JP2017083509A - エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法 - Google Patents

エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法 Download PDF

Info

Publication number
JP2017083509A
JP2017083509A JP2015208685A JP2015208685A JP2017083509A JP 2017083509 A JP2017083509 A JP 2017083509A JP 2015208685 A JP2015208685 A JP 2015208685A JP 2015208685 A JP2015208685 A JP 2015208685A JP 2017083509 A JP2017083509 A JP 2017083509A
Authority
JP
Japan
Prior art keywords
light
diffracted light
diffracted
measurement
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015208685A
Other languages
English (en)
Other versions
JP6607350B2 (ja
Inventor
劉 志強
Zhiqiang Liu
志強 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2015208685A priority Critical patent/JP6607350B2/ja
Publication of JP2017083509A publication Critical patent/JP2017083509A/ja
Application granted granted Critical
Publication of JP6607350B2 publication Critical patent/JP6607350B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】回折格子を用いて計測する際に、格子パターン面に微小な凹凸等の形状誤差がある場合の計測誤差の発生を抑制する。
【解決手段】第1部材6及び第2部材の相対移動量を計測するエンコーダであって、第1部材6に設けられた回折格子12と、計測光ML及び参照光を発生するレーザ光源と、第2部材に設けられるとともに、回折格子12から計測光MLによって発生する+1次回折光DX1を格子パターン面12bに入射させるコーナーキューブ24Aと、回折格子12から+1次回折光DX1によって発生する+1次回折光EX1と参照光RX1との干渉光を検出する光電センサ40XAと、回折格子12から+1次回折光DX1によって発生する−1次回折光EX3と参照光RX3との干渉光を検出する光電センサ40XCと、を備える。
【選択図】図2

Description

相対移動する2つの部材の相対移動量を計測するエンコーダ装置及びその使用方法、エンコーダ装置を備えた光学装置及び露光装置、並びに露光装置を用いたデバイス製造方法に関する。
半導体素子等の電子デバイス(マイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、従来より、露光対象の基板を移動するステージの位置計測はレーザ干渉計によって行われていた。ところが、レーザ干渉計では、計測用ビームの光路が長く、かつ変化するため、その光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動が無視できなくなりつつある。
そこで、例えばステージに固定された回折格子にレーザ光よりなる計測光を照射し、回折格子から発生する回折光と他の回折光又は参照光との干渉光を光電変換して得られる検出信号から、その回折格子が設けられた部材(ステージ等)の相対移動量を計測する、いわゆるエンコーダ装置(干渉型エンコーダ)も使用されつつある(例えば特許文献1参照)。このエンコーダ装置は、レーザ干渉計に比べて計測値の短期的安定性に優れるとともに、レーザ干渉計に近い分解能が得られるようになってきている。
米国特許第8,570,533号明細書
第1の態様によれば、少なくとも第1方向に相対移動する第1及び第2部材の相対移動量を計測するエンコーダ装置であって、その第1部材及びその第2部材の一方の部材に設けられ、少なくともその第1方向を周期方向とする格子パターンを有する反射型の回折格子と、計測光を発生する光源部と、その計測光をその回折格子の格子パターン面に入射させて回折光を発生させる第1光学部材と、その第1部材及びその第2部材の他方の部材に設けられるとともに、その回折格子のその格子パターンで回折されたその回折光のうち第1回折光をその格子パターンに入射させて第2回折光とこの第2回折光とは次数の異なる第3回折光とを発生させる第2光学部材と、その計測光を分岐して第1の参照光と第2の参照光とを生成する第3光学部材と、その格子パターンで回折されたその第2回折光と第1の参照光との干渉光を検出する第1検出器と、その格子パターンで回折されたその第3回折光と第2の参照光との干渉光を検出する第2検出器と、その第1検出器及びその第2検出器の検出信号を用いてその相対移動量を求める計測部と、を備えるエンコーダ装置が提供される。
第2の態様によれば、少なくとも第1方向に相対移動する第1及び第2部材の相対移動量を計測するエンコーダ装置であって、その第1部材及びその第2部材の一方の部材に設けられ、少なくともその第1方向を周期方向とする格子パターンを有する反射型の回折格子と、計測光及び参照光を互いに非平行となるように射出する光源部と、その計測光から分岐された第1計測光をその回折格子の格子パターン面に入射させる入射用光学部材と、その第1部材及びその第2部材の他方の部材に設けられるとともに、その回折格子からその第1計測光によって発生する第1回折光を、その格子パターン面に入射させる第1光学部材と、第1の開口が形成されるとともに、その第1の開口を、その第1回折光又はその回折格子からその第1回折光によって発生する第1再回折光よりなる第1光束が通過するように配置された楔型の光学部材と、その第1再回折光とその参照光から分岐された第1参照光との干渉光を検出する第1光電検出器と、その第1光電検出器の検出信号を用いてその相対移動量を求める計測部と、を備え、その第1回折光又はその第1再回折光のうち、その第1光束と異なる第2光束がその楔型の光学部材を通過して光路が偏向されるエンコーダ装置が提供される。
第3の態様によれば、第1又は第2の態様のエンコーダ装置を用いてその第1部材とその第2部材との相対移動量を求めることと、その相対移動量に応じてその第1部材とその第2部材との相対的な位置関係を制御することと、を含むエンコーダ装置の使用方法が提供される。
第4の態様によれば、第1又は第2の態様のエンコーダ装置と、そのエンコーダ装置の計測結果に基づいて対象物を移動する移動装置と、その対象物用の光学系と、を備える光学装置が提供される。
第5の態様によれば、パターンを被露光体に露光する露光装置において、フレームと、その被露光体を支持するとともにそのフレームに対して少なくとも第1方向に相対移動可能なステージと、第1又は第2の態様のエンコーダ装置と、を備え、そのエンコーダ装置を用いてその第1方向へのそのステージの相対移動量を計測する露光装置が提供される。
第6の様態によれば、リソグラフィ工程を含み、そのリソグラフィ工程で第5の態様の露光装置を用いて物体を露光するデバイス製造方法が提供される。
第1の実施形態に係るエンコーダを示す斜視図である。 (A)は図1のエンコーダにおけるX方向の±1次回折光の光路を示す図、(B)はY方向の±1次回折光の光路を示す図である。 エンコーダの使用方法の一例を示すフローチャートである。 (A)は第2の実施形態に係るエンコーダを示す図、(B)はレーザ光源の一例を示す図である。 第3の実施形態に係る露光装置の概略構成を示す図である。 図5のウエハステージに設けられた回折格子及び複数の検出ヘッドの配置の一例を示す平面図である。 図5の露光装置の制御系を示すブロック図である。 電子デバイスの製造方法の一例を示すフローチャートである。
(第1の実施形態)
第1の実施形態につき図1〜図3を参照して説明する。図1は本実施形態に係る3軸のエンコーダ10の要部を示す斜視図である。図1において、一例として、第1部材6に対して第2部材7は3次元的に相対移動可能に配置され、第2部材7の互いに直交する相対移動可能な2つの方向に平行にX軸及びY軸を取り、X軸及びY軸によって規定される平面(XY面)に直交する相対移動方向に沿ってZ軸を取って説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの角度をそれぞれθx方向、θy方向、及びθz方向の角度とも称する。
図1において、エンコーダ10は、第1部材6の上面に固定された、XY面にほぼ平行な平板状の2次元の回折格子12と、第2部材7に固定されて回折格子12に計測光を照射するX軸、Y軸、及びZ軸よりなる3軸の検出ヘッド14と、検出ヘッド14に計測用のレーザ光を供給するレーザ光源16と、検出ヘッド14から出力される検出信号を処理して第1部材6に対する第2部材7のX方向、Y方向、及びZ方向の相対移動量を求める計測演算部42と、を有する。計測演算部42は、第1演算部42X、第2演算部42Y、及び第3演算部42Tを有する。
