground electrode 23. As described above, the third detection circuit 33 detects the resistance between the third electrode 24 and the ground electrode 23 based on the potential difference detected by the third voltmeter 33c.

この飲料冷却装置10Aにおいては、第3電圧計33cにより検出される常に氷に覆われることのない第3電極24とアース電極23との間の電位差を用い、この検出された電位差とオフ設定値として規定された0.9Vとの中間値としてこれらの平均値をオン設定値としてメモリに記憶させ、このオン設定値を用いて冷凍装置13の作動を制御する。なお、このオン設定値を例えば所定時間として例えば1時間毎、数時間毎、1日毎または数日毎に求めるようにしてもよいし、連続して求めるようにしてもよい。   In this beverage cooling apparatus 10A, the potential difference between the third electrode 24 and the ground electrode 23, which is not always covered with ice, detected by the third voltmeter 33c is used, and the detected potential difference and the off set value are used. These average values are stored in the memory as an on set value as an intermediate value with respect to 0.9 V defined as, and the operation of the refrigeration apparatus 13 is controlled using the on set value. The on-set value may be obtained as a predetermined time, for example, every hour, every several hours, every day, or every few days, or may be obtained continuously.

このように構成した飲料冷却装置10Aにおいては、上述した作用効果を得ることができるとともに、水槽11内の冷却水が純水化することでその電気伝導度が下がったり、冷却水が汚れる等してその電気伝導度が上がったりするような後発的な要因で電気伝導度が変化したときでも、この変化に対応したオン設定値を求めて、これに基づいて冷凍装置13の作動を制御することができる。また、上述した飲料冷却装置10を用いて、例えば停電等により一時的に電源が切断されてから再び電源をオンにしたときに、第1または第2電極21、22が蒸発管14の周囲の氷に覆われていたときには、第1または第2電圧計31c、32cにより検出される第1または第2電極21、22とアース電極23との間の電位差は冷却水に露出しているときより高くて、適切なオン設定値を求めることができないが、この飲料冷却装置10Aを用いたときには、例えば停電等により一時的に電源が切断されたときであっても、第3電極は常に氷に覆われることがないので、蒸発管14の周囲の氷の厚さに関係なく常に適切なオン設定値を求めて、これに基づいて冷凍装置13の作動を制御することができる。   In the beverage cooling apparatus 10A configured as described above, the above-described operational effects can be obtained, and the electrical conductivity of the cooling water in the water tank 11 is reduced, and the cooling water becomes dirty. Even when the electrical conductivity changes due to a subsequent factor that increases the electrical conductivity, the ON setting value corresponding to this change is obtained, and the operation of the refrigeration apparatus 13 can be controlled based on this. it can. Moreover, when the power supply is turned on again after the power supply is temporarily cut off due to a power failure or the like using the beverage cooling apparatus 10 described above, the first or second electrodes 21 and 22 are disposed around the evaporation tube 14. When covered with ice, the potential difference between the first or second electrode 21, 22 and the earth electrode 23 detected by the first or second voltmeter 31c, 32c is greater than when exposed to the cooling water. However, when the beverage cooling apparatus 10A is used, the third electrode is always on ice even when the power is temporarily cut off due to a power failure or the like. Since it is not covered, it is possible to always obtain an appropriate ON setting value regardless of the thickness of the ice around the evaporator tube 14 and to control the operation of the refrigeration apparatus 13 based on this.

本実施形態においては第3電圧計33cにより検出される第3電極24とアース電極23との電位差とオフ設定値との間の中間値としてこれらの平均値をオン設定としたが、本発明はこれに限られるものでなく、第3電極22とアース電極23との電位差とオフ設定値との間の値であればこれらの平均値に近い範囲で変更することも可能である。   In the present embodiment, these average values are set to ON as an intermediate value between the potential difference between the third electrode 24 and the ground electrode 23 detected by the third voltmeter 33c and the OFF setting value. However, the present invention is not limited to this, and any value between the potential difference between the third electrode 22 and the ground electrode 23 and the OFF set value can be changed within a range close to the average value thereof.

なお、本実施形態の各電極21〜24は互いに電気的に接続されていない状態で図示しない絶縁部材よりなる支持部材により水槽11に固定されている。   In addition, each electrode 21-24 of this embodiment is being fixed to the water tank 11 by the supporting member which consists of an insulating member which is not illustrated in the state which is not electrically connected mutually.

