JP2017085852A - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
JP2017085852A
JP2017085852A JP2015214744A JP2015214744A JP2017085852A JP 2017085852 A JP2017085852 A JP 2017085852A JP 2015214744 A JP2015214744 A JP 2015214744A JP 2015214744 A JP2015214744 A JP 2015214744A JP 2017085852 A JP2017085852 A JP 2017085852A
Authority
JP
Japan
Prior art keywords
power
power storage
load
unit
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015214744A
Other languages
English (en)
Other versions
JP6593755B2 (ja
Inventor
向志 秋政
Hisashi Akimasa
向志 秋政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015214744A priority Critical patent/JP6593755B2/ja
Publication of JP2017085852A publication Critical patent/JP2017085852A/ja
Application granted granted Critical
Publication of JP6593755B2 publication Critical patent/JP6593755B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】バックアップ性能とピークカット性能のバランスが取れた蓄電システムを構築する。【解決手段】複数の電力変換部21a−21cは、複数の蓄電部10a−10cと系統2の間にそれぞれ接続され、蓄電部から出力される直流電力を交流電力に変換して放電する放電動作、及び系統2から入力される交流電力を直流電力に変換して蓄電部に充電する充電動作を行う。複数の電力変換部21a−21cと系統2との間を接続するそれぞれの配電経路に負荷3a−3cが接続される。制御部22は、系統2が非停電の状態において、負荷3a−3cの優先度に基づいて各蓄電部10a−10cに対して設定される所定値を各蓄電部10a−10cの残容量が下回らないよう、複数の電力変換部21a−21cを制御する。制御部22は、系統2の停電状態において、設定される所定値を超えて各蓄電部10a−10cが放電できるように複数の電力変換部21a−21cを制御する。【選択図】図1

Description

本発明は、系統の停電時に負荷にバックアップ電力を供給できる蓄電システムに関する。
近年、オフィスビル等の施設に蓄電システムが設置されることが増えている。施設のバックアップ電源を十分に確保するには大容量の蓄電池が必要であるが、大容量の蓄電池を備えた蓄電システムは大型化するため、設置場所の制約が大きくなる。そこで、それぞれ蓄電池とパワーコンディショナを備える小型または中型の蓄電システムに分散させて、施設内の複数の箇所に設置することが試みられている。
設置場所により、各蓄電システムに接続される負荷の種類や数が異なるため、停電時に各負荷のバックアップ時間をできるだけ均等にしたい場合、各蓄電システムが確保しているべき蓄電容量が異なってくる。また保安負荷などの重要な負荷をできるだけ長い時間、バックアップしたいという要請もある。
そこで、複数の蓄電システム内の各蓄電池を配線で接続し、電力を融通し合うことが考えられる(例えば、特許文献1参照)。しかしながら、融通し合うための配線や、バックアップ電源を供給する蓄電池を切り替えるためのスイッチ等を追加する必要があり、コスト及び回路規模の増大を招く。また新たな配線の引き回しが必要になるため、設置の柔軟性が低下する。またスイッチによる蓄電池の切り替えは負荷に瞬断が発生するため、あまり望ましいものではない。
特開2006−230029号公報
蓄電システムは停電時のバックアップ用途以外に、ピークカット用途にも使用される。日本では深夜帯の電気料金が安価に設定されているため、深夜帯に蓄電池に充電し、昼間に放電することにより電気料金を節約することができる。
本発明はこうした状況に鑑みなされたものであり、その目的は、バックアップ性能とピークカット性能のバランスが取れた蓄電システムを提供することにある。
上記課題を解決するために、本発明のある態様の蓄電システムは、複数の蓄電部と、前記複数の蓄電部と系統の間にそれぞれ接続され、前記蓄電部から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統から入力される交流電力を直流電力に変換して前記蓄電部に充電する充電動作を行う複数の電力変換部と、前記複数の電力変換部を制御する制御部と、を備える。前記複数の電力変換部と前記系統との間を接続する配電経路に負荷が接続されており、前記制御部は、前記系統が非停電の状態において、各蓄電部に接続される負荷の優先度に基づいて各蓄電部に対して設定される所定値を各蓄電部の残容量が下回らないよう、前記複数の電力変換部を制御し、前記制御部は、前記系統の停電状態において、各蓄電部に対して設定される前記所定値を超えて各蓄電部が放電できるように前記複数の電力変換部を制御する。
なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、バックアップ性能とピークカット性能のバランスが取れた蓄電システムを実現することができる。
本発明の実施の形態に係る蓄電システムの構成を示す図である。 実施例1に係る、負荷の優先度と平常時下限残容量を規定した参照テーブルの一例を示す図である。 実施例1に係る蓄電システムの動作を説明するためのフローチャートである。 実施例2に係る、負荷の消費電力レベルと平常時下限残容量を規定した参照テーブルの一例を示す図である。 実施例2に係る蓄電システムの動作を説明するためのフローチャートである。 実施例2の変形例に係る蓄電システムの動作を説明するためのフローチャートである。 実施例3に係る蓄電システムの動作を説明するためのフローチャートである。