回折格子12のXY面にほぼ平行な格子パターン面12bには、X方向及びY方向に所定の周期(ピッチ)pを持ち、位相型でかつ反射型の2次元の格子パターン12aが形成されている。格子パターン12aのX方向、Y方向の周期pは、一例として100nm〜4μm程度(例えば1μm周期)である。なお、格子パターン12aのX方向、Y方向の周期が互いに異なっていてもよい。格子パターン12aは、例えばホログラム(例えば感光性樹脂に干渉縞を焼き付けたもの)として、又はガラス板等に機械的に溝等を形成して反射膜を被着することで作製可能である。さらに、格子パターン面12bは、保護用の平板ガラスで覆われていてもよい。
レーザ光源16は、例えばHe−Neレーザ又は半導体レーザ等よりなり、一例として偏光方向が互いに直交するとともに互いに周波数が異なる第1及び第2の直線偏光のレーザ光よりなる2周波ヘテロダイン光を射出する。それらのレーザ光は互いに可干渉(偏光方向を平行にした場合)であり、それらの平均波長をλとする。レーザ光源16は、それらのレーザ光から分岐した2つの光束の干渉光を光電変換して得られる基準周波数の信号(基準信号)を計測演算部42に供給する。なお、ホモダイン干渉方式も使用可能である。
検出ヘッド14は、レーザ光源16から供給されたヘテロダイン光を互いに周波数が異なるP偏光の計測光ML及びS偏光の参照光RLに分割する偏光ビームスプリッター(以下、PBSという。)18と、参照光RLからX軸の第2参照光RX2を分岐するビームスプリッター20Aと、ビームスプリッター20Aで反射された参照光からY軸の第2及び第1参照光RY2,RY1を順次分岐するビームスプリッター20B,20Cと、ビームスプリッター20Cを透過したX軸の第1参照光RX1を−X方向に向けるミラー22A,22B,22Cと、X軸の第2参照光RX2を+X方向に向けるミラー22D,22Eとを有する。計測光ML及び参照光RLは例えば直径が0.5〜数mm程度の円形の断面を有する。また、検出ヘッド14は、X軸の第1及び第2参照光RX1,RX2と後述のX軸の+1次回折光EX1及び−1次回折光EX2とをそれぞれ同軸に合成するPBS(偏光ビームスプリッター)28A,28Bと、PBS28A,28Bで同軸に合成された干渉光が通過する偏光板30A,30Bと、偏光板30A,30Bを通過した干渉光を検出するフォトダイオード等のX軸の光電センサ40XA,40XBとを有する。
さらに、検出ヘッド14は、Y軸の第1及び第2参照光RY1,RY2と後述のY軸の+1次回折光EY1及び−1次回折光EY2とを同軸に合成するPBS(偏光ビームスプリッター)28C,28Dと、PBS28C,28Dで同軸に合成された干渉光が通過する偏光板30C,30Dと、偏光板30C,30Dを通過した干渉光を検出するY軸の光電センサ40YA,40YBとを有する。
さらに、検出ヘッド14は、複数の再回折光とこれらに対応する複数の参照光との干渉光を検出するためのミラー22G,22H,22I,22J、ミラー23E,23F,23G,23H、PBS28E,28F,28G,28H、偏光板30E,30F,30G,30H、及び光電センサ40XC,40XD,40YC,40YDを有する(詳細後述)(図2、図3参照)。光電センサ40YA,40YB,40XC〜40YDは、光電センサ40XAと同じ構成である。
また、検出ヘッド14は、PBS18を透過したP偏光の計測光MLを反射して回折格子12Xの格子パターン面12b(格子パターン12a)に概ね垂直に(概ねZ軸に平行に)入射させるミラー22Fを有する。概ね垂直に入射させるとは、計測光MLを格子パターン面12bに垂直に入射させる場合の外に、0次光(正反射光)の影響を軽減するために、計測光MLをZ軸に平行な軸に対してX方向(θy方向)及び/又はY方向(θx方向)に例えば0.5〜1.5°程度傾斜させて格子パターン面12bに入射させる場合も含まれることを意味している。PBS18,28A〜28D、ビームスプリッター20A〜20C、ミラー22A〜22F、及び光電センサ40XA〜40YDは、第2部材7に固定された支持部材(不図示)によって支持されている。
本実施形態において、概ね垂直に回折格子12の格子パターン面12bに入射する計測光MLによって、X方向に対称に±1次回折光DX1,DX2が発生するとともに、Y方向に対称に±1次回折光DY1,DY2が発生する。そして、検出ヘッド14は、+1次回折光DX1の光路をほぼ+Z平行に向けるX軸の第1の楔型プリズム26Aと、楔型プリズム26Aを通過した回折光DX1を回折格子12の格子パターン面12bに向けて概ね垂直に反射するX軸の第1のコーナーキューブ24Aと、−1次回折光DX2の光路をほぼ+Z平行に向けるX軸の第2の楔型プリズム26Bと、楔型プリズム26Bを通過した回折光DX2を回折格子12の格子パターン面12bに向けて概ね垂直に反射するX軸の第2のコーナーキューブ24Bと、後述のミラー23A,23Bとを有する。楔型プリズム26A,26B(方向変更部材)は、回折格子12に入射する計測光MLに関して対称に配置された互いに同じ形状で入射面及び射出面(2面)を持つプリズムである。コーナーキューブ24A,24Bは、その計測光MLに関して対称に配置された互いに同じ形状で、入射面及び3つの互いに直交する3つの反射面を持つ光学部材であり、コーナーキューブ24A,24Bは、その入射面がXY面に平行になるように互いに平行に配置されている。
この場合、図2(A)に示すように、コーナーキューブ24Aで反射された回折光DX1によって回折格子12からX方向に対称に+1次回折光EX1(再回折光)及び−1次回折光EX3(再回折光)が発生し、発生した回折光EX1は楔型プリズム26Aによって+Z方向に光路が変更された後、図1のミラー23Aを介してPBS28Aで参照光RX1と同軸に合成される。また、発生した回折光EX3はミラー23Eで+Z方向に光路が変更された後、図1の参照光RLから分岐部材(不図示)を介して分岐されてミラー22Gで反射された参照光RX3と、PBS28Eで同軸に合成される。合成された干渉光は偏光板30Eを介して光電センサ40XCで受光され、光電センサ40XCの検出信号SA1は計測演算部42の第1演算部42Xに供給される。
また、コーナーキューブ24Bで反射された回折光DX2によって回折格子12からX方向に対称に+1次回折光EX4(再回折光)及び−1次回折光EX2(再回折光)が発生し、発生した回折光EX2は楔型プリズム26Bによって+Z方向に光路が変更された後、図1のミラー23Bを介してPBS28Bで参照光RX2と同軸に合成される。合成された干渉光は光電センサ40XBで受光される。
また、発生した回折光EX4はミラー23Fで+Z方向に光路が変更された後、図1の参照光RLから分岐部材(不図示)を介して分岐されてミラー22Hで反射された参照光RX4と、PBS28Fで同軸に合成される。合成された干渉光は偏光板30Fを介して光電センサ40XDで受光され、光電センサ40XDの検出信号SB1は計測演算部42の第1演算部42Xに供給される。
図1において、検出ヘッド14は、±1次回折光DY1,DY2の光路をほぼ+Z平行に向けるY軸の第1及び第2の楔型プリズム26C,26Dと、楔型プリズム26C,26Dを通過した回折光DY1,DY2を回折格子12の格子パターン面12bに向けて概ね垂直に反射するY軸の第1及び第2のコーナーキューブ24C,24Dと、後述のミラー23C,23Dとを有する。Y軸の楔型プリズム26C,26Dは、X軸の楔型プリズム26A,26Bを回折格子12に入射する計測光MLの回りに90°回転した形状及び配置であり、Y軸のコーナーキューブ24C,24Dは、X軸のコーナーキューブ24A,24Bをその計測光MLの回りに90°回転した形状及び配置である。
この場合、図2(B)に示すように、コーナーキューブ24Cで反射された回折光DY1によって回折格子12からY方向に対称に+1次回折光EY1(再回折光)及び−1次回折光EY3(再回折光)が発生し、発生した回折光EY1は楔型プリズム26Cによって+Z方向に光路が変更された後、図1のミラー23Cを介してPBS28Cで参照光RY1と同軸に合成される。合成された干渉光はそれぞれ光電センサ40XCで受光される。また、発生した回折光EY3はミラー23Gで+Z方向に光路が変更された後、図1の参照光RLから分岐部材(不図示)を介して分岐されてミラー22Iで反射された参照光RX3と、PBS28Gで同軸に合成される。合成された干渉光は偏光板30Gを介して光電センサ40YCで受光され、光電センサ40YCの検出信号SC1は計測演算部42の第2演算部42Yに供給される。
さらに、コーナーキューブ24Dで反射された回折光DY2によって回折格子12からY方向に対称に+1次回折光EY4(再回折光)及び−1次回折光EY2(再回折光)が発生し、発生した回折光EY2は楔型プリズム26Dによって+Z方向に光路が変更された後、図1のミラー23Dを介してPBS28Dで参照光RY2と同軸に合成される。合成された干渉光はそれぞれ光電センサ40XDで受光される。また、発生した回折光EY4はミラー23Hで+Z方向に光路が変更された後、図1の参照光RLから分岐部材(不図示)を介して分岐されてミラー22Jで反射された参照光RY4と、PBS28Hで同軸に合成される。合成された干渉光は偏光板30Hを介して光電センサ40YDで受光され、光電センサ40YDの検出信号SD1は計測演算部42の第2演算部42Yに供給される。
本実施形態では、楔型プリズム26A〜26Dは回折光EX1,EX2,EY1,EY2の光路を変更するための光学部材としても兼用されているため、検出ヘッド14の構成が簡素である。なお、回折光EX1〜EY2の光路を変更するために、楔型プリズム26A〜26Dとは別の部材(例えば別の小型のプリズム又はミラー)を使用してもよい。
コーナーキューブ24A〜24D、楔型プリズム26A〜26D、ミラー22G〜22J、ミラー23A〜23H、及びPBS40XC〜40YDも、第2部材7に固定された支持部材(不図示)によって支持されている。本実施形態では、コーナーキューブ24A〜24Dは、入射面がXY面に平行になるように、かつ回折格子12に入射する計測光MLの回りに90°間隔で配置されているため、複雑な形状のコーナーキューブ24A〜24Dを容易に正確な位置関係で支持できる。なお、コーナーキューブ24A〜24Dの代わりに、3つの互いに直交する反射面を持つ反射部材を組み合わせた反射部材(レトロリフレクター)等を使用してもよい。
図1において、X軸の光電センサ40XAは、X軸の回折光EX1及び参照光RX1よりなる干渉光の検出信号(光電変換信号)SAを計測演算部42の第1演算部42Xに供給し、X軸の光電センサ40XBは、X軸の回折光EX2及び参照光RX2よりなる干渉光の検出信号SBを第1演算部42Xに供給する。また、Y軸の光電センサ40YAは、Y軸の回折光EY1及び参照光RY1よりなる干渉光の検出信号SCを計測演算部42の第2演算部42Yに供給し、Y軸の光電センサ40YBは、Y軸の回折光EY2及び参照光RY2よりなる干渉光の検出信号SDを第2演算部42Yに供給する。第1演算部42X及び第2演算部42Yには、レーザ光源16から基準周波数の信号(基準信号SE)も供給されている。
ここで、第1部材6と第2部材7とのX方向、Y方向、Z方向の相対移動量をX,Y,Zとして、第1演算部42X及び第2演算部42Yで求められるZ方向の相対移動量をそれぞれZX,ZYとする。このとき、一例として、第1演算部42Xは、検出信号SA及び基準信号SEから、既知の係数a,bを用いてX方向及びZ方向の第1の相対移動量(a・X+b・ZX)を求め、検出信号SB及び基準信号SEから、X方向及びZ方向の第2の相対移動量(−a・X+b・ZX)を求め、その第1及び第2の相対移動量からX方向の相対移動量(X)及びZ方向の相対移動量(ZX)を求め、求めた結果を第3演算部42Tに供給する。第2演算部42Yは、検出信号SC及び基準信号SEから、Y方向及びZ方向の第1の相対移動量(a・Y+b・ZY)を求め、検出信号SD及び基準信号SEから、Y方向及びZ方向の第2の相対移動量(−a・Y+b・ZY)を求め、その第1及び第2の相対移動量からY方向の相対移動量(Y)及びZ方向の相対移動量(ZY)を求め、求めた結果を第3演算部42Tに供給する。
第3演算部42Tは、演算部42X,42Yから供給される相対移動量(X)及び(Y)を所定のオフセットで補正した値を第1部材6と第2部材7とのX方向、Y方向の相対移動量として出力する。また、第3演算部42Tは、一例として、演算部42X,42Yから供給されるZ方向の相対移動量(ZX)及び(ZY)の平均値(=(ZX+ZY)/2)を所定のオフセットで補正した値を第1部材6と第2部材7とのZ方向の相対移動量として出力する。
また、別の方法として、第1演算部42Xは、検出信号SA及び基準信号SEから求められるX方向及びZ方向の相対移動量と、回折光EX3と参照光RX3との干渉光の検出信号SA1及び基準信号SEから求められるX方向及びZ方向の相対移動量との差分ΔXAとして、既知の係数a1,b1を用いてX方向及びZ方向の第3の相対移動量(a1・X−b1・ZX)を求め、検出信号SB及び基準信号SEから求められるX方向及びZ方向の相対移動量と、回折光EX4と参照光RX4との干渉光の検出信号SB1及び基準信号SEから求められる相対移動量の差分ΔXBとして、X方向及びZ方向の第4の相対移動量(a1・X+b1・ZX)を求め、求めた結果を第3演算部42Tに供給する。
そして、第3演算部42Tでは、その2つの差分ΔXA,ΔXBの和より、第1部材6に対する第2部材7のX方向(計測方向)の位相情報(ひいては相対移動量)を求め、その2つの差分ΔXA,ΔXBの差分より、第1部材6に対する第2部材7のZ方向の位相情報(ひいては相対移動量)を求めることができる。なお、例えば第1部材6と第2部材7とのZ方向の相対移動量がきわめて小さいような場合、例えば一方の差分ΔXA(又はΔXB)及び所定の係数から第1部材6と第2部材7とのX方向の相対移動量を求めることも可能である。
また、第2演算部42Yは、検出信号SC及び基準信号SEから求められるY方向及びZ方向の相対移動量と、回折光EY3と参照光RY3との干渉光の検出信号SC1及び基準信号SEから求められるY方向及びZ方向の相対移動量との差分ΔYAとして、X方向及びZ方向の第3の相対移動量(a1・Y−b1・ZX)を求め、検出信号SD及び基準信号SEから求められるY方向及びZ方向の相対移動量と、回折光EY4と参照光RY4との干渉光の検出信号SD1及び基準信号SEから求められる相対移動量の差分ΔYBとして、Y方向及びZ方向の第4の相対移動量(a1・Y+b1・ZX)を求め、求めた結果を第3演算部42Tに供給する。
そして、第3演算部42Tでは、その2つの差分ΔYA,ΔYBの和より、第1部材6に対する第2部材7のY方向の位相情報(ひいては相対移動量)を求め、その2つの差分ΔYA,ΔYBの差分より、第1部材6に対する第2部材7のZ方向の位相情報(ひいては相対移動量)を求めることができる。
この方法によれば、X方向の再回折光である回折光EX1及びEX3は格子パターン12a上の同じ位置から発生しており、回折光EX2及びEX4も格子パターン12a上の同じ位置から発生している。このため、格子パターン12aの表面の凹凸等の表面形状の誤差があっても、差分ΔXA,ΔXBを求める際の差分演算によって、その表面形状の誤差による計測誤差が相殺されて、第2部材7のX方向及びZ方向の相対移動量を高精度に計測できる。同様に、Y方向の再回折光である回折光EY1及びEY3は格子パターン12a上の同じ位置から発生しており、回折光EY2及びEY4も格子パターン12a上の同じ位置から発生している。このため、格子パターン12aの表面形状の誤差があっても、差分ΔYA,ΔYBを求める際の差分演算によって、その表面形状の誤差による計測誤差が相殺されて、第2部材7のY方向及びZ方向の相対移動量を高精度に計測できる。
エンコーダ10のX方向、Y方向、Z方向の相対移動量の検出分解能は例えば0.5〜0.1nm程度である。エンコーダ10では、計測光ML等の光路が短いため、その光路上の気体の温度揺らぎに起因する計測値の短期的な変動を低減できる。さらに、最終的に2回目の+1次回折光EX1,EY1等及び−1次回折光EX2,EY2等と対応する参照光RX1〜RY2等との干渉光を検出しているため、相対移動量の検出分解能(検出精度)を1/2に向上(微細化)できる。また、±1次回折光を用いることによって、第1部材6と第2部材7とのθz方向の相対回転角による計測誤差を低減できる。
次に、本実施形態の検出ヘッド14の回折光の光路につき詳細に説明する。
図2(A)において、計測光MLが回折格子12の格子パターン12aに垂直に入射する(計測光MLがZ軸に平行に入射する)とき、計測光MLによるX方向の+1次回折光DX1の回折角φxは、格子パターン12aの周期p及び計測光MLの波長λを用いて次の関係を満たす。このとき、計測光MLによるX方向の−1次回折光DX2の回折角は−φxとなる。
p・sin(φx)=λ …(1)
一例として、周期pを1000nm(1μm)、計測光MLの波長λを633nmとすると、回折角φxはほぼ39°となる。
また、回折光DX1は、楔型プリズム26Aによって光路が計測光ML(ここではZ軸に平行)に平行になるように折り曲げられてコーナーキューブ24Aに入射する。従って、楔型プリズム26Aの入射光に対する振れ角をδとすると、次のように振れ角δはその回折角φxと同じであってもよい。
δ=φx=arcsin(λ/p) …(2)
言い替えると、楔型プリズム26Aの頂角α、屈折率ng、及び回折光DX1の楔型プリズム26Aに対する入射角i(楔型プリズム26Aの回転角θy)は、振れ角δが回折角φxとなるように定められてもよい。さらに、本実施形態では、振れ角δの入射角iに関する変化率(dδ/di)は、次のようにcos(φx)に設定されてもよい。
dδ/di=cos(φx)=cos{arcsin(λ/p)} …(3)
この式(3)の条件は、楔型プリズム26Aの振れ角δの変化率(dδ/di)は、回折格子12に対する計測光MLの入射角が0から変化したときの回折光DX1の回折角の変化率を、楔型プリズム26Aで相殺することを意味している。これによって、格子パターン12aがθy方向に傾斜しても、回折光EX1の光路の横シフトが少なくなり、回折光EX1と参照光RX1との干渉光のSN比が高く維持されて、高精度に相対移動量を計測できる。
また、計測光MLが格子パターン12aに垂直に(Z軸に平行に)入射する場合、楔型プリズム26Aからコーナーキューブ24Aに向かう回折光DX1はZ軸に平行であり、コーナーキューブ24Aで反射される回折光DX1は計測光MLが入射した位置から+X方向にずれた位置で格子パターン12aに垂直に入射する。そして、回折光DX1によって回折格子12から発生する+1次回折光EX1の回折角は式(1)のφxと同じであり、回折光EX1は楔型プリズム26Aによって光路をZ軸に平行に折り曲げられて(ミラー23Aを介して)PBS28Aに向かう。このとき、計測光MLによる回折格子12からの−1次回折光DX2は、回折光DX1と対称に楔型プリズム26B及びコーナーキューブ24Bを介して計測光MLが入射した位置から−X方向にずれた位置で格子パターン12aに垂直に入射する。そして、回折光DX2によって回折格子12から発生する−1次回折光EX2は、楔型プリズム26Bによって光路をZ軸に平行に折り曲げられて(ミラー23Bを介して)PBS28Bに向かう。
また、図2(B)において、計測光MLが回折格子12の格子パターン12aに垂直に入射するとき、計測光MLによるY方向の+1次回折光DY1の回折角φyは、式(1)のX方向の回折角φxと同じである。そして、回折光DY1によって楔型プリズム26C及びコーナーキューブ24Cを介して回折格子12から発生する+1次回折光EY1、及び計測光MLによるY方向の−1次回折光DY2によって回折格子12から発生する−1次回折光EY2は、それぞれ楔型プリズム26C,26Dによって光路をZ軸に平行に折り曲げられてPBS28C,28Dに向かう。
そして、図2(A)の配置において、検出ヘッド14に対して回折格子12の格子パターン面12bのZ方向の相対位置が高くなった場合を想定する。このとき、計測光MLによる+1次回折光DX1は、光路が−X方向に平行にシフトしてコーナーキューブ24Aに入射するが、コーナーキューブ24Aでは入射光に対して射出光の光路は中心に関して対称にシフトする。このため、コーナーキューブ24Aで反射された回折光DX1は、格子パターン面12bのZ方向の相対位置が変化していないときの+1次回折光EX1の光路と交差する位置で回折格子12に入射する。従って、格子パターン面12bがZ方向に変化していても、回折光DX1によって回折格子12から発生する+1次回折光EX1及び−1次回折光EX3の光路は、格子パターン面12bのZ方向の相対位置が変化していないときの光路と同じである。このため、回折光EX1,EX3と参照光RX1,RX3とをPBS28A,28Eで同軸に合成して干渉光を生成したとき、回折光EX1,EX3と参照光RX1,RX3との相対的な横ずれ量がないため、その干渉光を光電変換したときに得られる検出信号SA,SA1のうちの交流信号(ビート信号又は信号成分)の割合が低下することがない。
これは、X軸の−1次回折光DX2等及びY軸の±1次回折光DY1,DY2等でも同様であり、格子パターン面12bのZ方向の相対位置が変化しても、図1の検出信号SB,SB1,SC,SC1,SD,SD1のうちのビート信号の割合は低下しない。従って、検出信号SA,SA1,SD,SD1等を用いて高いSN比で高精度に第1部材6と第2部材7との相対移動量を計測できる。
次に、本実施形態のエンコーダ10を用いる計測方法(使用方法)の一例につき図3のフローチャートを参照して説明する。
まず、図3のステップ302において、第1部材6に設けた回折格子12の格子パターン面12bに概ね垂直に、第2部材7に設けたミラー22Fを介して計測光MLを入射させる。そして、回折格子12から発生するX方向の±1次回折光DX1,DX2を、楔型プリズム26A,26Bを介してコーナーキューブ24A,24B(偏向部)に入射させ、コーナーキューブ24A,24Bで反射された回折光DX1,DX2を回折格子12の格子パターン面12bに概ね垂直に入射させる(ステップ304)。
さらに、+1次回折光DX1によって回折格子12から発生するX方向の±1次回折光EX1,EX3(再回折光)をそれぞれ参照光RX1,RX3と重ね合わせて偏光板30A,30Eに通して、+X方向の第1及び第2の干渉光を生成し、これらの干渉光を光電センサ40XA,40XCで受光する(ステップ306)。また、−1次回折光DX2によって回折格子12から発生するX方向の±1次回折光EX2,EX4(再回折光)をそれぞれ参照光RX2,RX4と重ね合わせて偏光板30B,30Fに通して、−X方向の第1及び第2の干渉光を生成し、これらの干渉光を光電センサ40XB,40XDで受光する(ステップ308)。
そして、その+X方向の2つの干渉光及び−X方向の2つの干渉光の検出信号より、第1部材6と第2部材7とのX方向及びZ方向の相対移動量を求める(ステップ310)。また、このようにして求めた相対移動量が目標値になるように、不図示の駆動機構を用いて第1部材6と第2部材7とのX方向及びZ方向の相対移動量を補正する(ステップ312)。この際に、エンコーダ10によって第1部材6と第2部材7との相対移動量を高精度に計測できるため、第1部材6と第2部材7との相対位置を高精度に制御できる。
上述のように本実施形態のエンコーダ10は、第1部材6に対してX方向、Y方向、Z方向に3次元的に相対移動する第2部材7の相対移動量を計測する3軸のエンコーダ装置である。そして、エンコーダ10は、第1部材6に設けられ、X方向(第1方向)及びY方向を周期方向とする2次元の格子パターン12aを有する反射型の回折格子12と、計測光ML及び参照光RXを含むレーザ光を発生するレーザ光源16と、計測光MLを回折格子12の格子パターン面12bに入射させるミラー22F(入射用光学部材)と、第2部材7に設けられるとともに、回折格子12から計測光MLによってX方向に関して発生する+1次回折光DX1(第1回折光)を格子パターン面12bに入射させるコーナーキューブ24A(第1光学部材)と、回折格子12から+1次回折光DX1によってX方向に発生する+1次回折光EX1(第1再回折光)と参照光RX1との干渉光を検出する光電センサ40XA(第1光電検出器)と、回折格子12から+1次回折光DX1によってX方向に発生する、+1次回折光EX1と次数の異なる回折光である−1次回折光EX3(第2再回折光)と参照光RX3との干渉光を検出する光電センサ40XC(第2光電検出器)と、光電センサ40XA,40XCの検出信号を用いて第2部材7の相対移動量を求める計測演算部42(計測部)と、を備えている。
本実施形態によれば、回折格子12から+1次回折光DX1によってX方向に発生する±1次回折光EX1,EX3は、格子パターン面12b上の同じ計測位置から発生しており、その計測位置の高さが変化しても、回折光EX1,EX3の光路長の変化量は同じである。このため、例えば回折光EX1,EX3によってそれぞれ計測される相対移動量の差分を求めることで、その計測位置の高さの変化に影響されることなく、高精度に相対移動量を計測できる。このため、回折格子12を用いて相対移動量を計測する際に、格子パターン面12bに微小な凹凸等の形状誤差がある場合でも、計測誤差の発生を抑制できる。
また、回折格子12から発生する再回折光を使用する場合に、±1次の再回折光を使用しているため、回折格子12に照射される計測光MLの利用効率を高めることができる。
また、エンコーダ10は、回折格子12から計測光MLによってX方向に発生する−1次回折光DX2(第2回折光)を格子パターン面12bに入射させるコーナーキューブ24B(第2反射部材)と、回折格子12から−1次回折光DX2によって発生する−1次回折光EX2(第3再回折光)と参照光RX2との干渉光を検出する光電センサ40XBと、回折格子12から−1次回折光DX2によって発生する+1次回折光EX4(第4再回折光)と参照光RX4との干渉光を検出する光電センサ40XDと、を備えている。このため、例えば光電センサ40XB,40XDの検出信号も用いることによって、第2部材7のX方向及びZ方向の相対移動量を高精度に計測できる。
また、エンコーダ10は、回折格子12から計測光MLによってY方向に発生する±1次回折光DY1,DY2を格子パターン面12bに入射させるコーナーキューブ24C,24Dと、回折格子12から+1次回折光DY1によってY方向に発生する±1次回折光EY1,EY3と参照光RY1,RY3との干渉光を検出する光電センサ40YA,40YCと、回折格子12から−1次回折光DY2によってY方向に発生する±1次回折光EY4,EY2と参照光RY4,RY3との干渉光を検出する光電センサ40YD,40YBと、を備えている。これらの光電センサ40YA〜40YBの検出信号も用いることによって、第2部材7のY方向の相対移動量を高精度に計測できる。
さらに、エンコーダ10は、回折光DX1,DX2が回折格子12に入射するときの入射角がほぼ0になるように回折光DX1,DX2の方向を変更する楔型プリズム26A,26Bと、回折光DY1,DY2が回折格子12に入射するときの入射角がほぼ0になるように回折光DY1,DY2の方向を変更する楔型プリズム26C,26Dと、を備えている。このため、回折格子12の格子パターン面12bの第2部材7に対する相対的な高さが変化しても、第1部材6と第2部材7とのX方向、Y方向の相対移動量を高精度に計測できる。
なお、上記の実施形態では以下のような変形が可能である。
まず、楔型プリズム26A〜26Dは、対応する回折光DX1〜DY2が回折格子12に入射するときの入射角が回折角φx,φyよりも小さくなるように回折光DX1〜DY2の方向を変更するようにしてもよい。この場合でも、格子パターン面12bの相対的な高さ(Z方向の位置)の変化に対して回折光EX1等と参照光RX等との横方向の相対的なシフト量が低減されるため、回折格子12の格子パターン面12bの高さの変化に対して干渉光のビート信号の強度の低下を抑制でき、第1部材6と第2部材7との相対移動量を高精度に計測できる。
なお、楔型プリズム26A〜26Dの代わりに、例えばミラーと回折格子等とを組み合わせた光学系を使用することも可能である。
さらに、例えば第1部材6と第2部材7とのZ方向の相対移動量が小さい場合には、楔型プリズム26A〜26Dを省略することも可能である。
また、上記の実施形態では、X軸及びY軸用のコーナーキューブ24A〜24D、楔型プリズム26A〜26D、及び光電センサ40XA〜40YDが設けられているが、第1部材6と第2部材7とのX方向及びZ方向の相対移動量を計測するときには、それらのうちのY軸用のコーナーキューブ24C,24D、楔型プリズム26C,26D、及び光電センサ40YA〜40YDを省略することが可能である。この場合には、回折格子12の代わりにX方向にのみ周期性を持つ1次元の回折格子を使用してもよい。
また、上述の実施形態では、計測光ML及び回折光DX1等を格子パターン面12bにほぼ垂直に入射させているが、別の構成として、計測光ML及び回折光DX1等を格子パターン面12bに斜めに入射させてもよい。
また、上記の実施形態では、回折光EX1〜EY4と参照光RX1〜RY4との干渉光を検出しているが、例えばX軸の第1の周波数の計測光の+1次回折光EX1及び−1次回折光EX3と、これらに対応する第2の周波数の計測光(上記の実施形態では参照光として使用されていた光)の−1次回折光及び+1次回折光との各干渉光、及びY軸の第1の周波数の計測光の+1次及び−1次の回折光と第2の周波数の計測光の−1次及び+1次の回折光との各干渉光を検出してもよい。この場合には、計測の分解能をさらに高めることができる。
(第2の実施形態)
第2の実施形態につき図4(A)及び(B)を参照して説明する。図4(A)は、この実施形態に係るエンコーダ60の概略構成を示し、図4(B)は本実施形態で使用されるレーザ光源16Aを示す。なお、図4(A)において図2(A)に対応する部分には同一の符号を付してその詳細な説明を省略する。本実施形態のエンコーダ60は、第1部材6に固定されて、XY平面にほぼ平行な格子パターン面12bを有する2次元の回折格子12と、第2部材7に固定された複数(図4(A)では2つ)の検出ヘッド62A,62Bと、これらの検出ヘッド62A,62Bで共通に使用される楔型プリズム74と、計測演算部64と、図4(B)のレーザ光源16Aとを備えている。なお、本実施形態では、回折格子12の代わりに平板状のミラーを使用してもよい。
図4(B)において、レーザ光源16Aは、例えばHe−Neレーザよりなり、偏光方向が互いに直交するとともに互いに周波数が異なる第1及び第2の直線偏光のレーザ光よりなる2周波ヘテロダイン光を射出する光源66Aを有する。その第1及び第2の直線偏光のレーザ光をそれぞれ計測光ML及び参照光RLと称する。また、レーザ光源16Aは、光源66Aから射出される計測光ML及び参照光RLをそれぞれ偏光方向を保持した状態で伝播させるダブルコア型の偏波面保持ファイバ66Bと、偏波面保持ファイバ66Bから射出される計測光ML及び参照光RLをそれぞれ平行光束に変換するレンズ66Cとを有する。この構成によって、レーザ光源16Aから射出される計測光ML及び参照光RLは、偏光方向が互いに直交するとともに、進行方向が所定の角度βだけ交差している。レーザ光源16Aから射出される計測光MLから不図示の分岐光学系で分岐された第1及び第2の計測光ML1,ML2、並びにレーザ光源16Aから射出される参照光RLから不図示の分岐光学系で分岐された第1及び第2の参照光RL1,RL2が、図4(A)のエンコーダ60の2つの検出ヘッド62A及び62Bに供給されている。また、光源66A内で計測光MLの一部及び参照光RLの一部を干渉させて得られる基準信号が計測演算部64に供給されている。
図4(A)において、第1及び第2の検出ヘッド62A及び62Bは、それぞれXY平面に対してθy方向に45°で傾斜した面に平行なPBS面(偏光ビームスプリッター面)69Aa及び69Baを有するプリズム型のPBS(偏光ビームスプリッター)69A及び69Bを有する。PBS69A,69Bの回折格子12に対向する面にそれぞれ1/4波長板70A,70Bが固定され、PBS69A,69Bの−X方向の面にそれぞれ1/4波長板72A,72Bが固定され、PBS69A,69Bの上面にそれぞれコーナーキューブ71A,71Bが固定されている。また、PBS69A,69Bの−X方向の面に対向するようにミラー73A,73Bが配置され、PBS69A,69Bと回折格子12との間に楔型プリズム74が配置されている。楔型プリズム74には、PBS69A,69Bに対応して開口74a,74bが形成されている。
また、計測光ML1及び参照光RL1は、ミラー68Aを介してほぼX軸に沿って、かつ角度βで交差して、PBS69AのPBS面69Aaに対してそれぞれS偏光及びP偏光の状態でPBS69Aに入射する。同様に、計測光ML2及び参照光RL2は、ミラー68Bを介してほぼX軸に沿って、かつ角度βで交差して、PBS69BのPBS面69Baに対してそれぞれS偏光及びP偏光の状態でPBS69Bに入射する。
第1の検出ヘッド62Aにおいて、PBS69Aに入射した計測光ML1は、PBS面69Aaで反射され、1/4波長板70Aを通過し、楔型プリズム74の開口74aを通して回折格子12の格子パターン面12bに概ね垂直に入射する。そして、回折格子12の格子パターン12aからの反射光(0次光又は0次回折光)ML1Aは、楔型プリズム74の開口74a、1/4波長板70A、及びPBS面69Aaを通過して、コーナーキューブ71Aで反射される。反射された反射光ML1Aは、PBS面69Aa、1/4波長板70A、及び楔型プリズム74を通過して回折格子12の格子パターン面12bに入射する。この際に、楔型プリズム74の上面及び下面の間には、+Z方向から入射する光束を−X方向に偏向するように傾斜角が設けてある。このため、反射光ML1Aは、わずかに−X方向に傾斜して格子パターン面12bに入射する。
そして、反射光ML1Aによる格子パターン12aからの反射光(0次光又は再回折光)ML1Cは、楔型プリズム74を通過してさらに傾斜した状態で、1/4波長板70Aを介してPBS面69Aaでほぼ+X方向に反射され、ミラー75Aでほぼ+Z方向に反射される。
また、PBS69Aに入射した参照光RL1は、PBS面69Aaを通過して、1/4波長板72Aを介してミラー73Aで反射される。反射された参照光RL1は、1/4波長板72Aを通過して、PBS面69Aaで反射されてコーナーキューブ71Aに入射する。コーナーキューブ71Aで反射された参照光RL1は、PBS面69Aaで反射され、1/4波長板72Aを通過して、ミラー73Aで反射される。反射された参照光RL1は、1/4波長板72Aを通過し、PBS面69Aaを通過して、計測光の反射光ML1Cと平行になり、かつほぼ重ね合わせられた状態でミラー75Aに入射する。ミラー75Aでほぼ+Z方向に反射された反射光ML1C及び参照光RL1は、偏光板76Aを介して干渉光となって光電センサ77Aで受光され、光電センサ77Aの検出信号が計測演算部64に供給される。計測演算部64では、その検出信号及び上述の基準信号を用いて、検出ヘッド62Aの位置における第1部材6に対する第2部材7のZ方向の相対移動量を求める。
また、楔型プリズム74の上面と下面との間の角度(頂角)は、ミラー75Aに入射する計測光の反射光ML1Cが参照光RL1に平行になるように設定されている。このため、反射光ML1Cと参照光RL1との干渉光はSN比が高くなり、第2部材7のZ方向の相対移動量を高精度に求めることができる。
同様に、第2の検出ヘッド62Bにおいて、PBS69Bに入射した計測光ML2は、PBS面69Baで反射され、1/4波長板70Bを通過し、楔型プリズム74の開口74bを通して回折格子12の格子パターン面12bに概ね垂直に入射する。そして、格子パターン12aからの反射光(0次光)ML2Aは、楔型プリズム74の開口74b、1/4波長板70B、及びPBS面69Baを通過して、コーナーキューブ71Bで反射される。反射された反射光ML2Aは、PBS面69Ba、1/4波長板70B、及び楔型プリズム74を通過して回折格子12の格子パターン面12bに傾斜して入射する。
そして、反射光ML2Aによる格子パターン12aからの反射光(0次光)ML2Cは、楔型プリズム74を通過してさらに傾斜した状態で、1/4波長板70Bを介してPBS面69Baでほぼ+X方向に反射され、ミラー75Bに入射する。
また、PBS69Bに入射した参照光RL2は、PBS面69Baを通過して、1/4波長板72Bを介してミラー73Bで反射される。反射された参照光RL2は、1/4波長板72Bを通過して、PBS面69Baで反射されてコーナーキューブ71Bに入射する。コーナーキューブ71Bで反射された参照光RL2は、PBS面69Baで反射され、1/4波長板72Bを通過して、ミラー73Bで反射される。反射された参照光RL2は、1/4波長板72Bを通過し、PBS面69Baを通過して、計測光の反射光ML2Cと平行になり、かつほぼ重ね合わせられた状態でミラー75Bに入射する。ミラー75Bでほぼ+Z方向に反射された反射光ML2C及び参照光RL2は、偏光板76Bを介して干渉光となって光電センサ77Bで受光され、光電センサ77Bの検出信号が計測演算部64に供給される。計測演算部64では、その検出信号及び上述の基準信号を用いて、検出ヘッド62Bの位置における第1部材6に対する第2部材7のZ方向の相対移動量を求める。
この場合、検出ヘッド62Bに入射する際の計測光ML2及び参照光RL2の角度(交差角β)は、検出ヘッド62Aに入射する際の計測光ML1及び参照光RL1の角度と同じである。このため、楔型プリズム74を通過してPBS面69Baで反射された反射光ML2Cは、参照光RL2と平行になる。このため、反射光ML2Cと参照光RL2との干渉光はSN比が高くなり、検出ヘッド62Bの位置における第2部材7のZ方向の相対移動量を高精度に求めることができる。
同様に、他に検出ヘッド62A,62Bと同様の検出ヘッドがある場合でも、この検出ヘッドから回折格子12に向かう2つの光束のうちの一方を楔型プリズム74に設けた開口を通過させ、他方を楔型プリズム74を通過させることで、計測光の反射光と対応する参照光とを平行にすることができる。なお、本実施形態では、楔型プリズム74の開口74a,74bに、回折格子12に入射する計測光ML1,ML2(反射光ML1A,ML2A)を通過させているが、回折格子12に入射する反射光ML1A,ML2B(及び反射光ML1C,ML2C)を開口74a,74bを通過させ、回折格子12に入射する計測光ML1,ML2(反射光ML1A,ML2A)を楔型プリズム74に通してもよい。
上述のように本実施形態のエンコーダ60は、第1部材6に設けられ、少なくともX方向(第1方向)を周期方向とする格子パターン12aを有する反射型の回折格子と、計測光ML及び参照光RLを互いに非平行となるように射出するレーザ光源16A(光源部)と、計測光MLから分岐された計測光ML1を回折格子12の格子パターン面12bに入射させるPBS69A(入射用光学部材)と、第2部材7に設けられるとともに、回折格子12から計測光ML1によって発生する反射光ML1A(第1回折光)を、格子パターン面12bに入射させるコーナーキューブ71A(第1光学部材)と、開口74aが形成されるとともに、開口74aが、反射光ML1A(又は回折格子12から反射光ML1Aによって発生する反射光ML1C(再回折光))が通過するように配置された楔型プリズム74と、反射光ML1Cと参照光RLから分岐された参照光RL1との干渉光を検出する光電センサ77A(第1光電検出器)と、光電センサ77Aの検出信号を用いて第2部材7の相対移動量を求める計測演算部64(計測部)と、を備え、回折格子12から反射光ML1Aによって発生する反射光ML1C(又は反射光ML1A)が楔型プリズム74を通過して光路が偏向される。
本実施形態によれば、楔型プリズム74によって、例えば反射光ML1Cの光路が参照光RL1の光路と平行になるように反射光ML1Cを偏向することによって、反射光ML1C及び参照光RL1の干渉光のSN比が高くなり、第2部材7の相対移動量を高精度に計測できる。
なお、本実施形態では、検出ヘッド62A,62Bによって第2部材7のZ方向の相対移動量を計測しているが、複数の検出ヘッドから回折格子12に供給される計測光の±1次回折光等を検出して、第2部材7のX方向及び/又はY方向の相対移動量を計測する場合にも、それらの検出ヘッドと回折格子12との間に楔型プリズム74と同様の複数の開口が形成された楔型プリズムを配置することで、検出対象の回折光と参照光とを容易に平行にすることができる。
(第3の実施形態)
第3の実施形態につき図5〜図7を参照して説明する。図5は、この実施形態に係るエンコーダ装置を備えた露光装置EXの概略構成を示す。露光装置EXは、スキャニングステッパーよりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PL(投影ユニットPU)を備えており、以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(ほぼ水平面に平行な面)内でレチクルRとウエハWとが相対走査される方向にY軸を、Z軸及びY軸に直交する方向にX軸を取って説明する。
露光装置EXは、例えば米国特許出願公開第2003/0025890号明細書などに開示される照明系110、及び照明系110からの露光用の照明光(露光光)IL(例えば波長193nmのArFエキシマレーザ光、固体レーザ(半導体レーザなど)の高調波など)により照明されるレチクルR(マスク)を保持するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILをウエハW(基板)に投射する投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWSTを含むステージ装置195、及び制御系等(図7参照)を備えている。
レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面(下面)には、回路パターンなどが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図7のレチクルステージ駆動系111によって、XY平面内で微少駆動可能であると共に、走査方向(Y方向)に指定された走査速度で駆動可能である。
レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計116によって、移動鏡115(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、図7のコンピュータよりなる主制御装置120に送られる。主制御装置120は、その計測値に基づいてレチクルステージ駆動系111を制御することで、レチクルステージRSTの位置及び速度を制御する。
図5において、レチクルステージRSTの下方に配置された投影ユニットPUは、鏡筒140と、鏡筒140内に所定の位置関係で保持された複数の光学素子を有する投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。照明系110からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のレチクルRの回路パターンの像が、ウエハ(半導体ウエハ)Wの一つのショット領域の露光領域IA(照明領域IARと共役な領域)に形成される。
また、露光装置EXは、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子である先端レンズ191を保持する鏡筒140の下端部の周囲を取り囲むように、局所液浸装置108の一部を構成するノズルユニット132が設けられている。ノズルユニット132は、露光用の液体Lq(例えば純水)を供給するための供給管131A及び回収管131Bを介して、液体供給装置186及び液体回収装置189(図7参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置108は設けなくともよい。
また、ウエハステージWSTは、不図示の複数の例えば真空予圧型空気静圧軸受(エアパッド)を介して、ベース盤112のXY面に平行な上面112aに非接触で支持されている。ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系124(図7参照)によってX方向及びY方向に駆動可能である。露光装置EXは、レチクルRのアライメントを行う空間像計測系(不図示)、ウエハWのアライメントを行うアライメント系AL(図7参照)、照射系90a及び受光系90bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点のオートフォーカスセンサ90(図7参照)、及びウエハステージWSTの位置情報を計測するためのエンコーダ装置8Bを備えている。
ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体191と、ステージ本体191上に搭載されたウエハテーブルWTBと、ステージ本体191内に設けられて、ステージ本体191に対するウエハテーブルWTB(ウエハW)のZ方向の位置、及びθx方向、θy方向のチルト角を相対的に微小駆動するZ・レベリング機構とを備えている。ウエハテーブルWTBの中央の上部には、ウエハWを真空吸着等によってほぼXY平面に平行な吸着面上に保持するウエハホルダ(不図示)が設けられている。
また、ウエハテーブルWTBの上面には、ウエハホルダ上に載置されるウエハの表面とほぼ同一面となる、液体Lqに対して撥液化処理された表面(又は保護部材)を有し、かつ外形(輪郭)が矩形でその中央部にウエハホルダ(ウエハの載置領域)よりも一回り大きな円形の開口が形成された高平面度の平板状のプレート体128が設けられている。
なお、上述の局所液浸装置108を設けたいわゆる液浸型の露光装置の構成にあっては、さらにプレート体128は、図6のウエハテーブルWTB(ウエハステージWST)の平面図に示されるように、その円形の開口を囲む、外形(輪郭)が矩形の表面に撥液化処理が施されたプレート部(撥液板)128aと、プレート部128aを囲む周辺部128eとを有する。周辺部128eの上面に、プレート部128aをY方向に挟むようにX方向に細長い1対の2次元の回折格子12A,12Bが配置され、プレート部128aをX方向に挟むようにY方向に細長い1対の2次元の回折格子12C,12Dが配置されている。回折格子12A〜12Dは、図1の回折格子12と同様にX方向、Y方向を周期方向とする2次元の格子パターンが形成された反射型の回折格子である。
また、図5において、投影ユニットPUを支持するフレーム(不図示)に連結部材(不図示)を介してXY面にほぼ平行な平板状の計測フレーム150が支持されている。計測フレーム150の底面に、投影光学系PLをX方向に挟むように、図1の3軸の検出ヘッド14と同じ構成の複数の検出ヘッド14が固定され、投影光学系PLをY方向に挟むように、図1の検出ヘッド14と同じ構成の複数の検出ヘッド14が固定されている(図6参照)。また、複数の検出ヘッド14にレーザ光(計測光及び参照光)を供給するための図1のレーザ光源16と同様の一つ又は複数のレーザ光源(不図示)も備えられている。
ここで、図示無きフレームによって支持される投影ユニットPUを、ウエハWに露光光を照射する露光部とみなすことができる。
図6において、投影光学系PLからの照明光でウエハWを露光している期間では、常にY方向の一列A1内の複数の検出ヘッド14のいずれか2つが回折格子12A,12Bに対向し、X方向の一行A2の複数の検出ヘッド14のいずれか2つが回折格子12C,12Dに対向するように構成されている。一列A1内の各検出ヘッド14は、回折格子12A又は12Bに計測光を照射し、回折格子12A,12Bから発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42(図8参照)に供給する。これらの計測演算部42では、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Y方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めてそれぞれ計測値を切り替え部80Aに供給する。計測値切り替え部80Aでは、回折格子12A,12Bに対向している検出ヘッド14に対応する計測演算部42から供給される相対位置の情報を主制御装置120に供給する。
また、一行A2に対応する各検出ヘッド14は、回折格子12C又は12Dに計測光を照射し、回折格子12C,12Dから発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42(図7参照)に供給する。これらの計測演算部42では、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Y方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Bに供給する。計測値切り替え部80Bでは、回折格子12C,12Dに対向している検出ヘッド14に対応する計測演算部42から供給される相対位置の情報を主制御装置120に供給する。
一列A1内の複数の検出ヘッド14、レーザ光源(不図示)、計測演算部42、及び回折格子12A,12Bから3軸のエンコーダ10Aが構成され、一行A2内の複数の検出ヘッド14、レーザ光源(不図示)、計測演算部42、及び回折格子12C,12Dから3軸のエンコーダ10Bが構成されている。そして、3軸のエンコーダ10A,10B、及び計測値切り替え部80A,80Bからエンコーダ装置8Bが構成されている。主制御装置120は、エンコーダ装置8Bから供給される相対位置の情報に基づいて、計測フレーム150(投影光学系PL)に対するウエハステージWSTのX方向、Y方向、Z方向の位置、及びθz方向の回転角等の情報を求め、この情報に基づいてステージ駆動系124を介してウエハステージWSTを駆動する。
そして、露光装置EXの露光時には、先ずレチクルR及びウエハWのアライメントが行われる。その後、レチクルRへの照明光ILの照射を開始して、投影光学系PLを介してレチクルRのパターンの一部の像をウエハWの表面の一つのショット領域に投影しつつ、レチクルステージRSTとウエハステージWSTとを投影光学系PLの投影倍率βを速度比としてY方向に同期して移動(同期走査)する走査露光動作によって、そのショット領域にレチクルRのパターン像が転写される。その後、ウエハステージWSTを介してウエハWをX方向、Y方向にステップ移動する動作と、上記の走査露光動作とを繰り返すことによって、液浸法でかつステップ・アンド・スキャン方式でウエハWの全部のショット領域にレチクルRのパターン像が転写される。
この際に、エンコーダ装置8Bの検出ヘッド14においては、計測光及び回折光の光路長はレーザ干渉計に比べて短いため、検出ヘッド14を用いた計測値に対する空気揺らぎの影響が非常に小さい。従って、本実施形態のエンコーダ装置8Bは、レーザ干渉計と比較して、空気が揺らぐ程度の短い期間における計測安定性(短期安定性)が格段に優れているため、レチクルRのパターン像をウエハWに高精度に転写できる。さらに、検出ヘッド14は、回折格子12A〜12Dの表面形状に誤差がある場合でも、回折格子12A〜12DのZ位置が変化しても常に高いSN比で相対移動量の情報を含む信号を検出できるため、常に高精度にウエハステージWSTを駆動できる。
なお、本実施形態では、計測フレーム150側に検出ヘッド14を配置し、ウエハステージWST側に回折格子12A〜12Dを配置している。この他の構成として、計測フレーム150側に回折格子12A〜12Dを配置し、ウエハステージWST側に検出ヘッド14を配置してもよい。
また、ウエハステージWST内に例えばY方向に沿って開口を設け、この開口の内面に回折格子12A〜12Dと同様の回折格子を設け、その開口に差し込み可能なロッド状部材の先端に検出ヘッド14と同様の検出ヘッドを設け、この検出ヘッド及びその開口内の回折格子を含むエンコーダによってウエハステージWSTの投影光学系PLに対する移動量を計測してもよい。
上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図8に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
言い換えると、このデバイスの製造方法は、上記の実施例の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウエハ)に転写し、その基板を現像するリソグラフィ工程と、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工する工程(ステップ224のエッチング等)とを含んでいる。この際に、上記の実施例によれば、露光装置のウエハステージWSTの位置を高精度に制御できるため、電子デバイスを高精度に製造できる。
なお、本実施形態は、上述の走査露光型の投影露光装置(スキャナ)の他に、ステップ・アンド・リピート方式の投影露光装置(ステッパ等)にも適用できる。さらに、本実施形態は、液浸型露光装置以外のドライ露光型の露光装置にも同様に適用することができる。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本実施形態は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグフィ工程を用いて製造する際の、露光装置にも適用することができる。
また、上記の実施形態のエンコーダ10等は、露光装置以外の検査装置又は計測装置等の検査又は加工対象の物体用の光学系(レーザ光を集光する光学系等)と、その物体を移動する移動装置(ステージ等)とを備えた光学装置において、その移動装置(物体)の例えばその光学系に対する相対移動量を計測するために適用することができる。
なお、本実施形態は上述の実施形態に限定されず、要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
EX…露光装置、R…レチクル、W…ウエハ、ML…計測光、DX1,DY1,EX1,EY1,EX4…+1次回折光、DX2,DY2,EX2,EY2,EX3…−1次回折光、10…エンコーダ、12…2次元の回折格子、14…検出ヘッド、16…レーザ光源、24A〜24D…コーナーキューブ、26A〜26D…楔型プリズム、40XA,40XB,40YA,40YB…光電センサ、42…計測演算部、60…エンコーダ、62A,62B…検出ヘッド、74…楔型プリズム

Claims (17)

  1. 少なくとも第1方向に相対移動する第1及び第2部材の相対移動量を計測するエンコーダ装置であって、
    前記第1部材及び前記第2部材の一方の部材に設けられ、少なくとも前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
    計測光を発生する光源部と、
    前記計測光を前記回折格子の格子パターンに入射させて回折光を発生させる第1光学部材と、
    前記第1部材及び前記第2部材の他方の部材に設けられるとともに、前記回折格子の前記格子パターンで回折された前記回折光のうち第1回折光を前記格子パターンに入射させて第2回折光と前記第2回折光とは次数の異なる第3回折光とを発生させる第2光学部材と、
    前記計測光を分岐して第1の参照光と第2の参照光とを生成する第3光学部材と、
    前記格子パターンで回折された前記第2回折光と前記第1の参照光との干渉光を検出する第1検出器と、
    前記格子パターンで回折された前記第3回折光と前記第2の参照光との干渉光を検出する第2検出器と、
    前記第1検出器及び前記第2検出器の検出信号を用いて前記相対移動量を求める計測部と、
    を備えるエンコーダ装置。
  2. 前記計測部は、前記第1検出器の検出信号と前記第2検出器の検出信号とを用いて、前記反射型の回折格子に起因する誤差を低減する、請求項1に記載のエンコーダ装置。
  3. 前記第2回折光は正の次数の回折光であり、前記第3回折光は負の次数の回折光である、請求項1又は2に記載のエンコーダ装置。
  4. 前記第2回折光は+n次の回折光であり(nは自然数)、前記第3回折光は−n次の回折光である、請求項1又は2に記載のエンコーダ装置。
  5. 前記第1光学部材は、前記計測光を前記回折格子の前記格子パターン面に概ね垂直に入射させ、
    前記第2光学部材は、前記第1回折光を前記格子パターン面に概ね垂直に入射させ、
    前記第2回折光と前記第3回折光とは、前記第1方向に関して対称に発生する回折光である請求項1乃至4のいずれか一項に記載のエンコーダ装置。
  6. 前記第1回折光は1次回折光であり、
    前記第1再回折光は、前記第1回折光と同じ方向に発生する1次回折光であり、
    前記第2再回折光は、前記第1回折光と異なる方向に発生する1次回折光である請求項1乃至5のいずれか一項に記載のエンコーダ装置。
  7. 前記計測部は、前記第1検出器の検出信号を用いて得られる第1の相対移動量と前記第2検出器の検出信号を用いて得られる第2の相対移動量との差分を求める請求項1乃至6のいずれか一項に記載のエンコーダ装置。
  8. 前記第3光学部材は、前記計測光を分岐して第3の参照光と第4の参照光とを生成し、
    前記他方の部材に設けられるとともに、前記格子パターンで回折された前記回折光のうち前記第1回折光と次数の異なる第4回折光を前記格子パターンに入射させて第5回折光と該第5回折光とは次数の異なる第6回折光とを発生させる第4光学部材と、
    前記格子パターンで回折された前記第5回折光と前記第3の参照光との干渉光を検出する第3検出器と、
    前記格子パターンで回折された前記第6回折光と前記第4の参照光との干渉光を検出する第4検出器と、を備え、
    前記計測部は、前記第1、第2、第3、及び第4検出器の検出信号を用いて前記相対移動量を求める請求項1乃至7のいずれか一項に記載のエンコーダ装置。
  9. 前記回折格子と前記第2光学部材との間に配置されて、前記第2回折光が前記回折格子に入射するときの入射角が回折角よりも小さくなるように前記第2回折光の方向を変更する第1方向変更部材を備える請求項1乃至8のいずれか一項に記載のエンコーダ装置。
  10. 前記回折格子は、前記第1方向及びこの第1方向に直交する第2方向を周期方向とする2次元の反射型の回折格子であり、
    前記第3光学部材は、前記計測光を分岐して第5の参照光と第6の参照光とを生成し、
    前記他方の部材に設けられるとともに、前記格子パターン面で回折された前記回折光のうち前記第2及び第3回折光の進行経路を含む面と交差する方向に発生する第7回折光を前記格子パターンに入射させて第8回折光と該第8回折光とは次数の異なる第9回折光とを発生する第5光学部材と、
    前記格子パターンで回折された前記第8回折光と前記第5の参照光との干渉光を検出する第5検出器と、
    前記格子パターンで回折された前記第9回折光と第6の参照光との干渉光を検出する第6検出器と、を備え、
    前記計測部は、少なくとも前記第1、第2、第5、及び第6検出器の検出信号を用いて前記相対移動量を求める請求項1乃至9のいずれか一項に記載のエンコーダ装置。
  11. 前記第1光学部材はコーナーキューブを有する請求項1乃至10のいずれか一項に記載のエンコーダ装置。
  12. 少なくとも第1方向に相対移動する第1及び第2部材の相対移動量を計測するエンコーダ装置であって、
    前記第1部材及び前記第2部材の一方の部材に設けられ、少なくとも前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
    計測光及び参照光を互いに非平行となるように射出する光源部と、
    前記計測光から分岐された第1計測光を前記回折格子の格子パターン面に入射させる入射光学部材と、
    前記第1部材及び前記第2部材の他方の部材に設けられるとともに、前記回折格子から前記第1計測光によって発生する第1回折光を、前記格子パターン面に入射させる第1光学部材と、
    第1の開口が形成されるとともに、前記第1の開口を、前記第1回折光又は前記回折格子から前記第1回折光によって発生する第1再回折光よりなる第1光束が通過するように配置された楔形の光学部材と、
    前記第1再回折光と前記参照光から分岐された第1参照光との干渉光を検出する第1光電検出器と、
    前記第1光電検出器の検出信号を用いて前記相対移動量を求める計測部と、
    を備え、
    前記第1回折光又は前記第1再回折光のうち、前記第1光束と異なる第2光束が前記楔形の光学部材を通過して光路が偏向されるエンコーダ装置。
  13. 前記入射用光学部材は、前記計測光から分岐された第2計測光を前記回折格子の前記格子パターン面に入射させ、
    前記他方の部材に設けられるとともに、前記回折格子から前記第2計測光によって発生する第2回折光を、前記格子パターン面に入射させる第2光学部材と、
    前記回折格子から前記第2回折光によって発生する第2再回折光と前記参照光から分岐された第2参照光との干渉光を検出する第2光電検出器と、を備え、
    前記楔形の光学部材には、前記第2回折光又は前記回折格子から前記第2再回折光よりなる第3光束が通過可能な、前記第1の開口と異なる第2の開口が形成され、
    前記第2回折光又は前記第2再回折光のうち、前記第3光束と異なる第4光束が前記楔形の光学部材を通過して光路が偏向される請求項12に記載のエンコーダ装置。
  14. 請求項1乃至13のいずれか一項に記載のエンコーダ装置を用いて前記第1部材及び前記第2部材の相対移動量を求めることと、
    前記相対移動量に応じて前記第1部材と前記第2部材との相対的な位置関係を制御することと、を含むエンコーダ装置の使用方法。
  15. 請求項1乃至13のいずれか一項に記載のエンコーダ装置と、
    前記エンコーダ装置の計測結果に基づいて対象物を移動する移動装置と、
    前記対象物用の光学系と、を備える光学装置。
  16. パターンを被露光体に露光する露光装置であって、
    前記被露光体に露光光を照射する露光部を少なくとも支持するフレームと、
    前記被露光体を支持するとともに前記フレームに対して少なくとも第1方向に相対移動可能なステージと、
    請求項1乃至13のいずれか一項に記載のエンコーダ装置と、を備え、
    前記エンコーダ装置を用いて、前記第1方向への前記ステージの相対移動量を計測する露光装置。
  17. リソグラフィ工程を含むデバイス製造方法であって、
    前記リソグラフィ工程で、請求項16に記載の露光装置を用いて物体を露光するデバイス製造方法
JP2015208685A 2015-10-23 2015-10-23 エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法 Active JP6607350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208685A JP6607350B2 (ja) 2015-10-23 2015-10-23 エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208685A JP6607350B2 (ja) 2015-10-23 2015-10-23 エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2017083509A true JP2017083509A (ja) 2017-05-18
JP6607350B2 JP6607350B2 (ja) 2019-11-20

Family

ID=58710822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208685A Active JP6607350B2 (ja) 2015-10-23 2015-10-23 エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法

Country Status (1)

Country Link
JP (1) JP6607350B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116481435A (zh) * 2023-03-20 2023-07-25 东北林业大学 一种紧凑型六自由度测量系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148015A (ja) * 1989-11-02 1991-06-24 Dr Johannes Heidenhain Gmbh 位置測定装置
WO2013073538A1 (ja) * 2011-11-17 2013-05-23 株式会社ニコン エンコーダ装置、移動量計測方法、光学装置、並びに露光方法及び装置
US20150160044A1 (en) * 2012-04-26 2015-06-11 Nikon Corporation Measurement method and encoder device, and exposure method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148015A (ja) * 1989-11-02 1991-06-24 Dr Johannes Heidenhain Gmbh 位置測定装置
WO2013073538A1 (ja) * 2011-11-17 2013-05-23 株式会社ニコン エンコーダ装置、移動量計測方法、光学装置、並びに露光方法及び装置
US20150160044A1 (en) * 2012-04-26 2015-06-11 Nikon Corporation Measurement method and encoder device, and exposure method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116481435A (zh) * 2023-03-20 2023-07-25 东北林业大学 一种紧凑型六自由度测量系统
CN116481435B (zh) * 2023-03-20 2024-03-19 东北林业大学 一种紧凑型六自由度测量系统

Also Published As

Publication number Publication date
JP6607350B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
US10697805B2 (en) Encoder device, method for measuring moving amount, optical apparatus, exposure apparatus, exposure method and method for producing device
JP4948213B2 (ja) 変位測定システムおよびリソグラフィ装置
TWI568991B (zh) 編碼器干涉術系統、微影系統,以及編碼器干涉術方法
TWI748363B (zh) 測量裝置及測量方法、曝光裝置及曝光方法、以及元件製造方法
JP6767682B2 (ja) エンコーダ装置及び露光装置
JP7147738B2 (ja) 計測装置及び計測方法、並びに露光装置
JP2023022106A (ja) 面位置検出装置、露光装置、デバイス製造方法、および基板処理システム
KR20140061499A (ko) 고 콘트라스트 인코더 헤드
JP6680997B2 (ja) エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法
JP6607350B2 (ja) エンコーダ装置及びその使用方法、光学装置、露光装置、並びにデバイス製造方法
JP2014029276A (ja) エンコーダ装置、光学装置、及び露光装置
JP2012049284A (ja) エンコーダ装置、光学装置、露光装置、露光方法およびデバイス製造方法
JP5862857B2 (ja) エンコーダ装置、光学装置、及び露光装置
JP2013101084A (ja) 位置検出方法及び装置、エンコーダ装置、並びに露光装置
JP2012008004A (ja) エンコーダ装置、光学装置、露光装置、露光方法およびデバイス製造方法
TWI479125B (zh) 干涉式編碼器系統的密接式編碼頭
JP2013234997A (ja) エンコーダ装置、光学装置、及び露光装置
JP2013026273A (ja) エンコーダ装置、光学装置、及び露光装置
JP2016024049A (ja) 計測方法及びエンコーダ装置、並びに露光方法及び装置
JP2013102099A (ja) エンコーダ装置、光学装置、及び露光装置
JP2011181851A (ja) 変位検出装置、ステージ装置、露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6607350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250