10…飲料冷却装置、11…水槽、12…飲料冷却管、13…冷凍装置、14…蒸発管、21…第1電極、22…第2電極、23…アース電極、24…第3電極、30…制御装置。   DESCRIPTION OF SYMBOLS 10 ... Beverage cooling device, 11 ... Water tank, 12 ... Beverage cooling pipe, 13 ... Freezing device, 14 ... Evaporating pipe, 21 ... 1st electrode, 22 ... 2nd electrode, 23 ... Ground electrode, 24 ... 3rd electrode, 30 …Control device.

Claims (2)

冷却水を貯留した水槽の内部に立設したコイル状の飲料冷却管の周囲に冷凍装置を構成するコイル状の蒸発管を離間して立設させ、前記冷凍装置を作動させたときに前記蒸発管の周囲に所定の厚みの氷層を形成するようにして前記飲料冷却管を通過する飲料を冷却するようにした飲料冷却装置において、
前記水槽内の前記蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も薄く形成されたときに前記冷却水に露出する第1電極と、前記水槽内の前記蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も厚く形成されたときに氷に覆われる第2電極と、前記水槽内にて前記蒸発管から離れた位置の氷の形成されない位置に設けられたアース電極と、前記第1電極が前記蒸発管の周囲に形成される氷層に覆われずに冷却水に露出して前記第1電極と前記アース電極との間の電位差がオン設定値以下になると前記冷凍装置を作動させ、前記第2電極が前記蒸発管の周囲に形成される氷層に覆われて前記第2電極と前記アース電極との間の電位差がオフ設定値以上になると前記冷凍装置の作動を停止させることで前記蒸発管の周囲に所定の厚みの氷を形成させるように制御する制御装置を備え、
前記制御装置は前記蒸発管の周囲に形成される氷に覆われる前の前記第1または第2電極と前記アース電極との電位差と前記オフ設定値との間の中間値を前記オン設定値としたことを特徴とする飲料冷却装置。
A coiled evaporating pipe constituting a refrigeration apparatus is set up separately around a coiled beverage cooling pipe erected inside a water tank that stores cooling water, and the evaporation is performed when the refrigeration apparatus is operated. In the beverage cooling apparatus configured to cool the beverage passing through the beverage cooling tube so as to form an ice layer having a predetermined thickness around the tube,
A first electrode which is provided in a range where an ice layer having a predetermined thickness around the evaporation pipe in the water tank is formed and is exposed to the cooling water when the ice layer is formed to be thinnest; A second electrode which is provided in a range where an ice layer of a predetermined thickness around the evaporation tube is formed and is covered with ice when the ice layer is formed to be thickest, and the evaporation tube in the water tank An earth electrode provided at a position where ice is not formed at a position away from the first electrode, and the first electrode is exposed to cooling water without being covered with an ice layer formed around the evaporator tube, When the potential difference between the ground electrode and the ground electrode is equal to or less than an on-set value, the refrigeration apparatus is operated, and the second electrode is covered with an ice layer formed around the evaporation tube, and the second electrode and the ground electrode The operation of the refrigeration system is stopped when the potential difference between A control device for controlling so as to form ice of a predetermined thickness around the evaporator tube by causing,
The control device sets an intermediate value between a potential difference between the first or second electrode and the ground electrode before being covered with ice formed around the evaporation tube and the off set value as the on set value. A beverage cooling device characterized by that.
冷却水を貯留した水槽の内部に立設したコイル状の飲料冷却管の周囲に冷凍装置を構成するコイル状の蒸発管を離間して立設させ、前記冷凍装置を作動させたときに前記蒸発管の周囲に所定の厚みの氷層を形成するようにして前記飲料冷却管を通過する飲料を冷却するようにした飲料冷却装置において、
前記水槽内の前記蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も薄く形成されたときに前記冷却水に露出する第1電極と、前記水槽内の前記蒸発管の周囲の所定の厚みの氷層が形成される範囲に設けられてこの氷層が最も厚く形成されたときに氷に覆われる第2電極と、前記水槽内の前記蒸発管から離れて氷層の形成されない位置に設けられた第3電極とアース電極と、前記第1電極が前記蒸発管の周囲に形成される氷層に覆われずに冷却水に露出して前記第1電極と前記アース電極との間の電位差がオン設定値以下になると前記冷凍装置を作動させ、前記第2電極が前記蒸発管の周囲に形成される氷層に覆われて前記第2電極と前記アース電極との間の電位差がオフ設定値以上になると前記冷凍装置の作動を停止させることで前記蒸発管の周囲に所定の厚みの氷を形成させるように制御する制御装置を備え、
前記制御装置は前記第3電極と前記アース電極との間の電位差と前記オフ設定値との間の中間値を前記オン設定値としたことを特徴とする飲料冷却装置。
A coiled evaporating pipe constituting a refrigeration apparatus is set up separately around a coiled beverage cooling pipe erected inside a water tank that stores cooling water, and the evaporation is performed when the refrigeration apparatus is operated. In the beverage cooling apparatus configured to cool the beverage passing through the beverage cooling tube so as to form an ice layer having a predetermined thickness around the tube,
A first electrode which is provided in a range where an ice layer having a predetermined thickness around the evaporation pipe in the water tank is formed and is exposed to the cooling water when the ice layer is formed to be thinnest; A second electrode which is provided in a range where an ice layer having a predetermined thickness around the evaporation tube is formed and is covered with ice when the ice layer is formed to be thickest, and the evaporation tube in the water tank. A third electrode and a ground electrode provided at a position where no ice layer is formed apart from each other, and the first electrode is exposed to the cooling water without being covered with an ice layer formed around the evaporation pipe and exposed to the first water. When the potential difference between the electrode and the ground electrode is equal to or less than the ON set value, the refrigeration apparatus is operated, and the second electrode is covered with an ice layer formed around the evaporation tube and the second electrode and the ground electrode The operation of the refrigeration system when the potential difference between the ground electrode and the ground electrode exceeds the set value A control for controlling devices so as to form ice of a predetermined thickness around the evaporation pipe by stopping,
The beverage cooling device according to claim 1, wherein the control device sets an intermediate value between a potential difference between the third electrode and the ground electrode and the off set value as the on set value.
JP2011177099A 2011-08-12 2011-08-12 Beverage cooler Expired - Fee Related JP5875797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177099A JP5875797B2 (en) 2011-08-12 2011-08-12 Beverage cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177099A JP5875797B2 (en) 2011-08-12 2011-08-12 Beverage cooler