図1は、本発明の実施の形態に係る蓄電システム1の構成を示す図である。蓄電システム1は、複数の蓄電部10a−10c、複数の電力変換部21a−21c、制御部22及び操作部23を備える。以下本明細書では、第1蓄電部10aと第1電力変換部21a、第2蓄電部10bと第2電力変換部21b、及び第3蓄電部10cと第3電力変換部21cの3組のサブ蓄電システムを統合した蓄電システム1を例に説明する。
複数の電力変換部21a−21cは複数の蓄電部10a−10cと商用電力系統(以下、単に系統という)2の間にそれぞれ接続される。制御部22は複数の蓄電部10a−10c及び複数の電力変換部21a−21cを統括的に管理制御する。制御部22の構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源として、CPU、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
複数の電力変換部21a−21cと系統2との間のそれぞれの配電線La−Lcにそれぞれ負荷3a−3cが接続される。具体的には、第1電力変換部21aの交流側端子と系統2を繋ぐ第1配電線Laに第1負荷3aが接続される。第1負荷3aは第1配電線Laに接続される負荷の総称である。同様に第2電力変換部21bの交流側端子と系統2を繋ぐ第2配電線Lbに第2負荷3bが接続される。第2負荷3bは第2配電線Lbに接続される負荷の総称である。同様に第3電力変換部21cの交流側端子と系統2を繋ぐ第3配電線Lcに第3負荷3cが接続される。第3負荷3cは第3配電線Lcに接続される負荷の総称である。
第1配電線Laにおいて、第1負荷3aが接続されるノードより上流(系統2側)に第1スイッチSaと第1電流センサCTaが挿入される。同様に第2配電線Lbにおいて、第2負荷3bが接続されるノードより上流(系統2側)に第2スイッチSbと第2電流センサCTbが挿入される。同様に第3配電線Lcにおいて、第3負荷3cが接続されるノードより上流(系統2側)に第3スイッチScと第3電流センサCTcが挿入される。
第1スイッチSa−第3スイッチScは系統連系用のスイッチであり、各サブ蓄電システムが系統連系運転モードで動作する際はオン状態に制御され、自立運転モードで動作する際はオフ状態に制御される。第1スイッチSa−第3スイッチScにリレーが使用される場合、系統連系運転モードで動作する際はクローズ状態に制御され、自立運転モードで動作する際はオープン状態に制御される。
第1電流センサCTa−第3電流センサCTcは、第1配電線La−第3配電線Lcにそれぞれ流れる電流を検出して制御部22に出力する。日本では2015年現在、蓄電池から系統へ電力を逆潮流させることが法律的に禁止されている。制御部22は、第1電流センサCTa−第3電流センサCTcで検出された電流値をもとに、系統2へ逆潮流している配電線がある場合、当該配電線に接続される電力変換部に放電停止指令を通知する。
第1蓄電部10aは第1蓄電池11aおよび第1監視部12aを含む。第1蓄電池11aは、直列または直並列接続された複数の蓄電池セルにより構成される。蓄電池セルにはリチウムイオン蓄電池、ニッケル水素蓄電池などを使用できる。なお第1蓄電池11aの代わりに電気二重層コンデンサを使用してもよい。第1監視部12aは当該複数の蓄電池セルの状態(例えば、電圧、電流、温度)を監視し、当該複数の蓄電池セルの監視データを通信線を介して制御部22に送信する。監視データは定期的に送信される。第2蓄電部10b及び第3蓄電部10cも第1蓄電部10aと同様の構成である。
第1監視部12aと制御部22間、第2監視部12bと制御部22間、第3監視部12cと制御部22間、第1電力変換部21aと制御部22間、第2電力変換部21bと制御部22間、第3電力変換部21cと制御部22間はシリアル通信で接続される。例えば、RS−485規格に準拠した半二重通信で相互にデータが通信される。通信線の接続トポロジは任意であり、例えば、第1監視部12a−第3監視部12cと第1電力変換部21a−第3電力変換部21cがそれぞれ個別の通信線で接続され、第1電力変換部21a−第3電力変換部21cと制御部22が幹線となる通信線で接続されるトポロジでもよい。
第1電力変換部21aは、第1蓄電部10aから出力される直流電力を交流電力に変換して系統2へ放電する放電動作、及び系統2から入力される交流電力を直流電力に変換して第1蓄電部10aに充電する充電動作を行う。
系統連系モードにおける放電動作時では、第1電力変換部21aは第1蓄電部10aから出力される直流電力を交流電力に変換し、第1配電線Laに接続されている第1負荷3aに供給する。制御部22は、系統電圧または系統電圧より少し高い電圧を目標電圧値として第1電力変換部21aに設定する。第1電力変換部21a内のインバータ回路の駆動回路は、第1電力変換部21aの出力電圧が、設定された目標電圧値を維持するよう、当該インバータ回路のデューティ比を適応的に変化させる。また制御部22は、系統2から第1負荷3aに供給される交流電流の周波数および位相に同期した交流電流が第1電力変換部21aから出力されるよう、第1電力変換部21aの動作タイミングを規定する。
系統連系モードにおける充電動作時では、第1電力変換部21aは系統2から供給される交流電力を直流電力に変換して第1蓄電部10aに供給する。制御部22は充電レートに対応する電流値を目標電流値として第1電力変換部21aに設定する。第1電力変換部21a内のインバータ回路の駆動回路は、第1電力変換部21aの出力電流が、設定された目標電流値を維持するよう、当該インバータ回路のデューティ比を適応的に変化させる。また制御部22は、第1電力変換部21aの電圧が系統電圧より低い状態を維持するよう第1電力変換部21aを制御する。
自立運転モードでは、第1電力変換部21aは第1蓄電部10aから出力される直流電力を交流電力に変換し、第1配電線Laに接続されている第1負荷3aに供給する。制御部22は、第1電力変換部21aの出力電圧の目標値を所定の電圧値(例えば、100V/200V)に設定する。第1電力変換部21a内のインバータ回路の駆動回路は、第1電力変換部21aの出力電圧が、設定された目標電圧値を維持するよう、当該インバータ回路のデューティ比を適応的に変化させる。以上の動作は、第2電力変換部21b及び第3電力変換部21cも同様である。
制御部22は系統2の停電を検知すると、第1スイッチSa−第3スイッチScをターンオフして、第1負荷3a−第3負荷3cを系統2から電気的に切り離す。また制御部22は、第1電力変換部21a−第3電力変換部21cを系統連系モードから自立運転モードに切り替える。
制御部22は、第1監視部12aから取得した監視データをもとに第1蓄電池11aの残容量を推定する。例えば、取得した電流値を積算して第1蓄電池11aの残容量を推定する。また第1蓄電池11aの開回路電圧(OCV)から第1蓄電池11aの残容量を推定することもできる。同様に第2蓄電池11b及び第3蓄電池11cの残容量も推定することができる。残容量は絶対的な容量値[Ah]で規定されてもよいし、SOC(State Of Charge)[%]で規定されてもよい。以下の説明では、第1蓄電池11a−第3蓄電池11cの容量が同じことを前提とし、残容量をSOCで考える。
制御部22は、第1監視部12aから取得した監視データをもとに過電圧、過電流等の異常を検出すると、第1蓄電部10aと第1電力変換部21a間に挿入されているリレー(不図示)をオープンして第1蓄電部10aを保護する。第2蓄電部10b及び第3蓄電部10cについても同様に保護する。
制御部22は、操作部23からユーザにより入力された情報を受け付ける。例えば、操作部23からピークカットの設定情報を受け付ける。例えばピークカットの設定情報として、充電時間帯、充電レート、放電時間帯、放電レートを受け付ける。また操作部23から蓄電システム1の動作モードを受け付けることもできる。例えば動作モードとして、ピークカット優先モード、バックアップ優先モード、経済優先モード等が用意されており、ユーザは任意のモードを選択することができる。
本実施の形態では、蓄電システム1をバックアップ用途とピークカット用途に併用する際、ピークカット運用時にも第1蓄電池11a−第3蓄電池11cに最低限確保しておくべき下限の残容量を設定しておく。この下限の残容量を、電池の仕様により決定される性能上の下限残容量と区別するため、以下、平常時下限残容量(非停電時下限残容量またはピークカット運用時下限残容量といってもよい)という。
まず実施例1に係る平常時下限残容量(所定値)の設定方法を説明する。実施例1ではユーザは、操作部23から各負荷3a−3cの優先度(重要度と考えてもよい)を入力する。例えばユーザは、負荷3a−3cごとに「高」、「中」、「低」を選択する。ユーザはバックアップ継続時間の要求が高い負荷について「高」を選択する。例えば、電子錠などが含まれる負荷は優先度が高い負荷といえる。制御部22は、操作部23から入力された優先度が高いほど、平常時下限残容量を高い値に設定する。
図2は、実施例1に係る、負荷の優先度と平常時下限残容量を規定した参照テーブル221の一例を示す図である。この例では制御部22は、負荷の優先度が「高」のとき当該負荷をバックアップする蓄電池の平常時下限残容量を90%に設定する。負荷の優先度が「中」のとき当該負荷をバックアップする蓄電池の平常時下限残容量を60%に設定する。負荷の優先度が「低」のとき当該負荷をバックアップする蓄電池の平常時下限残容量を20%に設定する。
なお優先度の分類は3分類に限らず、4分類以上であってもよい。また優先度は分類ではなく数値(0−100)で入力されてもよい。その場合、優先度(数値)を平常時下限残容量に変換する関数に、入力された優先度(数値)を適用して平常時下限残容量を決定する。なお、ユーザが優先度を入力しなかった負荷については「中」または「50」とみなす処理がなされる。
図3は、実施例1に係る蓄電システム1の動作を説明するためのフローチャートである。制御部22は、ユーザにより操作部23に入力された第1負荷3aの優先度を取得する(S10)。制御部22は、取得した優先度に応じて、第1負荷3aをバックアップする第1蓄電池11aの平常時下限残容量を設定する(S11)。
停電が検知されない平常時(S12のN)において、ピークカットの設定情報に基づく放電時間帯が到来すると(S13のY)、制御部22は第1電力変換部21aに放電指令を通知して、第1蓄電池11aから第1負荷3aへの放電を開始させる(S14)。制御部22は、第1監視部12aからの監視データをもとに第1蓄電池11aの残容量を検出する(S15)。
制御部22は検出した残容量と、設定した平常時下限残容量を比較する(S16)。残容量が平常時下限残容量以上の間は(S16のN)、ステップS12に遷移する。残容量が平常時下限残容量を下回ると(S16のY)、制御部22は第1電力変換部21aに放電停止指令を通知し、第1蓄電池11aからの放電を停止させる(S17)。これにより、設定された最低限確保すべきバックアップ容量が第1蓄電池11aに維持される。また、放電時間帯が終了した場合も(S13のN)、制御部22は第1電力変換部21aに放電停止指令を通知し、第1蓄電池11aからの放電を停止させる(S17)。
ステップS12において停電が検知されると(S12のY)、制御部22は系統連系用の第1スイッチSa−第3スイッチScをターンオフする(S18)。制御部22は設定した第1蓄電池11aの平常時下限残容量の制限を解除する(S19)。制御部22は第1電力変換部21aに放電指令を通知して、第1蓄電池11aから第1負荷3aへの放電を開始させる。既に放電中の場合は放電状態を維持する。この放電は第1蓄電池11aの性能上の下限残容量まで継続される(S110)。以上の処理が第2負荷3bと第2蓄電池11bの組、第3負荷3cと第3蓄電池11cの組についても並行して実施される。
以上説明したように実施例1によれば、バックアップ継続時間の要求が高い優先度または重要度が高い負荷が接続されている蓄電池について高SOCを維持するように制御する。一方、優先度または重要度が低い負荷が接続されている蓄電池については積極的な放電を許可して 低SOCを許容するように制御する。これにより、バックアップ性能とピークカット性能のバランスが取れた蓄電システム1を実現できる。優先度または重要度が低い負荷についてはピークカットを積極的に活用して電気料金を抑えつつ、優先度または重要度が高い負荷については十分なバックアップ容量を確保することができる。
次に実施例2に係る平常時下限残容量の設定方法を説明する。実施例2ではユーザは、操作部23から各負荷3a−3cの消費電力レベルを入力する。例えばユーザは、負荷3a−3cごとに「大」、「中」、「小」を選択する。仮に各負荷3a−3cがそれぞれ異なるフロアに設置される負荷であり、各負荷3a−3cの重要度が同じ場合、停電発生からのバックアップ時間を負荷3a−3c間でできるだけ均等化したい要請がある。その場合、消費電力が大きい負荷をバックアップする蓄電池には多くの残容量を確保しておく必要があり、反対に消費電力が小さい負荷をバックアップする蓄電池に確保しておくべき残容量は少なくてよい。制御部22は、操作部23から入力された負荷の消費電力レベルが高いほど、平常時下限残容量を高い値に設定する。
図4は、実施例2に係る、負荷の消費電力レベルと平常時下限残容量を規定した参照テーブル222の一例を示す図である。この例では制御部22は、負荷の消費電力レベルが「大」のとき当該負荷をバックアップする蓄電池の平常時下限残容量を90%に設定する。負荷の消費電力レベルが「中」のとき当該負荷をバックアップする蓄電池の平常時下限残容量を60%に設定する。負荷の消費電力レベルが「小」のとき当該負荷をバックアップする蓄電池の平常時下限残容量を20%に設定する。
なお消費電力の分類は3分類に限らず、4分類以上であってもよい。また消費電力は分類ではなく数値で入力されてもよい。その場合、消費電力(数値)を平常時下限残容量に変換する関数に、入力された消費電力(数値)を適用して平常時下限残容量を決定する。なお、ユーザが消費電力を入力しなかった負荷については「中」または「平均的な消費電力」とみなす処理がなされる。
図5は、実施例2に係る蓄電システム1の動作を説明するためのフローチャートである。制御部22は、ユーザにより操作部23に入力された第1負荷3aの消費電力レベルを取得する(S20)。制御部22は、取得した消費電力レベルに応じて、第1負荷3aをバックアップする第1蓄電池11aの平常時下限残容量を設定する(S21)。ステップS22以降の処理は、図3のステップS12以降の処理と同様であるため説明を省略する。図5に示す処理が第2負荷3bと第2蓄電池11bの組、第3負荷3cと第3蓄電池11cの組についても並行して実施される。
次に実施例2の変形例に係る平常時下限残容量の設定方法を説明する。上述の実施例2はユーザが各負荷3a−3cの消費電力レベルを操作部23から入力するものであったが、各負荷3a−3cの消費電力の実測値をもとに平常時下限残容量を決定してもよい。制御部22は、第1電流センサCTaにより検出された系統2から第1負荷3aに流れた電流の値、第1電力変換部21aの出力電流を検出するための電流センサ(不図示)により検出された第1蓄電池11aから第1負荷3aに流れた電流の値をもとに、第1負荷3aの消費電力を計測する。同様に第2負荷3b及び第3負荷3cの消費電力を計測する。
制御部22は、各負荷3a−3cの消費電力の計測値をもとに、テーブル参照や変換関数により各負荷3a−3cの平常時下限残容量を決定することができる。また制御部22は、ユーザにより操作部23に入力された各負荷3a−3cのバックアップ時間と、各負荷3a−3cの消費電力の計測値をもとに各負荷3a−3cの平常時下限残容量を決定することができる。各負荷3a−3cの消費電力には基本的に直近の計測値または直近一定期間の平均計測値が使用されるが、主に空調需要の変動に起因する季節性や、平日と休日の違い等を考慮して、基礎とすべき計測データを適切に選択する必要がある。
例えば、第1蓄電池11aの蓄電容量が5kWhで、ユーザにより入力されたバックアップ時間が6時間で、第1負荷3aの消費電力量が500Wの場合、第1蓄電池11aの平常時下限残容量は3kWh(=60%)となる。第2蓄電池11b及び第3蓄電池11cの平常時下限残容量も同様に決定することができる。
図6は、実施例2の変形例に係る蓄電システム1の動作を説明するためのフローチャートである。制御部22は、ユーザにより操作部23に入力された第1負荷3aのバックアップ時間を取得する(S20a)。制御部22は、第1負荷3aの消費電力を計測する(S20b)。制御部22は、ユーザにより入力されたバックアップ時間と、第1負荷3aの消費電力をもとに、第1負荷3aをバックアップする第1蓄電池11aの平常時下限残容量を設定する(S21a)。ステップS22以降の処理は、図3のステップS12以降の処理と同様であるため説明を省略する。図6に示す処理が第2負荷3bと第2蓄電池11bの組、第3負荷3cと第3蓄電池11cの組についても並行して実施される。
以上説明したように実施例2によれば、異なる消費電力の負荷3a−3cが各サブ蓄電システムに接続されている場合において、停電時の各負荷3a−3cのバックアップ時間をできるだけ均等化することができる。
次に実施例3を説明する。実施例2では各負荷のバックアップ時間をできるだけ均等化する平常時下限残容量の設定方法を説明したが、実施例3では、各負荷のバックアップ時間をできるだけ均等化する蓄電システム1の運用方法について説明する。
図7は、実施例3に係る蓄電システム1の動作を説明するためのフローチャートである。制御部22は、各負荷3a−3cのバックアップ時間が均等化されるように各蓄電池11a−11cの目標蓄電量を決定する(S30)。
例えば、各蓄電池11a−11cの蓄電容量が5kWhで、ユーザにより入力されたバックアップ時間が6時間で、第1負荷3aの消費電力が500W、第2負荷3bの消費電力が400W、第3負荷3cの消費電力が300Wの場合を考える。この場合、第1蓄電池11aの平常時下限残容量は3kWh(=60%)となり、第2蓄電池11bの平常時下限残容量は2.4kWh(=48%)となり、第3蓄電池11cの平常時下限残容量は1.8kWh(36%)となる。
各負荷3a−3cのバックアップ時間が均等化される各蓄電池11a−11cの蓄電量は、第1蓄電池11aの蓄電量:第2蓄電池11bの蓄電量、第3蓄電池11cの蓄電池量=5:4:3の関係を維持すればよい。従って第1蓄電池11aを満充電容量まで充電する場合、第1蓄電池11aの目標蓄電量が5kWh(=100%)、第2蓄電池11bの目標蓄電量が4kWh(=80%)、第3蓄電池11cの目標蓄電量が3kWh(=60%)となる。
充電時間帯が到来すると(S31のY)、制御部22は、各蓄電池11a−11cの各目標蓄電量までの充電指令を各電力変換部21a−21cに通知して、系統2から各蓄電池11a−11cを充電させる(S32)。
停電が検知されない平常時(S33のN)において放電時間帯が到来すると(S34のY)、制御部22は各電力変換部21a−21cに放電指令を通知して、各蓄電池11a−11cから各負荷3a−3cへの放電を開始させる(S35)。制御部22は、各監視部12a−12cからの監視データをもとに各蓄電池11a−11cの残容量を検出する(S36)。また制御部22は、各電流センサCTa−CTcにより検出される電流値、各電力変換部21a−21cの出力電流センサ(不図示)により検出される電流値をもとに各負荷3a−3cの消費電力を計測する(S37)。
制御部22は、各負荷3a−3cの消費電力と、各蓄電池11a−11cの残容量の比率が一致または一定のレンジに収まるよう、各電力変換部21a−21cを制御する(S38)。例えば、各蓄電池11a−11cの残容量を各負荷3a−3cの消費電力で割った値が均等になるように制御する。各負荷3a−3cの消費電力には、その日のそれまでの平均消費電力を用いてもよい。
上述の例は、第1負荷3aの消費電力が500W、第2負荷3bの消費電力が400W、第3負荷3cの消費電力が300Wと想定した。この場合、各蓄電池11a−11cの残容量を各負荷3a−3cの消費電力で割った値が0.2になるように制御される。しかしながら実際には、当日の各負荷3a−3cの使用状況により各負荷3a−3cの消費電力は変動する。
そこで例えば制御部22は、各負荷3a−3cの消費電力と各蓄電池11a−11cの残容量の比率を算出し、その比率の平均値を算出する。平均値より残容量が少ない蓄電池については放電レートを下げるよう制御する。または放電を停止させる。平均値より残容量が多い蓄電池については放電レートを上げるよう制御する。
なお上述の動作モードの設定においてバックアップ優先モードが選択されている場合、充電時間に制限がない。従って平均値より残容量が少ない蓄電池については充電するよう電力変換部を制御することもできる。なお経済優先モードが選択されている場合、電気料金が安価な深夜時間帯以外の充電が許容されないため、放電時間帯に充電することはできない。
上述の例では上記比率の平均値が一致するように、各蓄電池の残容量を調整する例を想定したが、予め決められた設定値(上記具体例では0.2)に一致するように、各蓄電池の残容量を調整してもよい。なお、蓄電池の残容量を調整する処理は、上記平均値または上記設定値との乖離が一定範囲を超えた蓄電池についてのみ実施されてもよい。制御部22は、この蓄電池11a−11cの残容量を調整する処理を定期的に実施する。
制御部22は、検出した各蓄電池11a−11cの残容量と、設定した各負荷3a−3cの平常時下限残容量をそれぞれ比較する(S39)。残容量が平常時下限残容量以上の蓄電池については(S39のN)、ステップS12に遷移する。残容量が平常時下限残容量を下回っている蓄電池については(S39のY)、制御部22は当該蓄電池に接続された電力変換部に放電停止指令を通知し、当該蓄電池からの放電を停止させる(S310)。また、放電時間帯が終了した場合も(S34のN)、制御部22は電力変換部21a−21cに放電停止指令を通知し、各蓄電池11a−11cからの放電を停止させる(S310)。ステップS33において停電が検知された場合(S33のY)の処理は、図2のステップS18以降の処理と同様であるため説明を省略する。
以上説明したように実施例3によれば、実施例2と同様に異なる消費電力の負荷が各サブ蓄電システムに接続されている場合において、停電時の各負荷3a−3cのバックアップ時間をできるだけ均等化することができる。さらに系統連系時に各負荷3a−3cの消費電力をモニタしておき、各蓄電池11a−11cの残容量と各負荷3a−3cの消費電力との比率が均等になるように、各蓄電池11a−11cの残容量を調整する。つまり、消費電力が大きい負荷が接続されている蓄電池は相対的に高い残容量が維持されることになる。これにより、当日の負荷3a−3cの使用状況を踏まえた、より高精度な各負荷3a−3cのバックアップ時間の均等化制御を実現することができる。
またユーザが設定したバックアップ時間を基に、各蓄電池11a−11cの平常時下限残容量を決定することにより、ユーザのバックアップ時間に対する要求を常に満たす蓄電システム1を実現することができる。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
例えば、上述の動作モードの設定においてピークシフト優先モードが選択されるか、バックアップ優先モードが選択されるかにより、図2、図4に示した参照テーブル221、222が切り替えられてもよい。例えば、ピークシフト優先モードが選択される場合、平常時下限残容量が相対的に低い参照テーブルが使用され、バックアップ優先モードが選択される場合、平常時下限残容量が相対的に高い参照テーブルが使用される。
なお電力変換部21a−21c及び制御部22が1つの筐体に設置される例も本発明から除外されるものではなく、上述の実施の形態に係る処理を適用できる。また上述の形態では蓄電部が複数設けられる例を説明したが、蓄電部が1つの例も本発明から除外されるものではなく、実施例1、2に係る処理を適用できる。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
複数の蓄電部(10a−10c)と、
前記複数の蓄電部(10a−10c)と系統(2)の間にそれぞれ接続され、前記蓄電部(10a−10c)から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統(2)から入力される交流電力を直流電力に変換して前記蓄電部(10a−10c)に充電する充電動作を行う複数の電力変換部(21a−21c)と、
前記複数の電力変換部(21a−21c)を制御する制御部(22)と、を備え、
前記複数の電力変換部(21a−21c)と前記系統(2)との間を接続するそれぞれの配電経路(La−Lc)に負荷(3a−3c)が接続されており、
前記制御部(22)は、前記系統(2)が非停電の状態において、各蓄電部(10a−10c)に接続される負荷(3a−3c)の優先度に基づいて各蓄電部(10a−10c)に対して設定される所定値を各蓄電部(10a−10c)の残容量が下回らないよう、前記複数の電力変換部(21a−21c)を制御し、
前記制御部(22)は、前記系統(2)の停電状態において、各蓄電部(10a−10c)に対して設定される前記所定値を超えて各蓄電部(10a−10c)が放電できるように前記複数の電力変換部(21a−21c)を制御することを特徴とする蓄電システム(1)。
これによれば、負荷(3a−3c)の優先度に応じて、バックアップ時間を柔軟に設定することが可能となる。
[項目2]
前記優先度が高いほど前記所定値が高い値に設定されることを特徴とする項目1に記載の蓄電システム(1)。
これによれば、優先度の高い負荷のバックアップ時間を長く確保することが可能となる。
[項目3]
ユーザが前記優先度を設定するための操作部(23)をさらに備えることを特徴とする項目1または2に記載の蓄電システム(1)。
これによれば、ユーザが各負荷(3a−3c)の優先度を自由に設定することができる。
[項目4]
複数の蓄電部(10a−10c)と、
前記複数の蓄電部(10a−10c)と系統(2)の間にそれぞれ接続され、前記蓄電部(10a−10c)から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統(2)から入力される交流電力を直流電力に変換して前記蓄電部(10a−10c)に充電する充電動作を行う複数の電力変換部(21a−21c)と、
前記複数の電力変換部(21a−21c)を制御する制御部(22)と、を備え、
前記複数の電力変換部(21a−21c)と前記系統(2)との間を接続するそれぞれの配電経路(La−Lc)に負荷(3a−3c)が接続されており、
前記制御部(22)は、前記系統(2)が非停電の状態において、各蓄電部(10a−10c)に接続される各負荷(3a−3c)の消費電力に基づいて各蓄電部に対して設定される所定値を各蓄電部(10a−10c)の残容量が下回らないよう、前記複数の電力変換部(21a−21c)を制御し、
前記制御部(22)は、前記系統(2)の停電状態において、各蓄電部(10a−10c)に対して設定される前記所定値を超えて各蓄電部(10a−10c)が放電できるように前記複数の電力変換部(21a−21c)を制御することを特徴とする蓄電システム(1)。
これによれば、負荷(3a−3c)の消費電力をもとに、バックアップ時間を柔軟に設定することが可能となる。
[項目5]
前記消費電力が高いほど前記所定値が高い値に設定されることを特徴とする項目4に記載の蓄電システム(1)。
これによれば、消費電力の高い負荷のバックアップ時間を長く確保することが可能となる。
[項目6]
前記制御部(22)は、各蓄電部(10a−10c)の残容量と各負荷(3a−3c)の消費電力とのそれぞれの比率が略均等になるよう、各電力変換部(21a−21c)を制御して各蓄電部(10a−10c)の残容量を調整することを特徴とする項目4または5に記載の蓄電システム(1)。
これによれば、各負荷(3a−3c)の消費電力がそれぞれ異なる場合でも、バックアップ時間を均等にすることが可能となる。
[項目7]
前記複数の配電経路上(La−Lc)にそれぞれスイッチ(Sa−Sc)が挿入され、
前記制御部(22)は、前記系統(2)の停電状態において、前記スイッチ(Sa−Sc)をオフに制御して前記複数の負荷(3a−3c)と前記系統(2)を切り離すことを特徴とする項目1から6のいずれかに記載の蓄電システム(1)。
これによれば、各サブ蓄電システム間の干渉がなく、各負荷(3a−3c)をバックアップすることが可能となる。
[項目8]
蓄電部(10a)と、
前記蓄電部(10a)と系統(2)の間に接続され、前記蓄電部(10a)から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統(2)から入力される交流電力を直流電力に変換して前記蓄電部(10a)に充電する充電動作を行う電力変換部(21a)と、
前記電力変換部(21a)を制御する制御部(22)と、を備え、
前記電力変換部(21a)と前記系統(2)との間を接続する配電経路(La)に負荷(3a)が接続されており、
前記制御部(22)は、前記系統(2)が非停電の状態において、前記蓄電部(10a)の残容量が所定値を下回らないよう、前記電力変換部(21a)を制御し、
前記制御部(22)は、前記系統(2)の停電状態において、前記蓄電部(10a)の残容量が前記所定値を超えて放電できるように前記電力変換部(21a)を制御することを特徴とする蓄電システム(1)。
これによれば、停電時にバックアップ電力を確保することが可能となる。
1 蓄電システム、 2 系統、 3a 第1負荷、 3b 第2負荷、 3c 第3負荷、 La 第1配電線、 Lb 第2配電線、 Lc 第3配電線、 10a 第1蓄電部、 11a 第1蓄電池、 12a 第1監視部、 10b 第2蓄電部、 11b 第2蓄電池、 12b 第2監視部、 10c 第3蓄電部、 11c 第3蓄電池、 12c 第3監視部、 21a 第1電力変換部、 21b 第2電力変換部、 21c 第3電力変換部、 22 制御部、 23 操作部、 Sa 第1スイッチ、 Sb 第2スイッチ、 Sc 第3スイッチ、 CTa 第1電流センサ、 CTb 第2電流センサ、 CTc 第3電流センサ。

Claims (8)

  1. 複数の蓄電部と、
    前記複数の蓄電部と系統の間にそれぞれ接続され、前記蓄電部から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統から入力される交流電力を直流電力に変換して前記蓄電部に充電する充電動作を行う複数の電力変換部と、
    前記複数の電力変換部を制御する制御部と、を備え、
    前記複数の電力変換部と前記系統との間を接続するそれぞれの配電経路に負荷が接続されており、
    前記制御部は、前記系統が非停電の状態において、各蓄電部に接続される負荷の優先度に基づいて各蓄電部に対して設定される所定値を各蓄電部の残容量が下回らないよう、前記複数の電力変換部を制御し、
    前記制御部は、前記系統の停電状態において、各蓄電部に対して設定される前記所定値を超えて各蓄電部が放電できるように前記複数の電力変換部を制御することを特徴とする蓄電システム。
  2. 前記優先度が高いほど前記所定値が高い値に設定されることを特徴とする請求項1に記載の蓄電システム。
  3. ユーザが前記優先度を設定するための操作部をさらに備えることを特徴とする請求項1または2に記載の蓄電システム。
  4. 複数の蓄電部と、
    前記複数の蓄電部と系統の間にそれぞれ接続され、前記蓄電部から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統から入力される交流電力を直流電力に変換して前記蓄電部に充電する充電動作を行う複数の電力変換部と、
    前記複数の電力変換部を制御する制御部と、を備え、
    前記複数の電力変換部と前記系統との間を接続するそれぞれの配電経路に負荷が接続されており、
    前記制御部は、前記系統が非停電の状態において、各蓄電部に接続される各負荷の消費電力に基づいて各蓄電部に対して設定される所定値を各蓄電部の残容量が下回らないよう、前記複数の電力変換部を制御し、
    前記制御部は、前記系統の停電状態において、各蓄電部に対して設定される前記所定値を超えて各蓄電部が放電できるように前記複数の電力変換部を制御することを特徴とする蓄電システム。
  5. 前記消費電力が高いほど前記所定値が高い値に設定されることを特徴とする請求項4に記載の蓄電システム。
  6. 前記制御部は、各蓄電部の残容量と各負荷の消費電力とのそれぞれの比率が略均等になるよう、各電力変換部を制御して各蓄電部の残容量を調整することを特徴とする請求項4または5に記載の蓄電システム。
  7. 前記複数の配電経路上にそれぞれスイッチが挿入され、
    前記制御部は、前記系統の停電状態において、前記スイッチをオフに制御して前記複数の負荷と前記系統を切り離すことを特徴とする請求項1から6のいずれかに記載の蓄電システム。
  8. 蓄電部と、
    前記蓄電部と系統の間に接続され、前記蓄電部から出力される直流電力を交流電力に変換して放電する放電動作、及び前記系統から入力される交流電力を直流電力に変換して前記蓄電部に充電する充電動作を行う電力変換部と、
    前記電力変換部を制御する制御部と、を備え、
    前記電力変換部と前記系統との間を接続する配電経路に負荷が接続されており、
    前記制御部は、前記系統が非停電の状態において、前記蓄電部の残容量が所定値を下回らないよう、前記電力変換部を制御し、
    前記制御部は、前記系統の停電状態において、前記蓄電部の残容量が前記所定値を超えて放電できるように前記電力変換部を制御することを特徴とする蓄電システム。
JP2015214744A 2015-10-30 2015-10-30 蓄電システム Active JP6593755B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015214744A JP6593755B2 (ja) 2015-10-30 2015-10-30 蓄電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015214744A JP6593755B2 (ja) 2015-10-30 2015-10-30 蓄電システム

Publications (2)

Publication Number Publication Date
JP2017085852A true JP2017085852A (ja) 2017-05-18
JP6593755B2 JP6593755B2 (ja) 2019-10-23

Family

ID=58711428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015214744A Active JP6593755B2 (ja) 2015-10-30 2015-10-30 蓄電システム

Country Status (1)

Country Link
JP (1) JP6593755B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048089A1 (ja) * 2022-08-29 2024-03-07 株式会社村田製作所 電力システム
WO2024057932A1 (ja) * 2022-09-14 2024-03-21 株式会社村田製作所 電力システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220373606A1 (en) * 2019-10-29 2022-11-24 Kyocera Corporation Power storage system and management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061917A1 (fr) * 2001-02-01 2002-08-08 Hitachi Maxell, Ltd. Source d'energie
JP2004135454A (ja) * 2002-10-11 2004-04-30 Sharp Corp 複数の分散電源の出力抑制方法および分散電源管理システム
US20130154369A1 (en) * 2011-12-19 2013-06-20 Seong-Joong Kim Energy storage system and controlling method of the same
JP2014183640A (ja) * 2013-03-19 2014-09-29 Sharp Corp 蓄電システム
JP2015037354A (ja) * 2013-08-12 2015-02-23 株式会社Ihi 集合住宅共用部分の電力供給装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061917A1 (fr) * 2001-02-01 2002-08-08 Hitachi Maxell, Ltd. Source d'energie
JP2004135454A (ja) * 2002-10-11 2004-04-30 Sharp Corp 複数の分散電源の出力抑制方法および分散電源管理システム
US20130154369A1 (en) * 2011-12-19 2013-06-20 Seong-Joong Kim Energy storage system and controlling method of the same
JP2014183640A (ja) * 2013-03-19 2014-09-29 Sharp Corp 蓄電システム
JP2015037354A (ja) * 2013-08-12 2015-02-23 株式会社Ihi 集合住宅共用部分の電力供給装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048089A1 (ja) * 2022-08-29 2024-03-07 株式会社村田製作所 電力システム
WO2024057932A1 (ja) * 2022-09-14 2024-03-21 株式会社村田製作所 電力システム

Also Published As

Publication number Publication date
JP6593755B2 (ja) 2019-10-23

Similar Documents

Publication Publication Date Title
JP5857247B2 (ja) 電力管理システム
US9893526B2 (en) Networked power management and demand response
US9401616B2 (en) Battery pack, energy storage system including battery pack, and method of charging battery pack
JP5590033B2 (ja) エネルギーシステム
EP2824789B1 (en) Frequency control method
US9300016B2 (en) Battery system and energy storage system
US9306409B2 (en) Method of measuring voltage of battery pack and energy storage system including the battery pack
EP2466720B1 (en) Power supply method and apparatus for radio access network nodes/sites
US20180054070A1 (en) Hardware/software reconfigurable, intelligent and versatile electrical energy provisioning system for on-grid and off-grid applications
EP2822138B1 (en) Control device, control system, and storage cell control method
US11936183B2 (en) Energy-internet system, energy routing conversion device, and energy control method
US20130030590A1 (en) Peak Mitigation Extension Using Energy Storage and Load Shedding
EP1925886B1 (en) Storage type air conditioning system, and operation method and control program for storage type air conditioning system
KR20170036329A (ko) 무정전 전원 공급장치
JP5804506B2 (ja) マルチ出力無停電電源装置
US20220285950A1 (en) Energy storage system and battery management method
SG177602A1 (en) Power managers, methods for operating a power manager, and methods for operating a power network
JP6593755B2 (ja) 蓄電システム
JP6400612B2 (ja) エネルギー削減のためのシステム及び方法
US11616379B2 (en) Electric energy supply device comprising a busbar matrix, and method for operating the energy supply device
CN115986883A (zh) 一种储能系统及其控制方法
US20100312411A1 (en) Ac consumption controller, method of managing ac power consumption and a battery plant employing the same
US20220294222A1 (en) Energy management system and method
KR20170036328A (ko) 무정전 전원 공급장치
EP3340421B1 (en) Power storage control device, power conversion device, power storage system, power storage control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6593755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150