Publications (2)

Publication Number Publication Date
JP2013040707A JP2013040707A (en) 2013-02-28
JP5875797B2 true JP5875797B2 (en) 2016-03-02

Family

ID=47889284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177099A Expired - Fee Related JP5875797B2 (en) 2011-08-12 2011-08-12 Beverage cooler

Country Status (1)

Country Link
JP (1) JP5875797B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482174B2 (en) * 2014-01-21 2019-03-13 ホシザキ株式会社 Beverage cooler
KR101611305B1 (en) * 2014-04-28 2016-04-11 엘지전자 주식회사 Flat cold water tank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3171800D1 (en) * 1981-05-28 1985-09-19 Fuji Electric Co Ltd Water-cooled heat-accumulating type drink cooling system
US4365486A (en) * 1981-06-29 1982-12-28 Fuji Electric Co., Ltd. Water-cooled heat-accumulating type drink cooling system
JPH06288667A (en) * 1993-04-05 1994-10-18 Fuji Electric Co Ltd Ice accumulation type beverage cooling device
JP4060140B2 (en) * 2002-07-25 2008-03-12 ホシザキ電機株式会社 Ice thickness control method for beverage cooling device
JP4972430B2 (en) * 2007-03-05 2012-07-11 ホシザキ電機株式会社 Beverage dispenser

Also Published As

Publication number Publication date
JP2013040707A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
US10921055B2 (en) Method of cooling a beverage container
JP5474518B2 (en) Liquid supply device and cooling water state determination device
JP2010071627A (en) Refrigerating device
JP5875797B2 (en) Beverage cooler
GB2505869A (en) A beverage cooler comprising an ice bank which has a selectable size
US9897367B2 (en) Freezing detection device
US9752813B2 (en) Refrigerator with thermoelectric device control process for an icemaker
JP6482174B2 (en) Beverage cooler
JP5921865B2 (en) Beverage cooler
JP5966450B2 (en) Cooling system
KR101403378B1 (en) Drinking water cooling unit temperature control system
JP4972430B2 (en) Beverage dispenser
CA2947437A1 (en) Sensor for coil defrost in a refrigeration system evaporator
JP6689079B2 (en) Beverage server
JP4393305B2 (en) Dispenser
JP5829312B2 (en) Refrigeration equipment
US11609041B2 (en) Cooling bath for cooling a liquid
JPH0213774A (en) Frosting/defrosting detecting device and refrigerator
JP2013087994A (en) Beverage cooling device
JP2006336980A (en) Drink cooling device
JP2003139458A (en) Water cooler
JP2017088182A (en) Beverage cooling device
JP2000028249A (en) Drink cooling spouting device
JP2000018787A (en) Drink cooler/ejector
JP6158733B2 (en) Cooling control method for cold air cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5875797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees